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Simple Summary: This work delves into the analysis of tooth marks supposedly produced
by carnivores at the Upper Paleolithic site of Coímbre Cave. This is a Magdalenian site
that shows significant human activity, yet tooth marks are also present on the bones. The
objective of this work is to identify which carnivore produced these marks. However, our
results have been surprising because they have shown that these tooth marks were not
made by carnivores but by humans. This is important because it shows that humans could
sometimes also produce tooth marks on bones.

Abstract: The domestication of the dog (Canis lupus familiaris) is one of the oldest and most
complex processes of interaction between humans and animals. This phenomenon may
have begun sometime between 30 and 15 ky calBP. Archaeological and genetic studies have
provided valuable insights into dog domestication, although the precise geographic loca-
tion and origin of this process remain controversial and under debate. New methodologies,
such as taphonomic analyses, offer opportunities to deepen our understanding of past
human–dog interactions. In this context, the present study examines tooth marks found on
some bone remains from the Upper Magdalenian site (15,500–13,200 cal BP) of Coímbre
Cave (Peñamellera Alta, Asturias, Spain). The low incidence of carnivores at the site has
raised the possibility that the tooth marks may have been produced by canids. However, a
detailed taphonomic analysis combining geometric morphometrics with robust statistical
methods—including MANOVA with post-hoc permutation tests—revealed that the marks
identified at the site do not significantly differ from tooth marks produced by humans
(p = 0.086). In contrast, tooth marks produced by other carnivores, such as Canis lupus
signatus and Canis lupus familiaris, showed significant differences (p < 0.003). Although our
study could not confirm the presence of domesticated dogs at the Magdalenian levels of
Coímbre Cave, it has documented taphonomic processes that are rarely identified in the ar-
chaeological record. Furthermore, this study highlights the potential of tooth mark analysis
as a key tool for future research on human–animal interactions in archaeological contexts.
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1. Introduction
The domestication of the dog (Canis lupus familiaris) represents one of the most signifi-

cant biocultural processes in human history. This process has been the focus of numerous
studies over recent decades [1–6], spanning various scientific fields such as evolutionary
biology, ecology, genetics, ethology [4,6–17], stable isotope analysis [18], archaeology, and
geometric morphometrics [19]. The vast number of studies dedicated to this subject reflects
the importance of dog domestication as a key milestone in the coevolution between humans
and canids, as has occurred with other animal species. What began as a speculative field has
evolved into an interdisciplinary area of research, thanks to advances in scientific techniques
that have considerably expanded our understanding of these human-driven processes.

It is estimated that the relationship between humans and dogs began over 15,000 years
ago, based on genetic and archaeological evidence suggesting a complex and possibly
multiple-origin domestication process [20,21]. Researchers such as Raymond and Lorna
Coppinger, Pat Shipman, Greg Larson, and Ádám Miklósi have explored the origins of dog
domestication, proposing that it was gradual and supported by natural selection. Genetic
studies have shown that modern gray wolves (Canis lupus) and dogs (Canis lupus familiaris)
originated from an extinct lineage of archaic wolves that lived between 40 and 20 ka cal BP.
Therefore, both species share a now-extinct common ancestor.

Wolves predating the gray wolf displayed less aggressive behavior, which facilitated
their proximity to humans. Attracted by human settlements and food waste, these more
docile wolves made initial contact with humans—similar to the behavior of current species
such as hyenas or lions in certain environments. This first contact led to a symbiotic re-
lationship, in which the presence of wolves around human settlements provided mutual
benefits. Over time, this association aided hunting, protection, and other aspects of human
life, promoting a domestication process that was not necessarily intentional. This symbiosis
strengthened the adaptive capabilities of Homo sapiens, facilitating their expansion and dom-
inance. Furthermore, it has been demonstrated that dogs developed remarkable abilities
for teamwork and understanding human cues—skills acquired through the domestication
process [22–24].

Although genetic and archaeological research has made great strides, the exact geo-
graphic origin of dog domestication remains uncertain. Several regions have been proposed,
including Europe [14], Asia [11], and the Middle East [25], but current evidence suggests a
complex process that may have occurred in multiple locations simultaneously or in differ-
ent periods [10]. Given this uncertainty, taphonomic studies have emerged as a potentially
key tool for deepening our understanding of dog–human interactions in archaeological
contexts. Taphonomy has become fundamental in reconstructing paleoecological and
zooarchaeological processes, providing insight into how interactions between humans and
animals developed over time [26,27].

Within this field, the analysis of tooth marks on bone remains has been widely used
to identify consumption patterns, biological modifications, and prey processing [28,29].
Taphonomic analysis of tooth marks applied to the study of dog domestication allows
researchers to infer the trophic and ecological impact of this process on the behavior of
early domesticated dogs. Domestication has involved morphological, behavioral, and
ecological changes in modern dogs, which may be reflected in how canids interacted with
bone remains in different cultural contexts [20,21] or may have even influenced the way
they bit bones, leaving different marks than those of their wild ancestors [30,31].
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For this reason, the present study aims to analyze the origin of dog domestication
through the taphonomic study of tooth marks, comparing those made by modern dogs and
other animals with marks found in archaeological sites. This approach will help determine
whether certain marks on bone remains can be attributed to domesticated dogs or other
carnivores. Additionally, this analysis will enable a quantitative characterization of the
variability in tooth marks and the comparison between modern animals and archaeological
remains, providing key insights into the early stages of domestication.

In recent years, some studies have successfully differentiated tooth marks left by
different carnivores with a high degree of accuracy [19,30–34]. Research using modern
samples produced by dogs and wolves has been able to successfully distinguish between
marks made by each species [30,31,34]. It is also important to consider the possibility of
intermediate dog-wolf cases, which may exhibit dental characteristics of both species and
produce tooth marks distinct from those typically attributed to either dogs or wolves [35].
Nevertheless, previous studies on canid tooth marks have shown sufficient sensitivity to
detect differences even among various dog breeds [30–32]. Consequently, tooth marks
resulting from intermediate dog-wolf stages could be classified as those produced by a
carnivore other than a domestic dog or a wolf.

Following this approach, a previous study demonstrated that the activity of Canis
lupus familiaris can be identified through tooth mark analysis in prehistoric archaeological
contexts [36]. Building on that work, the present study applies our methodology to an
archaeological sample from a Palaeolithic site—Coímbre Cave (Asturias, Spain). The
objective of this research is to document the potential presence of dogs in the Iberian
Magdalenian, as previously proposed by J. Altuna at the sites of Erralla and Urtiaga [37–39],
and to evaluate the effectiveness of our methods in identifying processes associated with
dog domestication.

The decision to employ this type of analysis stems from the fact that many prehis-
toric sites with well-preserved faunal remains show numerous bones bearing tooth marks.
If domesticated canids were present at these sites, it is plausible that they were respon-
sible for some of these marks. Identifying their origin could provide indirect evidence
of dog activity in these Magdalenian contexts and thus contribute to documenting the
domestication process.

2. Archaeological and Geological Context
Coímbre Cave (Peñamellera Alta, Asturias) is located in the central-western area of

the Cantabrian region, in the north of the Iberian Peninsula (Figure 1A) [40]. It is one of
the most important Magdalenian sites in northern Iberia, excavated in recent years using
modern archaeological methodologies [41].

From a geological point of view, the cave lies in the Besnes River valley (Figure 1B),
within a context of Namurian and Westphalian deposits (Upper Carboniferous), belonging
to the Barcaliente Formation [42–44].

Between 2009 and 2013, five excavation campaigns were carried out, focusing on the
first level of the cave, known as the entrance hall. These included a 2 × 2 m excavation area
(Figure 1C) in squares J-26, J-27, K-26, and K-27 (Figure 1D) [42].

The stratigraphy documented during the excavations allowed the identification of a se-
quence of sedimentary and occupational layers that reconstruct the natural, geomorphologi-
cal, and human events that shaped the cave. Of particular interest is the level corresponding
to the last phase of human activity in the cave, designated as Co.B.1 (Figure 1B) [42,45]:

Level Co.B.1 (Upper Magdalenian, 15,680–14,230 BP): This is the most complex level,
subdivided into several layers. The uppermost layer, Co.B.1a, represents the final phase
of human occupation. Below it, Co.B.1b corresponds to the initial phase of occupation,



Animals 2025, 15, 1319 4 of 19

characterized by repeated cleaning of the cave floor to maintain a habitable space (sublevels
Co.B.1c1, Co.B.1c2, and Co.B.1c3).

Uncovering human tooth marks in the search for dog domestication: The case of Coímbre 
Cave.  

Idoia Claver 1,2,3; Verónica Estaca2,4; María de Andrés-Herrero2; Darío Herranz-Rodrigo5,6; David 
Álvarez-Alonso2; José Yravedra2,3,7 

  

 

Figure 1. (A). Location of Coímbre Cave [42]; (B). Topographic plan of the main chamber of the cave with 
the excavation [41]; (C). Zone B of Coímbre Cave at the end of the 2012 excavation; (D). Stratigraphy of Zone 
B of Coímbre cave [41]. 

  

 

 

 

 

Figure 1. (A) Location of Coímbre Cave [42]; (B) Topographic plan of the main chamber of the
cave with the excavation [41]; (C) Zone B of Coímbre Cave at the end of the 2012 excavation;
(D) Stratigraphy of Zone B of Coímbre cave [41].

Research conducted at Coímbre Cave has provided valuable insights into human
occupation in the region during the end of the Upper Paleolithic, as well as into the
geological processes that have shaped the cave’s structure over time.

Taphonomic studies at the site revealed that Coímbre was a human habitat where
various animals—especially goats, deer, and chamois—were exploited by humans [46,47].
These analyses also indicated the presence of systematic butchery processes, reflecting
the development of different techniques such as skinning, defleshing, disarticulation,
evisceration, and even tendon extraction [48].

3. Materials and Methods
Based on previous studies conducted at Coímbre Cave [46,47], which revealed a highly

anthropized bone assemblage with numerous cut marks related to various butchering ac-
tivities, as well as tooth marks initially interpreted as being produced by carnivores [47],
the aim of this study is to analyze those tooth marks in order to identify the carnivore
species responsible. Given the predominance of human activity in the fossil accumu-
lation at Coímbre Cave, it is plausible that some of these marks may be attributed to
dogs—especially considering that their presence has been documented at other Magdale-
nian sites in northern Iberia [37,38]. If confirmed, this would contribute valuable data to
the current understanding of dog domestication during the Magdalenian in this region.

For this analysis, various high-resolution taphonomic techniques based on compara-
tive statistical methods were used. These methods allow for the analysis of the marks found
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at Coímbre and their comparison with those produced by different extant animal species
used as reference. Tooth marks left by carnivores can take several forms, notably tooth
pit marks, which are circular depressions caused by the pressure of teeth on the cortical
bone surface without perforating it; scores, which are scratches caused by dragging of teeth
along the bone; punctures, which perforate the cortical surface; and holes, generated by
digestive processes and characterized by the presence of cavities [28,49–61]. This study
focuses specifically on tooth pit marks, as these marks exhibit low intraspecific variability.
That is, within the same species, regardless of captivity status, sex, or the size of the bitten
bone, these marks maintain a consistent morphology [30,32,33]. This contrasts with other
types of tooth marks, such as tooth score marks, which may display higher variability [33].
These differences in tooth score marks between captive and free-ranging wolves may be
related to variations in the number of marks and the bite intensity observed in captive indi-
viduals compared to their free-ranging counterparts [62–64]. However, these differences
do not appear to affect tooth pits, which, according to previous studies, show no significant
variability between the two populations [30,32,33].

For the study, 50 tooth pit marks located on the diaphyses of long bones from goat and
chamois from Coímbre level Co.B.1 were analyzed and compared to a reference sample of
tooth marks made by nine species from the following carnivore subfamilies, with 50 marks
from each: Caninae (Canis lupus signatus, Canis lupus familiaris, Lycaon pictus, and Vulpes
vulpes), Ursinae (Ursus arctos), Hyaeninae (Crocuta crocuta), and Pantherinae (Panthera leo,
P. onca, and P. pardus) (as detailed in [19,32,33,65,66]). In the case of Canis lupus familiaris,
50 marks were obtained for each dog breed analyzed, including specimens of labrador
retriever, mastiff, and rottweiler, and also 30 from an Irish setter and 28 from a boxer, as well
as 50 from a mixed-breed dog previously described in [31]. Medium- and large-sized dogs
were selected for the study due to their comparable body size to wolves, which typically
weigh between 30 and 50 kg. This selection ensured accurate comparison between fossil
marks and those left by similarly sized canids. In addition to carnivores, a new dataset of
human tooth marks was also included. All marks used for the comparison between Co.B.1
and experimental samples were taken from diaphyses of long bones.

The experimental protocols for collecting tooth marks followed a detailed and sys-
tematic procedure. The samples were gathered in collaboration with various natural parks
(Supplementary File S1). Diaphyses of long bones—mainly horse radii and tibiae—were
offered to the animals, with some additional bones from smaller species such as roe deer,
wild boar, and red deer (only in the wolf experiments). Previous research has shown that
prey size does not significantly affect tooth mark morphology, so a wide range of bones
could be used for comparison. The bones, previously partially skinned, were offered to
the animals after feeding and left in the enclosures for several days, allowing interaction
and the creation of tooth marks [31,33,61,66–68]. Afterward, the bones were retrieved and
boiled in water, preserving the marks without using chemicals that might damage them.
Once dried, the bones were prepared for further analysis [30,33,61,65,66].

After collecting the tooth marks, they were digitized in 3D to create a digital database
and enable detailed sample analysis. Established methodologies (see [19,30–33,61,66]) were
followed, starting with scanning the pits using a DAVID SLS-2 structured light 3D scanner
(DAVID-Vision-Systems GmbH, 56070 Koblenz, Germany) (Figure 2) at the Archaeometry
and Archaeological Analysis Unit of the Research Support Center for Earth Sciences and
Archaeometry, Complutense University of Madrid. Macro lenses ranging from 2× to
10× magnification were used on both the camera and the projector. Before scanning, the
equipment was calibrated using a reference template with markers at 15 mm intervals.
Results were saved in .obj format and converted to .ply for landmark point processing.
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Figure 2. Modelling process using the DAVID SLS-2 3D scanner, showing how a three-dimensional model 
is obtained from an original specimen, followed by the extraction of the tooth mark. (A). 15 mm calibration 
marker; (B). Projected light from the projector; (C). Final virtual model of the cut mark, including texture. 
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 Figure 3. (A) Diaphysis fragment from Coímbre with a pit tooth mark. (B) Three-dimensional scan of the 
bone. (C) Occlusal view of the tooth mark showing the main anatomical landmarks (indicated with 
numbers) and the clockwise distribution of semi-landmarks. The distribution of semi-landmarks was 
generated using the Landmark software, which employs a patching function to automatically place 
equidistant semi-landmarks between the main reference points. (D) Cross-sectional view of the tooth mark. 
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including texture.

Twenty-five landmarks were defined for each pit according to [32] (Figure 3). These
included four perimeter-defining points, one indicating the deepest point, and twenty more
distributed evenly across the morphology. Landmarks were recorded using Landmark
software (version 3.0.0.6) and exported as “Raw Landmark Points”.
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Figure 3. (A) Diaphysis fragment from Coímbre with a pit tooth mark. (B) Three-dimensional scan of
the bone. (C) Occlusal view of the tooth mark showing the main anatomical landmarks (indicated
with numbers) and the clockwise distribution of semi-landmarks. The distribution of semi-landmarks
was generated using the Landmark software, which employs a patching function to automatically
place equidistant semi-landmarks between the main reference points. (D) Cross-sectional view of the
tooth mark.

For the digital database used during the statistical applications, 50 pits were ran-
domly selected for each species, except for Canis lupus familiaris, for which 258 pits were
selected. Specifically, the following number of pits were chosen for each breed: labrador
retriever (50 pits), mastiff (50 pits), rottweiler (50 pits), mixed-breed dog (50 pits), Irish
setter (30 pits), and boxer (28 pits).
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This resulted in a database containing 658 pits. The Raw Landmark Points were
stored in a text file in Morphologika format, which preserves landmark coordinates
and three-dimensional matrices. This format is widely used in geometric morphomet-
ric studies [69,70].

Data analysis was carried out using the R programming language by loading the data
with the function read.morphologika(file.choose( )), following these steps:

1. Generalized Procrustes Analysis (GPA): The shapes package was used to align the
landmark points through translation, rotation, and scaling [71–75]. This analysis
allowed for the extraction of morphological information from the samples, producing
configurations based on shape (with scaling) and form (without scaling). As sample
size does not influence comparative results, the decision was made to work with data
in its original scale using the function procGPA(x$coords, scale = FALSE). Addi-
tionally, scaled analyses were conducted with procGPA(x$coords, scale = TRUE)
to ensure that the results did not show significant variation.

2. Principal Component Analysis (PCA): Based on the GPA results, principal component
(PCs) values were calculated and graphically represented using ggplot2. Confidence
ellipses at 95% were included for each group (species or subfamily).

3. Ellipse Overlap Percentage Calculation: The sf and dplyr packages were used to assess
the intersection between the confidence regions of the ellipses. For this purpose, the
ellipse coordinates were extracted and converted into spatial geometry objects. The
individual and intersection areas were then calculated using the functions st_area()
and st_intersection(). Finally, the percentage of overlap was obtained using the
following formulas:

Percentage of overlap in ellipse 1 or 2 =
Area of intersection
Area of ellipse 1 or 2

× 100 (1)

4. Multivariate Analysis of Variance (MANOVA): Based on the PCs values obtained
from the PCA, differences between groups across multiple dependent variables were
evaluated using the function manova(). This analysis made it possible to determine
whether there were significant morphological differences between the groups studied.

5. Post-hoc Pairwise Comparisons: In cases where the MANOVA indicated signifi-
cant differences, pairwise comparisons were carried out using permutations via
the function pairwise.perm.manova(), from the RVAideMemoire package. This non-
parametric approach is robust to non-normal distributions and allows for the identifi-
cation of which groups differ significantly. In this study, a more stringent threshold
of p < 0.003 (equivalent to 3σ) was adopted instead of the traditional p < 0.05, to
obtain more robust and reliable results indicating the absence of significant differences
between the samples compared. The traditional p-value of 0.05 carries a high risk of
type I errors (false positives), with up to a 28.9% probability of incorrectly accepting
the alternative hypothesis when the null hypothesis is true. Conversely, using the
more conservative threshold of p < 0.003 significantly reduces the risk of type I error,
with only a 4.5% probability of making this type of error. Moreover, this stricter value
increases the reliability of the results, reflecting stronger evidence in favor of the alter-
native hypothesis. In this way, using p < 0.003 ensures more robust conclusions and
minimizes the likelihood of false positives, which is essential for ensuring the validity
of findings in contexts with high variability or uncertainty (according to [76]). Before
choosing which test to apply (Wilks’ lambda/ “Wilks” or Hotelling–Lawley Trace/
“Hotelling”), the Shapiro–Wilk test was performed using the function shapiro.test().

6. Procrustes ANOVA: To assess the relationship between shape and size (allomet-
ric analysis), the geomorph package [69] was used. A data frame was created
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from the GPA data using the function geomorph.data.frame, and then the function
procD.lm(coords ∼ log(Csize) − sample) was applied, taking into account centroid
size and the groups analyzed. Results were visualised graphically with ggplot2, using
the function plotAllometry() with the methods “PredLine”, “RegScore”, “size.shape”,
and “CAC”.

4. Results
4.1. Taphonomic Study of Tooth Marks

In relation to the stratigraphic levels previously described in the introduction, a
statistical analysis was carried out on 50 tooth pit marks (Supplementary File S2) dis-
tributed across 36 diaphyses of long bone specimens belonging to goats, chamois, roe
deer, red deer, and horses from various sub-levels of level 1 at Coímbre (Co.B.1a, Co.B.1b,
Co.B.1c1, and Co.B.1c3), attributed to the Upper Magdalenian (Figure 4). The majority
of the marks—specifically 27—were found on bones bearing a single pit, while six bones
displayed two pits, two bones had three pits, and a single bone notably contained five pits.
In all cases, the pits were located on the diaphyses of long bones, distributed across most of
the excavation area (Figure 5).

 

 

 

 

 

 

 

 

 Figure 4. Example of bones with different types of tooth marks from the Coímbre Site, Zone B. (A): Small 
pit measuring 1 mm. (B,C): Pits no larger than 0.2 mm on long bones, adjacent to cut marks. (D): 2 mm pit 
overlying a cut mark. (E): 2 mm pit on the trochlea of a Capra pyrenaica metapodial. (F): Presence of scores 
ranging from 2 to 3 mm. (G): Fragment of a long bone with a pit. (H–J): Fragments of long bones with 
furrowing resulting in the loss of a large portion of the bone structure. 

 

Figure 4. Example of bones with different types of tooth marks from the Coímbre Site, Zone B.
(A): Small pit measuring 1 mm. (B,C): Pits no larger than 0.2 mm on long bones, adjacent to cut
marks. (D): 2 mm pit overlying a cut mark. (E): 2 mm pit on the trochlea of a Capra pyrenaica
metapodial. (F): Presence of scores ranging from 2 to 3 mm. (G): Fragment of a long bone with a
pit. (H–J): Fragments of long bones with furrowing resulting in the loss of a large portion of the
bone structure.
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Figure 5. Spatial distribution for levels Co.B.1a, Co.B.1b, Co.B.1c1, and Co.B.1c3, in which tooth marks have 
been identified. The figure also shows the areas of the excavation grid where macrofaunal bone remains 
were recorded during the field seasons [40]. 

Figure 5. Spatial distribution for levels Co.B.1a, Co.B.1b, Co.B.1c1, and Co.B.1c3, in which tooth
marks have been identified. The figure also shows the areas of the excavation grid where macrofaunal
bone remains were recorded during the field seasons [40].

In the statistical analyses, the tooth marks identified at the Coímbre Cave site were
compared with those produced by canids, ursids, hyaenids, and felids—a total of 658 pits
(408 from various types of canids, 50 from ursids, 50 from hyaenids, and 150 from felids).
This comparison made it possible to establish a reference framework for identifying the
taphonomic agent responsible for the marks observed at Coímbre.

However, since the main objective of the project is to investigate possible evidence of
dog domestication, it was essential to rule out the possibility that the marks at Coímbre
were the result of canid activity. To this end, comparisons were made with recent marks
from Vulpes vulpes, Canis lupus signatus, and Canis lupus familiaris (a total of 408: 50 from
Coímbre, 50 from foxes, 50 from wolves, and 258 from various dog breeds).

The results obtained through MANOVA revealed significant differences between
the groups compared. Moreover, the Shapiro–Wilk test indicated that the values did not
present homogeneity, and thus a post-hoc analysis using Wilks’ lambda was applied. In the
statistical comparisons, all three species analysed yielded p-values of 0.001 (σ), suggesting
that the tooth pit marks from the Coímbre Cave were not produced by canids.

Consequently, it is not possible to statistically confirm the presence of domesticated
canids at this site. Figure 6 shows the graphical representations of the principal component
analysis (PCA) for each species compared with the Coímbre assemblage, as well as the
results of the confidence ellipse overlap calculation. It was found that the Coímbre marks
overlapped with 84.14% of the Vulpes vulpes ellipse, 82.53% of the Canis lupus signatus
ellipse, and 97.12% of the Canis familiaris ellipse. The high percentages of overlap in the
ellipses indicate that the species display similar morphological profiles in the multivariate
space analyzed. This is due to the PCA being performed with the original sample size
preserved (scale = FALSE), which highlights their general morphological proximity. How-
ever, the post-hoc MANOVA analyses reveal statistically significant differences between
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the samples, indicating that, despite the visual overlap, there are relevant variations in
certain combinations of variables.

 

  

 Figure 6. Principal component analysis (PCA) showing the PC1 and PC2 values for the tooth marks from 
the Coímbre Cave and the most representative canid species of the Iberian Peninsula (Vulpes vulpes, Canis 
lupus signatus, and Canis lupus familiaris). The data represented in the plot were not scaled (scale = FALSE), 
thus both the size and shape of the marks were taken into account. Additionally, post-hoc MANOVA results 
using permutations through Wilks’ lambda method are shown. 

 

  

 

 

Figure 6. Principal component analysis (PCA) showing the PC1 and PC2 values for the tooth marks
from the Coímbre Cave and the most representative canid species of the Iberian Peninsula (Vulpes
vulpes, Canis lupus signatus, and Canis lupus familiaris). The data represented in the plot were not scaled
(scale = FALSE), thus both the size and shape of the marks were taken into account. Additionally,
post-hoc MANOVA results using permutations through Wilks’ lambda method are shown.

The significant differences found among the canid group prompted a broader compar-
ison with all other species (a total of 708 pits, 50 from Coímbre and 658 from the database),
in order to determine whether the taphonomic agent is represented within the database.
The first analysis performed was a MANOVA, which revealed statistically significant dif-
ferences between the groups. Furthermore, the Shapiro–Wilk test indicated that the values
were not normally distributed.
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As a result, a post-hoc analysis was conducted using the Wilks’ lambda method,
and the p-values obtained are shown in Table 1. The results of this analysis revealed no
similarity with any of the species analyzed, as all p-values were 0.001. Since this value does
not exceed the threshold of 0.003 (3σ), all species showed statistically significant differences.
In other words, the tooth marks from the Coímbre Cave do not correspond to any of the
species included in the current database.

Figure 7 presents the PCA plot along with the corresponding concentration ellipses.
This representation shows that the tooth marks from Coímbre Cave are significantly smaller
in morphology compared to all other species—even smaller than those of Canis lupus
familiaris, which are the smallest in the database. In the same figure, a graph of the
allometric analysis using the “Predicted Lines” method is shown, illustrating the linear
trends within the analyzed data.

 

 

 

 

Figure 7. (Top). Principal component analysis (PCA) showing PC1 and PC2 values for the tooth marks from 
Coímbre Cave and all species included in the database. The data plo�ed were not scaled (scale = FALSE), 
meaning that both the size and shape of the marks were taken into account. (Bo�om). Graph showing the 
allometric analysis using the PredLine method for all groups. 

 

 

 

 

 

Figure 7. (Top) Principal component analysis (PCA) showing PC1 and PC2 values for the tooth marks
from Coímbre Cave and all species included in the database. The data plotted were not scaled (scale =
FALSE), meaning that both the size and shape of the marks were taken into account. (Bottom) Graph
showing the allometric analysis using the PredLine method for all groups.
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Table 1. p-values from the post-hoc permutation test of the multivariate analysis of variance
(MANOVA) for the tooth marks from Coímbre Cave and the various species in the database, using
Wilks’ lambda method. The data plotted were not scaled (scale = FALSE), meaning that both the size
and shape of the marks were taken into account.

Ursus
arctos

Coímbre
Cave

Canis lupus
familiaris

Vulpes
vulpes

Crocuta
crocuta

Panthera
onca

Panthera
pardus

Panthera
leo

Lycaon
pictus

Coímbre Cave 0.001 - - - - - - - -
Canis lupus familiaris 0.001 0.001 - - - - - - -
Vulpes vulpes 0.001 0.001 0.001 - - - - - -
Crocuta crocuta 0.001 0.001 0.001 0.001 - - - - -
Panthera onca 0.001 0.001 0.001 0.001 0.617 - - - -
Panthera pardus 0.001 0.001 0.001 0.014 0.001 0.001 - - -
Panthera leo 0.001 0.001 0.001 0.001 0.415 0.748 0.001 - -
Lycaon pictus 0.045 0.001 0.001 0.001 0.486 0.253 0.006 0.024 -
Canis lupus signatus 0.066 0.001 0.004 0.001 0.001 0.001 0.005 0.001 0.004

4.2. Statistical Analysis: Humans

Considering the results obtained in previous analyses, an alternative line of investiga-
tion was pursued. The site in question corresponds to a human settlement where bones
with signs of anthropogenic activity, such as cut marks, have been found. Based on the
identification of significant differences in the previous values, it was decided to incorporate
an experiment with tooth marks produced by modern humans into the database in order
to determine whether humans could have been the taphonomic agent at this site—or to
rule out that possibility.

In this context, 20 tooth pits produced by Homo sapiens were analyzed and com-
pared with those from Coímbre Cave (a total of 728 pits: 50 from Coímbre, 658 from
the previous database, and 20 from humans). To facilitate visualization of the results in
the graphs, the data were grouped into four carnivore subfamilies and humans (Caninae,
Hyaeninae, Pantherinae, Ursinae, and Homo sapiens), allowing for reduced overlap and data
clustering—particularly of the concentration ellipses, which created visual noise.

First, a MANOVA was performed, revealing significant overall differences among
the groups compared. Additionally, the Shapiro–Wilk test indicated that the values were
not homogeneous. Consequently, a post-hoc analysis was conducted using Wilks’ lambda
method, and the p-values obtained are presented in Table 2.

Table 2. p-values for the post-hoc permutation test of the multivariate analysis of variance (MANOVA)
comparing tooth marks from Coímbre Cave with subfamilies and human samples, using Wilks’
lambda method. The data plotted have not been scaled (scale = FALSE); in this case, both the size
and shape of the marks have been considered.

Caninae Coímbre Cave Homo sapiens Hyaeninae Pantherinae

Coímbre
Cave 0.001 - - - -

Homo sapiens 0.362 0.086 - - -
Hyaeninae 0.001 0.001 0.001 - -
Pantherinae 0.001 0.001 0.001 0.951 -
Ursinae 0.001 0.001 0.066 0.001 0.009

The results of this analysis show significant differences for all carnivore subfamilies, as
none surpassed the threshold of 0.003 (3σ), except for Homo sapiens, whose p-value was 0.086
(Table 2). Therefore, the tooth marks from Coímbre Cave dating to the Late Magdalenian
period are likely related to the human-produced marks from the experimental dataset.

Figure 8 shows the principal component analysis (PCA) plot, in which mark size was
considered, along with the corresponding concentration ellipses. The PCA revealed that
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the first two components explain 89.71% of the total variance (PC1 = 85.52%, PC2 = 4.45%).
As these two components capture most of the data variability, the subsequent analyses
were based on them. Additionally, a distribution of the landmarks and the mark sizes is
included, highlighting the notably small size of the tooth marks found on the bone surface
of bone remains from Coímbre Cave. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Principal component analysis (PCA) showing PC1 and PC2 values for the tooth 
marks from Coímbre Cave and the five subfamilies included in the database (including 
humans). The data plotted have not been scaled (scale = FALSE); in this case, both the 
size and shape of the marks have been taken into account. The figure also includes the 
distribution of landmarks and the varying sizes of the data. PC1 and PC2 together account 
for 89.71% of the total variability in the dataset (PC1 = 85.3%, PC2 = 4.41%). 

 

 

 

 

 

Figure 8. Principal component analysis (PCA) showing PC1 and PC2 values for the tooth marks from
Coímbre Cave and the five subfamilies included in the database (including humans). The data plotted
have not been scaled (scale = FALSE); in this case, both the size and shape of the marks have been
taken into account. The figure also includes the distribution of landmarks and the varying sizes of
the data. PC1 and PC2 together account for 89.71% of the total variability in the dataset (PC1 = 85.3%,
PC2 = 4.41%).

5. Discussion
Taphonomic studies conducted on the Magdalenian levels of Coímbre Cave revealed

that the faunal assemblage deposited at the site was heavily affected by human activity,
showing numerous anthropogenic modifications such as cut marks, percussion marks, and
evidence of thermal alteration [46–48]. However, the presence of certain tooth marks at the
site raised the possibility that these may have been produced by canids [47]. Furthermore,
the distribution and morphology of these marks suggested potential carnivore activity,
prompting further investigation into the agents responsible for their formation. Canid
bone remains have been identified at the site, suggesting that the presence of tooth marks
produced by this group could be a plausible explanation. Moreover, the chronological



Animals 2025, 15, 1319 14 of 19

context of the site (Upper Magdalenian) may have allowed for the presence of marks made
by domestic dogs, as this is the time range in which researchers have proposed the existence
of domesticated dogs, as previously observed at Erralla and Urtiaga [37–39].

However, as shown in Figure 8, the tooth marks on the bones from this site are very
small and superficial, with concentration ellipses reflecting the positioning of the marks.
Taphonomically, most of these marks are quite shallow on the cortical surface of the bones.
This suggests that they are unlikely to be associated with large carnivores, such as wolves,
which typically leave deeper marks due to their stronger bone-processing capabilities.

The analyses carried out indicate that the marks were likely produced by a human
taphonomic agent. In addition, a significant portion of the bones show signs of cremation
and a high number of cut marks [46–48], suggesting sustained and active human interven-
tion in the processing of the bones. Therefore, these marks could represent the consumption
of hunted prey, as well as the use of human teeth to remove remaining flesh from the
consumed bones. This behavior could explain the more superficial morphology of many
of the marks.

Nonetheless, deeper marks have also been identified, such as marks from furrow-
ing, which involves the destruction of bone epiphyses and indicates more aggressive
consumption—potentially linked to the activity of a carnivore. However, we have not yet
been able to precisely determine the specific agent responsible. Still, some ethnographic
studies have documented that humans can also intensively manipulate bones [77–80], even
producing tooth marks that can be mistaken for those made by carnivores [81,82].

Figure 9 shows the difference between the concentration ellipses. When calculating the
overlap of the ellipses, it was found that the ellipse for Coímbre is entirely overlapped with
that of Homo sapiens (100%), indicating that the Coímbre marks are fully represented by
the human tooth mark data—unlike the overlaps observed with Vulpes vulpes, Canis lupus
signatus, and Canis lupus familiaris in Figure 6. All of this evidence is further supported by
the post-hoc permutation MANOVA, which revealed no significant differences between
the experimental human tooth marks and those from Coímbre, as well as by the results
presented in Table 3, which compares the different Pearson correlation coefficient values.

 

 

 

 

Figure 9. Principal component analysis (PCA) showing the PC1 and PC2 values for the tooth marks from 
Coímbre Cave (50 pits) and the experimental sample from modern Homo sapiens (20 pits). The data 
represented graphically were not scaled (scale = FALSE); in this case, both the size and shape of the marks 
were considered. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Principal component analysis (PCA) showing the PC1 and PC2 values for the tooth marks
from Coímbre Cave (50 pits) and the experimental sample from modern Homo sapiens (20 pits). The
data represented graphically were not scaled (scale = FALSE); in this case, both the size and shape of
the marks were considered.



Animals 2025, 15, 1319 15 of 19

Table 3. Key comparisons between Coímbre and each of the studied species. The table presents
p-values for the most relevant comparisons, allowing the identification of significant relationships
and groups with substantial differences. Bold values indicate statistically significant differences
(p < 0.003).

Coímbre Cave

Canis lupus signatus 0.001
Canis lupus familiaris 0.001
Vulpes vulpes 0.001
Lycaon pictus 0.001
Crocuta crocuta 0.001
Panthera onca 0.001
Panthera pardus 0.001
Panthera leo 0.001
Ursus arctos 0.001
Homo sapiens 0.086

These results are particularly interesting, as they allow us to document—
archaeologically—a rarely recorded process: human tooth marks on ungulate bones. Al-
though this phenomenon is not entirely new and has been reported in other contexts [51,83],
the most noteworthy aspect of this analysis is the application of a novel technique that can
help identify and differentiate human tooth marks from those produced by carnivores—a
topic widely discussed in the literature [78,79,82–85]. However, despite these promising
results, we believe it is essential to proceed with caution and carry out further experimental
research to expand the sample of anthropogenic modifications on ungulates, as much of
the existing research to date has focused on small mammals or birds [79,86–88].

6. Conclusions
The results of the analyses conducted in this study have been surprising, as we

identified an unexpected finding relative to our working hypothesis. In examining the
bone samples from Coímbre cave, our initial hypothesis proposed that the tooth marks on
the bones could have been caused by canids, including domesticated dogs. However, our
results suggest that these were not produced by canids or other carnivores but that their
characteristics are consistently associated with human activity. This finding is significant,
as it demonstrates how taphonomy, in combination with geometric morphometric analyses
and robust statistical methods, constitutes an effective tool for identifying human tooth
marks and distinguishing them from those produced by other carnivores.

Future research should aim to expand the experimental sample of human tooth marks
in order to generate a broader range of marks with varying intensities. This would allow
for the inclusion of both deeper and more superficial marks, across different bones and
species, thereby contributing to a more comprehensive understanding of the alterations
caused by human teeth on skeletal remains.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/ani15091319/s1: Supplementary File S1. Reference framework for
tooth marks produced by carnivores; Supplementary File S2. Data relating to Coímbre tooth marks.
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