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Abstract

his paper presents a com-

putational evolutionary

game model to study and
understand fraud dynamics in
the consumption tax system.
Players are cooperators if they
correctly declare their value
added tax (VAT), and are defec-
tors otherwise. Each player’s pay-
off is influenced by the amount
evaded and the subjective proba-
bility of being inspected by tax
authorities. Since transactions between
companies must be declared by both
the buyer and seller, a strategy adopted
by one influences the other’s payoff.
We study the model with a well-
mixed population and different scale-
free networks. Model parameters were
calibrated using real-world data of
VAT declarations by businesses regis-
tered in the Canary Islands region of
Spain. We analyzed several scenarios of
audit probabilities for high and low
transactions and their prevalence in
the population, as well as social
rewards and penalties to find the most
efficient policy to increase the propor-
tion of cooperators. Two major
insights were found. First, increasing
the subjective audit probability for low
transactions is more efficient than
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increasing this probability for high
transactions. Second, favoring social
rewards for cooperators or alternative
penalties for defectors can be effective
policies, but their success depends on
the distribution of the audit probabili-
ty for low and high transactions.

I Introduction

The value added tax (VAT) is the most
common consumption tax worldwide.
With extensive use since the 1960s, it
has reached significant tax revenue
capacity. In fact, consumption taxes
demonstrated a similar collection capac-
ity to income taxes during the 1990-
2010 period [1]. All deliveries of goods
and services by companies, professionals,
and importers are subject to VAT. The
tax base is the value added (value of pro-
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duction minus value of interme-
diate consumption) generated at
each step of the production and
distribution process. The tax debt
is calculated by applying the tax
rate to the value of the goods and
services sold, and deducting the
VAT attached to intermediate
consumption. Companies and
professionals declare the VAT
passed on to the customers, while
deducting the amount borne
from purchases from their own
suppliers. The resulting statement can be
either positive or negative.

This refunding system potentially
allows for significant levels of fraud in
terms of undervaluation of sales and
overvaluation of purchases [2]. However,
the fact that both buyers and sellers
record each transaction offers some self-
enforcement capability to the VAT sys-
tem. Das-Gupta and Gang [3] identified
circumstances where the ability of tax
administrators to match the sales and
purchase invoices strengthens this self-
reinforcement capacity. In any case,
tracking the relationships between buy-
ers and sellers is clearly of the utmost
importance to detect and prevent
fraud. For this purpose, tax administra-
tion normally requires the declaration
of all purchase and sales transactions
between pairs that exceed a certain
threshold, with an explicit declaration
of the counterparts.
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In this work, we propose a computa-
tional intelligence (CI) model, based on
evolutionary game theory [4], [5], to
study the VAT fraud dynamics of buyers
and sellers in an economic system. The
goal of the model is to represent a net-
work of players—either cooperating (cor-
rectly declaring VAT) or defecting
(incorrectly declaring VAT)—linked by
their pairwise transactions. Evolutionary
game theory has been applied to models
of cooperation such as the well-known
prisoner’s dilemma [6]—[8], snowdrift
games [9], [10], or trust dilemmas [11],
[12]. These game models represent one of
the most prominent CI techniques for
representing economic markets and
designing economic policies [13].
The application of evolutionary game
models to study tax fraud and evasion is,
however, very limited [14]—[17], and non-
existent when focusing on consumption
taxes such asVAT.

Our CI model is studied in a struc-
tured population where players are
linked by means of a social network of’
transactions. Here, players are given two
possible strategies: being a cooperator C
or being a defector D (i.e., a free rider).
The model considers the amount of tax
accrued on transactions not declared by
the free riders, a perceived probability of
being inspected by the tax agency, and
the corresponding fine when tax evasion
is detected. Cooperators, who are players
correctly paying their taxes, receive a
recognition or social reward; however,
they can also have their transactions
inspected, with a certain probability,
when their transaction records do not
match those of their transaction partners
in the network.

The combination of CI techniques
with agent-based modeling (ABM) [18],
[19] offers many opportunities for practi-
tioners [20], and our work is a perfect
example. Our model represents players of
the tax system as agents on nodes of a
heterogeneous social network [21]. The
social network follows a power-law dis-
tribution, equivalent to the scale-free
network topology used in previous stud-
ies for promoting cooperation in social
dilemmas [22]. This social network is
weighted, with weights of the edges rep-

resenting values of the tax debt associat-
ed with the transactions between two
linked nodes. These weights make the
model a mixed game [23] where players
have difterent payoft matrices depending
on the volume of their transactions. The
players, through a social evolutionary
learning process, can imitate others’ strat-
egies by using an evolutionary update
rule and a mutation operator to random-
ly modify their own strategies.

We used real-world data from the
Canary Islands tax agency to feed most
of the parameters of the model and fit
the power-law distribution of the scale-
free social network [24]. After investigat-
ing the general dynamics of the model
and eftects of having well-mixed and
structured populations on scale-free
networks with different properties, we
focused our experiments on determin-
ing policies to promote cooperation and
reduce the number of players who do
not correctly pay their consumption
taxes. To achieve this goal, we defined
different experimental scenarios that
allow us to understand when the best
cooperative behaviors occur. These sce-
narios include policies regarding the
shared pressure to increase the perceived
probability of being inspected for high
and low transactions and how diversity
in subjective probabilities affects the lev-
els of cooperation in the population; the
impact of modifying the reputational
reward for cooperators; and a sensitivity
analysis on different inspection fines for
defectors or free riders.

In the next section (i.e., Section II),
we discuss related work and the motiva-
tion of our study. Details of the CI
agent-based model are then described in
Section III. Section IV presents the anal-
ysis of real data from the tax agency and
setup of the model. The results and
model’s dynamics are discussed in Sec-
tion V. Finally, Section VI summarizes the
key contributions.

11. Background and Related Work

The neoclassical economic model on tax
fraud by Allingham and Sandmo [25] is
considered one of the cornerstones of
the economic analysis of tax evasion.
They represent how individual agents

decide to evade taxes, while also consid-
ering how the government would even-
tually punish them. However, this model
is unable to explain low levels of fraud
under low penalty and detection rates.
Bordignon [26] was one of the first to
describe this problem and the need to
explain tax fraud using explanation other
than just selfishness. Subsequent models
stress that tax compliance by agents is
dependent on how they perceive unfair-
ness in their relations with not only the
administration, which is the vertical fac-
tor, but also the rest of the agents, which
is the horizontal factor [27].

When analyzing the horizontal factor,
the tax evasion literature tries to identify
how the compliance level of an agent
affects the compliance level observed by
the rest of the agents. Traxler [28]
attempted to model different levels of tax
evasion within and between groups of
agents. He was able to bring issues related
to belief management into the discussion,
extending the spectrum of policy instru-
ments to the scope of changing indi-
vidual beliefs, besides the economic
incentives. Prichard et al. [1] reflected on
the main reasons of the failure of main-
stream neoclassical models in their survey.
They identified two main lines of
research that can address the limitations
of the traditional models by including the
relevance of behavioral aspects: experi-
ments and ABM.

Experiments, as Alm [29] stated, are
not without problems, but they over-
come the simplicity of theoretical mod-
els of individual choice, since they can
incorporate many explanatory factors
suggested by theory. They also favor the
combination of economic theory with
other disciplines like psychology,
increasing the realism of explanatory
factors of tax fraud [30].

Bonein [31] has identified different
levels of reciprocity between agents.
Under “strong reciprocity”, taxpayers
would tend to evade more (less) if they
observe a more (less) disadvantageous,
inequitable behavior by the remaining
agents. This completely contradicts the
predictions by self-interest models [32],
where agents are only motivated by
a future economic benefit. Frey and
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Torgler [33] found strong empirical evi-
dence supporting mutual influence
between taxpayers. The investigations by
Blaufus et al. [34] and Calvet and Alm
[35] show other perspectives of hori-
zontal factors, such as tax privacy, empa-
thy, and sympathy.

Fedeli and Forte [36] studied the
bargaining problem between agents to
decide the level of (under) reporting of
sales and purchases along the different
steps of the supply chain, combining
sales and income tax. Each pair of agents
has to decide the amount of trade
between themselves and the optimal
level of (under) reporting. They con-
cluded that the best policy to control
fraud is to increase the inspection
probability rather than to increase penal-
ties against fraudulent activities. On the
other hand, by acting against one agent,
the tax agency may eliminate the incen-
tives for misreporting along the entire
chain, thus reducing the enforcement
costs for increasing the inspection prob-
ability for all agents. Abraham et al. [37]
offered another example of modeling
based on a non-cooperative game-theo-
retic model and demonstrated that social
norms are more important for explain-
ing behavior in tax fraud than in situa-
tions where agents act independently.

Evolutionary game theory is com-
monly supported by ABM, a CI simula-
tion paradigm. These CI models start
with the conviction that, especially in
the field of sales taxes, fraud always
involves more than one agent. Boadway
et al. [38] presented the payoffs of a
group of potential evaders in the form of
a prisoner’s dilemma game. With collab-
oration, they could increase their reve-
nues; but if one of the agents decides not
to collaborate, the rest can be negatively
affected. Following the results of their
model, we can say that a fundamental
determinant of tax fraud that requires
collaboration between two agents is the
capacity of each agent to collaborate in
the evasion activity. In the above model,
the collaboration capacity depends on
the agent’s tolerance of dishonesty.

There are several advantages of using
ABM in the analysis of tax fraud. The
ABM approach enables the inclusion of

agents with very different response pat-
terns, which allows for a dynamic bottom-
up structure that may converge in a global
equilibrium that houses an intricate set of
individual realities. On the other hand, the
agents included in an agent-based model
do not maintain static positions and reac-
tions, but can evolve throughout the simu-
lation, learning from their own situation
and those of the other agents. This interac-
tion between agents (i.e., social network)
is, therefore, one of the fundamental com-
ponents of this type of models.

ABM examples in the study of tax
fraud can be found in the work of
Bloomquist [39], which described this
methodology as relatively recent and high-
lighted the apparent lack of acceptance by
the mainstream social scientists. Hokamp
et al. [40] also discussed recent advances
in the modeling of tax fraud analysis.
The different attitudes of agents may
manifest themselves in individual per-
ceptions of both the risk of apprehen-
sion and the audit probability [41], as in
the model presented by Korobow and
Axtell [42]. In relation to tax compli-
ance, their model suggested that the
outcome depends on how strongly
agents are influenced by their neighbor’s
results. If agents do not significantly
value the potential gains of evaders, it is
possible to achieve general compliance
even if the model realistically incorpo-
rates low enforcement measures. Anoth-
er example with a similar pattern was
provided by Hashimzade et al. [43].
Combining behavioral economics and
social networks, their model reflects
how the connection between agents can
form a subjective audit probability,
which clearly exceeds the objective lev-
els that stem from real levels of fiscal
auditing activities. The compliance deci-
sions are modeled to include benefits for

There are several advantages of using ABM in the
analysis of tax fraud. The ABM approach enables the
inclusion of agents with very different response patterns,
which allows for a dynamic bottom-up structure ... On
the other hand, the agents included in an agent-based
model do not maintain static positions and reactions.

the agents for following the social
norms of honesty. In a similar fashion,
Hashimzade et al. [44] described their
starting point in terms of attitudes,
beliefs and network effects based on two
features of empirical analysis on tax
fraud. First, there seems to be strong evi-
dence to indicate that individual com-
pliance attitude is clearly affected by
social norms. Second, agents do not
normally have access to the real audit
probability. Therefore, they end up gen-
erating their own subjective probability
of being subject to inspection and being
identified as an evader. A similar basis
was used by Hashimzade and Myles [45]
in their effort to incorporate predictive
analysis and behavioral economics in
modeling the tax compliance decision.
Previous efforts, such as those in the
field of experimental analysis, are very rel-
evant and should continue to be so.
Bloomquist [46] presented a good exam-
ple of how the results of experimental
economics can be exploited in the devel-
opment of ABM. New efforts such as
those coming from the field of econophys-
ics should be closely observed in order to
identify possible complementarities [47]. It
has already been mentioned that network
tools are an essential part of ABM; there-
fore, delving into how the network struc-
ture influences the results of these models
is an important avenue of study. The first
step in this direction came from Andrei
et al. [48], who explored the impact of
different network structures on the levels
of tax evasion in an agent-based model.
Reality is complex and models seek-
ing to describe it must be able to reflect
this complexity. Calibrating the models
to real data is not an easy task when
dealing with ABM and tax fraud. How-
ever, linking the main elements of an
agent-based model to real data or
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observed behavior of the relevant agents
must always be an end to pursue. Given
that the data necessary for this type of
analysis is inexorably linked to individu-
al data protection rights, collaboration
between researchers and tax administra-
tion 1s a must. This is especially the case
if we consider increasing our knowledge
of taxpayer compliance behavior, as
indicated by Bloomquist [49].

11l. Model Description

A. Game Strategies and Payoff Matrix
Players of the game are a finite set of Z
agents (companies) occupying the nodes
of a social network, with edges denoting
economic transactions between them.
The network is undirected but weight-
ed: a weight dj means the accrued tax
to be declared and paid in relation with
all cumulative transactions between both
players i and j. Under a correct behavior,
this value dj is the consumption tax
involved in the transactions between

TABLE | Payoffs for the mixed tax
fraud game.

C D

c|r
D| ad-6[l+¢ad]

R—-0Or
ad — O[T + ¢ad]

both companies i and j. We differentiate
between two quantities to be paid, high
(du) and low (dr), based on high and
low transaction values, respectively.
Therefore, dj={dr,du}, V(i, j) being
an edge of the social network. In this
sense, the game can be called a mixed
game [23], [50] where two players play
a different game depending on the type
of transaction, given by parameter dj.

Each player i chooses a strategy s
from two possibilities at every time step
(s())={C, D}): being a cooperator or
tax payer (C), or being a defector or tax
evader (D). When being a tax evader, the
player does not pay a fraction of the
transaction value dj;, saving this cost as a
personal benefit ( free rider). We model
this fraudulent fraction by parameter
a €[0,1], which also measures the dif-
ficulty of the social dilemma. Higher
values of o correspond to higher eco-
nomical benefits for free riders when
declaring transactions.

In order to set the fitness of a player i
for a specific time step t (f1), the player
accumulates all the payofts wj; from the
pairwise interactions over all its direct
contacts in the social network (i.e.,
neighborhood in the network):
ff=1/<k>i2§k:>'1 wh, where (k); is the
degree of player i. The payoff w; of focal
agent i with respect to neighbor j is

0={0x 0.}

ER DEFECTS
On =0 (adn)

DEFECTS
O, =0(ady)

DEFECTS
0 ={0k, 01}

PLAYERS DEFECT
On =0(2adn)

DEFECT
61 =0(ad.)

DEFECT

TABLE Il List of parameters of the tax fraud evolutionary game. O() is a linear

function.

NAME DESCRIPTION

R REPUTATIONAL AND SOCIAL REWARD FOR CORRECTLY PAYING TAXES
r INSPECTION COST

d={dud.} AMOUNT OF TAX DEBT TO BE PAID FOR THE INVOLVED TRANSACTIONS
ael0,1] RATIO OF UNPAID TAX DEBT BY DEFECTORS

¢ FINE MULTIPLIER TO BE PAID BY A DEFECTOR UPON INSPECTION
TAXPAYER'S SUBJECTIVE PROBABILITY OF BEING AUDITED WHEN ONE PLAY-

SUBJECTIVE PROBABILITY FOR HIGH TRANSACTIONS WHEN ONE PLAYER

SUBJECTIVE PROBABILITY FOR LOW TRANSACTIONS WHEN ONE PLAYER

TAXPAYER'S SUBJECTIVE PROBABILITY OF BEING AUDITED WHEN BOTH

SUBJECTIVE PROBABILITY FOR HIGH TRANSACTIONS WHEN BOTH PLAYERS

SUBJECTIVE PROBABILITY FOR LOW TRANSACTIONS WHEN BOTH PLAYERS

obtained by considering their strategies
in the previous time step and the specific
payoft’ matrix played depending on the
type of transaction (either low or high).

Table I shows the payoff matrix
defining the mixed game. Parameter R is
the social and reputational reward for a
player when acting in accordance to its
tax duties. I' is the inspection cost a
company should pay when a tax agency
examines the company and its docu-
mentation regardless of its own behavior
(i.e., playing strategy). ¢ is the fine mul-
tiplier a company must pay when the
tax agency audits the company and dis-
covers fraudulent behavior.

©() is a linear probability function to
define a player’s perception of how proba-
ble a tax audit is. This probability is sub-
jective, even if all the players have the
same perception of this probability (we
can say there is a “shared collective per-
ception”), and depends on the taxpayer’s
subjective probabilities about being audit-
ed, following previous studies such as that
of Hashimzade et al. [43]. The function
O() depends on the difference in the
amount declared by the players, and is
only applied when the tax agency discov-
ers a transaction mismatch for a pair of
players. The probability function is built
from two values (2adr and 2ady), which
set the probability of being inspected for
both low and high transactions. For clarity,
we have defined O, 01, O, and OF
as the values of the probability function
based on its arguments. Table II shows a
summary of all the model parameters.

The payoff matrix in Table I includes
different two-strategy games depending
on the values of the parameters. These
games determine the decision of every
player to either cooperate or defect, and
therefore influence the final outcome of
the evolutionary game. To characterize
the included games we consider a gen-
eral payoff matrix:

S o
~N |0
v W (O

where S, T, and P represent the expres-
sions of Table I. The definition of the
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payoff matrix in Table I satisfies R > S
and T > P, facilitating the level of coop-
eration in the game. According to Allen
and Nowak [51], a social dilemma occurs
when R>P (mutual cooperation
benefits both players) and at least one of
the following conditions is met to favor
the adoption of defection: (D1): T > R,
(D2): P>S, or (D3): T > S. Values of
the parameters in Table II determine
which of these conditions are satisfied.

Figure 1 shows possible games accord-
ing to ad and inspection cost I" values; and
assuming a constant audit probability
O(-) = ©. Wk see three regions in the figure
depending on the parameters’ values: there
is no social dilemma in two of them and
the third is associated with a classical game.
Cooperation prevails if the non-declared
amount ad is below R/(1— O¢), whereas
defection is the preferred option if ad is
high enough. A Stag Hunt game appears
for intermediate values of ad, where con-
ditions for cooperation R > P and temp-
tation to defect (D2 and D3) coexist.

In case of a non-constant audit
probability ©(-), the outcome is more
complicated. The payoff matrix includes
two possible values, O(ad)=0 and
©(2ad)=0'". Figure 2 shows the set of
games for different values of © and ad,
assuming a fixed ©'". For large values of
ad (above the horizontal line defined by
(r+0T)/(1—0'¢)), there is no social
dilemma as mutual defection is always
preferred over mutual cooperation
(P > R). Below the horizontal line, mul-
tiple games arise. In general, cooperation
is expected when ad is low and © is
high. More specifically, when the audit
probability is a decreasing function
(©>0’), the most expected games are
those favoring cooperation (coordination
and harmony games). However, when
the audit probability is increasing
(0 <0, there is a significant region
where games such as the prisoner’s
dilemma or snowdrift prevail and defec-
tion is the expected outcome.

B. Evolutionary Update Rule

The players can change their strategies
s(i), Vi€ Z during the whole discrete-
event simulation. These changes in strate-
gies come from two evolutionary

mechanisms. First, a player i can imitate
others in the population (generally, their
direct contacts in the social network). Sec-
ond, players can also change their strategies
by adopting a strategy at random, follow-
ing a random mutation mechanism with
probability . The mutation operator does
not take into account if the new strategy
was beneficial in the past in terms of the
fitness values of the players. However, the
social imitation update rule is a social
learning process of the players in the game
[52]. Social imitation update rules consider
the fitness of direct neighbors on a net-
work in the previous steps to make their

decision, either in a deterministic or a
probabilistic way. In our model, we use the
Fermi function as the social imitation
update rule.

Fermi’s rule is one of the most well-
known imitation processes [53], [54] and
is applied synchronously: for each step £, a
focal agent i compares its fitness value in
the previous step t —1, fi~', with one
of its direct neighbors in the social net-
work, j,alsoin t —1: f "1 Therefore, the
Fermi’s rule is a stochastic pairwise com-
parison rule, where players can also make
mistakes during the imitation process
(i.e., a player can imitate a neighbor with

DG1
R < P; Dy; D; Dy

SH
R> P; Dy; Dy

r

FIGURE 1 Different games for the payoff matrix in Table | according to parameter values T’
and ad. The subjective audit probability is a constant function ©()) = 6. Here, SH is the Stag
Hunt game; HG is a Harmony Game, and DG1 represents a defection game with conditions

D:, D> and Ds.
DGH : bas3
R < P; Dy; Dy; Dy | AR
1
R+ 60Tl :
e PD A
3 1-0'¢ R> P; Dy; Dy; D3 /SH
SD ;
R> P; Dy; Dy
R
0
0 o 1/ 1

]

FIGURE 2 Different games for the payoff matrix in Table I according to parameter values ©
and ad. PD is the Prisoner's Dilemma game; SD is the Snowdrift game; CG is a coordination
game; DG2 represents a defection game with condition D, and Ds; DG3 is a defection game
with condition D»; and (1) is a game with R > P and D.
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worse fitness). Mathematically, agent i
with strategy X adopts strategy Y of agent
j (a randomly selected direct contact of i)
with a probability given by Equation 1,
where B is the intensity of selection
parameter, set to 0.5 in the model.

1

[ J—
proby = —B(/7

—fh M

+e

IV. Data Analysis and Parameters
of the Model

A. Data Description

Most of the parameters in the model
were set using real data. The real data
used for our study includes VAT declara-
tions by businesses registered in the
Canary Islands (Spain) in 2002 about

transactions, with persons or firms,

exceeding 3,005.06 euros. The anony-
mized data was accessible only within the
tax administration under confidentiality
agreement of not revealing any informa-
tion that could be used to identify either
the buyers or sellers, and under the com-
mitment that the data was not to be
passed on to third parties in any format.
Every taxpayer must independently
declare purchases and sales. Therefore, all
transactions between two firms should be
declared twice—once each by the seller
and the buyer. The original information is
split into two files: one with the total sales
in the economy and the other with total
purchases. A database was built by merg-
ing both files and taking the transactions
(sales and purchases in 2002) declared by
the same firms in the two files into
account. Transactions without a counter-
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FIGURE 3 Degree distribution of the VAT declaration network.
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FIGURE 4 Edge-weight distribution in the real VAT declaration network.

part were eliminated, since in some cases
(e.g., individual buyers) a counterpart is
not obliged to declare. Transactions where
both counterparts match were also
removed. Finally, the number of firms in
the database is N = 32, 886 including
E = 197,791 operations.

B. Generation of the Real Social
Network of Transactions

In order to examine the structure of VAT
declarations, we set up a network of
firms, where two firms are linked when
they declare transactions between them.
The network is undirected, since we do
not differentiate whether the firm acts as
a buyer or a seller, although the amount
declared by the seller is included as a link
weight. Specifically, we use a scale-free
network starting with the degree distri-
bution of the VAT declaration network
(Figure 3), which is a long-tailed distri-
bution. Following the methodology in
Clauset et al. [55], the network fits to a
power law k7 with xmin=288 and
y = 3.04. According to the taxonomy in
Broido and Clauset [24], the VAT decla-
ration network is a weak scale-free net-
work, since its power law cannot be
rejected and it includes more than 50
nodes. For the model, we have built a
scale-free network of 10,000 nodes, with
the same exponent y and Xmin.

C. Feeding Transaction

Parameters from Data

The values and distribution of the quan-
tities to be paid {di, du} were set from
the empirical data. Figure 4 shows the
edge-weight distribution by considering
sellers” declarations (note that we obtained
a similar distribution when we looked at
buyers” declarations). More than 95% of’
the transaction amounts declared are
under 1 million euros, whereas 0.01% are
over 100 million euros. On the other
hand, according to official records, the
percentage of large firms (those with
more than 20 employees) in the Canary
Islands is about 2% [56]. Therefore, we set
the probability of an edge to have a high
transaction to 0.02 (i.e., probgs, = 0.02).
Additionally, we obtained a ratio
r=45.7589 between the average values
of the total volume of transactions of
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small and big firms (those transactions
below and above quantile 2% in the
edge-weight distribution, respectively).
We assume that the amount to be paid is
a constant fraction of the transaction value.
Therefore, we set the value dj = {dL,du},
v{i, j) € E, to a fixed value of d;. =10
and du = rdL = 457.59. Edges’ weights
djj are randomly initialized, characterized
by probs, = 0.02. Note that weights d;
do not change over time. They are static
and therefore, the same payoff matrix of
the mixed game is used for every pair of
players i and j in this study.

We define the ratio of divergence in
the tax declarations between seller i and
buyer j (ai-j) as the percentage of VAT
declaration mismatch between the tax
declared by seller i and buyer j. We only
take those mismatches benefiting the
sellers (this is the case where the seller
declares less amount than the buyer). The
ratio is calculated as follows: Given dj; as
the amount that firms i and j need to
declare, let @i ; be the percentage of this
amount that seller i does not declare and
a;j-i the percentage that buyer j declares
in excess. Then, the ratio of undeclared
accrued tax between i and j is:

g = Ata)di—(1—ai)d;
T (el di+ (T ain)) d;
_ a,;j-i-ocj;,ﬂ Lo
i P —— t— V(l, ]) eE

This ratio is between 0 (when both
counterparts declare exactly the same
amount, o;~;=a;j-;=0) and 1 (when
the seller does not declare any amount).
Note that when the fraction of the
amount that is incorrectly declared is
constant and identical for any firm and
transaction, we have ai-;=aj~i=a,
with a being the ratio of unpaid quan-
tity for defectors (Table II). We also
have ai-j=a, V{i, j) € E. Then, the
assigned values for parameter « in the
model would be calibrated by the o,
values in the real data.

Figure 5 represents the cumulative
distribution of the ratio ai.; in the VAT
declaration network. As can be observed,
the ratio of undeclared transactions is
almost zero for around 75% of oper-
ations and below 0.5 for 99.06% of

them. Given this, in our simulations,

Cumulative Probability

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0.25 05 0.75

<)

tion network.

FIGURE 5 Cumulative distribution of the ratio of undeclared transactions in the VAT declara-
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FIGURE 6 The upper plot shows the cooperators’ evolution for different « values, from 0.1 to
0.6, with an initial cooperators frequency of 0.5. The lower plot shows that the initial frequen-
cy of strategies in the population is not relevant for the final state of the model.
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we consider the range of realistic values
for parameter a between 0 and 0.5.

D. Model Setup

We set the model up for 50 Monte-Carlo
runs, with 1,000 time-steps in each run,
thereby ensuring that all the realizations
reach a stationary stable state (as we can
see in Section V-A). The simulation results

were obtained by averaging the last 25%
of the simulation time-steps in the inde-
pendent Monte-Carlo runs. Source code
and data files are available at https://
bitbucket.org/mchserrano/evolutionary
-game-tax-fraud.

We set the remaining parameters—
when not explicitly specified—as follows:
inspection cost I' =1 and reputational

0.8-

0.7-

o
()
1

o Values
o o =}
w E-N [§)]
1

o
(S

0.1

0 0.4 0.8 1.2 1.6 2
Inspection Cost (I")

1
0 0.2 0.4 0.6 0.8 1
Final Frequency of Cooperators

FIGURE 7 Sensitivity analysis on @ and T'. a controls the difficulty of the game, directly affect-
ing the cooperation level. T is the inspection cost when a player is inspected due to mismatch
declaration. We see how inspection cost I is only significant for  values approximately

between 0.2 and 0.6. If « is either lower or higher, T" has no impact on the cooperation level.

TABLE 11l Main features of the social network topologies.

NETWORK AVERAGE DEGREE cc D
REAL NETWORK FROM DATA 1.9952 0 111
SF (BAWITH m = 2) 3.0090 0.0035 12
SF (BAWITH m = 4) 5.0070 0.0044 9
SF (BAWITH m = 6) 7.0100 0.0065 9
SF (BA WITH m = 8) 9.0220 0.0082 8
ASS.SF (p=0.5,m=2) 2.9970 0.0029 20
ASS.SF(p=1,m=2) 2.9850 0.0120 283
DISS. SF (p =0.5, M = 2) 2.9935 0.0016 18
DISS.SF (p=1,m=2) 2.9860 0.0002 15
ASS. SF (p=0.5,m =8) 9.0040 0.0069 11
ASS.SF(p=1,m=8) 9.0460 0.0325 53
DISS. SF (p = 0.5, m = 8) 9.0120 0.0097 8
DISS.SF(p=1,m=28) 8.9820 0.0005 19

reward for cooperators R = 1. Fine value
¢ was set to 1.5 (50% fine plus the unde-
clared quantity) as per previous models
[43]. The values used to generate the lin-
ear audit probability function were set to
O%h =07.=0.5, when the analysis was
not focused on these subjective
probabilities (see Section V-C).The muta-
tion probability of the evolutionary
dynamics was always set to = 0.01.

V. Analysis of the Results

A. General Dynamics of the Model
We first show the dynamics of the
model for the base parameters. The
upper plot in Figure 6 shows the evo-
lution of the model over 1,000 time-
steps for different values of a. The plot
also shows the max-min range of the
simulations for the 50 Monte-Carlo
realizations. The stationary state is
quickly reached and even 500 time-
steps are sufficient in this case. Addi-
tionally, the max-min ranges in the plot
highlight that the deviation of the
model is low. The lower plot in Fig-
ure 6 shows how the model dynamics
is independent of the initial strategy set-
tings of the population. By enabling a
player to randomly change their strate-
gy using the mutation operator, we also
eliminate differences in the outputs in
case of extreme conditions (e.g., the
initial frequency of cooperators is either
0 or 1). Therefore, we fixed the initial
frequency of cooperators to 0.5 for the
rest of the analysis.

We also analyze the impact of
changing the o values and inspection
cost I' by running a sensitivity analysis.
Results can be observed in the heat-
maps of Figure 7. This graph is in
agreement with the set of possible
games analyzed in Figure 1. These
results show how the model is sensitive
to the values of a, which smoothly reg-
ulates how the population converges to
cooperation or defection and therefore,
the difficulty of the game. The impact
of inspection cost I is less significant in
the model dynamics when o has either
high or low values. In fact, when o val-
ues are high (or low) and therefore,
cooperation (or defection) is restricted,
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the consequence of changing I' values
is minimal. The role of the inspection
cost is significant only when the game
has an intermediate level of difficulty
and, as expected, increasing inspection
cost I' promotes higher cooperation.
This means that relying on the inspec-
tion cost to promote tax compliance is
more worthy when the population has
a mixture of cooperators and defectors.

B. Scale-free Networks Analysis

Here, we compare the dynamics of dif-
ferent scale-free networks with respect to
a well-mixed population. Apart from the
fitted real scale-free network, we consid-
ered four networks generated by the
Barabasi-Albert (BA) algorithm [57] for
different values of parameter m, control-
ling the average degree of the networks.
Additionally, we used the Xulvi-Brunet-
Sokolov algorithm [58] to obtain
assortative and disassortative scale-free
networks. The assortativity property of
networks denotes the preferences of
highly connected nodes to be connected
with other highly connected nodes [21].
On the other hand, the disassortativity
property denotes the preference of high-
ly connected nodes to connect with less
connected nodes. Parameter p of the
Xulvi-Brunet-Sokolov algorithm is used
to control the degree of assortativity and
disassortativity of existing scale-free net-
works. In our case, we applied the algo-
rithm to the most and least dense
networks generated by the BA algorithm
(i.e., m=2 and m=S8). Thanks to these
network generation algorithms, we
employed 12 networks with diverse clus-
tering coefficient (CC), diameter (D),
and density. Table III lists the features of
the networks.

Figure 8 shows the dynamics of the
model with the networks and a well-
mixed population. We can see in the
upper plot of Figure 8 that coopera-
tion is non-existent with a well-mixed
population, except when a is lower
than or equal to 0.2. Note that the
expected level of coexistence in the
well-mixed population can be analyti-
cally derived under some settings of
the tax fraud game. In the upper plot
of the figure, we can also see that the

trends of the BA scale-free networks
are similar. Networks with lower den-
sity (m=2 and fitted network from
data) are able to better promote coop-
eration when o is increasing (the
game is harder). When the game is
easy (low a values), higher density is
better for achieving total cooperation
because it increases the speed of diffu-

sion through the network. These
results are in line with the well-mixed
population output, which jumps from
total defection to total cooperation
when the game is easy. This abrupt
shift in the model results is in agree-
ment with the observation in Fig-
ure 1, where we have two extreme
cases (defection and harmony games)

1 I Fitted Network From Data
----- Well-Mixed Population
SF (BA With m=2)
— SF (BA With m = 4)
— SF (BA With m = 6)
SF (BA With m = 8)
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FIGURE 8 The upper plot shows the comparison among the well-mixed population, a network

obtained from real data, and scale-free network:
a values. The lower plot shows the comparison

s generated by the BA algorithm for different
among different levels of assortativity and dis-

assortativity in the scale-free networks. Density and assortativity impact the level of coopera-
tion depending on the o values. A well-mixed population can only achieve cooperation when

the game is trivial (o <0.2).
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FIGURE 9 The upper and middle heatmaps show sensitivity analysis on ©; and O} for
a=0.2 and a =0.4 (real data scenario where probd,=0.02). The bottom heatmap shows
the sensitivity analysis when proba, is 0.5 and a = 0.4 for comparison. We observe that
increasing the inspection probability for low transactions is preferable in the real world scenar-
io where probg,=0.02, but this conclusion does not apply when we have the same number
of low and high transactions in the network (see the lower heatmap).

as the most prevalent games for the
parameter values.

The lower plot of Figure 8 shows the
dynamics of the model with the above
assortative and disassortative topolo-
gies and a well-mixed population. As
observed with low density networks,
disassortativity favors cooperation when
the game is hard (high values of «).
Assortativity plays its role in promoting
cooperation when the game is easy. We
see from Table III that the real network
has high diameter values and the clus-
tering coefficient is 0. Therefore, the
dynamics of the game with this network
is equivalent to neither full assorta-
tive nor full disassortative networks
(Table III). Instead, the low density and
large diameter of the real network
explain the slow decay of cooperation
for large a values.

C. Balancing between the Subjective
Audit Probability for High and Low
Transactions

One of the main insights the analysis of
real data from the Canarian tax agency
revealed was the distinction between
two types of transaction volumes: high
and low. We would like to find the best
policy to promote cooperation and cor-
rect tax paying behavior by determining
the type of transaction the tax agency
must focus on. In order to understand
the impact of investigating these types of
transactions, we use the evolutionary
model to balance the focus on the sub-
jective audit probability—which can be
modulated differently depending on the
transaction volume. Thus, we set differ-
ent values for Oy and O§, which
changes the construction of the proba-
bility linear function. We started from
base values of @y =0.5 and ©1.=0.5
and considered a wide range of pairs for
analysis, from 0 to 1 for both parameters.
Figure 9 has three heatmaps showing
the final frequency of cooperators for
different subjective audit probabilities.
The upper and middle plots show the
results when o is equal to 0.2 and 0.4,
respectively. The lower plot shows the
dynamics when the numbers of high
and low transactions are equal (i.e.,
proby 1s 0.5) and a = 0.4.
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The analysis reflects important varia-
tions when modifying these subjective
probabilities to favor a particular transac-
tion type. We can see how tax fraud is
limited when the subjective probability is
higher for low transactions than high
transactions. In fact, differences are not
relevant when ©O7>0.5. However,
when O decreases, the number of coop-
erators declines almost independently of
©'%. The number of cooperators declines
and differences are significant when o
values difter (e.g., cooperators are the
dominant strategy in the final population
only when a=0.05 and the game is
easy). The results change when the proba-
bility of high and low transactions is equal
(Figure 9, lower plot). In this case, there
are no major differences in the frequency
of cooperators when O} and Oy
change. These results show that the signif-
icant effect of subjective probability
on tax fraud, for low transactions in the
upper and middle heatmaps, is mainly
due to the larger number of low transac-
tions in the network.

D. Population Diversity in the
Subjective Inspection Probabilities
Next, we analyze how diversity in the
individuals of the population, with
respect to their subjective probabilities,
affects cooperation. In order to run this,
we considered @y =07L=0.5 as the
mean x4 of the normal distribution
N(u, o) of the subjective probabilities
of the whole population, and we modi-
fied the standard deviation o of the dis-
tribution. Figure 10 shows the output
of seven simulations with different stan-
dard deviation o values: from 0, corre-
sponding to the default configuration of
the experiments in this work, to 0.4,
where individuals are highly diverse.
Figure 10 shows how population
diversity is beneficial for promoting
cooperation when the game is hard
(high values of @), but cannot promote
cooperation when the game is easy.
Similar trends were observed when
changing the density and other proper-
ties of the networks in Section V-B. This
diversity changes the cooperation levels
because of the polarization of the entire
population, as observed by Antonioni

benefit (free rider).

et al. [59]. Figure 10 also reveals that
diversity always induces a shift of the
population to a 50% polarization (gray
horizontal line).

E. Impact of Rewarding and

Penalty Policies

In this final section of our model analy-
sis, we focus on ascertaining if policies
to increase the reward for cooperators
are more efficient than those to
increase the punishment for defectors
via the fine values. Punishment versus
reward has been studied in different
public goods games and common pool
resources [53], [60], [61]. For our anal-
ysis, we increased the values of reward
R from 1 to 2 and fines from 1 (most
liberal—defectors just have to return
the unpaid tax) to 2 (the fine is double
the unpaid quantity). Figure 11 shows the
impact of different reward and fine val-
ues on cooperation under a sensitivity

Our model represents players of the tax system as agents
on nodes of a heterogeneous social network... When
being a tax evader, the player does not pay a fraction

of the transaction value, saving this cost as a personal

analysis of o and for three different
scenarios of subjective audit probability
OL and Of.

We first observe how the impacts of’
both reward and fine policies differ
depending on the subjective audit prob-
ability. When high transactions have a
higher subjective audit probability (the
third scenario), increasing the reward, R,
is more efficient for promoting coopera-
tion than increasing the fine, ¢. The
highest cooperation percentage is
obtained with R =2 while keeping the
base fine of 1.5. However, for all the «
values, increasing the fine up to 2 does
not generally induce as many new
cooperators as rewarding policies do.

When the subjective audit probabili-
ty for low transactions is higher than for
high transactions, the output of the
model changes dramatically. If we are in
the balanced second scenario (@ =0.5
and ©7.=0.5), penalizing defectors

- 0=0
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0.8 1 =0.1
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— 0=0.3
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FIGURE 10 Analysis of the diversity of subjective probabilities ©; and ©4 when setting individ-
uals of the population by generating a normal distribution N(x, o). We set u as 0.5 and plot

different values of o.
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with high fines is the most convenient
option for promoting cooperation. In
the first scenario, rewarding cooperators
is almost invariant for the model
dynamics. Therefore, both reward and
punishment strategies must be carried
out together while balancing the focus
on either high or low transactions or, at
least, apply them depending on the cur-
rent scenario.

VI. Final Discussion

We presented the first evolutionary
game model for consumption taxes. This
model represents cooperators and defec-
tors and includes parameters to penalize
tax evaders. It also considers the subjec-
tive probability of being inspected by
the tax agency, which can be modulated
with the size of the economic trans-
action. Players are linked through a
scale-free network. Both the network
topology and most of the model’s
parameters are fed with real data from
the Canarian tax agency.

The stability and robustness of the
model were demonstrated by simulating
the effects of the undeclared quantity (o
parameter), initial distribution of the
population, and convergence to a steady
state. After illustrating the main dynam-
ics, we evaluated the two main questions
for the tax agencies. First, we explored
whether the agencies must focus on
high or low transactions. We found that
it is better to increase pressure on low
transactions rather than high transac-
tions. This is mainly due to the larger
number of low transactions in the net-
work. But the level of this pressure on
low transactions is irrelevant once it is
higher than the pressure on high trans-
actions. This result is in line with previ-
ous findings [36] which support policies
to increase audit probability but extend
them by differentiating the audit proba-
bility according to the transaction size.
Our results could encourage tax agen-
cies to apply appropriate media actions
targeting small transactions rather than
high transactions.

Second, our analysis showed that
policies for either rewarding coopera-
tors or punishing defectors must be
executed in conjunction with policies

for high and low transactions. For
instance, we observed that, when the
perceived inspection probability is
more significant for high transactions,
rewarding cooperators is more benefi-
cial than increasing fines for defec-
tors. This effect was consistent for
different difficulty levels of the game
(defined through the o parameter).
However, when pressure is more
important for low transactions, pun-
ishing defectors prevails as the best
strategy. Our findings recommend tax
agencies to follow a constructive
approach to better reward companies
behaving well by publicizing reward
actions. These policies must be run in
conjunction with other measures (e.g.,
balancing pressure on either low or
high-value transactions).

The presented study has some limita-
tions. The rewarding versus punishing
policies do not take into account possi-
ble costs. A method of evaluating these
two options by considering the costs
for the agencies could be valuable.
Researchers can also evaluate the
response of temporal changes in the net-
work topology. For example, one can
study how temporal changes on the
type of transaction between players (i.e.,
djj) can influence the game output as the
employed payoft matrix would also
change over time. A more comprehen-
sive study about diversity in the subjec-
tive inspection probabilities of the
individuals can be performed as well.
Finally, a CI algorithm could identify
the most influential companies (nodes)
to be targeted with specific policies such
as in Robles et al. [62].
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“Real-world optimization problems,
such as aerodynamic design of turbine
engines and automated trading, have
been successfully solved by metaheuris-
tics. However, practitioners are con-
fronted with the challenge of how to
choose an appropriate metaheuristic
algorithm to solve a particular instance
of these problems. This paper proposes a

recommender system that can automat-
ically select a best-suited metaheuristic
algorithm without trial and error on a
given problem. The proposed method
develops a generic tree-like data struc-
ture for representing the difficulties of
optimization problems and then trains a
deep recurrent neural network to learn
to choose the best metaheuristic algo-

rithm, making automated algorithm
recommendation practical for real-
world problem-solving. The method
will make metaheuristic optimization
techniques accessible to industrial prac-
titioners, policy makers, and other
stakeholders who have no knowledge in

S

metaheuristic algorithms.”
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