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Abstract
Non-probability samples are increasingly as alternatives of probability samples to 
collecting detailed data from individuals. Non-probability sampling is a relatively 
inexpensive data source, although they require special treatment because the esti-
mate may suffer from sample selection bias. In this paper, we consider methods 
for integrating a non-representative volunteer sample into a probability survey. We 
investigate several approaches to correcting non-probability sample selection bias 
in the estimation of the distribution function. We combine the estimators of the 
distribution function that correct the selection bias with the design unbiased estima-
tors based on the probability sample. Our methodology for combining the voluntary 
and probability samples can be applied to other non-linear parameters. Empirical 
evidence of the improvements offered by the proposed methodology is provided in 
simulation settings.

Keywords  Non-probability samples · Data integration · Survey sampling · 
Simulation
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1  Introduction

In finite population inference, probability sampling is usually used for obtaining a 
representative sample from the target population. However, official institutions that 
conduct surveys continually face increased demands for accuracy along with reduced 
resources, for example requests for efficient estimates for domains with small sample 
sizes. Multiple data sources are becoming increasingly available for statistical analy-
ses and statistical offices face the increasing pressure to utilize other data sources as 
web surveys, mobile sensor data or social media data that provide timely data.

However, these data sources are nonprobability samples and makes its inferences 
prone to selection bias, mainly due to data-generating process. Self-selection bias can 
be very important, and invalidate the results when generalizing to the entire popu-
lation specially if the estimated variables have some influence on the decision of 
the respondent to participate in the survey ( Ferri-García and Rueda 2018). A clear 
example of the biases in the estimates produced by large non-probability surveys is 
presented in Bradley et al. (2021) who show this problem in the estimation of the 
first dose of COVID-19 Vaccine adoption with two large surveys: Delphi–Facebook 
(about 250,000 responses per week by using facebook newsfeed) and Census House-
holds Press4 (around 75,000 every two weeks by using SMS and email as recruit-
ment mode). These overestimated surveys adoption by 17 an 14 percentage points 
respectively. Their large sample sizes led to very small confidence intervals but very 
far from the correct values.

New bias correction techniques have been developed to infer parameters using 
data from non-probability sample. Some important methods are propensity score 
adjustment (Kim and Wang 2019), statistical matching (Rivers 2007), superpopula-
tion modelling (Buelens et al. 2018) kernel smoothing methods (Wang et al. 2020), 
calibration adjustment (Ferri-García and Rueda 2018), combinations of these tech-
niques (Chen et al. 2019) or bayesian approach (Rafei et al. 2022). The paper of Wu 
(2022) gives an idea of the state of the literature on the analysis of non-probability 
survey data. Some people have even come to believe that probability surveys could 
be phased out for the production of official statistics, although most authors believe 
that appropriate probability sampling methods should be used for real tests and non-
probability sampling data is not a good substitute today (Beaumont 2020). In spite of 
their limitations, non-probability samples can be particularly useful to complement 
information from probability surveys in some situations. For example, they can be 
used in cases where the target population is a small sub-population unlikely to meet 
sample size requirements or when we are interested in non-demographic strata that 
cannot be taken into account in a sampling design. Even if the non-probability sample 
is biased, a very large volume of data can make the relative contribution of bias to 
the total error small, and can help not to exceed the total fixed error especially in 
those sub-populations where reliable estimates are needed and the probability survey 
includes few units.

There is recent literature on approaches to integrating surveys of different quality 
into a result to correct bias and reduce error. Several alternatives can be considered 
for integrating data obtained with probability and nonprobability samples. The sim-
plest is the naive method, which consists of joint all data and all units are assigned the 
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same weight, but this method is rarely appropriate because nonprobability samples 
are not generally distributed proportionally across demographic or other important 
groups in the population. Alternatives were reviewed by several authors.

The pioneering work was that of Elliott and Haviland (2007) who propose a linear 
combination of the biased and unbiased estimators of the population mean where the 
weight of each sample takes into account the bias and error of each estimator. But 
in practice, bias and variations are unknown and must be estimated using available 
information of both samples and the authors show that large sizes of the probability 
sample are necessary for the method to be able to reduce the bias of the non-probabil-
ity sample. Rueda et al. (2022) explore other alternatives that combine some of these 
ideas with the help of machine learning methods.

Other approach based on calibration weighting is done in Disogra et al. (2011) 
and requires a good selection of early adopter questions that are included in the two 
surveys. Kim and Tam (2021) developed new estimators for the population totals 
by stratifying the population into a nonprobability data stratum and a missing data 
stratum, and thus estimate the missing data stratum by using a probability sample. 
Authors also discuss how to improve the efficiency of the proposed estimator by 
using ratio and regression estimation.

Wiśniowski et  al. (2020) consider a Bayesian approach for integrating a prob-
ability sample with a non-probability sample. The authors consider informative pri-
ors based on non-probability data and manage to reduce the variance and the mean 
square error of the estimators. Elliot (2009) proposes a new approach where prob-
ability and non-probability samples can be blended, and the resulting sample can be 
treated as a probability sample with new pseudo-weights. Robbins et al. (2020) define 
four estimators that integrate the two samples in a blended sample based on propen-
sity score methods or on calibration weighting.

All these works are focused on the estimation of linear parameters, mainly totals or 
population means. The literature on sampling related to the estimation of functional 
parameters such as the distribution function is much scarcer. The issue of estimating 
the finite population distribution function arises when our interest lies in finding out 
the proportion of the values of the study variable which is less than or equal to some 
threshold. In certain situations, the need of cumulative distribution function is much 
more pertinent than totals and the means, since from convenient estimators of this 
function, we can estimate other relevant population parameters such as the Gini index 
(Goga and Ruiz-Gazen 2014), the reliability function (Acal et al. 2019) or specially 
population quantiles which are parameters of interest in many fields of research such 
as clinical chemistry (Bohn et al. 2019), atmospheric processes (Wilson et al. 2012), 
social science (Kimbro et al. 2011) and economics (Gelman et al. 2010) in which 
some measures and indicators depend on quantiles. Specifically, in economics it is 
very common to find variables with skewed distributions such as income, especially 
in studies of poverty and wage inequality, so measures based on quantile ratios are 
frequently used Burtless (1999); Jones and Weinberg (2000); Machin et al. (2003).

Although the distribution function is a particular case of a finite population mean 
of an indicator variable, there are some relevant aspects in its estimation that differs 
from the classical estimation of a population mean and hence when mean estimation 
techniques are applied directly to the estimation of a distribution function, could 
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suffer from several drawbacks (Silva and Skinner 1995). For instance, it is desirable 
that an estimator of a distribution function should have the properties of a distribu-
tion function but procedures that incorporate auxiliary information in the estima-
tion of mean and totals can take values outside the range [0, 1] or do not fulfill the 
non-decreasing monotony, a property that is essential when estimating population 
quantiles. Additionally, the models specified for the study and auxiliary variables in a 
specific mean estimation technique cannot be applied with the corresponding indica-
tor variables or the correlation between the indicator variables is usually weaker than 
that between the study and auxiliary variables, so the efficiency gain would be less 
than that obtained when these techniques are used to estimate a conventional mean. 
Consequently, it is necessary to establish specific techniques for the distribution func-
tion that take into account the particularities of its estimation.

There is enough work to improve the estimation of the distribution function and 
associated parameters such as quantiles and poverty measures with auxiliary infor-
mation when working with probability samples, mainly using the calibration tech-
nique (see e.g. Martínez et al. (2010, 2020, 2012, 2015)). On the contrary, there are 
hardly any works that deal with techniques to reduce self-selection bias in the estima-
tion of distribution functions.

Recently Rueda et al. (2022) establishes a general framework for making infer-
ence for the distribution function from non-probability surveys by applying tech-
niques known as calibration, propensity score or statistical matching. The results 
of their simulation study show that self-selection bias can be greatly reduced par-
ticularly when using appropriate covariates and a valid machine learning technique. 
This paper consider the situation where the target variable has been observed in the 
non-probability sample only.

However, to our knowledge, very few, if any, studies have addressed the problem 
of estimation of the distribution function based on both: a probability and a nonprob-
ability sample, when the study variables are measured in both samples. Our goal in 
this paper is to efficiently combine both the non-probability and probability samples 
to estimate the distribution function. Our contributions include a proposal for three 
data integration methods that will allow us to define different distribution function 
estimators and addressing the of properties for these estimators.

The rest of the article is organized as follows: In Sect. 2, we start by describing the 
estimation of the distribution function through rigorous mathematical notations. In 
Sect. 3 we propose a method that consider a natural post-stratified estimator of popu-
lation means, similarly to the method used in Kim and Tam (2021). In Sect. 4, we 
explore some alternatives to the post-stratified estimator, by using the inverse prob-
ability weighting estimator (IPW) based on propensity scores for the non-probability 
sample. We then combine this IPW estimator with the unbiased estimator based on 
the probability sample in several ways. We discuss how to further improve the effi-
ciency of the proposed integration estimators by using calibration in Sect. 5. Section 
6 analyzes the conditions that must be met for the proposed estimators to be genuine 
distribution functions. Simulation studies are presented in Sect. 9. Finally, conclu-
sions are drawn in Sect. 10.
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2  Basic setup

Let U denote a finite population of size N, U = {1, . . . , j, . . . , N}. Let sr be a proba-
bility sample of size nr selected from U under a probability sampling design (sr, pr) 
with πj =

∑
sr∋j pr(sr) the first order inclusion probability for individual j. Let sv 

be a non-probability (volunteer) sample of size nv, self-selected from U. Let y be the 
variable of interest in the survey estimation. Our goal is the estimation of the distribu-
tion function Fy(t) for the study variable y that can be defined as follows:

	
Fy(t) = 1

N

∑
k∈U

∆(t − yk)� (1)

where ∆(·) denote the indicator function, given by:

	
∆(t − yk) =

{
1 if t ≥ yk
0 if t < yk.

The population distribution function, Fy(t), can be estimated via the Horvitz-Thomp-
son estimator:

	
F̂Y r(t) = 1

N

∑
k∈sr

dk∆(t − yk)� (2)

being dk = 1/πk. This estimator is design-unbiased of the distribution function and 
the design-based variance of this estimator is given by:

	
Vp(F̂Y r(t)) = 1

N2

∑
i,j∈U

∆(t − yi)
πi

∆(t − yj)
πj

(πij − πiπj) .� (3)

where πij  are the second order inclusion probabilities of the sampling design pr. If 
πij > 0 ∀(i, j), an unbiased estimator is given by:

	
V̂p(F̂Y r(t)) = 1

N2

∑
i,j∈sr

πij − πiπj

πij

∆(t − yi)
πi

∆(t − yj)
πj

.� (4)

Fy(t) can be also estimated with the naive estimator based on the sample distribution 
function of y in sv:

	
F̂Y v(t) = 1

nv

∑
j∈sv

∆(t − yj).� (5)

Let Iv be an indicator variable of an element being in sv, this is
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Ivk =

{
1 k ∈ sv

0 k /∈ sv. � (6)

Rueda et al. (2022) show that this estimator is biased and that the bias and the mean 
squared error of the estimator are given by

	

B(F̂Y v(t)) = ER(F̂Y v(t) − Fy(t)) = 1
fv

ER(Cov(Iv, ∆(t − y)))

MSE(F̂Y v(t)) = 1
f2 ER(Corr(Iv, ∆(t − y))2)V ar(Iv)V ar(∆(t − y)) =

= ER(Corr(Iv, ∆(t − y))2) ×
(

1
fv

− 1
)

× V ar(∆(t − y))

where ER denotes the expectation with respect to the random mechanism for Iv and 
fv = nv/N . So if Corr(Iv, ∆(t − y)) exists there will be a self-selection bias.

The mechanism of participation of the units in the non-probability sample is there-
fore fundamental in the behaviour of the estimators. Usually, three mechanisms are 
considered in the literature of this issue:

	● Completely random participation mechanism: when R is independent of the vari-
ables under study and of the auxiliary variables. In this case the naive estimators 
without adjusting for the sampling process are not subject to selection biases.

	● Ignorable participation mechanism: when R and the study variable is independ-
ent given the auxiliary variables. This mechanism holds if the set of covariates 
contains all predictors for the outcome that affect the possibility of being selected 
in sample sv. This mechanism is similar to the Missing at random (MAR) mecha-
nism used in non-response literature.

	● Non-ignorable participation mechanism: R depends directly on y. This mecha-
nism is similar to the NMAR mechanism in non-response.

Non ignorable participation mechanism is an important but difficult topic for analy-
sis of non-probability survey samples and much of the existing literature, are based 
on the unverifiable assumption that the sampling mechanism for the non-probability 
sample is ignorable. In this paper we will follow the usual literature and also consider 
the case where the participation mechanism is ignorable.

3  A first proposal for data integration for the distribution function

First, we will consider a simple estimator proposal by decomposing the population 
distribution function into two parts: the part with the observed elements in the non-
probability sample and a second part with the unobserved elements.

Proposition 1  The proposed estimator defined as
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F yP 1(t) = 1

N
(

∑
k∈sv

∆(t − yk) + (N − nv)
∑

k∈sr
dk(1 − Ivk)∆(t − yk)∑
k∈sr

dk(1 − Ivk)
)� (7)

is a asymptotically design-based estimator of the distribution function obtained from 
two samples.

Proof  We consider the population distribution function decomposition:

	
Fy(t) = 1

N
(

∑
k∈sv

∆(t − yk) +
∑

k∈U−sv

∆(t − yk)) = 1
N

(nvF̂Y v(t) + (N − nv)FU−sv
(t))

being FU−sv (t) = 1
N−nv

∑
k∈U (1 − Ivk)∆(t − yk).

The unknown term FU−sv
(t) is thus estimated by the Hájek estimator ∑

k∈sr
dk(1−Ivk)∆(t−yk)∑

k∈sr
dk(1−Ivk)

 which is asymptotically unbiased of FU−sv
(t).

This estimator can be written in the form

	
F yP 1(t) = 1

N

∑
s

wkT ∆(t − yk)� (8)

where s = sr ∪ sv , being wkT = 1 for k ∈ sv  and

	
wkT = (N − nv)dk(1 − Ivk)∑

j∈sr
dj(1 − Ivj)

= (N − nv)dk(1 − Ivk)
N̂ − nv

, for k ∈ sr

and N̂ − nv  denotes the estimator of N − nv  obtained from the probability sample.

Note that this estimator has not considered any modeling for the probabilities of 
participating in the non-probability survey, and therefore is valid for any pattern of 
voluntariness, in contrast to the other estimators that will be presented later and that 
depend on the participation mechanism used (in general, the ignorable mechanism). 
The fundamental thing is that the probability sample is well designed so that it repre-
sents the population. � □

4  A second proposal for data integration for the distribution 
function

In recent years there is a wide variety of frameworks to adjust for bias of estima-
tors based on non-probability samples when the study variable is observed in the 
nonprobability sample only but auxiliary information can be obtained from an exist-
ing probability survey sample from the same population. The most common are as 
mass imputation, propensity score method (PSA), kernel weighting (KW), calibra-
tion weighting, and doubly robust estimation methods. In this section we will propose 
new estimators of the distribution function by combining these bias adjusted estima-
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tors with the unbiased estimators based on the probability sample. To do so, we start 
by briefly describing the PSA and KW techniques that we will use for constructing 
weights for sample sv to improve the representativeness of this sample.

4.1  Propensity score adjustment

The propensity score of the individual can be formulated, following notation in Chen 
et al. (2019), as the expected value of I conditional on his target variable and covari-
ates’ value:

	 πv
k = E[Ivk|xk, yk] = P (Ivk = 1|xk, yk)� (9)

If the selection is ignorable, then P (Ivk|xk, yk) = P (Ivk = 1) and estimates obtained 
from sv would be unbiased. In the rest of the paper we will consider the following 
strong ignorability condition: the sampling indicator Ivk of sample sv and the study 
variable y are conditionally independent given x; i.e. P (Ivk|xk, yk) = P (Ivk|xk). 
We will also assume that the propensities are positive πv

k > 0.
The propensity for an individual to take part on the non-probability survey is 

obtained by training a predictive model (often a logistic regression) on the dichoto-
mous variable, Isv , which measures whether a respondent from the combination of 
both samples took part in the volunteer survey or in the reference survey. Covariates 
used in the model, x, are measured in both samples (in contrast to the target variable 
which is only measured in the non-probability sample), thus the formula to compute 
the propensity of taking part in the volunteer survey with a logistic model, πv , can 
be displayed as

	 πv(x) = m(γT x)� (10)

for some vector γ, as a function of the model covariates.
Using data from both samples we can estimate propensity scores by maximizing 

the pseudo-likelihood (Chen et al. 2019):

	
l̃(γ) =

∑
sv

log
m(γ, xk)

1 − m(γ, xk)
+

∑
sr

1
πrk

log(1 − m(γ, xk)).� (11)

The estimated propensities π̂v
k = m(γ̂, xk) obtained from the pseudomaximum like-

lihoor estimator γ̂ are thus used to calculate new pseudo-weights, such as Valliant 
weight Valliant (2020) wV

k = 1
π̂v

k
 for the non-probability sample. These weights are 

then used to compute two versions of the IPW estimator for the distribution function, 
depending on whether the population size N is known or not:

	
F yIP W (t) = 1

N

∑
k∈sv

wV
k ∆(t − yk)

and
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F yIP W H(t) = 1∑

k∈sv
wV

k

∑
k∈sv

wV
k ∆(t − yk).

The properties of the above estimators are developed under both the model for the 
propensity scores and the survey design for the probability sample. Under certain 
regularity conditions and assuming the logistic regression model for the propensity 
scores the IPW estimator F yIP W (t) is asymptotically unbiased for the population 
total distribution and an asymptotic expression for its variance is given by:

	
V (F yIP W (t)) =

∑
U

(∆(t − yk)/π̂ki − bT
1 xk)2(1 − π̂v

k)π̂v
k + bT

1 Db1� (12)

where

	
bT

1 =
∑

U

(1 − π̂v
k)∆(t − yk)xT

k /
∑

U

π̂v
k(1 − π̂v

k)xkxT
k

and D = Vp(
∑

k∈sr
dkπ̂v

kxk).
The proof of this result can be obtained like that theorem 1 of Chen et al. (2019) 

but changing the values yk by ∆(t − yk).
Other types of weights based on estimated propensities have been formulated by 

various authors. A first example appears in the work of Schonlau and Couper (2017) 
where the weights adjust the volunteer sample to the population of the probabil-
ity sample, rather than the complete population U: wSC

k = 1−π̂v
k

π̂v
k

. Lee and Valliant 
(2009) developed other weights whereby the combined sample sv ∪ sr is grouped 
into g equally-sized strata of similar propensity scores from which an average pro-
pensity is calculated for each group. The final weights of the nonprobability sam-
ple to be applied in linear estimators are defined as: wL

k = fc · N
nv

, k ∈ sv, c ∋ k 

where fc =
∑

k∈sc
r

dr
k/

∑
k∈sr

dr
k∑

j∈sc
v

dv
j

/
∑

j∈sv
dv

j

, and sc
r and sc

v are the subset of individuals from 

the reference and the nonprobability sample respectively that belong to the c-th stra-
tum. Alternative weights also based on groups are considered in Valliant and Dever 
(2011), wV D

k = nvc∑
k∈sc

v
π̂v

k

, k ∈ sv  being nvc the size of sc
v.

4.2  Kernel weighting

Wang et al. (2020) propose construct kernel weights weighting the design weights 
from probability sample, according to similarity between the individuals from both 
samples

	
wKW

k =
∑
j∈sr

wrjkkj � (13)

1 3

Page 9 of 35    111 



B. Cobo et al.

being kkj = K{dkj/h}∑
k∈sv

K{dkj/h} , dkj = π̂v
k − π̂v

j , k ∈ sv, j ∈ sr,K{.} a kernel func-

tion centred at zero, and h the corresponding bandwidth.

4.3  Tree-based inverse propensity weighted

Chu and Beaumont (2019) propose a IPW estimator where the estimation of the pro-
pensity is based on an adaptation of the classification and regression trees (CART) 
algorithm. After the tree has been grown the nonprobability sample is partitioned into 
g homogeneous propensity groups (terminal nodes), svg  and he propensity for each 
individual i ∈ svg  is estimated as: π̂T rIP W

i = nvg∑
j∈srg

dj
 Based on these propensi-

ties, the weights are defined as

	
wT rIP W

k = 1
π̂T rIP W

k
� (14)

4.4  Integration estimators of the distribution function

In this subsection we propose a new method for obtain distribution function estimators 
by combining the probability and non-probability samples, normalizing the weights. 
We thus define the blended sample s = sv ∪ sr and we consider ŵk = nv

nr+nv
wT C

k , 
(TC = V, SC, L, V D, KW, TrIPW ) for units in sv and ŵk = nr

nr+nv
dk for units 

in sr.

So, we define an integrated weighted estimator for the distribution function as: h

	
F yP 2(t) = 1

N

∑
k∈s

ŵk∆(t − yk).� (15)

Another option to normalize the weights is to consider the weights w̃k = 1−π̂vk

πk
 that 

take into account both the design weights and the pseudo-weights estimated for all 
units in the joint sample. From them the estimator can be define the estimator:

	
F yP 3(t) = 1

N

∑
k∈s

w̃k∆(t − yk).� (16)

Other weights used by Robbins et al. (2020) to estimate means are

	
ẅk = dk ∗

(
∑

r dk)(
∑

v w
2_T C
k )

(
∑

r dk)(
∑

v w
2_T C
k ) + (

∑
r d2

k)(
∑

v wT C
k )

� (17)

for k ∈ sr and
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ẅk = wT C

k ∗
(
∑

r dk)(
∑

v w
2_T C
k )

(
∑

r dk)(
∑

v w
2_T C
k ) + (

∑
r d2

k)(
∑

v wT C
k )

� (18)

for k ∈ sv .
If we use these weights to weight the samples, we can formulate the following 

estimator of the distribution function:

	
F yP 4(t) = 1

N

∑
k∈s

ẅk∆(t − yk).� (19)

5  Improving the efficiency of the data integration estimators by 
calibration

We now discuss how to further improve the efficiency of the proposed estimator by 
using calibration. Calibration approach introduce by Deville and Särndal (1992) is the 
most used technique for weights adjustment, aiming at ensuring consistency among 
estimates of different sample surveys and some improving the precision of estima-
tors. After the calibration adjustment, we will hope that the sample s can resemble the 
population U. This technique of weighting was previously used to estimate popula-
tion totals and means when information for two independent surveys from the same 
target population are available by Disogra et al. (2011) and Kim and Tam (2021).

Let z be a set of auxiliary variables related to y, whose the population total Z are 
known. Suppose that an initial set of weights {ωkI , k ∈ s} is available for all units in 
the sample s. This system of weights could be a system of weights obtained with any 
method included in the previous sections. Given a pseudo distance G(·, ·) we try to 
find an estimator F yic(t) = 1

N

∑
k∈s wic

k ∆(t − yk) where the new set of calibrated 
weights wic

k  for all k ∈ s = sv ∪ sr minimize the distance to the weights ωkI :

	
min
ωk

∑
k∈s

G(wck, ωkI)� (20)

while respecting the following condition:

	

∑
k∈s

wic1
k zk = Z.� (21)

Proposition 2  If we consider the chi-square distance:

	

∑
k∈s

(ωkI − wck)2

wckqk
� (22)
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where we assume that qk  are positive constants not related to dk , the calibration 
estimator is:

	
F yic1(t) = 1

N

∑
k∈s

ωkI∆(t − yk) + γ1

N
·
∑
k∈s

ωkIqkzk∆(t − yk).� (23)

and the new weights are

	 wic1
k = ωkI + γ1 · ωkIqkzk� (24)

with

	
γ1 =

(
Z −

∑
k∈s

ωkIzk

)T ( ∑
k∈s

ωkIqkzkzT
k

)−1

Proof  The demonstration of this result is similar to that of the paper Deville and 
Särndal (1992) by changing the variable y to ∆(t − yk).

Finally, if we know the value of the auxiliary vector zk for all k ∈ U , following 
Rueda et al. (2007) we can consider the following pseudo variable:

	 gk = β̂
′
zk for k = 1, 2, . . . N � (25)

	
β̂ =

( ∑
k∈s

ωkT kzkz
′

k

)−1

·
∑
k∈s

ωkT kzkyk � (26)

We consider P points tj j = 1, 2, . . . , P  with t1 < t2 < . . . tP  and we denote by 
t = (t1, . . . , tP ) and ∆(t − gk) = (∆(t1 − gk), . . . , ∆(tP − gk))T .

Now we consider the pseudo variable g and the calibration procedure that replaces 
the weights ωkI  in the sample s by a new calibrated weights wic2

k  with the minimiza-
tion of (22) under the following condition:

	

1
N

∑
k∈s

wic2
k ∆(t − gk) = Fg(t)� (27)

In this case, the calibration weights are:

	
wic2

k = ωkI + γ2

N
· ωkIqk∆(t − gk)� (28)

with
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γ2 = N2 ·

(
Fg(t) − 1

N

∑
k∈s

ωkI∆(t − gk)

)T

· Ĥ−1

where

	
Ĥ =

( ∑
k∈s

ωkIqk∆(t − gk)∆(t − gk)T

)

The new proposed calibration estimator is:

	
F yic2(t) = 1

N

∑
k∈s

ωkI∆(t − yk) + γ2

N2 ·
∑
k∈s

ωkIqk∆(t − gk)∆(t − yk)� (29)

� □

6  Properties

When estimating the distribution function Fy(t), an important issue to consider is the 
compliance of the conditions of the distribution function by a new proposed estimator 
F̂y(t). The fulfillment of the distribution function conditions allows us to use a new 
estimator F̂y(t) in quantile estimation from the inverse function associated with the 
estimator F̂y(t). For an estimator F̂y(t) to be a true distribution function, it must meet 
the following conditions: 

i)	 F̂y(t) is continuous on the right,
ii)	 F̂y(t) is monotone nondecreasing.
iii)	 a) lim

t→−∞
F̂y(t) = 0 and b) lim

t→+∞
F̂y(t) = 1,

However, not all the new estimators proposed in previous section meet all the above 
properties. In this section we will analyze whether each of the estimators proposed in 
the previous sections satisfy all the properties of the distribution function and if they 
do not satisfy any of the properties, we will propose alternatives to match the previ-
ous unfulfilled conditions. Since the two conditions i) and iii a) are clearly satisifed 
by all the proposed estimators, we are going to focus on analyzing the fulfillment of 
conditions ii) and iii b)

Firstly, concerning the new estimator F yP 1(t) satisfies the condition ii) because 
the associated weights wkT  are positive for all sample units. Concerning the new 
estimators in the family F yP 2(t), all of them satisfy the condition ii) if the associ-
ated weights ωT C

k  are positive for all sample units. This condition is fullfied by the 
weights ωT C

k  with TC = V, SC, L, V D, KW  and TrIPW.
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Similarly, for the new estimators in the families F yP 3(t) and F yP 4(t) for 
TC = V, SC, L, V D, KW  and TrIPW also the corresponding weights are all posi-
tive so the condition ii) is guarantied. However, to meet the condition iii b) with 
the estimators F yP 2(t), F yP 3(t) and F yP 4(t), it is necessary to divide the result-
ing estimator by the sum of its weights while estimator F yP 1(t) always fulfills this 
condition.

Finally, regarding calibration estimators, following (Rueda et al. 2007) the esti-
mator F yic2(t) fullfils the condition ii) if qk = c for all sample units. In general, 
the calibration weights for the calibration estimator F yic1(t) are not positive for all 
sample units with the chi-square distance (22) and therefore condition ii) cannot be 
guaranteed. To meet this condition, there are several calibration methods for obtain-
ing nonnegative weights (see e.g Deville et al. (1993); Kott and Liao (2012)). One 
of the calibration mechanisms considered to obtain non-negative weights is the so-
called raking procedure Deville et al. (1993). Based on this method, we can consider 
the corresponding calibration process with the distance function given by:

	
Gs(ωk, ωkI) =

∑
k∈s

1
qk

(
ωk log ωk

ωkI
− ωk + ωkI

)
.� (30)

With this distace measure, the calibration weights have the form:

	 ωk = ωkI exp (γ1 · qkzk)

 and we can avoid negative calibrated weights Deville et al. (1993), so the calibration 
estimator F yic1(t) can fulfill the condition ii).

Following Kott and Liao (2012), another way to avoid negative calibrated weights 
with the estimator F yic1(t) is the logistic-response model. Following this calibration 
method, we can consider the calibrated weights given by:

	 ωk = ωkI · (1 + exp(γ1 · zk))� (31)

and find a vector γ1 to satisfy

	

∑
k∈s

ωkzk =
∑
k∈s

ωkI · (1 + exp(γ1 · zk)) = Z

Since the calibrated weights (31) obtained with this method are positive, the version 
of the estimator F yic1(t) obtained with them satisfies property ii).

Regarding condition iii b), none of the calibrated estimators meets this property in 
general. To meet this condition with the estimator F yic1(t), we can add an auxiliary 
variable z∗

k = 1 for k ∈ U  in the auxiliary vector zk. In the case of the calibration 
estimator F yic2(t), following (Rueda et al. 2007), we can guarantee the condition iii 
b) by taking tP  sufficiently large.
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7  Application of new estimators in quantile and poverty measures 
estimation

Nowadays, studies on poverty, wage inequality and social exclusion are issues of 
main priority for economic research (Darvas 2019; Jones and Weinberg 2000; Meyer 
and Sullivan 2012) and for official institutions, governments and society (Guio et al. 
2021; Eurostat Products Datasets 2022; Shrider et al. 2021) being a key aspect the 
development of indexes to measure wage inequality (Eurostat Experimental statis-
tics 2022). In economics research, percentile ratios such as P90/P10; P95/P20 and 
P80/P20 (Jones and Weinberg 2000); P50/P5 and P50/P25 (Dickens and Manning 
2004), P50/P10 (Burtless 1999) or P95/P50 (Machin et al. 2003) have been widely 
considered by previous studies for measuring the wage inequality. Likewise, percen-
tile ratios measures are usually used by organizations to measure income inequality, 
such as the percentile ratios ratios P95/P20; P95/P50; P90/P10; P80/P50; P80/P20 
and P20/P50 used for the US Census Bureau (Shrider et al. 2021) or the P80/P20 
percentile ratio by employed Eurostat to assess the wage inequality in the European 
Union (Eurostat Products Datasets 2022). Given the relevance of wage inequality 
measures, in this section we focus on estimating the poverty measures based on per-
centile ratios.

Let a finite population U = {1, . . . , N} with distribution function Fy(t) given by 
(1), and let α a value such that 0 < α < 1, the population α-quantile of y is given by:

Table 1  Bias and mean square error of the proposed estimators considering various sizes of the non-
probability sample in the considered scenarios

nb=250 nb=500 nb=1000
AVRB AVMSE AVRB AVMSE AVRB AVMSE
Scenario 1

P1 0,0026 0,0007 0,0024 0,0007 0,0024 0,0007
P 2_V 0,0549 0,0007 0,0748 0,0009 0,0846 0,0009
P3 0,0444 0,0007 0,0451 0,0007 0,0425 0,0007
P 4_V 0,0544 0,0007 0,0744 0,0009 0,0844 0,0009

Scenario 2
P1 0,0015 0,0007 0,0017 0,0007 0,0022 0,0007
P 2_V 0,0021 0,0004 0,0025 0,0003 0,0033 0,0003
P3 0,1707 0,0104 0,1715 0,0102 0,1713 0,0101
P 4_V 0,0018 0,0005 0,0022 0,0003 0,0033 0,0003

Scenario 3
P1 0,0010 0,0007 0,0154 0,0006 0,0017 0,0008
P 2_V 0,1304 0,0040 0,1728 0,0067 0,2057 0,0091
P3 0,1608 0,0099 0,1720 0,0110 0,1570 0,0097
P 4_V 0,1228 0,0036 0,1667 0,0063 0,1994 0,0086

Scenario 4
P1 0,0013 0,0009 0,0011 0,0008 0,0017 0,0008
P 2_V 0,0130 0,0005 0,0190 0,0004 0,0232 0,0003
P3 0,0290 0,0007 0,0295 0,0006 0,0288 0,0005
P 4_V 0,0158 0,0004 0,0217 0,0004 0,0252 0,0003
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	 Qy(α) = inf{t : Fy(t) ≥ α} = F −1
y (α)� (32)

and given two values 0 < α2 < α1 < 1, the percentile ratio R(α1, α2) is define as 
follow:

	
R(α1, α2) = Qy(α1)

Qy(α2)
=

F −1
y (α1)

F −1
y (α2)

� (33)

Given an estimator F̂y(t) of the distribution function that satisfies the distribution 
function properties, a generic procedure for obtaining an estimator for Qy(α) can be 
established as follows:

	 Q̂y(α) = inf{t : F̂y(t) ≥ α} = F̂ −1
y (α)� (34)

Consequently, the percentile ratio R(α1, α2) can be estimated as follows:

	
R̂(α1, α2) = Q̂y(α1)

Q̂y(α2)
� (35)

Since the distribution function estimators F yP 1(t), F yP 2(t), F yP 3(t), F yP 4(t), 
F yic1(t) and F yic2(t) allow us to integrate the information provided by a non-repre-
sentative volunteer sample with the information provided from a probability sample 
and since in the previous section we have established the necessary conditions for the 
proposed estimators to fulfill all the properties of the distribution function, through 
the generic mechanism described above we can estimate Qy(α) as R(α1, α2) inte-
grating information from a non-probability sample and a probability sample, thus 
obtaining the corresponding quantile estimators QyP 1(α), QyP 2(α), QyP 3(α), 
QyP 4(α), Qyic1(α) and Qyic2(α) and the corresponding percentile ratio estimators 
RyP 1(α1, α2), RyP 2(α1, α2), RyP 3(α1, α2), RyP 4(α1, α2), Ryic1(α1, α2) and 
Ryic2(α1, α2).

8  Variance estimation

Variance estimation for the proposed estimators is a challenging problem. Variance 
estimation under the sample s = sr ∪ sv  is difficult because involves at least two dif-
ferent sources of variation: taking into account the two random mechanisms, and the 
probabilities of the conditional expectation, we have

	 V (F y(t)) = VpER(F y(t)) + EpVR(F y(t))

where R stands for the model of the selection mechanism for the sample sv and p 
refers to the probability sampling design for sr.
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Plug-in estimators can be used to construct variance estimators for all the required 
components but it is not a simple issue. In practice, the use of jackknife and bootstrap 
techniques (Wolter 2007) in the variance estimation for nonlinear parameters should 
be more advantageous because of their wide applicability for different cases and con-
ditions. Valliant (2020) and Chen et al. (2019) use resampling techniques to obtain 
estimators of the variances of linear parameters from non-probability samples. Rueda 
et al. (2022) use a jackniffe technique to obtain estimates of variance and confidence 
intervals for means and proportions from a combination of probability and non-prob-
ability survey data. These authors propose a grouped jackknife in which both the 
random mechanisms are repeated for each replicate at the expense of some extra 
computation. Kim and Tam (2021) developed a procedure to apply the bootstrap 
method for variance estimation for the Mass Imputation technique and established 
the consistency of this bootstrap variance estimator of MI estimator under certain 
conditions. These methodology can be used in our context to estimate the variances 
of the proposed distribution function estimators but formal proof of the consistency 
of such a replication estimator does not exist. Depending on the estimator used and 
the sources of randomness that are present, a specific resampling method has to be 
developed.

In the simulation study in the next section we have used the bootstrap method 
adapted to our estimators. We denote by F y(t) any of the estimators proposed in the 
preceding sections, we use the following algorithm: 
1.	 For each iteration bootstrap (b = 1, . . . , B) extract a simple random sample with 

replacement of size nr from sr, obtaining a bootstrap replicate denoted by (d(b)
vi , 

yi, x
(b)
i )

2.	 Extract a simple random sample with replacement of size nv from sv obtaining 
bootstrap (y(b)

j , x(b)
j )

3.	 From the bootstrap samples s(b)
v  and s(b)

r  calculate the corresponding estimator 
F y(t)(b)

4.	 Compute the bootstrap variance estimators as 

	
V̂B(F y(t)) = 1

B

B∑
b=1

(F (b)
y (t) − F y(t))2.

9  Simulation study

We carry out a simulation study in which we are going to study the previously pro-
posed estimators. We are going to use the data called BigLucy from the TeachingSam-
pling R package Gutiérrez Rojas (2020). This data set contains the financial variables 
of 85396 industrial enterprises of a city in a particular fiscal year. Specifically we 
are going to use the variable Income (the total ammount of a company’s earnings (or 
profit) in the previous fiscal year. It is calculated by taking revenues and adjusting for 
the cost of doing business) as a variable of interest throughout the entire simulation 
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study. As variables when performing the calibration we consider Level (the indus-
trial companies are discrimitnated according to the taxes declared. There are small, 
medium and big companies), Employees (the total number of persons working for 
the company in the previuos fiscal year), Taxes (the total ammount of a company’s 
income tax), SPAM (indicates if the company uses the Internet and WEBmail options 
in order to make self-propaganda), ISO (indicates if the company is certified by the 
International Organization for Standardization) and as covariates to estimate the pro-
pensities, all of the above plus the Years variable (the age of the company). In the case 
of the probability sample we draw it through simple random sampling, and in the case 
of the non-probability sample we will consider three scenarios, the first (Scenario 1) 
in which the probability of selection is

	
πv = eT axes

1 + eT axes

the second (Scenario 2) in which we consider a stratified sample of the SPAM vari-
able, assigning 80% to the “no” category and 20% to the “yes” category, and the third 
scenario (Scenario 3) in which we select a simple random sample from the companies 
that have more than 63 workers. Finally, we consider a fourth scenario (Scenario 4) in 
which the probability of selection depends on the variable of interest.

	
πv = eT axes+0,05Income

1 + eT axes+0,05Income

 In this scenario we consider that the probability sample is obtained by stratified 
sampling design with uniform allocation in which the stratification variable was the 

Table 4  Bias and mean square error of the estimators considering the different machine learning tech-
niques in the considered scenarios

glm gbm nnet kknn
AVRB AVMSE AVRB AVMSE AVRB AVMSE AVRB AVMSE
Scenario 1

P 2_V 0,0724 0,0008 0,0471 0,0006 0,0674 0,0008 0,0727 0,0008
P3 0,0435 0,0007 0,0101 0,0007 0,0335 0,0007 0,2387 0,0178
P 4_V 0,0721 0,0008 0,0460 0,0006 0,0665 0,0008 0,0714 0,0008

Scenario 2
P 2_V 0,0024 0,0003 0,0036 0,0003 0,0033 0,0004 0,0048 0,0003
P3 0,1705 0,0101 0,1475 0,0079 0,1647 0,0096 0,0815 0,0028
P 4_V 0,0022 0,0003 0,0034 0,0003 0,0031 0,0004 0,0047 0,0003

Scenario 3
P 2_V 0,1742 0,0068 0,1699 0,0062 0,1795 0,0071 0,1795 0,0068
P3 0,1614 0,0100 0,1267 0,0068 0,1237 0,0068 0,1861 0,0139
P 4_V 0,1667 0,0062 0,1692 0,0062 0,1746 0,0067 0,1776 0,0067

Scenario 4
P 2_V 0,0190 0,0004 0,0202 0,0004 0,0168 0,0003 0,0124 0,0003
P3 0,0295 0,0006 0,0394 0,0008 0,0233 0,0004 0,1892 0,0116
P 4_V 0,0217 0,0004 0,0230 0,0003 0,0172 0,0003 0,0139 0,0003
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Table 5  Variance, confidence intervals, coverage and lenght scenario 1 considering the different quantiles 
and estimators
Quantile Method Theoretical Variance Variance Lower bound Upper bound Coverage Length
0,1 P1 0,00038 0,00036 0,0994 0,1007 0,9348 0,0736
0,1 P 2_V 0,00011 0,00011 0,0807 0,0811 0,5173 0,0401
0,1 P3 0,00016 0,00015 0,0871 0,0877 0,7729 0,0479
0,1 P 4_V 0,00011 0,00011 0,0808 0,0812 0,5193 0,0402
0,2 P1 0,00064 0,00063 0,1980 0,2005 0,9430 0,0982
0,2 P 2_V 0,00019 0,00021 0,1677 0,1685 0,3971 0,0563
0,2 P3 0,00029 0,00031 0,1787 0,1799 0,7719 0,0687
0,2 P 4_V 0,00019 0,00021 0,1678 0,1686 0,4043 0,0565
0,25 P1 0,00078 0,00075 0,2512 0,2541 0,9440 0,1069
0,25 P 2_V 0,00025 0,00026 0,2177 0,2187 0,4308 0,0630
0,25 P3 0,00039 0,00039 0,2303 0,2318 0,7770 0,0776
0,25 P 4_V 0,00025 0,00026 0,2179 0,2189 0,4328 0,0631
0,3 P1 0,00086 0,00083 0,3001 0,3033 0,9430 0,1128
0,3 P 2_V 0,00029 0,00030 0,2664 0,2675 0,4745 0,0682
0,3 P3 0,00046 0,00047 0,2796 0,2815 0,8147 0,0848
0,3 P 4_V 0,00029 0,00030 0,2665 0,2677 0,4745 0,0683
0,4 P1 0,00094 0,00094 0,4000 0,4037 0,9470 0,1204
0,4 P 2_V 0,00036 0,00038 0,3702 0,3717 0,6507 0,0762
0,4 P3 0,00059 0,00061 0,3836 0,3860 0,8982 0,0969
0,4 P 4_V 0,00036 0,00038 0,3704 0,3718 0,6517 0,0763
0,5 P1 0,00097 0,00099 0,4985 0,5023 0,9552 0,1230
0,5 P 2_V 0,00042 0,00043 0,4774 0,4791 0,8147 0,0810
0,5 P3 0,00072 0,00073 0,4894 0,4923 0,9399 0,1058
0,5 P 4_V 0,00042 0,00043 0,4775 0,4792 0,8157 0,0810
0,6 P1 0,00097 0,00094 0,6083 0,6119 0,9470 0,1199
0,6 P 2_V 0,00046 0,00045 0,5949 0,5966 0,8992 0,0828
0,6 P3 0,00087 0,00084 0,6056 0,6089 0,9389 0,1133
0,6 P 4_V 0,00046 0,00045 0,5949 0,5967 0,9002 0,0830
0,7 P1 0,00085 0,00082 0,7054 0,7086 0,9369 0,1119
0,7 P 2_V 0,00042 0,00040 0,6978 0,6994 0,9297 0,0780
0,7 P3 0,00080 0,00075 0,7070 0,7099 0,9338 0,1075
0,7 P 4_V 0,00042 0,00040 0,6979 0,6994 0,9297 0,0781
0,75 P1 0,00074 0,00074 0,7509 0,7538 0,9430 0,1062
0,75 P 2_V 0,00036 0,00034 0,7451 0,7464 0,9277 0,0726
0,75 P3 0,00065 0,00063 0,7533 0,7557 0,9460 0,0980
0,75 P 4_V 0,00036 0,00034 0,7451 0,7465 0,9308 0,0726
0,8 P1 0,00059 0,00063 0,7995 0,8020 0,9491 0,0983
0,8 P 2_V 0,00030 0,00029 0,7957 0,7968 0,9379 0,0663
0,8 P3 0,00051 0,00051 0,8026 0,8046 0,9440 0,0883
0,8 P 4_V 0,00030 0,00029 0,7957 0,7969 0,9389 0,0663
0,9 P1 0,00032 0,00035 0,8999 0,9013 0,9633 0,0734
0,9 P 2_V 0,00015 0,00016 0,8995 0,9002 0,9521 0,0492
0,9 P3 0,00025 0,00027 0,9032 0,9042 0,9511 0,0647
0,9 P 4_V 0,00015 0,00016 0,8995 0,9002 0,9521 0,0490
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Table 6  Variance, confidence intervals, coverage and lenght scenario 2 considering the different quantiles 
and estimators
Quantile Method Theoretical Variance Variance Lower bound Upper bound Coverage Length
0,1 P1 0,00037 0,00035 0,0998 0,1012 0,9277 0,0734
0,1 P 2_V 0,00014 0,00015 0,1005 0,1011 0,9564 0,0476
0,1 P3 0,00033 0,00034 0,1158 0,1172 0,8894 0,0722
0,1 P 4_V 0,00014 0,00015 0,1005 0,1011 0,9532 0,0475
0,2 P1 0,00063 0,00062 0,1992 0,2016 0,9511 0,0978
0,2 P 2_V 0,00027 0,00028 0,1990 0,2000 0,9468 0,0650
0,2 P3 0,00063 0,00065 0,2338 0,2363 0,7574 0,0999
0,2 P 4_V 0,00027 0,00027 0,1991 0,2001 0,9436 0,0648
0,25 P1 0,00073 0,00074 0,2521 0,2550 0,9500 0,1065
0,25 P 2_V 0,00031 0,00033 0,2530 0,2543 0,9543 0,0715
0,25 P3 0,00072 0,00079 0,2941 0,2972 0,7053 0,1098
0,25 P 4_V 0,00031 0,00033 0,2530 0,2543 0,9521 0,0715
0,3 P1 0,00081 0,00082 0,3006 0,3039 0,9511 0,1125
0,3 P 2_V 0,00034 0,00038 0,3003 0,3018 0,9617 0,0764
0,3 P3 0,00079 0,00091 0,3528 0,3564 0,6000 0,1181
0,3 P 4_V 0,00034 0,00038 0,3004 0,3019 0,9617 0,0764
0,4 P1 0,00092 0,00094 0,3983 0,4020 0,9426 0,1199
0,4 P 2_V 0,00041 0,00046 0,4006 0,4024 0,9628 0,0835
0,4 P3 0,00096 0,00110 0,4657 0,4700 0,4979 0,1297
0,4 P 4_V 0,00041 0,00046 0,4005 0,4023 0,9606 0,0836
0,5 P1 0,00095 0,00098 0,4974 0,5012 0,9521 0,1225
0,5 P 2_V 0,00044 0,00050 0,4978 0,4998 0,9617 0,0875
0,5 P3 0,00108 0,00124 0,5859 0,5907 0,2894 0,1380
0,5 P 4_V 0,00045 0,00050 0,4979 0,4999 0,9606 0,0878
0,6 P1 0,00090 0,00093 0,6071 0,6107 0,9553 0,1195
0,6 P 2_V 0,00046 0,00052 0,6080 0,6100 0,9521 0,0892
0,6 P3 0,00112 0,00132 0,7126 0,7178 0,1617 0,1426
0,6 P 4_V 0,00048 0,00052 0,6080 0,6100 0,9543 0,0896
0,7 P1 0,00076 0,00081 0,7053 0,7084 0,9553 0,1114
0,7 P 2_V 0,00044 0,00047 0,7070 0,7088 0,9543 0,0842
0,7 P3 0,00108 0,00126 0,8242 0,8292 0,0660 0,1390
0,7 P 4_V 0,00045 0,00046 0,7069 0,7087 0,9553 0,0843
0,75 P1 0,00071 0,00073 0,7508 0,7537 0,9553 0,1057
0,75 P 2_V 0,00037 0,00042 0,7526 0,7542 0,9553 0,0790
0,75 P3 0,00096 0,00117 0,8771 0,8816 0,0309 0,1341
0,75 P 4_V 0,00038 0,00040 0,7525 0,7541 0,9500 0,0786
0,8 P1 0,00060 0,00062 0,7990 0,8015 0,9543 0,0978
0,8 P 2_V 0,00030 0,00036 0,8009 0,8023 0,9564 0,0729
0,8 P3 0,00081 0,00108 0,9353 0,9396 0,0074 0,1286
0,8 P 4_V 0,00031 0,00034 0,8008 0,8021 0,9543 0,0720
0,9 P1 0,00035 0,00035 0,9008 0,9021 0,9415 0,0727
0,9 P 2_V 0,00017 0,00022 0,9042 0,9051 0,9340 0,0556
0,9 P3 0,00049 0,00085 1,0520 1,0554 0,0000 0,1143
0,9 P 4_V 0,00017 0,00019 0,9040 0,9047 0,9351 0,0537
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Table 7  Variance, confidence intervals, coverage and lenght scenario 3 considering the different quantiles 
and estimators
Quantile Method Theoretical Variance Variance Lower bound Upper bound Coverage Length
0,1 P1 0,00036 0,00035 0,0995 0,1009 0,9360 0,0734
0,1 P 2_V 0,00010 0,00011 0,0811 0,0815 0,5360 0,0410
0,1 P3 0,00021 0,00021 0,0854 0,0862 0,7740 0,0571
0,1 P 4_V 0,00010 0,00011 0,0819 0,0824 0,5710 0,0417
0,2 P1 0,00059 0,00063 0,1988 0,2013 0,9550 0,0979
0,2 P 2_V 0,00018 0,00020 0,1505 0,1513 0,0700 0,0548
0,2 P3 0,00038 0,00041 0,1700 0,1716 0,6670 0,0793
0,2 P 4_V 0,00019 0,00021 0,1527 0,1535 0,1020 0,0560
0,25 P1 0,00073 0,00074 0,2516 0,2545 0,9540 0,1065
0,25 P 2_V 0,00023 0,00025 0,1931 0,1941 0,0380 0,0615
0,25 P3 0,00048 0,00050 0,2149 0,2168 0,5920 0,0871
0,25 P 4_V 0,00025 0,00026 0,1958 0,1968 0,0700 0,0624
0,3 P1 0,00083 0,00083 0,3007 0,3040 0,9470 0,1125
0,3 P 2_V 0,00028 0,00030 0,2373 0,2385 0,0420 0,0674
0,3 P3 0,00056 0,00056 0,2560 0,2582 0,5140 0,0926
0,3 P 4_V 0,00030 0,00030 0,2402 0,2414 0,0600 0,0677
0,4 P1 0,00095 0,00094 0,3998 0,4035 0,9440 0,1199
0,4 P 2_V 0,00034 0,00039 0,3212 0,3228 0,0230 0,0767
0,4 P3 0,00066 0,00067 0,3386 0,3412 0,3470 0,1016
0,4 P 4_V 0,00036 0,00038 0,3249 0,3263 0,0310 0,0759
0,5 P1 0,00095 0,00097 0,4986 0,5024 0,9570 0,1222
0,5 P 2_V 0,00041 0,00047 0,4071 0,4090 0,0130 0,0837
0,5 P3 0,00075 0,00075 0,4211 0,4240 0,1980 0,1073
0,5 P 4_V 0,00041 0,00044 0,4113 0,4130 0,0160 0,0818
0,6 P1 0,00091 0,00093 0,6068 0,6104 0,9580 0,1193
0,6 P 2_V 0,00046 0,00056 0,5083 0,5105 0,0210 0,0899
0,6 P3 0,00078 0,00080 0,5108 0,5139 0,0670 0,1107
0,6 P 4_V 0,00046 0,00049 0,5129 0,5148 0,0120 0,0859
0,7 P1 0,00081 0,00081 0,7045 0,7076 0,9440 0,1114
0,7 P 2_V 0,00046 0,00060 0,6002 0,6026 0,0120 0,0912
0,7 P3 0,00071 0,00071 0,5880 0,5908 0,0070 0,1045
0,7 P 4_V 0,00044 0,00048 0,6052 0,6071 0,0050 0,0848
0,75 P1 0,00073 0,00073 0,7495 0,7524 0,9360 0,1059
0,75 P 2_V 0,00045 0,00061 0,6491 0,6515 0,0210 0,0907
0,75 P3 0,00061 0,00062 0,6233 0,6257 0,0000 0,0976
0,75 P 4_V 0,00042 0,00044 0,6541 0,6558 0,0070 0,0820
0,8 P1 0,00059 0,00063 0,7983 0,8008 0,9470 0,0980
0,8 P 2_V 0,00043 0,00062 0,7046 0,7070 0,0360 0,0899
0,8 P3 0,00050 0,00052 0,6587 0,6608 0,0000 0,0897
0,8 P 4_V 0,00039 0,00040 0,7094 0,7110 0,0030 0,0784
0,9 P1 0,00035 0,00035 0,9001 0,9015 0,9380 0,0727
0,9 P 2_V 0,00038 0,00064 0,8342 0,8367 0,0900 0,0852
0,9 P3 0,00031 0,00032 0,7323 0,7335 0,0000 0,0698
0,9 P 4_V 0,00031 0,00030 0,8381 0,8393 0,0230 0,0675
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Table 8  Variance, confidence intervals, coverage and lenght scenario 4 considering the different quantiles 
and estimators
Quantile Method Theoretical variance Variance Lower bound Upper bound Coverage Length
0,1 P1 0,00047 0,00049 0,0988 0,1008 0,9386 0,0859
0,1 P 2_V 0,00013 0,00014 0,0967 0,0972 0,9305 0,0460
0,1 P3 0,00015 0,00018 0,0955 0,0962 0,9305 0,0518
0,1 P 4_V 0,00012 0,00013 0,0963 0,0968 0,9245 0,0443
0,2 P1 0,00080 0,00092 0,1976 0,2012 0,9507 0,1181
0,2 P 2_V 0,00022 0,00026 0,1945 0,1955 0,9416 0,0632
0,2 P3 0,00028 0,00036 0,1919 0,1933 0,9325 0,0737
0,2 P 4_V 0,00020 0,00024 0,1939 0,1948 0,9335 0,0604
0,25 P1 0,00097 0,00111 0,2502 0,2546 0,9537 0,1301
0,25 P 2_V 0,00027 0,00032 0,2464 0,2476 0,9486 0,0700
0,25 P3 0,00036 0,00045 0,2430 0,2447 0,9366 0,0830
0,25 P 4_V 0,00025 0,00029 0,2456 0,2468 0,9446 0,0666
0,3 P1 0,00108 0,00127 0,2988 0,3038 0,9617 0,1393
0,3 P 2_V 0,00031 0,00037 0,2944 0,2958 0,9476 0,0751
0,3 P3 0,00042 0,00053 0,2903 0,2924 0,9325 0,0904
0,3 P 4_V 0,00028 0,00033 0,2935 0,2948 0,9386 0,0711
0,4 P1 0,00117 0,00154 0,3974 0,4034 0,9758 0,1538
0,4 P 2_V 0,00035 0,00045 0,3911 0,3928 0,9486 0,0831
0,4 P3 0,00050 0,00070 0,3857 0,3884 0,9335 0,1032
0,4 P 4_V 0,00031 0,00040 0,3900 0,3915 0,9436 0,0780
0,5 P1 0,00119 0,00175 0,4954 0,5023 0,9819 0,1637
0,5 P 2_V 0,00035 0,00051 0,4880 0,4900 0,9527 0,0884
0,5 P3 0,00055 0,00084 0,4812 0,4845 0,9406 0,1133
0,5 P 4_V 0,00031 0,00044 0,4867 0,4885 0,9456 0,0820
0,6 P1 0,00099 0,00193 0,6043 0,6118 0,9960 0,1720
0,6 P 2_V 0,00033 0,00055 0,5949 0,5970 0,9627 0,0920
0,6 P3 0,00055 0,00098 0,5867 0,5906 0,9466 0,1225
0,6 P 4_V 0,00029 0,00046 0,5933 0,5951 0,9517 0,0840
0,7 P1 0,00080 0,00198 0,7015 0,7093 0,9980 0,1745
0,7 P 2_V 0,00029 0,00054 0,6929 0,6950 0,9688 0,0905
0,7 P3 0,00049 0,00097 0,6849 0,6887 0,9658 0,1218
0,7 P 4_V 0,00025 0,00044 0,6915 0,6932 0,9587 0,0818
0,75 P1 0,00074 0,00197 0,7469 0,7547 0,9980 0,1741
0,75 P 2_V 0,00027 0,00050 0,7400 0,7420 0,9748 0,0878
0,75 P3 0,00044 0,00089 0,7329 0,7364 0,9718 0,1167
0,75 P 4_V 0,00024 0,00041 0,7388 0,7404 0,9587 0,0790
0,8 P1 0,00065 0,00194 0,7965 0,8041 0,9980 0,1727
0,8 P 2_V 0,00024 0,00047 0,7907 0,7926 0,9819 0,0844
0,8 P3 0,00038 0,00081 0,7848 0,7880 0,9859 0,1114
0,8 P 4_V 0,00022 0,00037 0,7897 0,7911 0,9678 0,0752
0,9 P1 0,00037 0,00184 0,8974 0,9046 0,9990 0,1682
0,9 P 2_V 0,00014 0,00037 0,8962 0,8976 0,9960 0,0752
0,9 P3 0,00024 0,00064 0,8922 0,8947 0,9960 0,0992
0,9 P 4_V 0,00013 0,00027 0,8958 0,8968 0,9930 0,0644
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county of the company (100 counties in total). In summary, in the first scenario the 
probability of participating is a logistic function of the auxiliary variable taxes and 
we are in the case of an ignorable mechanism where all units are eligible. In the 
second case, the probability of participating depends on the SPAM variable, but the 
function is not continuous. In the third there is also a coverage bias since there are 
units that cannot be selected, and in the fourth we consider a mechanism that depends 
on the variable of interest, that is, we consider a non-ignorable mechanism.

For each sample, estimations of the distribution function F(t) were obtained by 
each of the estimators included in the simulation study, at 11 different points, namely 
the quantiles for α = 0.1, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.75, 0.8 and 0.9.

To compare the results we will use the average of the relative bias and the average 
of the relative mean squared error:

	

RB(t) = 1
B

B∑
b=1

F̂ (t)b − Fy(t)
Fy(t)

, MSE(t) = 1
B

B∑
b=1

(F̂ (t)b − Fy(t))2

AV RB(t) = 1
11

11∑
q=1

|RB(tq)|, AV MSE(t) = 1
11

11∑
q=1

|MSE(tq)|

In the first simulation study we are going to compare the first 4 proposed estimators 
(P1, P2, P3, P4), considering the Valliant method as a technique to obtain the weights 
from the propensities. We consider a sample size for the probability sample of 250, 
and in the case of stratified sampling nA = 300 by rounding up the sizes of the strata, 
and for the non-probability sample of nB=250, 500 and 1000 and we compare the 
values obtained from the bias and the mean square error obtaining the results that can 
be seen in the Table 1.

Looking at Table 1 we can see that in scenario 1 all the proposed estimators work 
very well, obtaining a small mean square error in all cases regardless of the sample 
size. If we look at the value of the bias, the best estimator is P1. In scenario 2 we 
see that the best estimator is the first one obtaining the lowest value of the mean 
square error P2 and P4. In scenario 3 we find that the first estimator is the best, both 
considering the bias and the mean square error. Finally, in scenario 4 we see that the 
best estimator is the first one obtaining the lowest values of the mean square error 
P2 and P4.

In the Appendix you can see the graphs of the 4 scenarios in which the boxplots 
of the 4 estimators proposed for each of the quantiles considered are represented. In 
these graphics we have represented with horizontal lines the α values to see what 
estimator of the 4 considered best fits. In scenario 1, we see how P1 fits very well in 
all cases, but has a greater dispersion in its values compared to the rest of the estima-
tors. Starting at the value α = 0.5, all the estimators fit very well, with lower vari-
ability for higher values of α. In scenario 2 we find that the estimators P1, P2, and P4 
approximate the values of α very well, however P3 greatly overestimates the value, 
also having greater variability in its values. In scenario 3 we find a large number of 
outliers, especially in the central values of α. In this case P1 is the only estimator that 
closely approximates the values of α, since the rest of the estimators underestimate 
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it. On scenario 4 we find that all estimators work very well, being P4 the one that 
presents a variability somewhat higher than the rest in all cases.

In the second simulation study we compare the 4 estimators, the same as in the 
previous case, but this time we also introduce auxiliary information and calculate 
the proposed calibration estimators (C1, C21 and C22). In the case of C21 proposed 
calibration estimator we are going to use the values of the median and the maximun 
and C22 we use the quartiles and the maximum. In this case we set the size of the 
non-probability sample at 500. The results can be seen in the Table 2.

In general, for all the scenarios considered, if we observe the values of the bias and 
the mean square error, we see that using calibration we obtain lower values, that is, 
we obtain more efficient estimators, as we expected.

In the third simulation study we are going to compare the different techniques 
for calculating weights through propensities, such as Valliant weights (V), Schonlau 
and Couper weights (SC), Lee weights (L), Valliant and Dever weights (VD), kernel 
weighting (KW) and tree-based inverse propensity weighting (TrIPW) using a gen-
eral linear model. The results of the bias and mean square error can be seen in the 
Table 3.

Regarding the different weights considered to carry out the estimates, we see that 
they all work quite well, obtaining a lower bias value in TrIPW in all scenarios. If we 
look at the value of the mean square error we see that in scenario 1 there are hardly 
any differences between all the weights considered. For scenario 2 the weight of 
Valliant is slightly lower, for scenario 3 the weight of TrIPW and for scenario 4 the 
weight of Valliant and Dever.

In the fourth simulation study we are going to compare various machine learning 
techniques, such as gradient boosting machine (gbm), neural networks (nnet) and 
k-nearest neighbors (kknn) in addition to the general linear model (glm) considering 
how techniques for calculating weights Valliant weights. The results of the bias and 
mean square error can be seen in the Table 4

If we focus on scenario 1 we see that machine learning techniques work slightly 
better than glm, the opposite occurs in scenario 2 where glm is slightly better than 
the machine learning techniques considered. For scenario 3 and 4, both the machine 
learning and glm techniques work quite well.

We also performed a simulation study with the purpose of analyzing the resam-
pling variance. In tables 5, 6, 7 and 8 we can see the theoretical variance obtained 
with the Monte Carlo method and the variance obtained through the bootstap method 
along with the resampling confidence intervals, coverage and length of these of each 
of the quantiles and proposed methods in each of the scenarios.

In view of the results in scenario 1, we see that the resampling variance is quite 
similar to the theoretical one. In the case of P1 we obtain a greater variance value, 
so the interval length and coverage are higher. From α = 0.5 we get a coverage of 
more than 80% for all estimators. On scenario 2, the theoretical variance is similar in 
all estimates except for P3 that we find a greater difference, even making the confi-
dence interval for α = 0.9 exceeds the value of 1. In this case, the coverage is quite 
good for the other three estimators for all values of α. In scenario 3, we obtain quite 
similar theoretical and resampling variance values, except in P2. The coverage in this 
case is good for the estimator P1 but for the rest it is quite low. Finally, in scenario 
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4, both variances are similar, finding the greatest differences in P1 when the value of 
α increases. In this scenario, we found very good coverage, obtaining values greater 
than 92% in all cases.

Finally, we carry out a simulation study in which we will calculate the percentile 
ratios in the different proposed estimators. We start with P90/P10 of which we can 
see the results in the Table 9 and in the Table 10 we can see the results of the ratio 
P80/P20

In view of the results for the case of the P90/10 ratio we can see that for all the 
proposed scenarios and estimators, including the calibration estimators, we obtain 
very similar bias values, the same occurs for the case of the mean square error. In the 
case of the P80/20 ratio we found very similar values throughout all the estimators 
proposed for the bias and the mean square error in each of the scenarios. If we com-
pare the scenarios we can see that in scenario 2 and 3 we obtain slightly lower values 
of the bias and the mean square error.

10  Conclusions

Probability methods are well established by statistical offices and researchers as one 
of the main tools for survey data collection, yet new data sources have emerged in 
recent years that could be considered to improve probability survey estimates because 
of their ease, speed and cost of data collection. Thus, the convenience of integrating 
data obtained through both sampling procedures arises.

Data integration is a new field of study with a wide range of prospective research 
subjects. In this paper we have addressed the problem of estimation of the distribu-
tion function based on both: a probability and a nonprobability sample, when the 
study variables are measured in both samples. As a result, sampling variance affects 
the probability sample, whereas selection bias affects the non-probability sample. 
Our goal is to efficiently combine both the non-probability and probability samples 
to estimate the distribution function. To do so, we have proposed several methods 
of estimating the distribution function based on different methodologies, which give 
rise to different estimators, and we have studied the properties that each estimator 
has so that they are genuine distribution functions and can thus be used as a basis for 
defining complex estimators such as quantiles and poverty measures.

Of the proposed estimators, the first one, is simpler as it does not have to calculate 
the propensities to carry out the estimation. This estimator performs quite well in all 
the simulations carried out. By introducing auxiliary variables and carrying out cali-
bration estimators, we see that in general they work better than if we do not take them 
into account. When comparing the different weights considered in the simulation 
study we see that the results of all of them are very similar, finding certain improve-
ments in the weight of Valliant and TrIPW. We also did not find many differences 
in terms of the machine learning technique used, but in certain scenarios they work 
better than general linear regression models.

Among the proposed estimators, the first always satisfies all the distribution func-
tion properties. The rest of the proposed estimators also satisfy the distribution func-
tion properties under mild conditions. This allows the estimators proposed in this 
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study to be directly used in quantile and percentile ratio estimation and therefore the 
techniques proposed here can be used in the estimation of the measurement of wage 
inequality. The simulation study shows that the proposed estimators are also a reli-
able alternative for estimating wage inequality combining the information from both 
the non-probability and probability samples.

This study has some limitations. The proposed data integration methods employ 
explicit assumptions for the outcome regression model or sample selection model. 
Failure to meet these assumptions can lead to significant problems of both bias and 
variability in the estimates. The ignorability assumption is the most crucial assump-
tion for the validity of the estimators based on PSA and SM adjustment although all 
other assumptions are also involved (Wu 2022). In practice, this assumption cannot 
be verified from sample data and non-probability sources often have very difficult 
participation mechanisms, so you should be very careful when using these methods 
if you are unsure of the behaviour of the selection mechanism.

Appendix

Fig. 1  Boxplots of the 4 estimators proposed for each of the quantiles considered in the scenario 1
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Fig. 2  Boxplots of the 4 estimators proposed for each of the quantiles considered in the scenario 2

 

Fig. 3  Boxplots of the 4 estimators proposed for each of the quantiles considered in the scenario 3
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Appendix

	● Machine Learning models used in the simulationsGradient Boosting Ma-
chine: works as an ensemble of weak classifiers. Boosting is an iterative pro-
cess that trains subsequent models giving more importance to the data for which 
previous models failed. This idea can be interpreted as an optimization problem 
Breiman (1997) and, therefore, it is suitable for the gradient descent algorithm 
Friedman (2001). This algorithm allows us to converge towards the minimum 
value of a function (usually a loss function) by an iterative process. 

	 π̂vi = vT J (xi) , i ∈ sv

	– J (xi) stands for a matrix of terminal nodes of m decision trees used for the 
boosting.

	– v is a vector representing the weight of each tree.

	● k-Nearest Neighbors: “one of the most fundamental and simple classification 
methods” Peterson (2009). The algorithm doesn’t need training, as simply aver-
ages the value of the target variable for the k individuals closer to the estimated 
individual (its k nearest neighbors), given a certain distance dependent on the 
covariates. 

Fig. 4  Boxplots of the 4 estimators proposed for each of the quantiles considered in the scenario 4
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π̂vi =

∑

j∈sk
i

yj

k
, i ∈ sv

	– sk
i =

{
j ∈ s/d(xi, xj) ≤ d(xi, x(k))

}
 and x(1), . . . , x(n−1) are, respectively, 

the closest and the furthest individual to xi according to the distance d. 
Choosing the right k is important for the proper performance of the algorithm.

	● Neural networks: the inputs follow an iterative process through one or more 
hidden layers until reaching the last layer, which produces the final output. The 
weights are initialized randomly and then optimized via gradient descent with the 
backpropagation algorithm Rumelhart et al. (1986) which looks for the minimi-
zation of a function, usually of a lost function. 

	
π̂vi = g

(
L∑

i=1
vifi(·) + b

)

	– g and fi stand for the activation functions
	– vi are the weights of the i-th neuron of the hidden layer
	– b is the activation threshold
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