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Abstract
New survey methodologies that often produce nonprobability samples have recently 
become very important. However, estimates from nonprobability samples can be 
subject to selection bias, which is primarily caused by the lack of coverage and the 
respondent’s ability to decide whether or not to participate in the survey. In such 
cases, inclusion probabilities can be zero or unknown. When this happens, the esti-
mators normally used in sample surveys are useless, and we must employ meth-
ods to reduce this bias. There is a wide variety of techniques to achieve this which 
depend on the auxiliary information available, but no study has determined which is 
better among all. In this paper, we briefly explain most of these methods and con-
duct an extended study to compare their performances. We will study superpopula-
tion models, which require knowledge of the auxiliary variables of all individuals in 
the population, linear calibration, which requires the population totals of the covari-
ates, and several techniques that use a reference probability sample, such as propen-
sity score adjustment, propensity-adjusted probability prediction, Kernel Weight-
ing, Statistical Matching and, Doubly Robust estimators. In addition, we compare 
their performance using linear regression or XGBoost as a predictive model, and the 
design weights in estimating inclusion probabilities or not, and with or without prior 
variables selection. The study was performed using five different datasets to deter-
mine which technique provides accurate and reliable estimates from nonprobability 
samples. 
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1  Introduction

Probability sampling constitutes a standard procedure for obtaining reliable esti-
mates of population figures since the works of Jerzy Neyman et al. (1934); Hor-
vitz and Thompson (1952). For many years, face-to-face surveys, postal surveys 
and telephone surveys were the main procedures used to ensure a probability 
sampling in the study of a population. However, new questionnaire administra-
tion and data collection methods are proving themselves as being able to pro-
vide larger sample sizes in less time and at lower costs, making them attractive to 
researchers. In the majority of cases, the samples are drawn following a nonprob-
ability sampling. Volunteering on social media websites, analysis of social media 
users, online opt-in panels, and e-mail surveys are some examples. Such surveys 
have even been considered for the production of official statistics in the last few 
years (Beaumont 2020).

In a probability sampling design, each unit of the target population U must 
have a known inclusion probability. Nonprobability samples fail to comply with 
this condition because they have no sampling design that enables the computation 
of selection probabilities. These samples often imply selection bias caused by 
various mechanisms, such as coverage error or self-selection bias, which can be 
problematic if the characteristics of the potentially covered population, Upc ⊆ U 
(from which the nonprobability samples are drawn) differ from those of U (Elliott 
and Valliant 2017).

In some scenarios, this selection bias can be mitigated, completely or partially. 
Methods for mitigating selection bias in nonprobability samples depend on the 
amount of auxiliary information available. We primarily distinguish between 
three possible situations, and we consider the variable of interest, y, from which 
we want to estimate a parameter, �y , is only available for individuals in the non-
probability sample and not for any other unit of the (unsampled) population. The 
usual scenario is to have access to only the population totals for some covariates 
measured in the nonprobability sample. The population totals can be official fig-
ures from regional statistical offices, or estimated figures from probability sam-
ples with (ideally) little to no bias. In such cases, the usual approach is to perform 
calibration reweighting as defined in Deville and Särndal (1992). An alternative 
to the original formulation is the use of penalized methods such as ridge cali-
bration Chen et  al. (2002) and generalized calibration Kott (2006); Haziza and 
Beaumont (2017). Normally, population figures for certain variables (age, gender, 
education level, etc.) are easier to access than other sources of auxiliary informa-
tion, making these methods a common choice for survey researchers.

Occasionally, a reference sample drawn using a probability sampling design 
is available to be used as a source of auxiliary information. This reference prob-
ability sample and the nonprobability sample must have measured a common set 
of covariates to assess the similarities between both samples. These covariates 
are auxiliary variables that are good as long as they are related to the variable 
of interest, or the selection mechanism, and the variable of interest (see Ferri-
García and Rueda (2022) for a literature review on the matter). The reference 
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samples can come from multiple sources, such as official statistics microdata, 
government surveys, or even censuses Schonlau and Couper (2017); Elliott and 
Valliant (2017). The advantage of using this information is that reference samples 
enable the use of relevant covariates (which are related to the variable of inter-
est) for which population totals might be rarely available. Methods for adjusting 
nonprobability samples using information from reference probability samples can 
be divided into pseudodesign-based methods which aim to estimate participation 
probability, such as propensity score adjustment (Lee 2006), propensity-adjusted 
probability prediction (Elliott and Valliant 2017), or Kernel Weighting (Kern 
et al. 2021), model-based methods that aim to estimate the (unmeasured) values 
of the variable of interest in the reference sample, such as Statistical Matching 
Rivers (2007) or Mass Imputation Kim et al. (2021), and a combination of both 
approaches, such as Doubly Robust estimators (Chen et al. 2020) and the combi-
nation of PSA and Statistical Matching proposed in Castro-Martín et al. (2022).

In some cases, a census of the full population for a set of covariates (also avail-
able in the nonprobability sample) might be available. This is the most uncommon 
case, although it might not be as rare for certain populations (university students, 
associations, etcetera). For example, it is common in ecological studies to con-
sider areal units or sites in a landscape as population units, thus allowing research-
ers to access the auxiliary information of these units via satellite images Boyd et al. 
(2024). Censuses can even be constructed if the cross-count population totals are 
known for combinations of variables; however it is rare that an acceptable number of 
variables is available for such combinations. In the cases where a complete census is 
available, the estimators based on the superpopulation modeling theory formulated 
in Royall and Herson (1973) can be applied. These estimators include model-based 
approach Royall (1970), model-assisted approach Cassel et al. (1976), and model-
calibrated approach Wu and Sitter (2001). They are typically applied in probability 
sampling contexts; however, their application in the nonprobability sampling con-
text has shown promising results Buelens et al. (2018); Ferri-García et al. (2021).

The proposed methods can be applied in various situations, and they can also be 
improved with usual statistical and data science techniques, such as data preprocess-
ing, variable selection or weight manipulation. This work compares the performance 
of these methods and their possible improvements using a simulation study that 
employs several pseudopopulations and several predictive methods where applica-
ble. For this purpose, we introduce the methods in the following subsections.

1.1 � Calibration and model‑based adjustments

1.1.1 � Calibration

Consider a target population U of size N, with a variable of interest y and a linear 
parameter that we want to estimate from it; for the sake of simplicity, we assume 
that this parameter is the population mean, Y  . Here, let s be a probability sam-
ple with a given sampling design such that each element k ∈ s has an associated 
inclusion probability, �k = 1∕dk . The element dk is known as the design weight of 
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the k-th unit of the sample. The usual Horvitz-Thompson and Hajek estimators 
can be written as

Let x be an auxiliary vector associated with y. We assume that population totals for 
each variable in the vector are known; that is, X =

∑N

k=1
xk is known. Calibration 

reweighting aims to find a new set of weights, wk , that minimizes the distance with 
dk for k ∈ s , given a distance function G(., .) such that

The above optimization procedure implies that the new set of weights must provide 
estimates of the population totals of x that are exactly equal to the actual totals X , 
although some recent works consider the relaxation of this condition Kott (2006). 
Several G(.,  .) were defined in Deville and Särndal (1992), where it has also been 
proven that calibration reweighting provides consistent estimators under several 
conditions. Calibration weighting reduces bias caused by non-response Särndal 
et al. (1992) or coverage Folsom and Singh (2000); Kott (2006); Dever et al. (2008) 
biases.

When applying calibration in the nonprobability sampling context for a non-
probability sample sv , design weights dk∀k ∈ sv are not available. In this situation, 
design weights may be replaced with an unitary vector such that dk = 1∀k ∈ sv . 
If linear calibration is applied, this will lead to post-stratification weights Smith 
(1991). This approach was studied in Bethlehem (2010) for web surveys and 
demonstrated successful results when the inclusion in the nonprobability sample 
is not directly related to the target variable.

1.1.2 � Superpopulation modeling

Superpopulation modeling can be considered a general case of the calibration 
framework in where we assume that y = (y1, ..., yN) is a realization of a super-
population Y = (Y1, ..., YN) where the following model applies:

Under this framework, the values of y in the non-sampled population, s = U ⧵ s , can 
be estimated by regression modeling using a predictive model M, which represents 
the behavior of the superpopulation model m:

Let ty be the population total of the variable y, ty =
∑N

i=1
yi . The predicted values ŷi 

can be used to estimate this total using three different approaches:

(1.1)
̂
Y
HT

=

∑
i∈s diyi

N

̂
Y
Hajek

=

∑
i∈s diyi∑
i∈s di

.

(1.2)min
wk

∑

k∈s

G(wk, dk), subject to
∑

k∈s

wkxk = X.

(1.3)Yi = m(xi) + ei, i = 1, ...,N.

(1.4)ŷi = EM(yi|xi).
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•	 The model-based approach Royall (1970), which adds the sums of y for sam-
pled individuals and ŷ for non-sampled individuals as follows: 

 This estimator is based on strong assumptions. Among them, the ignorability of 
the sampling design, conditional on relevant covariates. If this condition is not 
fulfilled, there could be non-negligible bias (Pfeffermann 1993).

•	 The model-assisted approach Cassel et al. (1976), in which the sum of ŷ for all 
individuals in U (sampled and non-sampled) is then corrected with the errors 
(differences between y and ŷ ) observed in the sample, and each one is elevated 
via the vector of weights w, which can be expressed as the vector of the design 
weights or any adjusted weight: 

 Note that if model M is linear, then this estimator is equivalent to the general 
regression estimator (GREG), which is a type of calibration estimator developed 
in Deville and Särndal (1992).

•	 The model-calibrated approach Wu and Sitter (2001), which is a weighted 
estimator constructed via calibration of the predicted values: 

 where wCAL
i

 minimize 
∑

i∈s G(w
CAL
i

,wi) , subject to 
∑

i∈s w
CAL
i

ŷi =
∑

i∈U ŷi.
These estimators can also be applied when s is a nonprobability sample, which 
gives successful results Buelens et  al. (2018); Ferri-García et  al. (2021). How-
ever, note that in this case, we still have the issue of having no design weights 
available, which can be problematic in the case of model-assisted and model-cal-
ibrated approaches. As in calibration, the unitary weights ( wi = 1,∀i ∈ s ) or other 
types of weights could be considered. In addition, these estimators require the use 
of complete population data for some auxiliary variables, which is rarely avail-
able to researchers.

1.2 � Adjustments using a probability sample

In other situations, two samples are available. On the one hand, we have a non-
probability sample sv of size nv drawn from Uv ⊂ U , which represents the sub-
set of the potentially covered population (e. g. Internet users) and has no design; 
thus, its inclusion probabilities, �v , are unknown. On the other hand, we have a 
probability sample sr of size nr , drawn from U with sampling design (Sd, pd) and 
design weights dr , which is available with some common covariates with sv , x.

Let R = 0, 1 be an indicator variable of belonging to sv , where

(1.5)t̂mb
y

=
∑

i∈s

yi +
∑

i∈s

ŷi.

(1.6)t̂ma
y

=
∑

i∈U

ŷi +
∑

i∈s

(yi − ŷi)wi.

(1.7)t̂mc
y

=
∑

i∈s

yiw
CAL
i
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We assume the probability (propensity) that the i-th individual will be included in 
the nonprobability sample, �vi , can be defined as a probability conditional on the 
available covariates x:

This assumption is called the non-informativity assumption and implies that the bias 
caused by the selection mechanism that governs R can be completely removed if the 
probability was properly taken into account by the estimators. This is equivalent to 
Missing At Random (MAR) case following the classification in Little and Rubin 
(1987).

The strongest assumption is non-informativity, given that self-selection in sam-
ples is related to the variable of interest itself. Unfortunately, it is not possible to test 
this assumption in practice if we only know y for individuals in sv (see Wu (2022)). 
Some authors might consider including a large and rich set of covariates that may 
be related to R or y to ensure the compliance of this assumption (Yang et al. 2020). 
However, this solution does not guarantee the non-informativity of the sample. 
Effects of ignoring the sample selection process when fitting models to survey data 
can have significant effects on the inference process, including bias of point estima-
tors and poor performance in test statistics and confidence intervals. This topic is 
studied extensively in (Skinner et al. 1989) and (Pfeffermann 1993) for probability 
sampling.

We also assume that 𝜋vi > 0,∀i ∈ U , and that R1, ...,RN are independent given 
(x1, ..., xN) . These assumptions were specified in Chen et al. (2020), and some meth-
ods for correcting selection bias can be applied when these assumptions are satisfied.

1.2.1 � Propensity Score Adjustment

In a situation where �v is not known, propensity score adjustment attempts to pro-
vide an estimate of its value for each individual in the available samples using model 
M as follows:

where x is a set of covariates available in both sv and sr , and R∗ is a proxy for R 
obtained from the pooled sample sv ∪ sr such that

It is common in literature to consider a logistic regression model for M. However, 
some recent approaches involve Machine Learning classification algorithms for M; 
some comparative studies include Random Forests, Gradient Boosting Machines 
(GBM), k-nearest neighbors and neural networks, among other approaches 

(1.8)Ri =

{
1 i ∈ sv
0 i ∉ sv

, i ∈ U.

(1.9)�vi = Pr(Ri = 1|xi, yi) =Pr(Ri = 1|xi), i ∈ U.

(1.10)𝜋̂vi = EM[R
∗
i
= 1|xi], i ∈ sv ∪ sr

(1.11)R∗
i
=

{
1 i ∈ sv
0 i ∈ sr

, i ∈ sv ∪ sr.
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(Castro-Martín et al. 2020; Ferri-García and Rueda 2020). Recently, the XGBoost 
algorithm Chen et al. (2016) has gained attention owing to its efficacy in estimating 
propensities (Castro-Martín et al. 2021).

The propensity estimates provided by these predictive methods are used for 
weighting in the usual Horvitz-Thompson and Hajek estimators, using some 
formulas:

•	 Inverse probability weighting: wIPW
i

= 1∕𝜋̂vi as noted in the review by Valli-
ant (2020), or with the slight modification proposed in Schonlau and Couper 
(2017) to consider that the nonprobability sample individuals are not part of 
the target population, wCIPW

i
= (1 − 𝜋̂vi)∕𝜋̂vi.

•	 Propensity stratification weighting (also known as stratification matching): the 
individuals are divided into g strata according to propensity (individuals with 
similar propensities are classified in the same strata). In the approach proposed 
in Lee and Valliant (2009), the original weights of the nonprobability sample 
(if any) are multiplied by the correction factor that takes the design weights of 
the probability sample into account: 

 where dv is the vector of weights of the nonprobability sample (normal unitary 
weights may be used; however, other adjustment weights can be considered), 
and sc

v
 and sc

r
 are the individuals in the nonprobability and probability samples, 

respectively, that belong to the c-th propensity stratum. On the other hand, Val-
liant and Dever (2011) replaced the propensity of individual by the mean pro-
pensity of the stratum they belong to, and then applied the inverse probability 
weighting formula: 

 where nc
v
 is the size of the c-th propensity stratum.

Regarding the use of design weights in PSA modeling, Chen et  al. (2020) pro-
posed pseudo-maximum likelihood estimation (PMLE) based on the following 
pseudo-log-likelihood function:

This function is a modification of the original log-likelihood equation for the com-
plete population for the prediction of R, where the second sum is not over i ∈ sr but 
over i ∈ U . The rationale of Chen et al. (2020) is to substitute this sum by an unbi-
ased estimate, which can be obtained with the weighted sum of log(1 − m(xi, �)) of 
individuals in the probability sample.

(1.12)wStrat1
i

= dv
i
fc = dv

i

∑
k∈sc

r
dr
k
∕
∑

k∈sr
dr
k

∑
j∈sc

v
dv
j
∕
∑

j∈sv
dv
j

, i ∈ sv, i ∈ c,

(1.13)wStrat2
i

= 1∕𝜋v(c), 𝜋v(c) =

∑
j∈sc

v
𝜋̂vj

nc
v

, i ∈ sv, i ∈ c,

(1.14)l(�) =
∑

i∈sv

log

(
m(xi, �)

1 − m(xi, �)

)
+
∑

i∈sr

dilog
(
1 − m(xi, �)

)
.
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If the participation rate in the nonprobability sample is small, i. e. nv∕N → 0 , the 
results of PMLE are approximately equivalent to those obtained by weighted logistic 
regression, where the regression weights dpool

i
 are expressed as follows:

Other weighting strategies in the modeling step can also be consulted in Valliant 
and Dever (2011), although they are unable to provide consistent estimators, as 
reported in Chen et al. (2020). On the other hand, PSA efficiency largely depends 
on the covariates used for propensity estimation Lee (2006); Valliant and Dever 
(2011). The variables included in a propensity score model should be related to the 
variable of interest y. In a given set of available covariates, some variables might 
be more strongly related to Y than others. Including unrelated variables could result 
in covariates sets in which there is no relationship between y or R and some vari-
ables of x , and in more complex models which could lead to greater variances and, 
in the case of machine learning classification algorithms, to worse results. Previous 
studies have shown that more efficient results can be obtained when the covariates 
were related to the variables of interest Hirano and Imbens (2001); Brookhart et al. 
(2006); Ferri-García et al. (2022). However, it can sometimes be difficult to qualita-
tively assess which variables are related to the variable of interest. For this reason, 
automatic feature selection techniques can be helpful to select the relevant covari-
ates in terms of propensity estimation. Feature selection before propensity estima-
tion can be advantageous, given its usefulness for removing redundant or irrelevant 
variables that could increase bias and (especially) the variance of the final estimates 
Ferri-García and Rueda (2022).

1.2.2 � Propensity‑Adjusted Probability Prediction

The propensity-adjusted probability prediction approach (PAPP) (Rafei et  al. 2020, 
2022) is an approach based in the two-phase quasi-randomization method, which was 
introduced in Elliot (2009) and Elliott et al. (2010), and was further developed in Elli-
ott and Valliant (2017). The proposed method also provides consistent estimators and 
allows using robust Bayesian inference techniques. Let � = 0, 1 be an indicator variable 
for the probability sample, where

Under the PAPP approach, assuming no overlap between sv and sr , the probability of 
belonging to the nonprobability sample can be expressed (by developing the Bayes 
theorem) as a function of the estimated propensity and design weight:

(1.15)d
pool

i
=

{
1 i ∈ sv
di i ∈ sr

, i ∈ sv ∪ sr.

(1.16)�i =

{
1 i ∈ sr
0 i ∉ sr

, i ∈ U.

(1.17)�vi = P(�i = 1|xi)
P(R∗

i
= 1|xi)

1 − P(R∗
i
= 1|xi)

.
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The probability P(R∗
i
= 1|xi) is not known in advance, meaning that it must be esti-

mated with propensity score adjustments, such as PSA. The probability P(�i = 1|xi) 
depends on the covariates considered for the adjustment. Note that if variables x 
correspond to the design variables for sampling the probability sample, the prob-
ability P(�i = 1|xi) must be known for all individuals in the population, implying 
that this probability can be plugged-in directly without needing to estimate it. How-
ever, in the usual setting, where x does not fully correspond to the design variables, 
P(�i = 1|xi) can be estimated with the inverse prediction of di, i ∈ sr using xi in a 
model MP. This prediction can also be used if, for any restriction, we do not have 
access to the design weights (the most frequent case occurs when sampling weights 
are released only for sampled units; in addition, for privacy reasons, even the sam-
pling weights are frequently unavailable, in favor of final weights that include post-
stratification and non-response correction factors). The final estimates of �i are:

The pseudo-weight to be applied in the estimators is calculated as follows:

 Elliott and Valliant (2017) recommend performing the prediction on 1∕di instead 
of di using a Beta regression given that 1∕di ∈ [0, 1] . In the present study, we con-
sider the prediction of di instead, because this prediction allows the use of a wider 
set of modeling approaches apart from linear regression, trimming the results when 
necessary (i. e. when the predictions are below 1). Another possibility is to predict 
log(1∕di) to avoid issues related to the domain of 1∕di ; this is done in Rafei et al. 
(2020), where Bayesian Additive Regression Models (BART) were used both in the 
prediction of log(1∕di) and P(R∗

i
= 1|xi).

1.2.3 � Kernel Weighting

The Kernel Weighting (KW) method (Wang et al. 2020) is similar to PSA in the sense 
that both methods create pseudo-weights, from estimated propensities for the non-
probability sample using a reference probability sample. However, they differ in their 
approaches to generate these new weights.

Kernel Weighting is based on using the aforementioned propensities to measure the 
similarity between individuals according to the distributions of the measured auxiliary 
variables in sr and sv . These similarities are used as weights for our estimator by adding 
a previous step where the distances are smoothed using Kernel functions.

Given a propensity model M, let

(1.18)𝜋̂PAPP
vi

=
1

EMP[di|xi]
P(R∗

i
= 1|xi)

1 − P(R∗
i
= 1|xi)

.

(1.19)wPAPP
i

=
1

𝜋̂PAPP
vi

= EMP[di|xi]
1 − P(R∗

i
= 1|xi)

P(R∗
i
= 1|xi)

.

(1.20)
d(x

(r)

i
, x

(v)

j
) = 𝜋̂(x

(r)

i
) − 𝜋̂(x

(v)

j
) = EM[R

∗
i
= 1|x = xi] − EM[R

∗
j
= 1|x = xj], i ∈ sr, j ∈ sv



	 J. L. Rueda‑Sánchez et al.

be the distance between the estimated propensity score from i ∈ sr and j ∈ sv . This 
distance must be bounded between −1 and 1. We smooth these values using a zero-
centered Kernel function, which allows for several alternatives (Gaussian, Standard 
Gaussian, Triangular, etc.). The closer the distance is to 0, the more similar are the 
individuals in terms of their auxiliary variables, as propensities are estimated using 
these variables. In addition, the more similar individuals are, the larger proportion 
KW assigns to the original weight dr

i
 in the estimation of the pseudo-weight for indi-

vidual j. This proportion is known as the kernel weight and it can be expressed as 
follows (Wang et al. 2020):

where K(⋅) is a zero-centered Kernel function (Epanechnikov 1969), and h is the cor-
responding bandwidth. Because kij is a proportion, the following property applies:

The larger the value of kij , the more similar are the propensities of individuals i and 
j.

The weights to be used in the final estimator are given by the sum of the weights 
of the reference sample dr multiplied by the kernel weight of the nonprobability 
sample unit as follows:

Estimators derived from KW are consistent as long as the regularity conditions con-
sidered in Wang et al. (2020) are met. This estimator is less sensitive to model mis-
specification than the PSA estimator while avoiding the extreme weights that may 
appear because of calculating wi as 1∕𝜋̂iWang et al. (2020); Kern et al. (2021).

1.2.4 � Statistical Matching

Statistical Matching, also known as Mass Imputation, is a model-based method that 
was introduced for nonprobability sampling estimation in Rivers (2007), and its 
theoretical properties were further developed in Yang and Kim (2018), Chen et al. 
(2020) and Kim et al. (2021).

This method predicts the (unknown) values of y for individuals of the reference 
probability sample rather than predicting propensities for individuals of the non-
probability sample. For the matter, we fit a model SM with covariates x as input, to 
predict the variable(s) of interest using data from sv such that

(1.21)kij =
K{d(x

(r)

i
, x

(v)

j
)∕h}

∑
j∈sv

K{d(x
(r)

i
, x

(v)

j
)∕h}

(1.22)
∑

i∈sv

kij = 1, kij ∈ [0, 1].

(1.23)wKW
j

=
∑

i∈sr

dikij, j ∈ sv.

(1.24)ŷj = ESM[yj|xj,Rj], j ∈ sr
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The predicted values are plugged into Horvitz-Thompson or Hajek estimators as 
follows:

As noted in Kim et al. (2021), a key assumption must hold for Statistical Matching 
to work effectively, apart from the ignorability and common support assumptions 
(which were in place for PSA as well), which is the transportability condition:

This condition requires the nonprobability sample to accurately represent the rela-
tionship between x and y. The ignorability assumption is sufficient for transportabil-
ity to hold Kim et al. (2021), meaning that, if we assume a MAR selection mecha-
nism, the transportability condition holds; therefore, the model SM can be used to 
predict y in sr.

Several modeling approaches have been considered in literature for SM; Riv-
ers (2007) used a donor imputation model which worked similarly to a k-NN 
model with k = 1 , an approach that was generalized to any value of k in Yang 
and Kim (2018). Chen et  al. (2022) applied nonparametric models, including 
kernel smoothing and GAM, and Castro-Martín et  al. (2020) applied various 
Machine Learning models and compared their performance, also to the results 
provided by PSA.

An extension of Statistical Matching was proposed in Castro-Martín et  al. 
(2022), which also combines results provided by PSA. In this approach, the pre-
dictive model SM is a weighted model fitted using data from sv . Weights used in 
the model, wSM , are calculated from the propensities estimated in PSA, 𝜋̂vi:

The resulting weighted model, WSM is applied to predict the values of y in the prob-
ability sample, obtaining a new set of predictions ŷW:

These predictions can be used as regular Statistical Matching estimators:

The behavior of these estimators was compared in Castro-Martín et al. (2022) with 
PSA and Doubly Robust estimators (which are to be introduced in the next section), 
showing better results than the former and very similar results to those of the latter.

(1.25)
̂
Y
Mat

HT
=

∑
i∈sr

diŷi

N

̂
Y
Mat

Hajek
=

∑
i∈sr

diŷi
∑

i∈sr
di

.

(1.26)f (y|x,R = 1) = f (y|x).

(1.27)wSM
i

= 1∕𝜋̂vi, i ∈ sv

(1.28)ŷW
j
= EWSM[yj|xj,Rj], j ∈ sr

(1.29)̂
Y
WMat

HT
=

∑
i∈sr

diŷ
W
i

N

̂
Y
WMat

Hajek
=

∑
i∈sr

diŷ
W
i∑

i∈sr
di
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1.2.5 � Doubly Robust Estimators

Doubly Robust estimators for nonprobability samples (Chen et al. 2020) are based 
on the class of augmented inverse probability weighted estimators, which were 
developed in Robins (1994). The Doubly Robust estimator combines the design-
based and model-based approaches; let ŷi = ESM[yi|xi,Ri] be the predicted value 
for individual i according to model SM, defined as Statistical Matching, and let 
𝜋̂vi = EM[R

∗
i
= 1|xi] be the estimated propensity of being in the nonprobability sam-

ple for individual i according to model M, defined as propensity score matching. The 
Doubly Robust Estimator of the population mean, ̂

Y
DR , is defined as follows:

Alternatively, the value of N can be substituted by the estimators derived from the 
sums of weights:

As demonstrated in Chen et al. (2020), this estimator is doubly robust in the sense 
of being a consistent estimator of the population mean if either M or SM is correctly 
specified. The same work shows that the variance of this estimator also has a closed 
form if the propensity score model M is a logistic regression model.

2 � Materials and methods

2.1 � Data

To increase the extent of comparison among the methods proposed in literature, we 
conducted simulation studies using five different datasets as pseudopopulations. The 
first dataset was based on the simulation study reported in Wang et al. (2020) and 
included a pseudopopulation generated from actual population figures for United 
States counties. Three of the other datasets were publicly available in the UCI 
Machine Learning Repository Kelly et al. (2024), and were chosen in the basis of 
being multivariate datasets with more than 1,000 instances and 10 to 100 features 
(because datasets with more than 100 features are focused on other types of prob-
lems such as image processing), while the remaining one was available in the R 
package TeachingSampling (Rojas 2020). In all simulations, unequal probability 
sampling was performed using Poisson sampling, except for one case where the 
population was very large, making Poisson sampling to be computationally costly; 
in that case, systematic method for unequal probability sampling (Madow 1949) was 
used instead. Both sampling schemes are available in the R package sampling (Tillé 
and Matei 2021). Poisson sampling provides samples with no fixed sample size nv , 

(1.30)
̂
Y
DR

=
1

N

∑

i∈sv

yi − ŷi

𝜋̂vi
+

1

N

∑

i∈sr

diŷi.

(1.31)
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but each sample drawn under this scheme has an expected sample size instead, 
E[nv] . More details about the sampling designs are discussed in the following sub-
sections. In addition, for each dataset and each iteration we computed the correlation 
between the indicator variable R and the variable of interest y, �R,y , and we calcu-
lated the mean of �R,y and �2

R,y
 across all iterations to check the assumption of non-

informativity. This correlation is the "data defect correlation" defined in Meng 
(2018), which measures the lack of representativeness of the sample. Violations of 
non-informativity can be associated with larger values of this indicator; for this rea-
son, we will consider that non-informativity is likely to be satisfied if the correlation 
is low, although a deeper study (involving the modelization of y given x ) would be 
needed. See Wu (2022) and Meng (2018) for more details on the matter. Since in a 
simple random sampling without replacement �R,y = N−1∕2 , the correlations in each 
simulation will be compared to the inverse of the square root of the population size 
of the population in order to contextualize the figures.

2.1.1 � ACS dataset

In the first dataset, 1000 clusters were simulated up to a size of M = 3000 units per 
cluster (constituting a population of size M = 3, 000, 000 ). The units in each clus-
ter were represented by the following variables: age, gender, income, ethnicity, and 
rural/urban area; each variable was simulated using data from 1000 random coun-
ties from the 2020 American Community Survey. Then, four new variables were 
generated:

Two other variables were also generated for sampling purposes:

In each iteration, two samples were drawn from this population as follows:

•	 Volunteer sample ( E[nv] = 5000 ): two-stage cluster sampling design. In each 
stage, an unequal probability sampling was performed, with probabilities propor-
tional to qa

k
 , using the systematic sampling method.

•	 Reference sample ( nr = 1500):

–	 Scenario 1: simple random sampling without replacement.

(2.1)Env ∼ N(u, 0.5), u ∼ U(0, 0.5), y ∼ B(�, 1),

(2.2)
� =

[
1 + exp(5 − 0.5 ⋅ Age + I(Gender = Male)

−I(Ethnicity = Hispanic) − 0.3 ⋅ Env − 0.1 ⋅ Env ⋅ Age)
]−1

(2.3)z = � + v, v ∼ N(0, 0.085)

(2.4)qa
k
= exp(0.3 ⋅ Age − 0.4 ⋅ Income + 0.7 ⋅ Env + 0.7 ⋅ z)−1

(2.5)qb
k
= exp(0.3 ⋅ Age − 0.4 ⋅ Income + 0.7 ⋅ Env + 0.7 ⋅ z)0.5
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–	 Scenario 2: unequal probability sampling design with probabilities propor-
tional to qb

k
 using the systematic sampling method.

To construct the different models, all available variables were used as covariates 
except the variable of interest y and variables qb and qa that were used for sample 
selection. In this dataset, 𝜌̄R,y =

∑1000

m=1

1

1000
𝜌Rm,y

= 0, 001752 and 
𝜌̄2
R,y

=
∑1000

m=1

1

1000
𝜌2
Rm,y

= 4, 04e − 06 , (where Rm represents the indicator variable of 
belonging to sv in the iteration number m of the simulation). There are very small 
correlations, so there is a near-zero relationship between the indicator variable R and 
y, which is compatible with the non-informativity assumption. However, it must be 
noted that �2

R,y
 is 12.1 times bigger than 1/N (which is 3.3e− 07 here), showing a bias 

that must be corrected.

2.1.2 � Adult dataset

The Adult dataset, although available at the UCI repository, was retrieved from the 
dataset AdultUCI available in the arules R package (Hahsler et al. 2022). This data-
set was extracted from the 1994 US Census Bureau database by Kohavi and Becker 
and Kohavi (1996). This dataset contains 48,842 observations from 15 variables, 
such as age, occupation, marital status, and income. For this analysis, we retained 
the 30,162 observations with no missing values, and 12 variables, with 1 variable 
of interest (income) and 11 covariates, removing “fnlwgt” and “native-country” 
(few units in several categories). After binarizing the qualitative covariates, which 
is a prerequisite of some machine learning classification algorithms, we also deleted 
categories with few responses to avoid prediction problems, in particular, “occupa-
tion_Armed-Forces”, “marital-status_Married-AF-spouse”, “education_Preschool”, 
“workclass_Without-pay”, “workclass_Never-worked”. In each iteration, two sam-
ples were drawn from this population as follows:

•	 Volunteer sample ( E[nv] = 1000 ): unequal probability sampling design using 
Poisson sampling, where individuals with a large income were twice as likely as 
individuals with a small income to be included in the sample.

•	 Reference sample ( nr = 500 ): stratified sampling design, where the strata were 
the age (17–34, 35–49 and 50–90 years old) and gender. The sample size was 
allocated uniformly across all strata, meaning that the sample size for stratum h 
was calculated as nrh = nr∕L , where L is the number of strata. Uniform alloca-
tion is used here to ensure that the design weights will be unequal (since the 
population strata sizes are unequal), and therefore ensuring a certain degree of 
complexity in the sampling scheme.

In this dataset, 𝜌̄R,y = 0.06396638 and 𝜌̄2
R,y

= 0.004135575 . The values obtained 
show very small correlations, so there is a near-zero relationship between R and y. 
However, �2

R,y
 is 124.74 times bigger than 1/N (which is 3.3e− 05 here), showing a 

large bias that could be caused by a violation of the non-informativity assumption. 
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The reason behind this large bias could be the fact that the volunteer sample was 
drawn according to a criteria where the variable of interest (income) was involved.

2.1.3 � Bank dataset

The Bank dataset, available in the UCI repository Moro et al. (2012), was obtained 
from direct marketing campaigns of a Portuguese institution. Each one of the 45,211 
individuals in the dataset represents a person who answered at least one phone call 
offering a bank term deposit. 16 variables are available for the analysis, including 
one variable (y) that measures whether the person has subscribed the term deposit or 
not, which was considered the variable of interest. The remaining 15 variables were 
used and were related to sociodemographic factors (age, occupation, education, 
marital status) and financial information, as well as details from the campaign (pre-
vious contacts, duration of the call, etcetera). In each iteration, two samples were 
drawn from this population:

•	 Volunteer sample ( E[nv] = 1000 ): unequal probability sampling design using 
Poisson sampling with probabilities proportional to the size of the variable “cam-
paign”, which measures the number of contacts performed prior to this campaign 
and for this client. It is a positively skewed variable (Fisher’s coefficient of skew-
ness: 4.898) with a mean of 2.764 calls, a median of 2 calls and a maximum of 
63 calls.

•	 Reference sample ( nr = 500 ): stratified sampling design, where the strata rep-
resent age (18–34, 35–49 and 50–95 years old) and education level (primary, 
secondary, tertiary and unknown). The sample size was allocated uniformly 
across all strata, meaning that the sample size for stratum h was calculated as 
nrh = nr∕L , where L is the number of strata.

In this dataset, 𝜌̄Rm,y
= −0.01222959 and 𝜌̄2

Rm,y
= 0.000166763 . The latter figure is 

7.54 times larger than 1/N (2.2e− 05 here).

2.1.4 � BigLucy dataset

The BigLucy dataset was retrieved from the BigLucy file available in the Teaching-
Sampling R package (Rojas 2020). As stated in the package documentation, contains 
“some financial variables of 85,396 industrial companies in a city during a particu-
lar fiscal year”. However, the actual file contains 85,296 observations of 11 variables 
(7 variables if we discard the variables “ID”, “Ubication”, “zone” and “segments”, 
being identifiers of each company). For this analysis, we considered the income of 
the company as the variable of interest, and other 6 variables (company size, number 
of employees, amount of income tax paid by the company, use of SPAM, ISO certi-
fication and age of the company) as covariates. In each iteration, two samples were 
drawn from this population as follows:
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•	 Volunteer sample ( E[nv] = 1000 ): unequal probability sampling design using 
Poisson sampling, where the probability of individual i in the pseudopopulation 
was calculated according to the following formula: 

•	 Reference sample ( nr = 10, 000 ): stratified sampling design in which the stratifi-
cation variable was the county of the company (100 counties in total). The sam-
ple size was allocated uniformly across all strata, with a size of nrh = 100 for 
each stratum h.

In this dataset, 𝜌̄Rm,y
= 0.006976786 and 𝜌̄2

Rm,y
= 6.12293e − 05 , so there is a near-

zero relationship between R and y. �2
R,y

 is 5.22 times larger than 1/N (1.17e− 05 here).

2.1.5 � Diabetes dataset

The Diabetes dataset, which is available in the UCI repository (Clore et al. 2014), 
contains hospital records of patients diagnosed with diabetes. The objective of the 
original research was to predict the early readmission of patients according to their 
characteristics. The original file contains 101,766 instances; however, each instance 
does not correspond to a person, but to a record, meaning that a given person can 
appear several times in the dataset. To overcome this problem, we retained only 
the first appearance of a given person (thanks to the identifier variables in the data-
set), resulting in a final size of 68,629 instances after removing cases with missing 
values. In total 42 variables were available for the analysis, including one variable 
measuring whether the person has been readmitted or not, which was the variable 
of interest. The remaining 41 variables were related to sociodemographic (age, 
gender, race), medical and clinical information, of which we omitted the variables: 
“weight”, “payer_code”, “medical_specialty”, “encounter_id patient_nbr”, “diag1”, 
“diag2” and “diag3”. After binarizing the qualitative covariates, which is a prerequi-
site of some machine learning classification algorithms, we also deleted categories 
with few responses and variables with very unfrequent categories to avoid prediction 
problems: gender == “Unknown/Invalid”, “admission_source_id”, “discharge_dis-
position_id,admission_type_id”, “metformin.pioglitazone”, “metformin.rosiglita-
zone”, “glyburide.metformin”, “glipizide.metformin”, “glimepiride.pioglitazone”, 
“citoglipton”, “examide”, “troglitazone”, “miglitol”, “repaglinide”, “nateglinide”, 
“chlorpropamide”, “acetohexamide”, “tolbutamide”, “acarbose”, “tolazamide”, 
“rosiglitazone”, and “pioglitazone”. In each iteration, two samples were drawn from 
this population as follows:

•	 Volunteer sample ( E[nv] = 1000 ): unequal probability sampling design using 
Poisson sampling, where the probability of individual i in the pseudopopulation 
was calculated according to the following formula: 

(2.6)�vi =
zi ⋅ nv
∑N

j=1
zj

, zi =
exp(Taxes2

i
∕400 + 5 ⋅ (SPAM = Yes)i)

1 + exp(Taxes2
i
∕400 + 5 ⋅ (SPAM = Yes)i)
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 where x1 is a variable measuring the number of days spent in hospital, with 
mean x1 and standard deviation �x1 , and x2 is a variable measuring the number 
of diagnoses entered to the computer system of the hospital, with mean x2 and 
standard deviation �x2.

•	 Reference sample ( nr = 500 ): stratified sampling design in which the strata were 
the age (0–9, 10–19, 20–29, 30–39, 40–49, 50–59, 60–69, 70–79, 80–89, and 
90–99 years old) and gender. The sample size was allocated uniformly across all 
strata, meaning that the sample size of stratum h was calculated as nrh = nr∕L , 
where L is the number of strata.

In this dataset, 𝜌̄Rm,y
= 0.006472247 and 𝜌̄2

Rm,y
= 5.61038e − 05 , thus we also 

assumes non-informativity. However, �2
R,y

 is 3.85 times larger than 1/N (1.46e− 05 
here).

2.2 � Sampling and estimation

For each dataset, the experiments were repeated across 1,  000 iterations, estimat-
ing each mean value of the variable of interest (y in the ACS dataset, income = 
Large in Adult dataset, y = Yes in the Bank dataset, income in the Adult dataset, and 
readmitted = Yes in the Diabetes dataset). The methods tested in each simulation 
were the following:

•	 Linear calibration.
•	 Superpopulation modeling: model-based, model-assisted, and model-calibrated 

estimators, using linear regression, Ridge regression, and XGBoost.
•	 Propensity score adjustment with all 4 types of weight calculation, using logistic 

regression and XGBoost for propensity estimation.
•	 PAPP with the following algorithmic combinations:

–	 Poisson regression for predicting d and logistic regression for predicting pro-
pensities.

–	 XGBoost for predicting both d and propensities.

•	 Kernel Weighting (KW) using propensities obtained in PSA (with all types of 
weight calculation and the three predictive algorithms).

•	 Statistical Matching using linear regression and XGBoost to predict the target 
variable.

•	 Doubly Robust estimator with the following algorithmic combinations:

–	 Linear regression for predicting the target variable and logistic regression for 
predicting the propensities.

–	 XGBoost for prediction of target variable and propensities.

(2.7)�vi =
zi ⋅ nv
∑N

j=1
zj

, zi =

exp(
x1i−x1

�x1

+
x2i−x2

�x2

)

1 + exp(
x1i−x1

�x1

+
x2i−x2

�x2

)
,
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•	 PSA + Matching method proposed in Castro-Martín et al. (2022) with the same 
algorithmic combinations as in the Doubly Robust estimator.

When propensities had to be estimated, two approaches were tested: unweighted 
predictive algorithms (unweighted logistic regression/XGBoost), and weighted pre-
dictive algorithms (weighted logistic regression/XGBoost). In the weighted case, the 
vector of weights applied to both predictive algorithms were those of Eq 1.15. In 
addition, PSA, PAPP and KW were tested with and without variable selection prior 
to propensity estimation using the CFS algorithm (which showed the best perfor-
mance across all algorithms tested in Ferri-García and Rueda (2022)) to select vari-
ables that were more correlated with the variable of interest in each dataset. Each of 
these combinations were used when combining PSA and Matching, but not in the 
case of the Doubly Robust estimator where we followed the original form proposed 
by Chen et  al. (2020); therefore, we used weighted predictive algorithms with no 
variable selection.

For each approach, two measures were calculated for each dataset and scenario: 
percentage of relative bias ( %RB),

and the Efficiency (Eff) of the estimates when compared to the unweighted estimator 
in terms of Mean Square Error (MSE)

where ̂Ym represents the estimated population mean using a given method in itera-
tion number m of the simulation.

3 � Results

Complete results from the simulations can be found in Appendix, Tables 8, 9, 10, 
11, 12, 13, 14, 15, 16, 17, 18, 19. For a better understanding of the vast number 
of results, we include some graphics and multivariate analyses in this section to 
describe the behavior of each approaches tested. Figure  1 shows boxplots of effi-
ciency indicator Eff for each adjustment method separately for cases in which lin-
ear models (linear regression, logistic regression, or Poisson regression in PAPP) 
or XGBoost are used for prediction. The numbers in those boxplots represent the 
results of each method with all variations (variable selection/no variable selection, 
weighted/not weighted algorithms) in all datasets. Boxplots show that the methods 
that usually performed better than the unweighted case were those based on super-
population models that used the complete census of the covariates: model-based, 

(2.8)
%RB =

�������

∑1000

m=1

̂
Ym

1000
− Y

�������
Y

× 100,

(2.9)EffMethod k =
MSEMethod k

MSEUnweighted

, MSE =

∑1000

m=1
(
̂
Ym − Y)2

1000
,
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model-adjusted, and model-calibrated estimators. These methods were fol-
lowed by linear calibration, although this method’s performance showed a larger 
heterogeneity.

The remaining methods also use a reference probability sample. It can be 
observed that Statistical Matching or methods that combine propensity estimation 
and Statistical Matching (including PSA + Matching and the Doubly Robust esti-
mator) provided better results, with the exception of PSA using the stratification 
proposed by Valliant and Dever (2011). The performance of all these methods was 
very similar in terms of the median Eff. Followed by these methods, we obtained the 
performance of Kernel Weighting. This technique involves further smoothing (using 
kernel functions or simple averaging) of propensity predictions, leading to more sta-
ble behaviors. The remaining of the methods evaluated showed a behavior that was 
not far from Statistical Matching (or its combination with it), but were more unstable 
and, in terms of the median, were closer to the unadjusted case. Finally, the superi-
ority of linear models over XGBoost can be pointed out; except for a few cases (PSA 
with no propensity stratification and perhaps PAPP and the Doubly Robust estima-
tor), all adjustment methods provided smaller values for Eff when a linear model 
was used instead of XGBoost.

Figure 2 shows the boxplots of the efficiency indicator Eff only for those methods 
that involve variable selection and the possibility of using weighted algorithms. The 

Fig. 1   Boxplots of Eff obtained using each adjustment method
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effect of selecting variables or using weights is different for each method; in general, 
we can see that using weighted predictive models improved the efficiency measure 
except for PAPP and combining Statistical Matching with PSA when the approach 
from Lee and Valliant (2009) was used for weighting ( wStrat1 ). The improvement was 
more noticeable in the rest of the cases in which PSA was used on its own. Regard-
ing variable selection, it also generally improved the estimates of PAPP, PSA with-
out stratification and KW; however, these improvements did not happen when these 
methods were used in combination with Statistical Matching. Finally, the superiority 
of linear models over XGBoost does not seem to be altered by using weighted mod-
els or variable selection, although XGBoost was able to improve its performance in 
some cases in which Statistical Matching was not involved (without reaching the 
levels of linear models).

To verify the effect of each methodology, for each adjustment method assessed 
in Fig.  2 we conducted an analysis based on raw differences in the percentage of 
relative bias (%RB) and Efficiency (Eff) of a given method applied in a given simu-
lation and dataset when any of the three variations considered (GLM vs XGBoost, 

Fig. 2   Boxplots of Eff for methods with variable selection and weighted models
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no variable selection vs variable selection, unweighted vs weighted models) was 
changed. By doing so, we directly compared each approach with its counterfactual. 
These differences were also analyzed separately for adjustment methods that involve 
Statistical Matching versus those that do not. The differences are represented in den-
sity plots in Fig. 3. We also computed the percentage of times where the “novel” 
approach (XGBoost, variable selection and weighted models) was better than the 
“classic” approach (GLM, no variable selection and unweighted models). The per-
centages for each case are presented in Table 1.

Fig. 3   Density plots of RB and Eff comparing predictive algorithm, variable selection and weighted mod-
els

Table 1   Percentages of RB and Eff comparing predictive algorithms, variable selection and weighted 
models

%RB Eff

No SM involved SM involved No SM involved SM involved

XGBoost better 38.2% 31.2% 31.9% 9.7%
No difference 2.1% 1.4% 11.1% 26.4%
GLM better 59.7% 67.4% 56.9% 63.9%
Variable selection better 45.1% 44.4% 52.1% 34.7%
No difference 0% 29.9% 14.6% 61.8%
No variable selection better 54.9% 25.7% 33.3% 3.5%
Weighted models better 47.9% 38.2% 45.8% 20.1%
No difference 1.4% 22.2% 12.5% 57.6%
Unweighted models better 50.7% 39.6% 41.7% 22.2%
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Some interesting patterns can be observed in the density plots. First, it is clear 
that the use of GLM provides better results most of the times, both in terms of bias 
and MSE, with this difference being greater when in combination with Statistical 
Matching. In 36.1% of the cases analyzed (38.9% when Statistical Matching was 
not involved vs 37.5% when it was) the difference in the efficiency indicator Eff was 
greater than 0, which indicates that XGBoost performed better in the exactly same 
situation. Second, the effects of variable selection are less clear; however, in most 
of the cases analyzed, it had a negative impact on the bias of the estimates but had 
a positive impact on the efficiency of the estimates, and generally worked better 
when Statistical Matching was not involved. Finally, regarding weighted algorithms, 
they had a null or almost null impact most of the times when applied in combina-
tion with Statistical Matching (50% of the times the difference in the Eff indicator 
was between −0.0224 and 0.0211). Otherwise, the effect was rather heterogeneous, 
but the cases where using weighted algorithms for propensity prediction positively 
affected the estimates (in terms of efficiency) outnumbered the cases in which it 
caused a negative effect.

Finally, Tables 2 and 3 provide a fair comparison of adjustment methods, where 
only the best result for %RB and Eff can be, respectively, consulted for each adjust-
ment method and simulation, along with information about the combination of 
approaches that provided the best results. We can see that in the ACS dataset under 
the Scenario 1 (when the reference sample is drawn using simple random sampling) 
the methods that combine propensity estimation and Statistical Matching provided 
the smallest bias, although the MSE of the estimates was smallest when Statisti-
cal Matching was not used. Under Scenario 2 (when the reference sample is drawn 
using an unequal probability sampling scheme), the best performance is provided by 
superpopulation modeling methods that use the entire population census for a set of 
covariates. The best predictive algorithm was provided by linear models in all cases 
under Scenario 1, while XGBoost provided the best results under Scenario 2 when 
propensity estimation alone was used. It is also interesting to identify the approaches 
that provided the best efficiency: under Scenario 1, variable selection was involved 
in every best combination, and in most of them in Scenario 2. On the other hand, 
there is no consensus on weighted or unweighted algorithms under Scenario 1, 
while it is clear that almost every best combination in Scenario 2 used weighted 
algorithms. This is remarkable because the sampling design of the reference sam-
ple in Scenario 2 is much more complex than Scenario 1 and indicates that design 
weights should be considered in the modelization step, specially when informative.

The simulation using the Adult dataset yielded similar results to that using the 
ACS dataset in Scenario 1. Again, some methods based on propensity estimation 
seemed to outperform those based on superpopulation modeling using complete 
census data. In particular, this is remarkable in the case of Kernel Weighting and 
PSA with propensity stratification using the approach of Lee and Valliant (2009); in 
these cases, the percentages of relative bias were 9.3% and 3.8% respectively, while 
the remaining methods provided percentages above 20%. In this dataset, we can also 
see that almost all of the best combinations do not use variable selection, and that 
XGBoost provided the best results for almost all methods, probably revealing non-
linear relationships between the variables involved.
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The simulations using the Bank and BigLucy datasets presented very similar 
results. We can see again that the less biased results among the best performances 
were provided by methods that involve the use of a reference sample, notably PSA, 
and any propensity estimation method as long as it was used to provide weights for 
Statistical Matching models. However, this is not true for efficiency - the smallest 
values of Eff across the best results were provided by superpopulation modeling 
methods. In general, linear models appear to work better on the Bank dataset, while 
XGBoost obtained some of the best results on the BigLucy dataset. Interestingly, 
in the Bank dataset simulation, variable selection was involved in almost all of the 
best results when we looked at efficiency, but was not involved in almost none of 
the best results when the relative bias was considered. This should not be surpris-
ing because variable selection techniques should reduce the complexity of models, 
which would have an effect on the variance of the estimates (and therefore on their 
MSE); they could also have an effect on bias if the model is more accurate with 
the set of selected variables, but this is not as usual as for the reduction in vari-
ance due to the parsimony principle explained above. A similar thing happened with 
the choice of weighted or unweighted models in both simulations: most of the best 
results in terms of bias involved weighted models (especially on the BigLucy data-
set simulation), but if we look at the best efficiency results, they mostly involved 
unweighted models.

Finally, in the Diabetes dataset simulation, we observed a similar pattern, 
although in this case it seems that not selecting variables is preferable to selecting 
them. Again, we can see how methods based on propensity estimation can lead to 
smaller relative bias percentages than that of superpopulation modeling estimators, 
but when comparing their efficiency the former methods were not as competitive 
although some of them (namely, Kernel Weighting and PSA with the propensity 
stratification proposed in Valliant and Dever (2011)) had similar or even lower fig-
ures than the latter methods. It is also remarkable that linear calibration could out-
perform almost all the methods in terms of efficiency (although not in terms of bias). 
Weighted models were also involved in some of the best results, with no consensus 
across all methods.

3.1 � Robustness with respect to possible violations of the non‑informativity 
assumption

In order to see the behavior of the estimators when the propensity depends on the 
variable under study, we ran a new simulation for the ACS dataset. This is exactly 
the same as the previous one, but we changed the inclusion probability for the sam-
ple sv , now depending on the variable of interest, simulating a case where the non-
information assumption breaks down. The volunteer sample is selected with prob-
abilities proportional to

qa
k
=

exp(0.1 ⋅ Income + 5y)

1 + exp(0.1 ⋅ Income + 5y)
.
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Furthermore, we did not consider in the predictive model those variables that are 
part of y, namely Gender = Male , Ethnicity = Hispanic , Env and Age, thus simu-
lating a Missing Not At Random (MNAR) situation, where survey participation 
depends exclusively on y, whereas before we had a Missing At Random (MAR) situ-
ation. We compute the percentage of relative bias and the MSE in the new situa-
tion for PSA, PSA+Matching in all of their variants, and Doubly Robust estimators, 
always using GLM as the predictive model. We compare them with the original sce-
nario to see the relevance of this assumption when using these methods. The results 
are broken down in Tables 4, 5, 6 and 7.

We can see in all the tables that there is a large difference between the MNAR 
scenario and the original MAR scenario, regardless of the estimator, the sample 
design of sr or the alternatives in the computation of propensity scores. Both bias 
and MSE increased significantly in the new scenario, where the sample selection sv 
depended on the variable of interest, i.e., in the case of violation of the non-informa-
tivity assumption we obtained much more imprecise and erroneous estimates. These 
results show that the effectiveness of estimation methods to reduce bias are strongly 
dependent on the assumption of non-informativity. These results are consistent with 
Wu’s view Wu (2022) that this assumption is the most crucial assumption for the 
validity of estimators based on propensity scores. On the other hand, Eff indicator 
shows that no method is able to consistently increase the efficiency of the estimates 
(relative to the unweighted case) under a MNAR selection mechanism. In addition, 
when a method achieves an increase in efficiency relative to the unweighted case, 
this increase is rather modest.

4 � Discussion and conclusions

Due to the increasing attention that nonprobability surveys have received in the 
last few years, a wide variety of methods have been developed to handle selection 
biases that estimates from these surveys usually have. These methods can be divided 
between pseudodesign-based methods that aim to predict the (unknown) inclusion 
probabilities of each individual in the sample to obtain a new set of weights, and 
model-based methods, which aim to model the behavior of the variable of interest 
using data from the nonprobability sample and use it to predict the values of that 
variable in non-sampled individuals. 

Different approaches based on this divide have been considered. In our litera-
ture review, we outlined propensity score adjustment, Kernel Weighting and prob-
ability-adjusted propensity prediction in the pseudodesign-based case, and super-
population modeling in the model-based case (Model-assisted, Model-based and 
Model-calibrated estimators, and Statistical Matching). Calibration adjustments can 
also be considered a special case of Model-assisted estimators. We also identified 
combinations of these methods, such as the Doubly Robust estimator or Statisti-
cal Matching using PSA-weighed algorithms as proposed by Castro-Martín et  al. 
(2022). Although some comparison studies can be found between several of these 
methods, this study attempts to fill the gap caused by the lack of a full comparison 
between all of the main approaches for selection bias mitigation in nonprobability 
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samples. In addition, we have introduced some original methodologies, such as 
Statistical Matching with weighted algorithms where the weights are provided by 
Kernel Weighting and by PAPP instead of PSA. Finally, we also attempted to com-
pare not only adjustment methods, but also alternative approaches in these methods; 
for example, we compared four different approaches for weight calculation in PSA 
and have also compared how propensity estimation works when a variable selec-
tion method is applied. We also attempted to check the properties of weighted algo-
rithms when estimating propensities, which might be the most efficient and consist-
ent approach according to the theoretical results (Chen et al. 2020). Finally, we have 
done five different simulation studies using both synthetical data and real-life data, 
and considered various levels of complexity in sampling design for probability and 
nonprobability samples and different types of variables of interest. We consider that 
including more datasets and simulations has increased the value of this comparison 
study because it makes its results more generalizable to a wider variety of situations 
in survey methodology and also considers how different situations may require dif-
ferent approaches to obtain the best possible results. 

The findings of our study reveal some remarkable patterns:

•	 Adjustments based on superpopulation modeling that use the whole population 
census for a set of covariates (Model-based, Model-assisted and Model-cali-
brated estimators) provide overall, the best or almost the best results in all situ-
ations considered in terms of efficiency, although they might not be as good at 
bias reduction. The superiority of these methods have already been documented 
in the literature Ferri-García et al. (2021), but they require observing all individ-
uals in the population for a set of common covariates with nonprobability sam-
ple. This makes it difficult to apply them with a sufficient number of variables in 
real situations.

•	 Other superpopulation modeling approaches (namely Statistical Matching) also 
provided good results, both alone and in combination with propensity estimation 
through Doubly Robust estimators or propensity-weighted predictive algorithms. 
However, the latter approach seemed to work better than the Doubly Robust esti-
mators in the six simulations evaluated, a circumstance that has already been 
observed in the literature Castro-Martín et al. (2021). The superiority of Doubly 
Robust adjustments, along with model-based estimators, was also observed in 
Valliant (2020).

•	 Regarding pseudodesign-based methods, their performance was vastly asso-
ciated with the dataset in which they were used, but methods such as Kernel 
Weighting showed good results in all situations. The success of combining these 
methods with Statistical Matching was not consistent although it can be observed 
that this combination produced less biased estimates but with higher MSE.

•	 The use of weighted models in propensity estimation was particularly positive 
for cases in which the design effect of the reference sample could be larger (such 
as the ACS dataset under Scenario 2 or the Diabetes dataset, where the number 
of strata in the sampling design of the reference sample was relatively large). 
When propensities were applied as weights for the Statistical Matching model, 
this correction had a mostly a null effect on the final estimates. We consider that 
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this could be explained by the fact that Statistical Matching models focus on pre-
dicting the variable of interest; therefore, the prediction does not require to be 
elevated to the population size, only to reflect the relationships between the tar-
get variable and covariates.

•	 As expected, the effect of variable selection was more noticeable when propen-
sity estimation methods were not combined with Statistical Matching. The over-
all effect of variable selection on efficiency was more positive than its effect on 
bias reduction. As noted in Ferri-García and Rueda (2022), the main objective 
of variable selection algorithms is reducing the complexity of the models and 
the variance of the estimates (something observed in that work). However, these 
methods can also help to reduce bias if they can transform a misspecified model 
into a properly specified one. As stated in the literature Mercer et  al. (2018); 
Boyd et al. (2024), finding the appropriate auxiliary covariates may be the most 
important step in nonprobability sampling adjustment, even more important than 
the method chosen for adjustment. Although some differences between methods 
were observed in our results, their main driver might be the covariates used.

Considering the findings described above, we conclude that the best strategy when 
dealing with selection bias in a nonprobability sample is to use estimators based 
on superpopulation modeling using the whole population census on a set of covari-
ates, if available, with a predictive model that accurately reflects the associations 
between variables in the dataset; cross-validation techniques commonly used in data 
science can be helpful for the assessment of this step. If this assessment cannot be 
performed, we recommend using linear models in prediction.

If a complete census of a set of covariates is not available, we recommend the use 
of different approaches depending on the datasets and the properties we are attempt-
ing to optimize. If we focus on unbiasedness, the combination of propensity estima-
tion model with Statistical Matching (through weighted Statistical Matching mod-
els) might be the best option. However, if this combination is not possible (which 
can be the case of many multipurpose surveys with multiple variables of interest), 
we recommend using variable selection techniques to fit the propensity estimation 
model. It is also important to consider that in a multipurpose survey in which some 
variables of interest have uniform bias while others have a random bias (where the 
selection mechanism is not related to any observed variable), a possible solution 
would be to use weight smoothing Beaumont (2008); Ferri-García et  al. (2022). 
Weight smoothing is based on substituting the final vector of weights with the pre-
dicted values of those weights according to a model in which the independent vari-
ables are the variables of interest. It can be theoretically proven that this approach 
mitigates the increase in variance that might be caused by misspecification of the 
propensity model for some variables (i.e., considering irrelevant variables, which is 
the case for the variables where the bias is completely random), and the empirical 
results from Ferri-García et al. (2022) show that this property holds when propen-
sity estimation is used in nonprobability samples.

On the other hand, if we focus on efficiency or MSE, propensity estimation mod-
eling on its own seems to be the best option, especially if the propensities are fur-
ther smoothed using Kernel Weighting. In addition, if the probability sample used 
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as a reference has a complex sampling design, we recommend using weighted mod-
els for the prediction of propensities; if it has a simple design, we also recommend 
weighted models because they are theoretically consistent, but the decision does not 
make a significant difference. Finally, the use of linear models is generally recom-
mended if the use of other nonlinear or nonparametric models cannot be assessed.

The estimation procedures for nonprobability survey samples are based on sev-
eral assumptions and the effectiveness of the estimators depends on satisfying these 
assumptions. How to test the assumptions in practical applications of the methods 
is a question that cannot be fully answered. Wu (2022) presented a method using 
comparisons of marginal distributions and conditional models that can be useful 
for building confidence in the ignorability assumption. It is also therefore important 
that, in the study design phase before data collection, researchers and practitioners 
pay attention to potential factors and features of units that may be related to sample 
participation. In this article, we have seen the large errors that occur when the non-
informativity assumption is not satisfied.

Our work has several limitations. First, it is worth noting that adjustment methods 
are continuously being developed; therefore, there are some promising techniques 
that were not included in this comparison. Second, we considered five different data-
sets; however, this number should be ideally larger, especially if statistical inference 
is used to study the effects of applying a given approach. The datasets can be con-
sidered random effects, as there are infinite datasets that could appear in real-world 
situations; however, we can only test the proposed methods in a handful of them; 
therefore, multilevel models could be used to study the effects of each algorithm, 
method and modification, and a large pool of datasets can be very valuable for the 
estimation of the effects and their interactions.

It should be noted that each dataset and problem require a different approach 
to obtain the best possible performance; however, we do not have any information 
about the exact approach that should be used in real situations (although the present 
study provides some hints and recommendations about the best choice in some situ-
ations). Further studies should focus on research of metrics and measures that allow 
researchers to estimate the amount of bias present in the estimation from a given 
sample and what fraction of that bias can be removed using a given method. This 
research line would be valuable for practitioners.
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Appendix A: Results of relative bias and efficiency of the simulation 
studies

Table 8   Percentage of relative bias of each adjustment method in the ACS dataset simulation when Sce-
nario 1 is applied (simple random sampling for the reference sample)

GLM: logistic regression if the method involves propensity estimation (PSA, PAPP, KW), and linear 
regression if the method involves prediction (Model-based, Model-assisted, Model-calibrated, Statisti-
cal Matching, Doubly Robust); wStrat1 : weighting in PSA using Lee and Valliant (2009) propensity strat-
ification approach; wStrat2 : weighting in PSA using Valliant and Dever (2011) propensity stratification 
approach

Adjustment method

Unweighted 14.60%
Calibration 21.10%

GLM XGBoost Ridge reg.

Model-based 0.11% 2.98% 2.80%
Model-assisted 0.11% 2.98% 2.80%
Model-calibrated 0.29% 33.93% 2.57%
Statistical Matching 0.12% 2.94%
Doubly Robust 0.13% 3.34%

Weighted model = No Weighted model = Yes

Var. selection 
= No

Var. selection = Yes Var. selection 
= No

Var. selection 
= Yes

GLM XGBoost GLM XGBoost GLM XGBoost GLM XGBoost

PSA ( w = 1∕�) 8.51% 7.62% 6.68% 6.60% 5.24% 7.70% 0.56% 5.36%
PSA ( w = (1 − �)∕�) 2.34% 2.35% 1.25% 2.77% 5.23% 7.77% 0.59% 5.40%
PSA ( wStrat1) 4.58% 13.96% 1.14% 19.49% 6.63% 12.05% 1.22% 13.58%

PSA ( wStrat2) 9.38% 7.78% 7.84% 7.39% 6.34% 7.79% 1.25% 9.97%
PAPP 2.34% 2.35% 1.25% 2.77% 5.23% 7.77% 0.59% 5.40%
KW 3.18% 16.66% 1.21% 19.07% 5.85% 8.00% 1.22% 13.88%
PSA (w = 1∕� ) + 

Matching
0.08% 5.32% 0.05% 3.49% 0.04% 12.42% 0.05% 5.68%

PSA (w = (1 − �)∕� ) 
+ Matching

0.03% 9.50% 0.05% 4.85% 0.04% 12.51% 0.05% 5.66%

PSA ( wStrat1 ) + 
Matching

0.02% 19.82% 0.04% 12.95% 0.05% 17.35% 0.04% 7.67%

PSA ( wStrat2 ) + 
Matching

0.05% 5.35% 0.05% 3.44% 0.04% 12.71% 0.03% 7.66%

KW + Matching 0.05% 17.67% 0.01% 12.12% 0.02% 12.65% 0.02% 8.39%
PAPP + Matching 0.03% 9.50% 0.05% 4.85% 0.04% 12.51% 0.05% 5.66%
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Table 9   Efficiency of each adjustment method in the ACS dataset simulation when Scenario 1 is applied 
(simple random sampling for the reference sample)

GLM: logistic regression if the method involves propensity estimation (PSA, PAPP, KW), and linear 
regression if the method involves prediction (Model-based, Model-assisted, Model-calibrated, Statisti-
cal Matching, Doubly Robust); wStrat1 : weighting in PSA using Lee and Valliant (2009) propensity strat-
ification approach; wStrat2 : weighting in PSA using Valliant and Dever (2011) propensity stratification 
approach

Adjustment method

Calibration 1.909

GLM XGBoost Ridge reg.

Model-based 0.107 0.134 0.537
Model-assisted 0.107 0.134 0.537
Model-calibrated 0.113 4.284 0.279
Statistical Matching 0.132 0.175
Doubly Robust 0.133 0.219

Weighted model = No Weighted model = Yes

Var. selection 
= No

Var. selection = Yes Var. selection 
= No

Var. selection 
= Yes

GLM XGBoost GLM XGBoost GLM XGBoost GLM XGBoost

PSA ( w = 1∕�) 0.397 0.358 0.274 0.283 0.279 0.395 0.090 0.212
PSA ( w = (1 − �)∕�) 0.176 0.159 0.095 0.123 0.279 0.400 0.091 0.214
PSA ( wStrat1) 0.221 1.096 0.096 1.657 0.327 0.799 0.097 0.800

PSA ( wStrat2) 0.457 0.368 0.347 0.329 0.301 0.403 0.094 0.486
PAPP 0.176 0.159 0.095 0.123 0.279 0.400 0.091 0.214
KW 0.203 1.906 0.100 1.768 0.302 0.465 0.103 0.844
PSA (w = 1∕� ) + 

Matching
0.134 0.253 0.131 0.191 0.134 0.737 0.133 0.277

PSA (w = (1 − �)∕� ) + 
Matching

0.134 0.483 0.133 0.237 0.134 0.742 0.133 0.278

PSA ( wStrat1 ) + Match-
ing

0.137 1.616 0.133 0.812 0.138 1.308 0.133 0.381

PSA ( wStrat2 ) + Match-
ing

0.132 0.256 0.131 0.188 0.136 0.775 0.132 0.397

KW + Matching 0.138 1.318 0.135 0.753 0.135 0.813 0.137 0.436
PAPP + Matching 0.134 0.483 0.133 0.237 0.134 0.742 0.133 0.278
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Table 10   Percentage of relative bias of each adjustment method in the ACS dataset simulation when Sce-
nario 2 is applied (unequal probability sampling for the reference sample)

GLM: logistic regression if the method involves propensity estimation (PSA, PAPP, KW), and linear 
regression if the method involves prediction (Model-based, Model-assisted, Model-calibrated, Statisti-
cal Matching, Doubly Robust); wStrat1 : weighting in PSA using Lee and Valliant (2009) propensity strat-
ification approach; wStrat2 : weighting in PSA using Valliant and Dever (2011) propensity stratification 
approach

Adjustment method

Unweighted 14.6%
Calibration 21.1%

GLM XGBoost Ridge reg.

Model-based 0.1% 3.0% 2.8%
Model-assisted 0.1% 3.0% 2.8%
Model-calibrated 0.3% 33.9% 2.6%
Statistical Matching 1.4% 4.3%
Doubly Robust 1.4% 4.4%

Weighted model = No Weighted model = Yes

Var. selection 
= No

Var. selection = Yes Var. selection 
= No

Var. selection 
= Yes

GLM XGBoost GLM XGBoost GLM XGBoost GLM XGBoost

PSA ( w = 1∕�) 26.4% 19.1% 27.2% 22.0% 5.8% 0.4% 0.7% 1.2%
PSA ( w = (1 − �)∕�) 38.3% 25.4% 39.9% 30.8% 5.8% 0.3% 0.7% 1.2%
PSA ( wStrat1) 32.7% 42.9% 31.8% 56.1% 17.1% 2.4% 22.1% 1.6%

PSA ( wStrat2) 23.0% 18.9% 22.9% 20.4% 6.0% 1.6% 0.8% 2.2%
PAPP 7.6% 2.5% 0.2% 1.8% 11.3% 17.2% 20.3% 19.1%
KW 11.5% 45.3% 3.3% 60.1% 6.4% 1.4% 2.1% 13.2%
PSA (w = 1∕� ) + 

Matching
1.5% 4.3% 1.4% 4.2% 1.4% 15.6% 1.3% 9.0%

PSA (w = (1 − �)∕� ) 
+ Matching

1.6% 5.4% 1.5% 4.8% 1.4% 15.5% 1.3% 9.2%

PSA ( wStrat1 ) + Match-
ing

1.6% 12.1% 1.5% 10.0% 1.4% 12.7% 1.5% 7.7%

PSA ( wStrat2 ) + 
Matching

1.5% 4.6% 1.5% 4.4% 1.3% 13.4% 1.3% 9.6%

KW + Matching 1.3% 10.9% 1.1% 8.9% 1.2% 16.3% 1.1% 15.9%
PAPP + Matching 1.3% 18.0% 1.3% 12.5% 0.5% 23.8% 1.3% 15.1%
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Table 11   Efficiency of each adjustment method in the ACS dataset simulation when Scenario 2 is 
applied (unequal probability sampling for the reference sample)

GLM: logistic regression if the method involves propensity estimation (PSA, PAPP, KW), and linear 
regression if the method involves prediction (Model-based, Model-assisted, Model-calibrated, Statisti-
cal Matching, Doubly Robust); wStrat1 : weighting in PSA using Lee and Valliant (2009) propensity strat-
ification approach; wStrat2 : weighting in PSA using Valliant and Dever (2011) propensity stratification 
approach

Adjustment method

Calibration 1.909

GLM XGBoost Ridge reg.

Model-based 0.107 0.134 0.537
Model-assisted 0.107 0.134 0.537
Model-calibrated 0.113 4.284 0.279
Statistical Matching 1.060 1.801
Doubly Robust 1.060 1.829

Weighted model = No Weighted model = Yes

Var. selection 
= No

Var. selection = Yes Var. selection 
= No

Var. selection 
= Yes

GLM XGBoost GLM XGBoost GLM XGBoost GLM XGBoost

PSA ( w = 1∕�) 2.661 1.481 2.795 1.898 0.585 0.237 0.624 0.172
PSA ( w = (1 − �)∕�) 5.532 2.476 5.893 3.577 0.586 0.238 0.626 0.173
PSA ( wStrat1) 3.981 7.232 3.760 11.870 1.359 0.244 2.084 0.165

PSA ( wStrat2) 2.065 1.444 2.039 1.655 0.425 0.231 0.459 0.213
PAPP 1.414 4.685 0.834 4.009 3.211 9.493 3.188 8.727
KW 0.967 8.897 0.698 15.018 0.607 0.351 0.685 1.411
PSA (w = 1∕� ) + 

Matching
1.069 1.969 1.072 1.814 1.088 2.461 1.051 2.208

PSA (w = (1 − �)∕� ) + 
Matching

1.092 2.031 1.090 1.915 1.088 2.469 1.051 2.111

PSA ( wStrat1 ) + Match-
ing

1.075 2.559 1.079 2.315 1.067 2.145 1.055 2.013

PSA ( wStrat2 ) + Match-
ing

1.061 1.776 1.067 1.882 1.049 2.065 1.053 2.108

KW + Matching 1.147 2.108 1.198 2.106 1.055 2.701 1.100 2.867
PAPP + Matching 1.093 5.195 1.038 4.581 4.518 4.654 1.159 4.239
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Table 12   Percentage of relative bias of each adjustment method in the Adult dataset simulation

GLM: logistic regression if the method involves propensity estimation (PSA, PAPP, KW), and linear 
regression if the method involves prediction (Model-based, Model-assisted, Model-calibrated, Statisti-
cal Matching, Doubly Robust); wStrat1 : weighting in PSA using Lee and Valliant (2009) propensity strat-
ification approach; wStrat2 : weighting in PSA using Valliant and Dever (2011) propensity stratification 
approach

Adjustment method

Unweighted 60%
Calibration 34.5%

GLM XGBoost Ridge reg.

Model-based 30.4% 29.4% 34.4%
Model-assisted 30.4% 29.4% 34.4%
Model-calibrated 30.3% 37.4% 34.4%
Statistical Matching 29.9% 29.4%
Doubly Robust 30.3% 29%

Weighted model = No Weighted model = Yes

Var. selection 
= No

Var. selection = Yes Var. selection 
= No

Var. selection 
= Yes

GLM XGBoost GLM XGBoost GLM XGBoost GLM XGBoost

PSA ( w = 1∕�) 41.6% 47% 44.5% 43.7% 31.8% 29.2% 40.5% 29.8%
PSA ( w = (1 − �)∕�) 23.3% 25.9% 29% 24% 30.9% 26.8% 39.8% 28.3%
PSA ( wStrat1) 26% 16.2% 65.4% 42.5% 34.8% 3.8% 66.3% 43.7%

PSA ( wStrat2) 43.2% 46.6% 46.1% 44.4% 32.9% 28.4% 41.5% 30.1%
PAPP 34.4% 35.4% 40.3% 35.2% 35.5% 34% 48.4% 37.7%
KW 44% 9.3% 45.4% 20.2% 38% 34.6% 40% 31.3%
PSA (w = 1∕� ) + 

Matching
29.9% 28.8% 29.8% 28.8% 29.6% 27.6% 29.8% 27.5%

PSA (w = (1 − �)∕� ) 
+ Matching

30.5% 27.9% 30.1% 27.9% 29.8% 26.4% 29.8% 26.8%

PSA ( wStrat1 ) + Match-
ing

30.4% 23.6% 30.6% 27.1% 29.9% 21.4% 30.4% 25.2%

PSA ( wStrat2 ) + 
Matching

29.9% 28.8% 29.9% 28.8% 29.8% 27.6% 29.8% 27.5%

KW + Matching 30.3% 24.9% 30.1% 26.7% 29.9% 25% 29.9% 25.9%
PAPP + Matching 30.2% 28.4% 29.8% 28.4% 30.4% 27.1% 30% 27.3%
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Table 13   Efficiency of each adjustment method in the Adult dataset simulation

GLM: logistic regression if the method involves propensity estimation (PSA, PAPP, KW), and linear 
regression if the method involves prediction (Model-based, Model-assisted, Model-calibrated, Statisti-
cal Matching, Doubly Robust); wStrat1 : weighting in PSA using Lee and Valliant (2009) propensity strat-
ification approach; wStrat2 : weighting in PSA using Valliant and Dever (2011) propensity stratification 
approach

Adjustment method

Calibration 0.334

GLM XGBoost Ridge reg.

Model-based 0.259 0.242 0.330
Model-assisted 0.259 0.242 0.330
Model-calibrated 0.257 0.389 0.330
Statistical Matching 0.260 0.251
Doubly Robust 0.273 0.248

Weighted model = No Weighted model = Yes

Var. selection 
= No

Var. selection = Yes Var. selection 
= No

Var. selection 
= Yes

GLM XGBoost GLM XGBoost GLM XGBoost GLM XGBoost

PSA ( w = 1∕�) 0.485 0.615 0.553 0.534 0.322 0.266 0.469 0.326
PSA ( w = (1 − �)∕�) 0.162 0.201 0.245 0.188 0.308 0.234 0.456 0.313
PSA ( wStrat1) 0.198 0.151 1.507 1.358 0.355 0.103 1.517 1.333

PSA ( wStrat2) 0.522 0.604 0.595 0.554 0.315 0.256 0.496 0.345
PAPP 0.338 0.360 0.465 0.376 0.394 0.362 0.686 0.523
KW 0.544 0.087 0.580 0.303 0.412 0.363 0.459 0.334
PSA (w = 1∕� ) + 

Matching
0.260 0.242 0.259 0.242 0.257 0.226 0.258 0.223

PSA (w = (1 − �)∕� ) + 
Matching

0.269 0.230 0.263 0.229 0.266 0.211 0.258 0.215

PSA ( wStrat1 ) + Match-
ing

0.269 0.180 0.280 0.228 0.261 0.161 0.278 0.209

PSA ( wStrat2 ) + Match-
ing

0.261 0.242 0.259 0.242 0.258 0.228 0.258 0.225

KW + Matching 0.266 0.194 0.262 0.214 0.261 0.194 0.260 0.205
PAPP + Matching 0.265 0.237 0.258 0.236 0.269 0.221 0.262 0.222
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Table 14   Percentage of relative bias of each adjustment method in Bank dataset simulation

GLM: logistic regression if the method involves propensity estimation (PSA, PAPP, KW), and linear 
regression if the method involves prediction (Model-based, Model-assisted, Model-calibrated, Statisti-
cal Matching, Doubly Robust); wStrat1 : weighting in PSA using Lee and Valliant (2009) propensity strat-
ification approach; wStrat2 : weighting in PSA using Valliant and Dever (2011) propensity stratification 
approach

Adjustment method

Unweighted 22.4%
Calibration 6.9%

GLM XGBoost Ridge reg.

Model-based 3.7% 16.7% 4.9%
Model-assisted 3.7% 16.7% 4.9%
Model-calibrated 5.4% 3.4% 4.9%
Statistical Matching 3.8% 16.9%
Doubly Robust 3.4% 17.3%

Weighted model = No Weighted model = Yes

Var. selection 
= No

Var. selection = Yes Var. selection 
= No

Var. selection 
= Yes

GLM XGBoost GLM XGBoost GLM XGBoost GLM XGBoost

PSA ( w = 1∕�) 10.4% 21.5% 13.1% 22.5% 2.2% 32.9% 3.8% 33.4%
PSA ( w = (1 − �)∕�) 1.7% 18.8% 3.8% 22.7% 1.7% 34.5% 3.3% 33.7%
PSA ( wStrat1) 3.4% 32.2% 9.9% 18.6% 2.2% 34.6% 10.8% 32.3%

PSA ( wStrat2) 13.4% 21.6% 16.7% 22.8% 7.9% 33.1% 11.8% 35.4%
PAPP 3.9% 19.7% 5.8% 24.4% 5.2% 36.9% 3.9% 33.6%
KW 9.3% 31.7% 12.5% 14% 13.3% 34.5% 12.2% 38.5%
PSA (w = 1∕� ) + 

Matching
3.4% 18.3% 4% 17.5% 2.7% 22% 3.7% 21%

PSA (w = (1 − �)∕� ) 
+ Matching

2.4% 21% 3.7% 18.6% 2.5% 24.5% 3.7% 21.5%

PSA ( wStrat1 ) + Match-
ing

2.5% 34.1% 2.2% 20.4% 6.7% 39.7% 2.2% 20.3%

PSA ( wStrat2 ) + 
Matching

3.4% 18.4% 3.3% 17.6% 2.8% 21.7% 2.8% 22.1%

KW + Matching 3.1% 21.1% 1.5% 20.5% 3% 32.3% 1.8% 24.9%
PAPP + Matching 3.1% 21.5% 3.8% 19.1% 2.7% 24.1% 3.6% 22.1%
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Table 15   Efficiency of each adjustment method in Bank dataset simulation

GLM: logistic regression if the method involves propensity estimation (PSA, PAPP, KW), and linear 
regression if the method involves prediction (Model-based, Model-assisted, Model-calibrated, Statisti-
cal Matching, Doubly Robust); wStrat1 : weighting in PSA using Lee and Valliant (2009) propensity strat-
ification approach; wStrat2 : weighting in PSA using Valliant and Dever (2011) propensity stratification 
approach

Adjustment method

Calibration 0.206

GLM XGBoost Ridge reg.

Model-based 0.167 0.669 0.173
Model-assisted 0.167 0.669 0.173
Model-calibrated 0.202 0.231 0.173
Statistical Matching 0.340 0.836
Doubly Robust 0.373 0.896

Weighted model = No Weighted model = Yes

Var. selection 
= No

Var. selection = Yes Var. selection 
= No

Var. selection 
= Yes

GLM XGBoost GLM XGBoost GLM XGBoost GLM XGBoost

PSA ( w = 1∕�) 0.445 0.940 0.427 1.017 1.257 2.457 0.341 2.193
PSA ( w = (1 − �)∕�) 0.729 0.922 0.243 1.089 1.285 2.786 0.346 2.241
PSA ( wStrat1) 0.414 14.818 0.351 0.991 2.414 7.671 0.386 2.115

PSA ( wStrat2) 0.481 0.957 0.611 1.036 0.481 2.559 0.420 2.446
PAPP 0.337 0.973 0.330 1.285 1.056 3.241 0.549 2.324
KW 0.322 7.208 0.511 0.993 0.538 2.561 0.499 2.875
PSA (w = 1∕� ) + 

Matching
0.361 0.935 0.339 0.881 0.394 1.218 0.348 1.157

PSA (w = (1 − �)∕� ) + 
Matching

0.370 1.155 0.339 0.961 0.394 1.481 0.347 1.203

PSA ( wStrat1 ) + Match-
ing

0.386 3.012 0.337 1.120 5.017 3.894 0.337 1.090

PSA ( wStrat2 ) + Match-
ing

0.354 0.947 0.337 0.877 0.350 1.199 0.342 1.241

KW + Matching 0.346 1.255 0.340 1.148 0.353 2.464 0.331 1.534
PAPP + Matching 0.360 1.185 0.341 1.007 0.411 1.460 0.356 1.272
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Table 16   Percentage of relative bias of each adjustment method in the BigLucy dataset simulation

GLM: logistic regression if the method involves propensity estimation (PSA, PAPP, KW), and linear 
regression if the method involves prediction (Model-based, Model-assisted, Model-calibrated, Statisti-
cal Matching, Doubly Robust); wStrat1 : weighting in PSA using Lee and Valliant (2009) propensity strat-
ification approach; wStrat2 : weighting in PSA using Valliant and Dever (2011) propensity stratification 
approach

Adjustment method

Unweighted 4.03%
Calibration 0.41%

GLM XGBoost Ridge reg.

Model-based 0.36% 0.05% 0.36%
Model-assisted 0.36% 0.05% 0.36%
Model-calibrated 0.36% 0.02% 0.36%
Statistical Matching 0.43% 0.02%
Doubly Robust 0.35% 0.01%

Weighted model = No Weighted model = Yes

Var. selection 
= No

Var. selection = Yes Var. selection 
= No

Var. selection 
= Yes

GLM XGBoost GLM XGBoost GLM XGBoost GLM XGBoost

PSA ( w = 1∕�) 4.69% 2.33% 4.25% 3.36% 1.62% 7.46% 0.31% 4.49%
PSA ( w = (1 − �)∕�) 5.36% 0.59% 4.48% 2.67% 1.59% 7.86% 0.27% 4.59%
PSA ( wStrat1) 6.02% 2.39% 4.85% 5.04% 3.28% 10.37% 7.94% 1.2%

PSA ( wStrat2) 4.86% 2.51% 4.3% 3.75% 1.4% 7.37% 0.63% 8.04%
PAPP 0.87% 5.03% 0.19% 2.15% 2.22% 11.52% 3.5% 6.83%
KW 1.77% 1.74% 1.47% 0.85% 0.27% 6.28% 1.79% 5.68%
PSA (w = 1∕� ) + 

Matching
0.35% 0.02% 0.34% 0.02% 0.28% 0.01% 0.27% 0.02%

PSA (w = (1 − �)∕� ) 
+ Matching

0.31% 0.02% 0.3% 0.03% 0.28% 0.07% 0.27% 0.02%

PSA ( wStrat1 ) + Match-
ing

0.33% 0.34% 1.16% 0.02% 0.27% 0.45% 1.65% 0.02%

PSA ( wStrat2 ) + 
Matching

0.36% 0.02% 0.33% 0.02% 0.15% 0% 0.15% 0.02%

KW + Matching 0.31% 0.01% 0.27% 0.01% 0.38% 0.38% 0.33% 0.03%
PAPP + Matching 0.32% 0.02% 0.26% 0.02% 0.35% 0.08% 0.3% 0%



Evaluation of available techniques and their combinations…

Table 17   Efficiency of each adjustment method in the BigLucy dataset simulation

GLM: logistic regression if the method involves propensity estimation (PSA, PAPP, KW), and linear 
regression if the method involves prediction (Model-based, Model-assisted, Model-calibrated, Statisti-
cal Matching, Doubly Robust); wStrat1 : weighting in PSA using Lee and Valliant (2009) propensity strat-
ification approach; wStrat2 : weighting in PSA using Valliant and Dever (2011) propensity stratification 
approach

Adjustment method

Calibration 0.026

GLM XGBoost Ridge reg.

Model-based 0.023 0.001 0.024
Model-assisted 0.023 0.001 0.024
Model-calibrated 0.023 0.001 0.024
Statistical Matching 0.505 0.491
Doubly Robust 0.544 0.491

Weighted model = No Weighted model = Yes

Var. selection 
= No

Var. selection = Yes Var. selection 
= No

Var. selection 
= Yes

GLM XGBoost GLM XGBoost GLM XGBoost GLM XGBoost

PSA ( w = 1∕�) 1.221 0.412 1.025 0.664 0.767 3.688 0.532 1.358
PSA ( w = (1 − �)∕�) 1.728 0.363 1.289 0.566 0.777 4.056 0.543 1.414
PSA ( wStrat1) 2.093 5.498 1.805 1.830 0.866 7.384 4.046 0.750

PSA ( wStrat2) 1.302 0.454 1.040 0.813 0.654 3.673 0.430 3.922
PAPP 0.582 1.758 0.551 0.671 1.372 7.799 1.627 3.122
KW 0.574 6.566 0.560 0.494 0.465 2.746 0.592 2.263
PSA (w = 1∕� ) + 

Matching
0.509 0.491 0.510 0.492 0.522 0.492 0.524 0.490

PSA (w = (1 − �)∕� ) + 
Matching

0.518 0.492 0.519 0.493 0.521 0.495 0.523 0.491

PSA ( wStrat1 ) + Match-
ing

0.539 0.509 0.509 0.491 0.542 0.511 0.565 0.492

PSA ( wStrat2 ) + Match-
ing

0.520 0.492 0.520 0.491 0.564 0.491 0.566 0.492

KW + Matching 0.521 0.496 0.542 0.492 0.512 0.499 0.534 0.492
PAPP + Matching 0.518 0.494 0.524 0.492 0.519 0.498 0.526 0.493
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Table 18   Percentage of relative bias of each adjustment method in the Diabetes dataset simulation

GLM: logistic regression if the method involves propensity estimation (PSA, PAPP, KW), and linear 
regression if the method involves prediction (Model-based, Model-assisted, Model-calibrated, Statisti-
cal Matching, Doubly Robust); wStrat1 : weighting in PSA using Lee and Valliant (2009) propensity strat-
ification approach; wStrat2 : weighting in PSA using Valliant and Dever (2011) propensity stratification 
approach

Adjustment method

Unweighted 6.86%
Calibration 1.47%

GLM XGBoost Ridge reg.

Model-based 1.51% 0.71% 0.47%
Model-assisted 1.51% 0.71% 0.47%
Model-calibrated 1.34% 16.09% 0.47%
Statistical Matching 1.48% 0.59%
Doubly Robust 0.21% 0.69%

Weighted model = No Weighted model = Yes

Var. selection 
= No

Var. selection = Yes Var. selection 
= No

Var. selection 
= Yes

GLM XGBoost GLM XGBoost GLM XGBoost GLM XGBoost

PSA ( w = 1∕�) 0.37% 4.24% 3.36% 1.18% 0.92% 0.84% 2.48% 3.1%
PSA ( w = (1 − �)∕�) 6.7% 2.52% 0.41% 5.67% 0.84% 1.49% 2.42% 3.33%
PSA ( wStrat1) 6.89% 18.26% 1.52% 7.52% 0.64% 7.24% 0.82% 3.45%

PSA ( wStrat2) 0.48% 3.88% 2.18% 1.04% 0.25% 0.94% 2.23% 3.55%
PAPP 0.97% 2.94% 2.25% 0.26% 3.63% 1.3% 7.02% 1.01%
KW 1.35% 15.32% 1.91% 5.67% 3.09% 1.06% 2.03% 2.09%
PSA (w = 1∕� ) + 

Matching
0.88% 1.51% 0.79% 1.99% 0.76% 3.67% 0.76% 3.89%

PSA (w = (1 − �)∕� ) 
+ Matching

0.52% 2.98% 0.73% 3.46% 0.68% 4.2% 0.73% 4.25%

PSA ( wStrat1 ) + Match-
ing

0.24% 8.25% 0.09% 5.48% 0.05% 5.62% 0.21% 4.83%

PSA ( wStrat2 ) + 
Matching

0.66% 1.61% 0.76% 2.17% 0.62% 3.75% 0.81% 4.23%

KW + Matching 0.61% 5.54% 0.85% 3.97% 0.91% 4.03% 1.07% 4.09%
PAPP + Matching 0.56% 2.18% 0.92% 2.63% 0.56% 3.08% 1.04% 3.35%



Evaluation of available techniques and their combinations…

Table 19   Efficiency of each adjustment method in the Diabetes dataset simulation

GLM: logistic regression if the method involves propensity estimation (PSA, PAPP, KW), and linear 
regression if the method involves prediction (Model-based, Model-assisted, Model-calibrated, Statisti-
cal Matching, Doubly Robust); wStrat1 : weighting in PSA using Lee and Valliant (2009) propensity strat-
ification approach; wStrat2 : weighting in PSA using Valliant and Dever (2011) propensity stratification 
approach

Adjustment method

Calibration 0.368

GLM XGBoost Ridge reg.

Model-based 0.434 0.471 6.931
Model-assisted 0.434 0.471 6.931
Model-calibrated 0.480 5.047 6.931
Statistical Matching 0.499 0.641
Doubly Robust 1.040 0.990

Weighted model = No Weighted model = Yes

Var. selection 
= No

Var. selection = Yes Var. selection 
= No

Var. selection 
= Yes

GLM XGBoost GLM XGBoost GLM XGBoost GLM XGBoost

PSA ( w = 1∕�) 1.020 0.599 0.692 0.480 1.599 1.245 0.551 0.841
PSA ( w = (1 − �)∕�) 4.035 0.868 1.380 1.867 1.615 1.448 0.552 0.892
PSA ( wStrat1) 1.925 36.794 2.149 4.590 0.820 11.217 1.546 3.070

PSA ( wStrat2) 0.453 0.590 0.412 0.403 0.560 1.476 0.469 0.873
PAPP 0.568 0.649 0.453 0.560 1.772 1.650 1.426 0.744
KW 0.359 11.676 0.418 1.919 0.511 0.820 0.427 0.680
PSA (w = 1∕� ) + 

Matching
0.759 0.752 0.456 0.798 0.657 1.293 0.535 1.162

PSA (w = (1 − �)∕� ) + 
Matching

1.041 1.021 1.085 1.028 0.751 1.514 0.618 1.241

PSA ( wStrat1 ) + Match-
ing

0.701 3.660 0.991 1.628 1.054 2.727 1.111 1.592

PSA ( wStrat2 ) + Match-
ing

0.632 0.781 0.488 0.829 0.488 1.356 0.495 1.209

KW + Matching 0.490 1.947 0.495 1.188 1.317 1.737 0.581 1.219
PAPP + Matching 0.860 0.972 0.480 0.940 0.729 1.431 0.537 1.168
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