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A B S T R A C T   

The joint optimization of production scheduling and maintenance planning has a significant influence on pro-
duction continuity and machine reliability. However, limited research considers preventive maintenance (PM) 
and corrective maintenance (CM) in assembly permutation flow shop scheduling. This paper addresses the bi- 
objective joint optimization of both PM and CM costs in assembly permutation flow shop scheduling. We also 
propose a new mixed integer linear programming model for the minimization of the makespan and maintenance 
costs. Two lemmas are inferred to relax the expected number of failures and CM cost to make the model linear. A 
restarted iterated Pareto greedy (RIPG) algorithm is applied to solve the problem by including a new evaluation 
of the solutions, based on a PM strategy. The RIPG algorithm makes use of novel bi-objective-oriented greedy and 
referenced local search phases to find non-dominated solutions. Three types of experiments are conducted to 
evaluate the proposed MILP model and the performance of the RIPG algorithm. In the first experiment, the MILP 
model is solved with an epsilon-constraint method, showing the effectiveness of the MILP model in small-scale 
instances. In the remaining two experiments, the RIPG algorithm shows its superiority for all the instances with 
respect to four well-known multi-objective metaheuristics.   

1. Introduction 

In the current manufacturing environment, global competition and 
market demand force most enterprises to produce products by assembly 
flow shop models. The typical and successful applications of assembly 
flow shop include fire engines [1], computers [2], plastic products [3], 
clothes [4], automobiles [5,6], distributed database systems [7] and 
multi-page invoice printing systems [8]. The classical assembly flow 
shop scheduling mainly consists of two stages: fabrication and assembly. 
Recently, many researchers have explored this problem with a flow shop 
layout in the assembly stage. This new problem is named assembly 
permutation flow shop scheduling, and can be denoted as DPm→Fm 
according to the classification in Framinan, Perez-Gonzalez and 
Fernandez-Viagas [9]. In the fabrication stage of DPm→Fm, a variety of 
products are produced by processing all their components. Then, in the 

assembly stage, these components are assembled in turn on a series of 
machines. DPm→Fm aims to find an optimal product sequence by opti-
mizing one or more objective functions. The most common objectives in 
assembly flow shop scheduling include the maximum completion time 
(also known as makespan), the total completion times [10], the 
maximum tardiness, total tardiness, maximum lateness, and total 
lateness. 

Although researchers have focused on the production scheduling in 
DPm→Fm, their studies are based on the hypothesis that machines are 
always available and never break. However, machines are inevitably 
subject to some unavailable periods because of preventive maintenance 
(PM) as well as unexpected failures [11]. PM is a scheduled activity 
taken on the machines to keep them at the desired level of operation and 
decrease the probability of failure. Second, when unexpected failures 
occur, operators need to perform corrective maintenance (CM) activities 
to help to restore the failed machines to a productive state. Note that the 
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maintenance activities before the failures are named as PM activities, 
while those performed when a failure occurs are referred as CM activ-
ities. If these interruptions are ignored during production scheduling, 
they will bring production losses and will reduce the production effi-
ciency and service life of the machines. Since the production scheduling 
and maintenance activities are interrelated, it is necessary to integrate 
PM and CM into DPm→Fm. Therefore, this paper focuses on solving the 
DPm→Fm scheduling problem by minimizing the makespan and a sec-
ond objective which considers PM and CM costs. 

Due to the NP-hardness nature of this new multi-criteria optimiza-
tion problem, this paper proposes the design and application of a met-
aheuristic to obtain a Pareto set of solutions to the problem. The iterated 
greedy algorithm, as a local search-based algorithm, has been success-
fully applied to tackle combinational optimization problems [12]. 
Compared with the other metaheuristics, the iterated greedy algorithm 
has fewer control parameters and does not need to embed specific 
knowledge [13]. Besides, one of its multi-objective variants, the 
restarted iterated Pareto greedy (RIPG) algorithm, has been successfully 
applied to tackle the flow shop scheduling and assembly line balancing 
[14]. Hence, we apply and adapt the RPIG algorithm for the DPm→Fm 
problem with PM and CM costs. Apart from determining product 
sequence, this new problem needs to determine whether to perform a 
PM activity immediately before each product. Since the unexpected 
random failures are considered in this problem, CM is carried out when 
failures occur. Therefore, and in a nutshell, the contribution of this paper 
is twofold:  

- The formulation of a new DPm→Fm problem with PM and CM costs. 
We do it by defining a multi-objective MILP model to minimize the 
makespan and maintenance costs. In this model, two lemmas are 
derived to linearize the unexpected number of machine failures.  

- A RIPG algorithm to obtain the near-optimal Pareto set of solutions. 
We include in the RIPG algorithm a problem-specific solution eval-
uation to calculate the objective values. Additionally, a bi-objective- 
oriented greedy and referenced local search phases are extended to 
explore the neighborhood structure. Finally, a bi-objective-oriented 
acceptance criterion and a restart mechanism are embedded into 
the metaheuristic to avoid local optima. 

We perform an extensive computational study based on 40 calibra-
tion instances and 800 test instances to determine the best parameter 
combination of RIPG and test the performance of the proposed model 
and RIPG. A diverse set of multi-objective performance indicators and 
attainment surfaces are included to validate the results, both 

quantitatively and qualitatively. The final experimental results suggest 
that the proposed model is effective in tackling small-scale instances and 
the proposed RIPG outperforms four well-known metaheuristics 
including MOPSO, MOSA, NSGA-II and NSGA-III in all instances. 

The remainder of this paper is organized as follows. Section 2 pre-
sents a review of the related literature. A novel MILP model is formu-
lated in Section 3 to define the DPm→Fm with PM and CM costs. Then, 
the RIPG algorithm is proposed in Section 4. Experimental results and 
discussion are reported in Section 5. Finally, main conclusions, some 
managerial insights, and future work are discussed in Section 6. 

2. Literature review 

Since this paper focuses on assembly permutation flow shop sched-
uling considering PM and CM, this section first reports the current state- 
of-the-art status on assembly permutation flow shop scheduling. Later, 
the second sub-section investigates similar scheduling problems having 
PM or CM activities. 

2.1. State-of-the-art on assembly permutation flow shop scheduling 

The assembly permutation flow shop scheduling has been explored 
in many research studies. Among them, most studies address that the 
flow shop in the assembly stage consists of two stages: transportation 
and assembly stages. The former aims to transport components to the 
assembly machines and the latter corresponds to the assembly process. 
This problem is first defined by Koulamas and J. Kyparisis [15] and 
denoted as DPm→F2. Koulamas and J. Kyparisis [15] also called this 
problem three-stage assembly flow shop scheduling. They designed 
several constructive heuristics to minimize the makespan. Since then, 
subsequent studies can be classified into two categories according to the 
number of objectives: single-objective and multi-objective. 

For the single-objective optimization, Andrés and Hatami [16] 
considered the sequence-dependent setup times into DPm→F2, and 
proposed a MILP model to minimize the total completion times. Campos, 
Arroyo and Tavares [17] also addressed DPm→F2 with setup times, and 
proposed VNS to minimize the tardiness. Komaki, et al. [18] improved 
the original cuckoo optimization algorithm to minimize the makespan of 
DPm→F2. 

For the multi-objective optimization, there are two approaches in the 
current studies: the weighted approach and the Pareto front method. 
Regarding the former one, Hatami, et al. [19] addressed DPm→F2 with 
the sequence-dependent setup times and proposed a MILP model, 
simulated annealing algorithm (SA) and tabu search to minimize the 

Nomenclature 

Indices 
j Index of product, j = 1, …, n 
i Index of position in the job sequence, i = 1, …, n 
k,k’ Index of machine, k,k’ = 1,…,m1 +m2 

Parameters 
n Number of products 
m1 Number of machines at the first stage 
m2 Number of machines at the second stage 
tjk Processing (fabrication or assembly) time of product j on k- 

th machine 
tpk Preventive maintenance time of machine k 
trk Corrective maintenance time of machine k 
cpk Preventive maintenance cost on machine k 
crk Corrective maintenance cost on machine k 
βk Shape parameter of failure function of machine k 

θk Scale parameter of failure function of machine k 
Tpmk Preventive maintenance interval of machine k 
M A number sufficiently large 

Variables 
Cik Complete time of the product in position i on machine k 
Cmax Makespan 
TMC Total maintenance costs 
ξik Expected number of kth machine failures while processing 

the product in position i 
aik The age of machine k after processing the product in 

position i 
bik The age of machine k before processing the product in 

position i 
Xji If product j is assigned in position i, Xji = 1. Otherwise, 0 
Yik If PM activity is performed immediately before the start of 

the product j in position i on machine k, Yji = 1. Otherwise, 
0  
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mean completion time and maximum tardiness. Apart from setup times, 
Maleki-Darounkolaei, et al. [20] further addressed the blocking into 
DPm→F2 problem. They developed a new MILP model and SA to opti-
mize the weighted mean completion time and makespan. Based on the 
above research, Maleki and Seyedi [21] further proposed two meta-
heuristics: a variable neighborhood search algorithm (VNS) and SA to 
minimize the same objectives. The final results indicated that VNS had a 
better performance than SA while SA needed less CPU time. Wang, et al. 
[22] studied DPm→F2 with batch delivery. To optimize the weighted 
sum of average arrival time at the customer and total delivery cost, they 
presented two fast heuristics (SPT-based heuristic and LPT-based heu-
ristic) and a new hybrid genetic algorithm (GA) with VNS and 
opposition-based learning. 

Regarding the Pareto front method, Shoaardebili and Fattahi [23] 
considered the machine availability constraints in DPm→F2 and decided 
to use a Pareto optimization instead of a weighting method. Concretely, 
they applied the non-dominated sorting genetic algorithm (NSGA-II) 
and multi-objective simulated annealing algorithm (MOSA). Campos 
and Arroyo [24] minimized the total completion times and total tardi-
ness of DPm→F2 with setup times via NSGA-II. Tajbakhsh, Fattahi and 
Behnamian [25] focused on minimizing the makespan and the sum of 
the earliness and tardiness costs. They first proposed a MILP model to 
formulate this problem and then designed a multi-objective combination 
algorithm (MOPSO-GA) mixing particle swarm optimization and genetic 
algorithm. 

The above studies focus on DPm→F2 where the second stage just has 
two operations. Besides, Sheikh, et al. [26] addressed the multi-stage 
assembly flow shop scheduling with setup times and release time. In 
this problem, after all the components have been finished in the fabri-
cation stage, these components need to be assembled, transported, 
printed, and packaged. This new problem can be denoted as DPm→Fm. 
To tackle this problem, Sheikh, et al. [26] designed nine efficient heu-
ristics to minimize the makespan, and further implemented general VNS 
and grey wolf optimizer (GWO) to improve the heuristic solutions. 
Xiong, Xing and Wang [27] studied the assembly flow shop scheduling 
with hybrid flow shop layout in the assembly stage to minimize the total 
completion times. They developed a MILP model, two fast heuristics 
(SPT-based heuristic and NEH-based heuristic), and three meta-
heuristics (HGA-VNS, HDDE-VNS and HEDA-VNS). 

2.2. Scheduling problems considering PM or CM activities 

The studies of the previous section are based on the hypothesis that 
machines are always available and never break. However, machines in 
actual production are inevitably subject to some unavailable periods due 
to unexpected failure or PM with time elapsing [11]. In this situation 
and to approximate the actual production mode, it is necessary to 
consider PM and CM activities in the assembly permutation flow shop. 
Up to our knowledge, there is no research investigating PM and CM in 
DPm→Fm. The works of Seidgar, et al. [28] and Seidgar, Zandieh and 
Mahdavi [29] are the only ones considering PM in a two-stage assembly 
flow shop scheduling (DPm→1). 

Regarding PM, two situations of consideration can be found in the 
literature [30]: machine unavailability constraints and joint production 
scheduling. For the first situation, it is assumed that PM is performed at 
intervals and production operations are executed within the periods 
between two consecutive PMs. The intervals may be fixed and known, or 
flexible [31–35]. For the second situation, the PM costs and frequency 
need to be determined as decision variables along with production 
scheduling. This case usually involves machine deterioration and hence, 
an appropriate PM plan can improve the service life of the machines. 
Ruiz, Carlos García-Díaz and Maroto [36] designed three maintenance 
policies to determine the PM intervals and employed six algorithms to 
minimize the makespan cited with the proposed policies. Wang and Liu 
[37] considered sequence-dependent set-up times and PM in the 
two-stage hybrid flow shop scheduling. Khamseh, Jolai and Babaei [38] 
investigated sequence-dependent setups and PM activities in flexible 
flow shop scheduling. With the minimization of makespan, they pro-
posed a SA algorithm with a local search procedure and GA to solve the 
small- and large-scale instances. Yu and Seif [39] and Miyata, Nagano 
and Gupta [40] extended maintenance level to m-machine flow shop and 
no-wait flow shop scheduling, respectively. Sheikhalishahi, et al. [41] 
addressed the joint open shop scheduling with PM and human errors, 
and developed three metaheuristics, including NSGA-II, MOPSO and 
SPEA-II to find near-optimal Pareto front solutions. Yu and Han [42] 
aimed at the proportionate flow shop scheduling with PM and focused 
on examining the maximum lateness and the total completion time. 
Ghodratnama, et al. [43] designed a SA algorithm to solve the 
single-machine scheduling with maintenance activities. Hu, Jiang and 
Liao [44] studied the joint optimization of two-machine flow shop 
scheduling and maintenance plan. Wang and Liu [45] investigated the 
integration optimization of parallel machine scheduling and 

Table 1 
Publications about the DPm→Fm problem.  

Reference Problem Constraints Objectives Model Methods 

Koulamas and J. Kyparisis [15] DPm→F2  – Makespan – Heuristics 
Andrés and Hatami [16] DPm→F2  Setup times Total completion times MILP – 
Campos, Arroyo and Tavares [17] DPm→F2  Setup times Tardiness – VNS 
Komaki, et al. [18] DPm→F2  – Makespan – COA 
Hatami, et al. [19] DPm→F2  Setup times Mean completion time and maximum tardiness MILP SA, TS 
Maleki-Darounkolaei, et al. [20] DPm→F2  Setup times and 

blocking 
Weighted mean completion time and makespan MILP SA 

Maleki and Seyedi [21] DPm→F2  Setup times and 
blocking 

Weighted mean completion time and makespan – VNS, SA 

Wang, et al. [22] DPm→F2  Batches Average arrival time and total delivery cost NLP HGA-OVNS 
Shoaardebili and Fattahi [23] DPm→F2  Machine availability Total weighted completion times, weighted tardiness, 

and earliness 
NLP NSGA-II, MOSA 

Campos and Arroyo [24] DPm→F2  Setup times Total completion times and total tardiness – NSGA-II 
Tajbakhsh, Fattahi and 

Behnamian [25] 
DPm→F2  – Makespan, earliness and tardiness costs MILP MOPSO-GA 

Sheikh, et al. [26] DPm→Fm  Setup times and release 
time 

Makespan MILP VNS and GWO 

Xiong, Xing and Wang [27] DPm→HF2  – Total completion times MILP HGA-VNS, HDDE-VNS and 
HEDA-VNS 

This work DPm→Fm  PM and CM Makespan and maintenance costs MILP RIPG  
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multi-resources preventive maintenance. 
When an unexpected machine breakdown is considered, researchers 

usually employ a robustness method to arrange CM activities. Pan, Liao 
and Xi [46] studied single-machine scheduling where machine break-
down and PM activities with flexible time intervals are considered. Cui, 
et al. [47] dealt with the integration of flow shop scheduling and PM and 
CM to minimize the quality robustness and solution robustness. Since 
this integration involved failure uncertainty, they adopted a Monte 
Carlo sampling method to evaluate the solutions approximately. Bou-
fellouh and Belkaid [30] employed NSGA-II and bi-objective adaptation 
of the particle swarm optimization (BOPSO) to minimize the makespan 
and total production costs of joint permutation flow shop and mainte-
nance (PM and CM) under a global resource constraint. Ye, Wang and 
Liu [48] integrated adaptive PM and CM into a generic m-machine flow 
shop scheduling, and minimized the total tardiness cost, PM and CM 
costs. 

To sum up, we have also summarized all the related literature about 
DPm→Fm in Table 1. From our study, we see that there is a lack of 
research on DPm→Fm by considering PM and CM. Hence, we propose 
here to minimize both makespan and maintenance costs through our 
novel MILP model and RIPG algorithm to obtain the near-optimal Pareto 
front solutions. We will describe both the model and metaheuristic- 
based algorithm in the next Sections 3 and 4, respectively. 

3. Problem formulation 

3.1. Mathematical variables and parameters 

The main notation related to this new model is presetned at the 
beginning of this paper. According to the classification in Framinan, 
Perez-Gonzalez and Fernandez-Viagas [9], this new problem can be 
denoted as DPm→Fm|PM&CM|(Cmax, TMC). There are n products to be 
processed in the fabrication and assembly stages. Specifically, during the 
fabrication stage, each product j contains m1 components that are pro-
duced on m1 dedicated parallel machines respectively. Then in the as-
sembly stage, these components are assembled on a set of m2 assembly 
machines in flow shops. Each product j requires a fixed time tjk on 
different fabrication or assembly machine k. At the same time, each 
product can be processed by one machine and each machine can only 
process one product. The product sequence in different machines is the 
same. Hence, the first decision variable is to determine the product 
sequence which is denoted as Xji. 

Each machine k is subject to failure and the time to failure follows a 
Weibull probability distribution with scale parameter θk and shape 
parameter βk (βk > 1 since the machine degenerates over time [47]). We 
also consider an age-based preventive maintenance policy. The initial 
age of each machine is set 0. Since unexpected failures reduce produc-
tion capacity and cause production loss, PM is usually performed to 
improve machines’ conditions. We assume that PM can restore the 
machine to the “as-good-as-new” state, i.e., the machine’s age is reset to 
0 after PM. Let Tpmk be the preventive maintenance interval of machine 
k. To ensure the high reliability of each machine, the age of the machine 
is not allowed to exceed Tpmk. Based on the optimal PM interval theory 
[36], Tpmk can be calculated by maximizing the availability given in Eq. 
(1). 

Tpmk = θk∙
[

tpk

trk(βk − 1)

]1/βk

(1) 

Although PM can reduce the probability of unexpected machine 
failures, it cannot completely eliminate failures. Hence, CM needs to be 
carried out once failures happen. CM restores the machine to an oper-
ating condition while the age of the machine does not change. When the 
machine is repaired, it continues to process the product without any 
additional time penalty. The PM and CM durations of machine k are set 
as tpk and trk respectively, and their corresponding costs are cpk and crk. 

In this situation, the start time and number of PM actions need to be 
decided. In that sense, the decision variable Yik determines whether a 
PM activity is performed immediately before the start of the product j in 
position i on machine k. 

3.2. Objectives and constraints of the model 

The main additional hypotheses of this model are as follows:  

(1) Setup times are not considered.  
(2) The buffers between fabrication and assembly stages are ignored.  
(3) PM can restore machines to the “as-good-as-new” state.  
(4) All machines are available at the beginning of the scheduling 

horizon. 

The first minimization objective is the makespan, as done in tradi-
tional models, and is defined in Eq. (2). The second objective is to 
minimize the maintenance costs including both PM and CM costs, 
defined in Eq. (3). 

minimize Cmax = Cn,m1+m2 (2)  

minimize TMC =
∑n

i=1

∑m1+m2

k=1
(Yik∙cpk + ξik∙crk) (3)  

Constraints (4) and (5) limit the product sequence (i.e., each product is 
assigned in one position and each position just has one product). Con-
straints (6–10) restrict the completion times of all fabrication and as-
sembly machines. Constraint (6) means that all the machines are 
available at the beginning. Constraint (7) requires that for all fabrication 
and assembly machines the product starts after the finishing of its pre-
vious product. In addition to the processing time, PM and CM times need 
to be added. Constraint (8) again limits the completion time on the first 
assembly machine (k = m1 + 1). Each product is assembled on the first 
assembly machine only when all its components have been processed. 
Constraint (9) again limits the completion times on the other assembly 
machines. Each product starts to be assembled on assembly machine k 
(k = m1 + 2, …, m1 + m2) after it finishes the assembly in the previous 
assembly machine. Constraint (10) implies that the completion time is 
higher than 0. 

∑n

j=1
Xji = 1, ∀i = 1, …, n (4)  

∑n

i=1
Xji = 1, ∀j = 1, …, n (5)  

C0k = 0, ∀k = 1, …, m1 + m2 (6)  

Cik ≥ Ci− 1,k +
∑n

j=1
tjk∙Xji + Yik∙tpk + ξik∙trk, ∀i = 1, …, n, k

= 1, …, m1 + m2 (7)  

Ci,m1+1 ≥ Cik +
∑n

j=1
tj,m1+1∙Xji + ξi,m1+1∙trm1+1, ∀i = 1, …, n, k = 1, …, m1

(8)  

Cik ≥ Ci,k− 1 +
∑n

j=1
tjk∙Xji + ξik∙trk, ∀i = 1, …, n, k = m1 + 2, …, m1 + m2

(9)  

Cik ≥ 0, ∀i = 1, …, n, k = 1, …, m1 + m2 (10) 

Constraints (11)–(18) limit the age of the machines. Constraint (11) 
means that the initial age of each machine is set as 0. For each 
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fabrication or assembly machine k, if PM is performed immediately 
before the start of the product j in position i, constraints (12) and (13) 
become active and the age aik is equal to 

∑n
j=1tjk∙Xji. Otherwise, con-

straints (14) and (15) become active and aik is equal to ai− 1,k +
∑n

j=1tjk∙Xji. Constraint (16) defines the age of machine k before pro-
cessing the product in position i. Constraints (17) and (18) state that 
machines’ age is not allowed to exceed the PM interval. Finally, con-
straints (19) and (20) limit the decision variables. 

aok = 0, ∀k = 1, …, m1 + m2 (11)  

aik −
∑n

j=1
tjk∙Xji ≤ M∙(1 − Yik), ∀i = 1, …, n, k = 1, …, m1 + m2 (12)  

aik −
∑n

j=1
tjk∙Xji ≥ − M∙(1 − Yik), ∀i = 1, …, n, k = 1, …, m1 + m2 (13)  

aik −

(

ai− 1,k +
∑n

j=1
tjk∙Xji

)

≤ M∙Yik, ∀i = 1, …, n, k = 1, …, m1 + m2

(14)  

aik −

(

ai− 1,k +
∑n

j=1
tjk∙Xji

)

≥ − M∙Yik, ∀i = 1, …, n, k = 1, …, m1 + m2

(15)  

bik = aik −
∑n

j=1
tjk∙Xji, ∀i = 1, …, n, k = 1, …, m1 + m2 (16)  

aik ≤ Tpmk, ∀i = 1, …, n, k = 1, …, m1 + m2 (17)  

bik ≤ Tpmk, ∀i = 1, …, n, k = 1, …, m1 + m2 (18)  

Xji = {0, 1}, ∀j = 1, …, n, i = 1, …, n (19)  

Yik = {0, 1}, ∀i = 1, …, n, k = 1, …, m1 + m2 (20) 

Besides and according to the maintenance theory, when the time to 
failure is governed by a Weibull probability distribution, the breakdown 
number ξik will follow a Poisson probability distribution and Pr(ξik =

η) = (λik)
η∙e− λik

η! , ∀η ∈ [0,+∞) where λik =

(
aik
θk

)βk

−

(
bik
θk

)βk

. We set the 

expectation of ξik as the failure number, i.e., ξik = E
(

(λik)
η∙e− λik

η!

)

= λik =

(
aik
θk

)βk

−

(
bik
θk

)βk

. 

3.3. Linearization of the model 

In the described model, the expected value of ξik leads to a non-linear 
property. Therefore, the model cannot be directly solved by a com-
mercial solver. Hence, we linearize the model by relaxing the value of 
ξik. Since the age of the machines will not exceed the preventive main-
tenance interval Tpmk, we can have the following lemma. 

Lemma 1. The expected failure number during a PM period does not 

exceed a constant 
(

Tpmk
θk

)βk

. 

Proof. During each PM period on machine k, it is assumed that the 
operations (process or assembly) need to be completed in position s1, 
s1 + 1, …, s1+s2, and the corresponding expected failure numbers are 
ξs1,k, ξs1+1,k,. ., ξs1+s2,k. The expected failure number during this PM 
period is equal to the sum of those of the operations 

∑s2
i=s1 ξik. Then: 

∑s2

i=s1
ξik =

∑s2

i=s1

((
aik

θk

)βk

−

(
bik

θk

)βk
)

=

(
as1,k

θk

)βk

−

(
bs1,k

θk

)βk

+

(
as1+1,k

θk

)βk

−

(
bs1+1,k

θk

)βk

+ … +

(
as1+s2,k

θk

)βk

−

(
bs1+s2,k

θk

)βk 

For the two adjacent operations, the subsequent operation’s age 
before processing is equal to the previous operation’s age after pro-

cessing, i.e., bi+1,k = ai,k. Then, 
∑s2

i=s1 ξik =

(
as1+s2,k

θk

)βk

−

(
bs1,k
θk

)βk

. 

Furthermore, since the initial machines’ age is 0 and PM restore ma-

chines to the “as-good-as-new” state, 
(

bs1,k
θk

)βk

= 0 and 
∑s2

i=s1 ξik =

(
as1+s2,k

θk

)βk

. Finally, to ensure the high-reliability, the machine’s age is 

not allowed to exceed Tpmk, i.e., as1+s2,k ≤ Tpmk. Hence, we can conclude 
that the expected failure number during a PM period does not exceed a 

constant 
(

Tpmk
θk

)βk

. 

Based on the above lemma, we relax the expected failure number 

during a PM period as 
(

Tpmk
θk

)βk

. Thus, the failure number per unit time is 
(

Tpmk
θk

)βk

∙ 1
Tpmk

=
Tpmk

βk − 1

θk
βk

. In this situation, ξik can be calculated by 

Tpmk
βk − 1

θk
βk

∙
∑n

j=1tjk∙Xji. After relaxing ξik, we can get the second lemma: 

Lemma 2. The relaxed CM cost is constant. 

Proof. In the above non-linear model, the CM cost is equal to 
∑n

i=1
∑m1+m2

k=1 (ξik∙crk). We replace the expected failure number with the 

relaxed value Tpmk
βk − 1

θk
βk

∙
∑n

j=1tjk∙Xji. Then, the CM cost becomes: 

∑n

i=1

∑m1+m2

k=1
(ξik∙crk) =

∑n

i=1

∑m1+m2

k=1

(
Tpmk

βk − 1

θk
βk

∙
∑n

j=1
tjk∙Xji∙crk

)

=
∑m1+m2

k=1
crk∙

Tpmk
βk − 1

θk
βk

∙
∑n

i=1

∑n

j=1
tjk∙Xji  

∑n
i=1
∑n

j=1tjk∙Xji means that the total processing times of all products on 
machine k. It can be simplified as 

∑n
j=1tjk . Correspondingly, the CM cost is 

equal to 
∑m1+m2

k=1 crk∙Tpmk
βk − 1

θk
βk

∙
∑n

j=1tjk . Therefore, the relaxed CM cost is 
constant. 

The non-linear maintenance costs objective is translated into the 
linear form of Eq. (21). 

minimize TMC =
∑n

i=1

∑m1+m2

k=1
Yik∙cpk +

∑m1+m2

k=1
crk∙

Tpmk
βk − 1

θk
βk

∙
∑n

j=1
tjk (21)  

Meanwhile, the corresponding non-linear constraints (7)–(9) are turned 
into Eqs. (22)–(24). 

Cik ≥ Ci− 1,k +
∑n

j=1
tjk∙Xji + Yik∙tpk +

Tpmk
βk − 1

θk
βk

∙trk∙
∑n

j=1
tjk∙Xji, ∀i

= 1, …, n, k = 1, …, m1 + m2 (22)  

Ci,m1+1 ≥ Cik +
∑n

j=1
tj,m1+1∙Xji +

Tpmm1+1
βm1+1 − 1

θm1+1
βm1+1

∙trm1+1∙
∑n

j=1
tj,m1+1∙Xji, ∀i

= 1, …, n, k = 1, …, m1

(23) 
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Table 2 
The parameter values of the illustrative example.  

Machine Processing time tjk  

Index k Function tpk  trk  cpk  crk  βk  θk  1 2 3 4 5 6 7 8 9 10 

1 Fabrication 4 8 10 16 3 30 4 5 6 10 3 7 2 5 5 7 
2 Fabrication 3 7 8 15 4 38 6 2 4 7 4 4 8 5 9 6 
3 Assembly 2 6 9 17 2 34 8 6 8 3 4 2 8 5 6 4 
4 Assembly 4 7 9 15 3 32 2 4 5 7 6 8 10 4 3 4  

Table 3 
The relaxed expected CM times.  

Machine k 
Product j 

1 2 3 4 5 6 7 8 9 10 

1 0.42 0.53 0.63 1.06 0.32 0.74 0.21 0.53 0.53 0.74 
2 0.26 0.09 0.17 0.30 0.17 0.17 0.34 0.21 0.39 0.26 
3 0.82 0.61 0.82 0.31 0.41 0.20 0.82 0.51 0.61 0.41 
4 0.19 0.38 0.47 0.66 0.57 0.76 0.95 0.38 0.28 0.38  

Table 4 
The completion times of all products on all machines.  

Machine k 
Product j 

8 6 9 3 5 1 7 2 10 4 

1 5.53 13.27 18.80 29.43 32.75 37.17 39.38 48.91 56.65 71.71 
2 5.21 9.38 18.77 22.94 30.11 36.37 44.71 46.80 56.06 63.36 
3 11.04 15.47 25.41 38.25 42.66 53.48 62.30 70.91 75.32 78.63 
4 15.42 24.23 28.69 43.72 54.29 56.48 73.25 81.63 86.01 93.67  

Fig. 1. Gantt chart and age curve with the solution to the scheduling example.  
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Cik ≥ Ci,k− 1 +
∑n

j=1
tjk∙Xji +

Tpmk
βk − 1

θk
βk

∙trk∙
∑n

j=1
tjk∙Xji, ∀i = 1, …, n, k

= m1 + 2, …, m1 + m2 (24)  

In a nutshell, a MILP model for this new problem is constructed with the 
objective functions (2) and (21) and constraints (4)–(6), (10)–(20), 
(22)–(24). 

3.4. An illustrative example 

We provide here an illustrative example with 10 products and 4 
machines (2 fabrication machines and 2 assembly machines) for this 
new problem and the proposed MILP model. Table 2 presents the pa-
rameters’ values. According to Eq. (1), the values of Tpmk are equal to 
18.90, 23.36, 19.63 and 21.08, respectively. Furthermore, since Section 
3.2 relaxes the expected failure number ξik, we can calculate the relaxed 
CM time for each product j on machine k through Tpmk

βk − 1

θk
βk

∙tjk∙trk. The 
relaxed CM times are presented in Table 3. Under this scenario, we as-
sume that a solution consists of a product sequence {8, 6, 9, 3, 5, 1, 7, 2, 
10, 4} and a set of PM execution time points. Table 4 presents the 
completion times of all products on all machines. Specifically, PM op-
erations are performed immediately before the start of products 3, 2, and 
4 on machine 1; products 5 and 10 on machine 2; products 3, 1 and 2 on 
machine 3; products 5 and 2 on machine 4. Fig. 1 shows a Gantt chart 
and the age curve for the solution of the example. We can get three 
observations from the analysis of this figure:  

(1) The completion time of each product on any machine needs to 
consider the relaxed CM time. Table 4 details the final completion 
times of all products on all machines.  

(2) When a product is finished, a relaxed CM time is reserved and 
prepared for the failures. Once a failure happens, the completion 
time does not fluctuate much and it is still limited.  

(3) The age of the machines does not exceed a threshold (preventive 
maintenance interval Tpmk) since PM operations are performed 
to ensure the high reliability of all the machines. The makespan of 
this solution is 93.67. Since machines 1–4 have 3, 2, 3, and 2 PM 
operations respectively, the total PM cost is 91 (3× 10+ 2× 8+

3× 9+ 2× 9). According to Lemma 2, the CM cost is 42.84 and 
therefore, the total maintenance cost is 133.84. 

4. Restarted iterated Pareto greedy (RIPG) algorithm 

The original iterated greedy algorithm is designed to solve the single- 
objective optimization problems. For our multi-objective optimization 
problem, this paper follows the research by Minella, Ruiz and Ciavotta 
[14] and Zhang, et al. [49], and extends a restarted iterated Pareto 
greedy algorithm (RIPG). In the proposed RIPG, a set of initial solutions 
is generated by two NEH heuristics and the bi-objective-oriented refer-
enced local search in the initiation phase. At each iteration, the found 
non-dominated solutions are stored in an external Pareto Archive (POS) 
during the execution of the algorithm, being one non-dominated solu-
tion from the POS the incumbent solution. While the termination cri-
terion is not reached, RIPG successively applies the bi-objective-oriented 
greedy search, the referenced local search, acceptance criterion, and 
restart mechanism on the incumbent solution. The details of these 
phases are introduced in the following sub-sections. 

4.1. Solution evaluation and problem-specific initialization 

We encode each solution as a product sequence Π =

{π1,…, πi, …, πn}. πi means the product assigned to position i, and 
each sequence contains n elements. This sequence represents the deci-
sion variable Xji in the proposed model. 

To decrease the times of PM, we perform the PM operations at the 
end of the optimal maintenance intervals. Before processing each 
product πi on a machine k, there is a decision whether a PM activity is 
performed immediately or not. If the age of the machine after processing 
is larger than the optimal PM interval Tpmk, a PM activity is performed. 
Otherwise, there is no PM activity. With this strategy, each PM activity is 
performed at a time close to the Tpmk under the premise that constraints 
(17)-(18) are met. Based on this strategy, the specific procedure of the 
solution under evaluation is presented below: 

Step 1: Calculate the relaxed CM time t̃rjk for each product j on 

machine k by Tpmk
βk − 1

θk
βk

∙tjk∙trk. 
Step 2: Initialize the completion time and age of each machine. For 

each machine k, C0k = 0 and a0k = 0. 
Step 3: Determine the PM execution time and calculate the 

completion time on the fabrication stage. For product πi on machine k, if 
the age of machine k after processing this product is larger than Tpmk (in 
other words, ai− 1,k + tπi ,k > Tpmk), a PM activity needs to be performed 
immediately before this position (Yik = 1). Meanwhile, aik = tπi ,k and 
Cik = Ci− 1,k + tπi ,k + t̃rπi ,k + tpk. Otherwise, Yik = 0, aik = ai− 1,k + tπi ,k and 
Cik = Ci− 1,k + tπi ,k + t̃rπi ,k. 

Step 4: Determine the PM execution time and calculate the 
completion time on the assembly stage. The judgment of PM execution 
time and the update of machines’ age are the same as the method in Step 
3; while the difference is the update of completion time. Apart from the 
completion time in the previous position Ci− 1,k, the completion time in 
the first assembly machine (k = m1 + 1) should also consider those in 
the fabrication stage, and that in the subsequent assembly machines (k =

m1 + 2, …, m1 + m2) should consider that in the previous assembly 
machine. Therefore, for the first assembly machine, Ci,m1+1 =

max
{
Cik’ (k’ = 1,…,m1), Ci− 1,m1+1 + Yi,m1+1∙tpm1+1

}
+ tπi ,m1+1 +

t̃rπi ,m1+1 ; for the subsequent machines, Cik = max
{
Ci,k− 1, Ci− 1,k + Yik∙ 

tpk
}
+ tπi ,k + t̃rπi ,k. 

Step 5: Calculate the objective values according to Eqs. (2) and (21). 
A good initial solution can greatly improve the performance of the IG 

algorithm [14]. For a single-objective version, IG starts with an initial 
solution obtained by NEH heuristic for a specific objective criterion. 
However, for a bi-objective version, we need to find a good solution for 
both objectives. Hence, the proposed RIPG extends two NEH heuristics 
to provide initial solutions for makespan and maintenance costs, 
respectively. Then, the local search procedure is applied to the two 
initial solutions to generate a set of partial solutions. The obtained 
non-dominated solutions are included in the POS. Finally, a solution 
from the non-dominated set of solutions is randomly selected as the 
current solution for the next phases. 

4.2. Bi-objective-oriented greedy phase 

The greedy search of the RIPG algorithm consists of two key steps: 
destruction and construction. In the destruction phase, d products are 
randomly selected from the current sequence and put into the set Pr. 
These extracted products are also removed from the current sequence. 
Then, in the construction phase, the extracted products in Pr are itera-
tively reinserted into the current sequence one by one. Specifically, in 
the first iteration, the first product in Pr is inserted into all possible 
positions of the current sequence to generate a set of partial sequences. 
Since the two objectives are involved, the non-dominated sequences 
from the new generated sequences are selected. Then, in the second 
iteration, the second product in Pr is inserted into all possible positions 
of these non-dominated sequences. We repeat these steps until all the 
extracted products are reinserted. Note that the number of extracted 
products d has a great influence on the performance of the proposed 
RIPG. A high d value will add excessive diversification and result in a 
random walk, while a small d value makes it difficult to escape from 
local optima. Hence this value needs to be carefully calibrated as we will 

Z. Zhang et al.                                                                                                                                                                                                                                   



Journal of Manufacturing Systems 59 (2021) 549–564

556

do in the experimentation of this study. 

4.3. Bi-objective-oriented referenced local search 

A bi-objective-oriented referenced local search is designed to 
improve the constructed solution in the greedy phase. Our local search 
procedure includes two improvements to the traditional local search. 
The first one is that the proposed method refers to the sequence of the 
solution from the POS to remove the products. The second one is to use 
Pareto dominance to update the temporary set. The procedure of the 
proposed local search is detailed as below: 

Step 1: A solution is randomly selected from the POS and regarded as 
a reference solution Πr =

{
πr

1,…, πr
i , …, πr

n
}
. Set i = 1. 

Step 2: Referring to the product πr
i , this method removes the same 

product of the current solution and tests it in all possible positions. 
Accordingly, a set of solutions TSi are generated. 

Step 3: If there is at least one solution in TSi updating the temporary 
set, go to Step 4 to update the temporary set; otherwise, terminate the 
process. 

Step 4: The non-dominated solutions in TSi are stored in the tem-
porary set, and the remaining dominated solution in a temporary set is 
removed. 

Step 5: Set i = i+ 1. If i < n, return to Step 2 to continue with the 
improvement of the current solution. Otherwise, the algorithm termi-
nates the process. 

4.4. Bi-objective-oriented acceptance criterion 

The proposed bi-objective-oriented acceptance criterion is similar to 
the method proposed by Zhang, et al. [49]. It mainly consists of two 
parts: the update of the POS and the acceptance judgment of the tem-
poral set. For the update of the POS, we compare each solution in a 
temporal set with the solutions in the POS. If the solution is a 
non-dominated solution, it is placed into the POS and those solutions in 
POS dominated by the newly added solution are removed. 

The acceptance judgment of the temporal set aims to decide 
whether any new generated solution can replace the incumbent so-
lution for the next iteration. If any solution in the POS dominates the 
solutions in the temporal set, one solution is randomly selected from 
these new non-dominated solutions and accepted as the new incum-
bent one. Otherwise, each solution Πnew in the temporal set is 
accepted with two probabilities exp((Cmax(Πcurrent) − Cmax(Πnew) )/t )

and exp((TMC(Πcurrent) − TMC(Πnew) )/t ), where t = T0∙
∑m1+m1

k=1

∑n
j=1

tjk
10∙n∙(m1+m2)

. 
When more than one solution is accepted, the algorithm just selects 
one of them at random. 

4.5. Restart mechanism 

The RIPG employs a restart mechanism based on the crowding dis-
tance proposed by Minella, Ruiz and Ciavotta [14]. At each iteration, the 
algorithm counts the cumulative number of iterations without any 
improvement. If there are no non-dominated solutions generated at any 
given iteration, a counter dn is increased. When the counter value is 
higher than DN, the restart mechanism is applied with the final goal of 
selecting a non-dominated solution to replace the current solution for 
the subsequent iterations. The restart mechanism sets a select_counter to 
count the number of times a solution has been selected and uses the 
crowding distance [50] divided by select_counter to calculate a modified 
crowding distance to avoid selecting solutions repeatedly. The 
non-dominated solution with the larger value of modified crowding 
distance is selected. 

5. Computational results and experimental discussion 

This section carries out four sets of computational experiments. We 
describe in Section 5.1 the setup and performance indicators of the 
experimentation. The first set of experiments is conducted to calibrate 
the parameters of RIPG and determine the best parameter combination 
(Section 5.2). The subsequent sets of experiments aim to evaluate the 
performance of the MILP model and RIPG algorithm. Specifically, in the 
second set, we use the epsilon-constraint method to deal with the MILLP 
model and then solve it by CPLEX solver (Section 5.3). In the third set, 
we compare the RIPG with four well-known bi-objective metaheuristics 
(Section 5.4). In the fourth set, the differential empirical attainment 
function (Diff-EAF) is employed to show the differences between the 
empirical attainment functions (EAFs) obtained by the RIPG and other 
algorithms (Section 5.5). 

5.1. Experimental setting and evaluation indicators 

We first generate a set of benchmark instances to conduct the 
computational experiments. The benchmark consists of 10 replications 
of instances for different combinations of n, m1 and m2, where n ∈

{20,40, 60,80, 100} and m1,m2 ∈ {2,4, 6, 8}. Hence, a total of number 
800 benchmark instances is obtained. By taking into account the 
parameter generation by Boufellouh and Belkaid [30], the processing 
times on fabrication and assembly machines are drawn from a uniform 
distribution [1, 100]. The PM time and cost are randomly generated 
between [1, 100] and [1, 200] respectively. trk and crk are distributed as 
U [tpk+1, tpk+400] and U [cpk+1, cpk+800], respectively. The shape 
parameter βk is randomly selected from {2, 3, 4}, and the scale 
parameter θk is drawn from a uniform distribution [1000, 2000]. Be-
sides, we also generate 40 calibration instances to calibrate the param-
eters of all the metaheuristics. We use IBM CPLEX solvers for the MILP 
model and code the RIPG algorithm in Visual Studio C++. The algo-
rithms were run in a computer having an IntelR Core™ i5 10210U 
processor running at 1.60 GHz with 16 GBytes of RAM. 

Two unary and one binary multi-objective performance indicators 
are used in the experimentation: the hyper volume ratio (HVR) [51], the 
unary epsilon indicator (Iε) [52] and the coverage indicator (C) [53]. For 
calculating the first two indicators we merge all the non-dominated 
solutions obtained by all the compared algorithms as the true Pareto 
front. HVR, calculated by Eq. (25), is the ratio between the hyper volume 
of the obtained Pareto set and that of the true Pareto set. Since this 
problem is not a theoretical one, we do not know the true Pareto set, so 
that we approximate it by merging all the obtained Pareto sets from the 
algorithms, as done in Chica, et al. [54]. In Eq. (25), n and m are the 
number of the obtained Pareto solutions and that of objectives respec-
tively. vi refers to the ith hypercube, whose diagonal corners are the 
objective vector of solution i in the obtained Pareto set and that of 
reference point W. The reference point W is constructed as a vector of 
the worst possible objective values. The closer to 1 the HVR value of a 
Pareto set is, the better the approximation to the true frontier. 

HVR =
volume(

⋃n
i=1vi)

volume(
⋃m

j=1vj)
(25)  

Iε is calculated by Eq. (26) and measures the minimum distance between 
an obtained Pareto front set and the true frontier. S is an obtained Pareto 
front set and P is the true frontier. χ1 and χ2 are the solutions of S and P 
respectively, and fj indicates the jth objective function. The obtained 
Pareto front set with Iε closer to 1 suggests that this front set is close to 
the true Pareto frontier. 
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Iε = Iε(S,P) = max
χ2

min
χ1

max
j

fj(χ1)

fj(χ2)
(26)  

Binary coverage C, calculated by Eq. (27), aims to measure the domi-
nation relation between two Pareto frontiers. p≼q in Eq. (27) means that 
the solution p in Pareto frontier P weakly dominates the solution q in 
Pareto frontier Q. A C(P,Q) value closer to 1 suggests that Pareto frontier 
Q is strongly dominated by Pareto frontier P. C(P,Q) = 0 means none of 
the solutions in Q are covered by the solutions of set P. Note that both 
C(P,Q) and C(Q,P) have to be considered, since C(P,Q) is not necessarily 
equal to 1 − C(Q,P)

C(P,Q) =
|{q ∈ Q; ∃p ∈ P : p≼q} |

|Q|
(27)  

5.2. Calibration of the proposed algorithms 

This section employs the design of experiments technique coupled 
with multifactor analysis of variance (ANOVA) to determine the best 
parameter combination. The ANOVA is an important parametric statis-
tical inference tool used to check the normality, homoscedasticity, and 
independence of the residuals. For the RIPG algorithm, three factors 

Fig. 2. Means plots of HVR with Tukey’s Honest Significant Difference (HSD) 95 % confidence intervals for all the factors in the ANOVA calibration experiment for 
the proposed RIPG. 

Table 5 
The Pareto solutions of the small-scale instances.  

Instance Features of the Pareto set of solutions Instance Features of the Pareto set of solutions 

n m1 m2 Cardinality Status Cmax TMC n m1 m2 Cardinality Status Cmax TMC 

Instance 1 Instance 54 
20 2 2 1 Optimal 1251.96 274.246 20 4 4 1 Optimal 1428.85 868.0120 
Instance 4 Instance 61 
20 2 2 1 Optimal 1536.00 527.618 20 4 6 1 Feasible 1537.97 1513.920    

2 Optimal 1478.66 629.618    2 Feasible 1542.38 1306.920 
Instance 11    3 Feasible 1546.68 1231.920 
20 2 4 1 Optimal 1505.62 996.774    4 Optimal 2211.00 1226.920    

2 Optimal 1811.00 967.774 Instance 64 
Instance 14 20 4 6 1 Feasible 1315.96 2256.030 
20 2 4 1 Optimal 1331.74 452.964    2 Feasible 1331.11 1776.030 
Instance 21    3 Feasible 2153.00 1280.030 
20 2 6 1 Optimal 1469.75 1655.310 Instance 81    

2 Feasible 1473.05 1521.310 20 6 2 1 Optimal 1369.18 440.272    
3 Optimal 2058.00 1468.310 Instance 84 

Instance 24 20 6 2 1 Optimal 1343.86 115.180 
20 2 6 1 Optimal 1359.33 1158.890    2 Optimal 1673.00 114.180    

2 Feasible 1364.85 1102.890 Instance 91    
3 Optimal 1850.00 1060.890 20 6 4 1 Optimal 1468.30 673.567 

Instance 31 Instance 94 
20 2 8 1 Feasible 1617.47 2645.950 20 6 4 1 Optimal 1390.82 513.552    

2 Feasible 1619.78 1743.950 Instance 101    
3 Feasible 1638.45 1570.950 20 6 6 1 Feasible 1609.91 2747.250    
4 Feasible 2376.00 1371.950    2 Feasible 1611.85 1787.250 

Instance 34    3 Feasible 2134.00 1618.250 
20 2 8 1 Optimal 1794.86 1207.070 Instance 121    

2 Feasible 2314.00 1023.070 20 8 2 1 Optimal 1404.13 278.264 
Instance 41 Instance 124 
20 4 2 1 Optimal 1244.89 232.0730 20 8 2 1 Optimal 1258.41 1097.900 
Instance 44 Instance 131 
20 4 2 1 Optimal 1232.50 252.7620 20 8 4 1 Feasible 1376.59 1374.450 
Instance 51 Instance 134 
20 4 4 1 Optimal 1764.55 894.8860 20 8 4 1 Optimal 1562.40 856.629  
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need to be calibrated: the extracted number of products in destruction 
phase d, the initial temperature in acceptance criterion T0, and the 
number of iterations before restart (DN). The levels of these parameters 
are listed below:  

- The extracted number of products in destruction phase d at 10 levels: 
1, 2, 3, 4, 5, 6, 7, 8, 9 and 10.  

- The initial temperature in acceptance criterion T0 at 8 levels: 0.2, 0.3, 
0.4, 0.5, 0.6, 0.7, 0.8 and 0.9.  

- The number of iterations before restart (DN) at 6 levels: 5, 10, 15, 20, 
30 and 35. 

Through the full factorial design, there is a total of 10 × 8 × 6 = 480 
parameter combinations. Each combination is run with all the 40 cali-
bration instances. Each instance is solved 10 times to obtain 10 different 
Pareto front sets. Hence, a total of 480 × 40 × 10 = 192,000 experi-
ments is carried out. The stopping criterion for all the experiments is set 
as a CPU time limit of n × (m1 + m2) milliseconds. The average HVR is 
regarded as the response value. Fig. 2 presents the HVR means plots with 
Tukey’s Honest Significant Difference (HSD) 95 % confidence intervals 
for all the factors. From the analysis, we can state that the best set of 
parameters is {d=8, T0=0.4, DN = 15}. 

5.3. Evaluation of the proposed MILP model by a CPLEX solver 

This section employs 23 small-scale instances to evaluate the pro-
posed bi-objective MILP model. These instances are selected from the 
800 benchmark instances. They involve 20 products and different 

numbers of fabrication and assembly machines. Since two objectives are 
minimized in the proposed model, the epsilon-constraint method is used 
to obtain the Pareto solutions of each instance. The epsilon-constraint 
method restricts the optimization of one objective to different scopes. 
It facilitates using the CPLEX solver to optimize the proposed model with 
respect to each objective, in order to obtain a set of solutions optimizing 
all the objectives in conflict. 

Specifically, and for each instance, this method first makes use of the 
CPLEX solver to minimize the Cmax objective. The optimal value is 
regarded as the lower bound of the Cmax objective and the obtained TMC 
value is set as the upper bound of the TMC objective. Then, the method 
minimizes the TMC objective to obtain the lower bound of the TMC 
objective and the upper bound of the Cmax objective. From the lower 
bound to the upper bound of TMC objective, this method splits the range 
up into several sub-ranges and names the break points as epsilon values. 
Finally, and under the constraint that the TMC value is limited to each 
sub-range, the MILP model obtains the Pareto set of solutions having 
objective Cmax solved. 

Let us consider instance 1 as an example. The lower and upper 
bounds of Cmax and TMC are respectively (1251.96, 1611.00) and 
(274.246, 459. 246). The epsilon values of TMC are set as {274, 284, 
294, 304, 314, 324, 334, 344, 354, 364, 374, 384, 394, 404, 414, 424, 
434, 444, 454, 464}. The MILP model with the objective Cmax is solved 
under different sub-ranges of TMC. Hence, a total of 19 running times is 
involved, and only one solution is found. We set the maximum running 
time of the CPLEX solver to 1800 s. Table 5 presents the final Pareto 
solutions of the above 23 small-scale instances. In this table, the Optimal 
status means that the CPLEX solver can find the optimal solution in 

Table 6 
HVR and Iε of the epsilon-constraint method and RIPG in some small-scale instances.  

Instances 
Epsilon-constraint RIPG 

Instances 
Epsilon-constraint RIPG 

HVR Iε HVR Iε HVR Iε HVR Iε 

Instance 1 1.00 1.00 0.32 2.16 Instance 61 1.00 1.00 0.29 1.59 
Instance 4 1.00 1.00 0.28 2.11 Instance 64 1.00 1.00 0.64 3.73 
Instance 11 1.00 1.00 0.32 2.27 Instance 81 1.00 1.00 0.29 11.66 
Instance 14 1.00 1.00 0.24 2.59 Instance 84 1.00 1.00 0.18 3.07 
Instance 21 1.00 1.00 0.51 1.37 Instance 91 1.00 1.00 0.25 2.61 
Instance 24 1.00 1.00 0.45 1.35 Instance 94 1.00 1.00 0.24 1.92 
Instance 31 1.00 1.00 0.71 1.41 Instance 101 1.00 1.00 0.41 5.47 
Instance 34 1.00 1.00 0.36 1.68 Instance 121 1.00 1.00 0.20 2.41 
Instance 41 1.00 1.00 0.20 4.04 Instance 124 1.00 1.00 0.32 2.33 
Instance 44 1.00 1.00 0.28 5.02 Instance 131 1.00 1.00 0.25 3.34 
Instance 51 1.00 1.00 0.24 2.68 Instance 134 1.00 1.00 0.22 1.59 
Instance 54 1.00 1.00 0.30 1.90 Avg. 1.00 1.00 0.33 2.98  

Table 7 
Average HVR and Iε at CPU time n × (m1 + m2) × 5 milliseconds.  

Instance 
NSGA-II NSGA-III MOSA MOPSO RIPG 

HVR Iε HVR Iε HVR Iε HVR Iε HVR Iε 

n 

20 0.944 1.020 0.955 1.016 0.899 1.037 0.868 1.042 0.980 1.009 
40 0.944 1.020 0.958 1.014 0.919 1.031 0.881 1.038 0.977 1.009 
60 0.949 1.018 0.960 1.013 0.932 1.026 0.890 1.034 0.975 1.008 
80 0.950 1.017 0.961 1.012 0.933 1.026 0.890 1.032 0.975 1.008 
100 0.951 1.017 0.961 1.012 0.934 1.025 0.895 1.031 0.978 1.007 

m1 

2 0.948 1.019 0.960 1.013 0.919 1.031 0.882 1.036 0.977 1.009 
4 0.950 1.018 0.963 1.012 0.925 1.028 0.890 1.033 0.978 1.008 
6 0.946 1.019 0.958 1.014 0.926 1.029 0.885 1.036 0.976 1.009 
8 0.947 1.019 0.955 1.015 0.925 1.029 0.882 1.036 0.977 1.008 

m2 

2 0.948 1.018 0.960 1.013 0.923 1.030 0.885 1.035 0.977 1.009 
4 0.949 1.018 0.960 1.013 0.922 1.029 0.884 1.035 0.978 1.008 
6 0.947 1.019 0.958 1.014 0.923 1.030 0.884 1.036 0.976 1.009 
8 0.948 1.018 0.958 1.014 0.927 1.028 0.886 1.035 0.977 1.008 

Avg. 0.948 1.018 0.959 1.014 0.924 1.029 0.885 1.035 0.977 1.008  
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1800 s. Feasible status means the solver can get a feasible solution but 
not the optimal one. From this table we can observe that, when the 
product number is larger than 20 or the assembly machine numbers are 
larger than 4, it is difficult for the CPLEX solver to find the optimal 
Pareto solutions at the given time. As the instance scale increases, the 
performance of the solver is decreasing. 

Besides, this section also compares the results obtained by the 
epsilon-constraint method and the proposed RIPG and evaluates their 
performance through the indicators HVR and Iε. The compared results 
are presented in Table 6. It can be observed that the epsilon-constraint 

method outperforms the RIPG in small-scale instances. However, the 
former takes more CPU time than the latter. The RPIG algorithm has a 
stopping criterion of n × (m1 + m2) × 20 milliseconds. We also see that 
when the scale of the instances increases, it is difficult to find feasible 
solutions by the epsilon-constraint method. 

Therefore, the main conclusion is that the proposed model can be 
solved by a mathematical solver when the number of products and as-
sembly machines do not exceed 20 and 4, respectively. Besides, for 
large-scale instances, we should use a metaheuristic method to obtain 
the Pareto set of solutions. Hence, the subsequent sections discuss the 

Table 8 
Average HVR and Iε at CPU time n × (m1 + m2) × 10 milliseconds.  

Instance 
NSGA-II NSGA-III MOSA MOPSO RIPG 

HVR Iε HVR Iε HVR Iε HVR Iε HVR Iε 

n 

20 0.959 1.015 0.965 1.012 0.895 1.038 0.856 1.045 0.981 1.008 
40 0.954 1.016 0.963 1.012 0.914 1.032 0.873 1.040 0.980 1.008 
60 0.954 1.016 0.964 1.011 0.927 1.028 0.885 1.035 0.979 1.008 
80 0.957 1.015 0.967 1.009 0.931 1.027 0.889 1.032 0.980 1.007 
100 0.957 1.015 0.968 1.009 0.929 1.026 0.889 1.032 0.980 1.006 

m1 

2 0.958 1.015 0.967 1.010 0.916 1.031 0.876 1.038 0.979 1.008 
4 0.959 1.014 0.969 1.010 0.922 1.029 0.885 1.035 0.982 1.007 
6 0.952 1.017 0.963 1.012 0.919 1.031 0.877 1.038 0.979 1.008 
8 0.955 1.015 0.963 1.011 0.920 1.030 0.876 1.037 0.980 1.007 

m2 

2 0.955 1.015 0.965 1.011 0.918 1.031 0.879 1.037 0.979 1.008 
4 0.958 1.015 0.966 1.011 0.917 1.030 0.878 1.037 0.981 1.007 
6 0.955 1.016 0.965 1.011 0.919 1.031 0.877 1.038 0.981 1.007 
8 0.956 1.015 0.965 1.011 0.923 1.029 0.879 1.037 0.979 1.007 

Avg. 0.956 1.015 0.965 1.011 0.919 1.030 0.878 1.037 0.980 1.007  

Table 9 
Average HVR and Iε at CPU time n × (m1 + m2) × 20 milliseconds.  

Instance 
NSGA-II NSGA-III MOSA MOPSO RIPG 

HVR Iε HVR Iε HVR Iε HVR Iε HVR Iε 

n 

20 0.966 1.012 0.969 1.010 0.896 1.037 0.854 1.046 0.984 1.007 
40 0.959 1.015 0.966 1.011 0.910 1.033 0.866 1.042 0.982 1.007 
60 0.959 1.014 0.967 1.010 0.924 1.028 0.881 1.036 0.982 1.007 
80 0.961 1.013 0.969 1.009 0.927 1.028 0.881 1.034 0.982 1.006 
100 0.963 1.012 0.970 1.009 0.926 1.027 0.884 1.033 0.982 1.006 

m1 

2 0.962 1.013 0.968 1.010 0.913 1.032 0.870 1.039 0.981 1.007 
4 0.965 1.013 0.972 1.008 0.919 1.029 0.880 1.036 0.984 1.006 
6 0.959 1.015 0.966 1.011 0.916 1.031 0.871 1.040 0.982 1.007 
8 0.960 1.013 0.965 1.010 0.918 1.030 0.872 1.038 0.982 1.007 

m2 

2 0.962 1.013 0.969 1.009 0.917 1.031 0.874 1.038 0.982 1.007 
4 0.961 1.013 0.967 1.010 0.913 1.031 0.873 1.038 0.982 1.006 
6 0.962 1.013 0.968 1.010 0.917 1.031 0.873 1.039 0.983 1.007 
8 0.961 1.013 0.968 1.010 0.919 1.029 0.873 1.038 0.981 1.007 

Avg. 0.961 1.013 0.968 1.010 0.917 1.031 0.873 1.038 0.982 1.007  

Table 10 
Average coverage for RIPG and metaheuristics at n × (m1 + m2) × 5 
milliseconds.  

Instance C(RIPG, 
MOPSO) 

C(RIPG, 
MOSA) 

C(RIPG, 
NSGA-II) 

C(RIPG, NSGA- 
III) 

n 

20 0.281 0.356 0.274 0.228 
40 0.498 0.550 0.458 0.341 
60 0.559 0.562 0.498 0.408 
80 0.694 0.713 0.632 0.487 
100 0.724 0.714 0.672 0.578 

m1 

2 0.494 0.537 0.462 0.388 
4 0.578 0.599 0.515 0.397 
6 0.623 0.640 0.572 0.450 
8 0.509 0.540 0.479 0.398 

m2 

2 0.553 0.579 0.520 0.423 
4 0.523 0.568 0.479 0.383 
6 0.577 0.582 0.500 0.404 
8 0.551 0.586 0.528 0.424 

Avg. 0.551 0.579 0.507 0.408  

Table 11 
Average coverage for RIPG and metaheuristics at n × (m1 + m2) × 10 
milliseconds.  

Instance C(RIPG, 
MOPSO) 

C(RIPG, 
MOSA) 

C(RIPG, 
NSGA-II) 

C(RIPG, NSGA- 
III) 

n 

20 0.291 0.361 0.222 0.163 
40 0.489 0.537 0.370 0.256 
60 0.575 0.574 0.430 0.314 
80 0.704 0.717 0.589 0.416 
100 0.726 0.720 0.635 0.505 

m1 

2 0.502 0.544 0.414 0.318 
4 0.578 0.600 0.456 0.322 
6 0.626 0.635 0.507 0.368 
8 0.520 0.548 0.420 0.315 

m2 

2 0.564 0.582 0.471 0.359 
4 0.527 0.578 0.420 0.311 
6 0.565 0.579 0.439 0.313 
8 0.571 0.589 0.467 0.341 

Avg. 0.557 0.582 0.449 0.331  
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performance of the proposed RIPG algorithm to solve the scheduling 
problem under larger and more realistic instances. 

5.4. Performance comparison of RIPG and other multi-objective 
metaheuristics 

This section compares the performance of the RIPG algorithm with 
respect to four well-known multi-objective metaheuristics: NSGA-II 
[23], NSGA-III [55], MOSA [23] and MOPSO [55]. We have selected 

these specific metaheuristics due to their successful application in 
two-stage or three-stage assembly flow shop scheduling. To apply these 
metaheuristics into DPm→Fm|PM&CM|(Cmax, TMC), the proposed solu-
tion evaluation is used to determine the product sequence and PM 
execution time points and calculate the objective values. The stopping 
criteria are set to the CPU time limit (in milliseconds). This CPU time 
limit depends on the value of p, which can be 5, 10 and 20, and is 
calculated by n× (m1 + m2)× p. 800 benchmark instances are solved by 
these metaheuristics. Each metaheuristic is run 10 independent times to 
obtain 10 Pareto sets of solutions. 

Tables 7–9 respectively report the average HVR and Iε values of these 
metaheuristics for different CPU time limits (three p values). From these 
tables, we can see how the HVR and Iε values of RIPG are close to 1 for all 

Table 12 
Average coverage for RIPG and metaheuristics at n × (m1 + m2) × 20 
milliseconds.  

Instance C(RIPG, 
MOPSO) 

C(RIPG, 
MOSA) 

C(RIPG, 
NSGA-II) 

C(RIPG, NSGA- 
III) 

n 

20 0.307 0.360 0.183 0.124 
40 0.493 0.536 0.315 0.198 
60 0.573 0.588 0.404 0.268 
80 0.713 0.723 0.523 0.345 
100 0.738 0.719 0.584 0.423 

m1 

2 0.527 0.557 0.372 0.262 
4 0.586 0.600 0.404 0.259 
6 0.620 0.634 0.446 0.297 
8 0.526 0.551 0.385 0.269 

m2 

2 0.572 0.590 0.423 0.288 
4 0.537 0.582 0.363 0.242 
6 0.582 0.574 0.394 0.270 
8 0.569 0.595 0.428 0.287 

Avg. 0.565 0.585 0.402 0.272  

Table 13 
Average coverage for metaheuristics and RIPG at n × (m1 + m2) × 5 
milliseconds.  

Instance C(MOPSO, 
RIPG) 

C(MOSA, 
RIPG) 

C(NSGA-II, 
RIPG) 

C(NSGA-III, 
RIPG) 

n 

20 0.000 0.000 0.000 0.005 
40 0.000 0.000 0.001 0.013 
60 0.001 0.000 0.000 0.008 
80 0.000 0.000 0.001 0.017 
100 0.000 0.000 0.002 0.014 

m1 

2 0.000 0.000 0.001 0.013 
4 0.000 0.000 0.001 0.014 
6 0.000 0.000 0.000 0.011 
8 0.000 0.000 0.001 0.008 

m2 

2 0.000 0.000 0.000 0.009 
4 0.000 0.000 0.002 0.010 
6 0.000 0.000 0.000 0.012 
8 0.000 0.000 0.001 0.015 

Avg. 0.000 0.000 0.001 0.011  

Table 14 
Average coverage for metaheuristics and RIPG at n × (m1 + m2) × 10 
milliseconds.  

Instance C(MOPSO, 
RIPG) 

C(MOSA, 
RIPG) 

C(NSGA-II, 
RIPG) 

C(NSGA-III, 
RIPG) 

n 

20 0.000 0.000 0.000 0.007 
40 0.000 0.000 0.001 0.010 
60 0.000 0.000 0.001 0.019 
80 0.000 0.000 0.000 0.024 
100 0.001 0.000 0.003 0.029 

m1 

2 0.000 0.000 0.001 0.013 
4 0.000 0.000 0.001 0.023 
6 0.000 0.000 0.000 0.017 
8 0.000 0.000 0.001 0.018 

m2 

2 0.000 0.000 0.001 0.016 
4 0.000 0.000 0.001 0.022 
6 0.000 0.000 0.001 0.013 
8 0.000 0.000 0.001 0.021 

Avg. 0.000 0.000 0.001 0.018  

Table 15 
Average coverage for metaheuristics and RIPG at n × (m1 + m2) × 20 
milliseconds.  

Instance C(MOPSO, 
RIPG) 

C(MOSA, 
RIPG) 

C(NSGA-II, 
RIPG) 

C(NSGA-III, 
RIPG) 

n 

20 0.000 0.000 0.005 0.011 
40 0.000 0.000 0.003 0.018 
60 0.000 0.000 0.002 0.030 
80 0.000 0.000 0.003 0.030 
100 0.000 0.000 0.001 0.032 

m1 

2 0.000 0.000 0.002 0.016 
4 0.000 0.000 0.003 0.032 
6 0.000 0.000 0.003 0.029 
8 0.000 0.000 0.003 0.018 

m2 

2 0.000 0.000 0.005 0.028 
4 0.000 0.000 0.001 0.020 
6 0.000 0.000 0.002 0.018 
8 0.000 0.000 0.004 0.030 

Avg. 0.000 0.000 0.003 0.024  

Table 16 
ANOVA results for the metaheuristic types.  

Sources df Type III sum 
of squares 

Mean 
square 

F-ratio P-value 

n× (m1 + m2)× 5  
HVR 
Metaheuristic 
types 

4 40.75 10.1879 4601.99 <0.001 

Error 39995 88.54 0.0022   
Total 39999 129.29    
Iε 
Metaheuristic 
types 

4 3.939 0.984808 3881.87 <0.001 

Error 39995 10.147 0.000254   
Total 39999 14.086    

n× (m1 + m2)× 10  
HVR 
Metaheuristic 
types 

4 53.83 13.4569 5720.03 <0.001 

Error 39995 94.09 0.0024   
Total 39999 147.92    
Iε 
Metaheuristic 
types 

4 5.223 1.30585 4864.60 <0.001 

Error 39995 10.736 0.00027   
Total 39999 15.960    

n× (m1 + m2)× 20  
HVR 
Metaheuristic 
types 

4 64.26 16.0661 6598.49 <0.001 

Error 39995 97.38 0.0024   
Total 39999 161.64    
Iε 
Metaheuristic 
types 

4 6.205 1.55126 5542.42 <0.001 

Error 39995 11.194 0.00028   
Total 39999 17.399     
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the instances and stopping criteria. This observation indicates that the 
RIPG outperforms other multi-objective metaheuristics when tackling 
DPm→Fm|PM&CM|(Cmax, TMC) problem. Specifically, and regarding 
HVR, the average values of RIPG under three stopping criteria are 0.977, 
0.980, and 0.982, respectively. These values are better than those from 
NSGA-II, NSGA-III, MOPSO and MOSA. Apart from RIPG, the NSGA-III 
and NSGA-II outperform the other two algorithms (i.e., MOPSO and 
MOSA). 

With respect to the Iε values, the proposed RIPG again obtains the 
best values for the three stopping criteria limits. RIPG ranks the first one, 

followed by NSGA-III, NSGA-II, MOSA, and MOPSO. Therefore, we can 
conclude that the proposed RIPG has the best convergence and diversity 
for all the analyzed instances and stopping criteria values. 

Tables 10–15 report the average C(RIPG, metaheuristic) and C 
(metaheuristic, RIPG) values for different CPU time limits (three p 
values). Taking, as an example, the CPU time limits of n× (m1 + m2)× 5, 
the average values of C(RIPG, MOPSO), C(RIPG, MOSA), C(RIPG, NSGA- 
II) and C(RIPG, NSGA-III) are 0.551, 0.579, 0.507 and 0.408. These 
results mean that almost half of the solutions obtained by MOPSO, 
MOSA, NSGA-II and NSGA-III, are dominated by the solutions of the 

Fig. 3. Means plots of HVR (a) and Iε (b) with Tukey’s Honest Significant Difference (HSD) 95 % confidence intervals for all the metaheuristics at CPU time n × (m1 +

m2) × 20 milliseconds. 

Fig. 4. Empirical Attainment Functions and the Differences between Empirical Attainment Function for RIPG and NSGA-III for instance 146. (For interpretation of 
the references to colour in this figure text, the reader is referred to the web version of this article.) 
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Pareto set obtained by the RIPG algorithm. The average values of C 
(MOPSO, RIPG), C(MOSA, RIPG), C(NSGA-II, RIPG) and C(NSGA-III, 
RIPG) are 0, 0, 0.001, and 0.011, respectively. These results suggest that 
the Pareto front solutions, generated by MOPSO, MOSA, NSGA-II and 
NSGA-III, hardly dominate those generated by the RIPG algorithm. The 
RIPG algorithm is therefore superior to MOPSO, MOSA, NSGA-II and 
NSGA-III in tackling Pm→Fm|PM&CM|(Cmax, TMC) problem. 

Additionally, we use the ANOVA test to statistically confirm the 
significant differences between the analyzed multi-objective meta-
heuristics. After conducting the normality test and equal variance test, 
the HVR and Iε are regarded as the response variables. The five types of 
metaheuristics (RIPG, MOPSO, MOSA, NSGA-II, NSGA-III) are regarded 
as the controlling factor. Table 16 shows the final ANOVA results. Fig. 3 
presents means plots of HVR (a) and Iε (b) with Tukey’s Honest Signif-
icant Difference (HSD) 95 % confidence intervals for all the meta-
heuristics with a CPU time limit of n × (m1 + m2) × 20 milliseconds. By 
analyzing the values of Table 16 we can see that, under the three stop-
ping criteria and two indicators, the p-values of all metaheuristic are less 
than 0.001. This fact means that all the metaheuristics have a significant 
effect on the performance of DPm→Fm|PM&CM|(Cmax, TMC) problem. 
To sum up, we can reinforce, from Fig. 3, the previous conclusion: the 
proposed RIPG outperforms NSGA-III, NSGA-II, MOSA, and MOPSO, 
with statistical significance. 

5.5. Differential empirical attainment functions 

In this section we qualitatively explore the obtained Pareto sets from 
the metaheuristics using empirical attainment function (EAF) and 

differential empirical attainment function (Diff-EAF) for the RIPG al-
gorithm and the second-best metaheuristic, the NSGA-II. We employ this 
methodology for the benchmark instances 146, 261, and 352. To do so, 
the RIPG algorithm and NSGA-III are run for 100 times to obtain 100 
Pareto front sets for each instance. Figs. 4–6 show the EAFs and Diff- 
EAFs of RIPG and NSGA-III and Diff-EAF of RIPG and NSGA-III, 
following the approach of Grunert da Fonseca, Fonseca and Hall [56]. 
EAF plots are placed in Figs. 4–6(a–b) where values close to 1 (i.e., area 
colored in red and orange) mean a high dominance of the corresponding 
algorithm. In contrast, those areas with light colors, such as blue and 
purple, mean low or null dominance of the corresponding algorithm. 
Diff-EAF plots are placed in Figs. 4–6(c), where different colors indicate 
different dominant probability by RIPG over NSGA-III (e.g., values close 
to 1 and colored in red mean RIPG totally dominates NSGA-III). 

As an example, take instance 261 from Fig. 5(a–b). We can observe 
that those areas dominated by RIPG are larger than those by NSGA-III. 
From Fig. 5(c), we see that most of the borders around the makespan 
objective are colored in blue. This means that, in these areas, most of the 
Pareto front solutions can be found by RIPG, while NSGA-III can only get 
a few Pareto solutions. In the boundaries around the maintenance costs 
objective, most of them are colored in red, meaning the dominance 
probability of these zones by RIPG is 1.0. This observation indicates that 
almost all the Pareto front solutions are obtained by the RIPG algorithm. 
This qualitative analysis ends to the same previous conclusion: the 
proposed RIPG outperforms NSGA-III for both the makespan and 
maintenance costs objective spaces. 

Fig. 5. Empirical Attainment Functions and the Differences between Empirical Attainment Function for RIPG and NSGA-III for instance 261. (For interpretation of 
the references to colour in this figure text, the reader is referred to the web version of this article.) 
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6. Conclusions, managerial insights, and future work 

Given the importance of production scheduling and maintenance 
planning we studied in this paper a multicriteria assembly permutation 
flow shop scheduling problem. The MILP model considers the makespan 
as the first objective and a combination of PM and CM costs as the 
second objective. This work has also presented a new RIPG algorithm to 
deal with the bi-objective scheduling problem DPm→Fm|PM&CM|(Cmax,

TMC). In our proposed model, the unexpected failure times lead to the 
non-linear property and the model cannot be directly solved by a com-
mercial solver. Accordingly, two lemmas are inferred to relax the ex-
pected failure numbers and CM cost, and therefore, to make the model 
linearized. 

The RIPG algorithm includes a new solution evaluation to determine 
the maintenance planning and calculate the objective values. Four im-
provements are proposed to enhance the performance of the RIPG al-
gorithm: bi-objective-oriented greedy search procedure, local search, bi- 
objective-oriented acceptance criterion, and a restart mechanism. 
Through comprehensive experimentation, the ANOVA method is used to 
determine the best parameter combination of RIPG, and three types of 
experiments are conducted to evaluate the proposed MILP model and 
RIPG. The computational results and statistical analysis lead to the 
following main three conclusions:  

(1) Through the epsilon-constraint method, the MILP model can be 
used to tackle the bi-objective problem, and it is effective when 
solving small-scale instances.  

(2) The proposed RIPG outperforms four well-known multi-objective 
metaheuristics (namely, NSGA-II, NSGA-III, MOSA and MOPSO) 
for all the instances. The results are statistically significant.  

(3) According to the empirical attainment functions, the proposed 
RIPG has a superior performance when jointly considering 
maintenance costs and makespan in this bi-objective scheduling 
problem. 

We can obtain some managerial insights from the model and results 
of our work. First, the implementation of DPm→Fm|PM&CM|(Cmax,

TMC) can improve production efficiency and reduce maintenance costs. 
When implementing the proposed method in real production, managers 
first refer to the historical maintenance data to determine the scale and 
shape parameters of all machines. Later, they determine the preventive 
maintenance interval and expected numbers of machine failures. When 
all the production and maintenance parameters are obtained, managers 
could use the epsilon-constraint method to solve the proposed model to 
obtain equally-preferred solutions (i.e., those from the Pareto set of 
solutions) in the case of small-scale instances (up to 20 products and 4 
assembly machines). In the case of middle and large-scale instances, 
managers could use the proposed RIPG algorithm. Finally and according 
to the manager’s importance level for the different objectives, the 
decision-makers can select one solution from the Pareto set of solutions 
(including both a product sequence and PM plans). 

Future research can consider setup times or release time in DPm→ 
Fm|PM&CM|(Cmax, TMC). From the methodology point of view, re-
searchers can extend a Monte Carlo sampling method to deal with un-
expected failure times. Other bio-inspired multi-objective 
metaheuristics can be employed to obtain better Pareto front 

Fig. 6. Empirical Attainment Functions and the Differences between Empirical Attainment Function for RIPG and NSGA-III for instance 352. (For interpretation of 
the references to colour in this figure text, the reader is referred to the web version of this article.) 
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