
Pattern Recognition 161 (2025) 111321

A
0

Contents lists available at ScienceDirect

Pattern Recognition

journal homepage: www.elsevier.com/locate/pr

RSPCA: Random Sample Partition and Clustering Approximation for
ensemble learning of big data
Mohammad Sultan Mahmud a , Hua Zheng b , Diego Garcia-Gil c , Salvador García d ,
Joshua Zhexue Huang a ,∗

a Big Data Institute, College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China
b College of Software and Artificial Intelligence, Software Engineering Institute of Guangzhou, Guangzhou 510990, China
c Department of Software Engineering, Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of
Granada, 18071, Granada, Spain
d Department of Computer Science and Artificial Intelligence, Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of
Granada, 18071, Granada, Spain

A R T I C L E I N F O

Keywords:
Clustering approximation
Ensemble clustering
Incremental clustering
Ensemble learning

A B S T R A C T

Large-scale data clustering needs an approximate approach for improving computation efficiency and data
scalability. In this paper, we propose a novel method for ensemble clustering of large-scale datasets that
uses the Random Sample Partition and Clustering Approximation (RSPCA) to tackle the problems of big data
computing in cluster analysis. In the RSPCA computing framework, a big dataset is first partitioned into a
set of disjoint random samples, called RSP data blocks that remain distributions consistent with that of the
original big dataset. In ensemble clustering, a few RSP data blocks are randomly selected, and a clustering
operation is performed independently on each data block to generate the clustering result of the data block.
All clustering results of selected data blocks are aggregated to the ensemble result as an approximate result
of the entire big dataset. To improve the robustness of the ensemble result, the ensemble clustering process
can be conducted incrementally using multiple batches of selected RSP data blocks. To improve computation
efficiency, we use the I-niceDP algorithm to automatically find the number of clusters in RSP data blocks
and the 𝑘-means algorithm to determine more accurate cluster centroids in RSP data blocks as inputs to the
ensemble process. Spectral and correlation clustering methods are used as the consensus functions to handle
irregular clusters. Comprehensive experiment results on both real and synthetic datasets demonstrate that the
ensemble of clustering results on a few RSP data blocks is sufficient for a good global discovery of the entire
big dataset, and the new approach is computationally efficient and scalable to big data.
1. Introduction

1.1. Motivation

Ensemble clustering is aimed at an ensemble result that is more
robust and better than the single result by a clustering algorithm.
However, when a big dataset is encountered, ensemble clustering faces
computational challenges because it is impractical, if not impossible,
to cluster a big dataset multiple times to generate component results
before aggregating them into the ensemble result. Scalability to big
data is another computation problem in the current ensemble clustering
methods. In this paper, we propose a novel approach to solving the
computation problems of ensemble clustering of big datasets.

∗ Corresponding author.
E-mail addresses: sultan@szu.edu.cn (M.S. Mahmud), zhengh@mail.seig.edu.cn (H. Zheng), djgarcia@ugr.es (D. Garcia-Gil), salvagl@decsai.ugr.es

(S. García), zx.huang@szu.edu.cn (J.Z. Huang).

Clustering seeks to group or cluster data in a certain number of
clusters, which is the most important parameter in many clustering
algorithms like 𝑘-means. In unlabeled data, this parameter is unknown;
therefore, users often assume it, but an incorrect guess might lead
to inaccurate clustering findings. In practice, many methods, such as
elbow, gap statistic, and silhouette, measure the quality of several clus-
tering results with different numbers of clusters to identify the inherent
number of clusters in data. They are computationally expensive to use
on a big dataset because multiple clustering results must be generated.
Therefore, finding the number of clusters in data presents another
problem in ensemble clustering of a big dataset using some existing
algorithms [1,2].
vailable online 31 December 2024
031-3203/© 2025 Elsevier Ltd. All rights are reserved, including those for text and

https://doi.org/10.1016/j.patcog.2024.111321
Received 14 June 2024; Received in revised form 11 October 2024; Accepted 24 D
data mining, AI training, and similar technologies.

ecember 2024

https://www.elsevier.com/locate/pr
https://www.elsevier.com/locate/pr
https://orcid.org/0000-0002-5795-787X
https://orcid.org/0000-0001-7799-1912
https://orcid.org/0000-0002-1927-8673
https://orcid.org/0000-0003-4494-7565
https://orcid.org/0000-0002-6797-2571
mailto:sultan@szu.edu.cn
mailto:zhengh@mail.seig.edu.cn
mailto:djgarcia@ugr.es
mailto:salvagl@decsai.ugr.es
mailto:zx.huang@szu.edu.cn
https://doi.org/10.1016/j.patcog.2024.111321
https://doi.org/10.1016/j.patcog.2024.111321
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2024.111321&domain=pdf


Pattern Recognition 161 (2025) 111321M.S. Mahmud et al.

n
c
t
s
i
d
n
a
h
c
o

s

a
t
c
c
p

s
s
r
a
d
a
f

d

r

i

t

t

d
t

MapReduce programming model for distributed computing has at-
tracted attention in the parallel and distributed computing commu-
ities. Using MapReduce programming model, clustering algorithms
an be rewritten in MapReduce and executed in a parallel and dis-
ributed fashion to cluster a big dataset, but repeatedly clustering the
ame big dataset to produce multiple component clustering results
s still computationally expensive. Using random samples of a big
ataset can improve the computation efficiency in generating compo-
ent results, but it requires more complicated aggregation strategies
nd mechanisms to ensemble the component results. On the other
and, developing distributed clustering algorithms in MapReduce is
hallenging due to the difficulties of programming and performance
ptimization [3,4].

To sum up, the challenges of ensemble clustering of big data can be
tated as follows:

• Approximate and scalable clustering methods: Traditional cluster-
ing ensemble methods integrate the outputs from multiple models
or algorithms on the same dataset to obtain a robust result, but
they are only appropriate for small or moderate-sized datasets.
These methods cannot be used on big datasets because we cannot
cluster the same big dataset multiple times in order to get the
component results. Since computing on the entire big dataset is
impractical, approximate clustering often becomes essential [1,
5]. Therefore, it is necessary to develop approximate ensemble
clustering methods that are scalable to big data.

• High-performance sampling: Random sampling is widely used as
a cost-effective method in big data analysis. The dilemma is that
a small sample is not able to generate an accurate estimation,
while a large sample itself results in computing challenges. In
this paradoxical case, we can solve this problem by drawing
multiple random samples from the big dataset and aggregating
the outcomes of those samples into the final ensemble result
successfully and rapidly [6].

• Consensus function: Combining the results of different random
samples is essential for ensemble clustering of big datasets. The
traditional consensus functions are no longer applicable to ensem-
ble the component results from disjoint samples because there
is no common object identification reference. Combining dif-
ferent clusterings of disjoint data subsets is a new problem of
consensus functions. Indeed, different clusterings of data subsets
may produce incompatible data labelings, resulting in intractable
correspondence issues, particularly if the numbers of clusters
are different. Then, how can the label correspondence issue be
resolved?

Therefore, data partitioning, sampling, and approximate computing
are all important issues in big data clustering, although these can be in-
dependent of each other [5]. We contend that these fundamental issues
re more crucial than ever in the era of big data and sophisticated clus-
ering. As a result, big data clustering becomes a challenging task that
alls for research on new approaches and solutions, including ensemble
lustering, scalable and approximate computing, and distributed and
arallel processing.

In response to this call, we propose a new approach of ensemble
clustering for big data in this paper with a goal that can be stated
as follows: By representing a big dataset as a set of ready-to-use random
amples, sequential clustering algorithms can be used to cluster multiple
amples independently (or in parallel) to generate component results, and
eliable approximate and accurate clustering results can be obtained from
n ensemble of multiple sample outcomes without computing the entire
ataset or developing complex parallel clustering algorithms. This clustering
pproximation can be incrementally improved by appending new outputs
2

rom newly analyzed random samples. h
1.2. Contributions

The computational bottleneck of MapReduce distributed model is
ata communication among nodes that slows down the execution of

iterative algorithms. In this paper, we adopt a different computing
framework to execute serial clustering algorithms independently on
disjoint random data subsets. This is a non-MapReduce paradigm that
benefits big data clustering with the ability to run serial clustering algo-
rithms directly and independently on multiple random samples in distributed
computing and ensemble the outcomes of random samples efficiently, so as
to extend data scalability. Our main contributions of this work are as
follows:

• A novel approximate clustering ensemble method, called RSPCA
standing for Random Sample Partition and Clustering Approxi-
mation, is proposed for ensemble clustering of big datasets. The
proposed method does not assume the number of clusters in ad-
vance; instead, it is discovered automatically from the underlying
multiple random samples, i.e., RSP data blocks.

• In RSPCA, to deal with irregular clusters, we adopt two schemes,
spectral clustering and correlation clustering, to ensemble the
centroids of clusters in the RSP data blocks. Because different
numbers of clusters may be identified from different RSP data
blocks, RSPCA resolves the incompatible numbers of clusters in
the clustering ensemble.

• Since RSPCA allows clustering RSP data blocks independently
using a serial clustering algorithm, we propose to use batch com-
ponent results to generate the ensemble result incrementally so as
to improve the robustness of the ensemble result and computation
efficiency as well as data scalability of the RSPCA method.

• Extensive experiments were conducted on both synthetic and real-
world datasets to demonstrate the effectiveness and stability of
the RSPCA approach and compare them with several state-of-the-
art methods. These experiment results show that the RSPCA can
approximate the true number of clusters and is computationally
efficient for large-scale datasets.

The remaining paper is organized as follows: Section 2 briefly
eviews the distributed and large-scale data clustering. Section 3 first

introduces the major notations and then presents some preliminaries
used in this research. Section 4 describes the proposed RSPCA frame-
work. The experimental results are discussed in Section 5. Finally,
Section 6 concludes this work and states some future perspectives.

2. Related work

The fundamental task of ensemble clustering, which has been stud-
ed extensively in the past decades [7,8], is to achieve enhanced

and robust clustering performance. Typically, clustering ensembles are
produced from component clustering results of the same dataset, us-
ing either a single clustering algorithm with varied input parame-
ters or different algorithms. They are only appropriate for small or
moderate-sized datasets. Due to the computational overhead of produc-
ing multiple component clustering results from a big dataset, traditional
clustering ensemble algorithms are not scalable to big data [2,9]. In
fact, a key operation to big data clustering ensembles is the aggregation
of different clusterings of component datasets. The component clus-
erings from disjoint random samples may result in incompatible data

labels, leading to complex correspondence problems, especially when
he numbers of clusters in different samples are not same. Therefore,

more intricate ensemble strategies and mechanisms are required [10].
As the size of datasets increases, traditional centralized clustering

algorithms struggle to process them efficiently. To tackle this issue,
istributed versions of traditional clustering algorithms have been in-
roduced to support big data solutions. For example, the distributed
ierarchical clustering algorithm, PACk, creates the local cluster models



Pattern Recognition 161 (2025) 111321M.S. Mahmud et al.

r

a

A

l

t
i
d
d
e
d

p

e

f

t

r
H
m
t
s
a

e
s

and then combines them to form the global cluster model. The well-
known centroid-based clustering method, 𝑘-means, is recognized for
its high efficiency and has been adopted in various MapReduce-based
distributed versions to facilitate large-scale clustering tasks [11,12].
Additionally, MLib of Spark offers a distributed 𝑘-means++ [13] im-
plementation. However, 𝑘-means only need to input the number of
clusters, and the algorithm is highly interpretable. Furthermore, a
distributed dual averaging-based data clustering [14] approach has
been proposed to handle large-scale clustering tasks. However, it is
worth noting that MapReduce computing framework is not efficient
in executing iterative algorithms so it is not suitable for big data as
it requires generating multiple clusterings to assess the quality of the
results with different numbers of clusters.

To analyze big data using density-peak clustering (DPC), significant
esearch has focused on developing distributed DPC algorithms. Vari-

ous distributed DPC implementations have been developed, including
FDDP [15] and Fast LDP-MST [16]. However, current distributed DPC
algorithms still have the problem of (𝑁2) computational complexity,
s they naively compute pair-wise distances to determine the distance

for each point and local density. It is important to note that the
distance measure is more costly than other tasks, such as data parti-
tioning. Several variant DPC algorithms, including DCDP-ASC [17] and

DPC-KNN [18], have been proposed due to the effectiveness of the
DPC algorithm. The high computational complexity limits their use in
arge-scale scenarios.

Automatic clustering algorithms are attracting more attention from
he academic community, e.g., density-based and data-depth cluster-
ng. Density-based algorithms, such as MR-DBSCAN [19], can cluster
atasets with convex shapes and skewed data, but it is difficult to
etermine the density threshold. The depth difference [20] method
stimates the depth within and between clusters and uses the depth
ifference to finalize the optimal value of 𝐾. However, it is difficult

to identify clustering centroids correctly in datasets with complex
decision graphs. A bootstrap method [21] was proposed to estimate the
number of clusters in big datasets, which minimizes the corresponding
estimated clustering instability. On the other hand, the kluster [22]
rocedure takes randomly selected clusters as the initial seeds to de-

termine the final number of clusters in a dataset in an iterative manner
that confirms the most frequent mean of the resulting clusters from the
iterations to be the optimal number of clusters.

Spectral clustering [23] is a flexible clustering procedure that can
produce high-quality clusterings on small datasets but has limited
applicability to large-scale problems because of its high computational
complexity of (𝑁3) with 𝑁 being the number of data points. Further
vidence for spectral clustering comes from substantial theoretical lit-

erature [24]. Correlation clustering [25] is able to identify the number
of clusters automatically. Furthermore, its ‘‘model selection’’ property
can be theoretically justified with a probabilistic interpretation, and
theoretical analysis has been conducted for correlation clustering with
derived error bounds. Since it was found that the correlation clustering
problem is NP-complete [26], most of the work has been focused on
inding an approximation solution [27].

3. Preliminaries

This section first presents the major notations and then paves the
foundation of the proposed RSPCA method by introducing clustering
approximations, random sample partitioning, and the density-peak-
based I-niceDP algorithm.

3.1. Notations

Table 1 summarizes the main notations used in this paper.
The aim of RSPCA is to generate clustering ensembles from large-

scale datasets. In this process, a critical step is to determine the optimal
number of clusters for big data clustering with a particular emphasis
on computational feasibility and efficiency, which will be the primary
3

focus of the forthcoming sections.
Table 1
Frequently used notations in this paper.

Notation Description

D A big dataset;
𝑁 , Number of objects and dimensions in D, respectively;
RSP Random sample partitioning;
𝑛 RSP data block size;
𝑚 Total number of RSP data blocks;
𝑒𝑠 Ensemble data size;
P RSP operation on D;
S Sampling operation;
L Local clustering model;
E Ensemble learning;
A An approximate clustering result;
𝑏 Randomly selected a subset of data blocks, (𝑏 < 𝑚);
𝐷𝑖 𝑖th RSP data block;
𝐶𝑖 , 𝑐𝑖 𝑖th cluster and centroid of 𝐶𝑖, respectively;
𝐾 Number of clusters;
𝑂𝑖 An observation point;
GMM Gamma mixture model;
𝛱⋆ Discovered set of cluster centroids of 𝑏 samples;
𝑛 Number of objects in 𝛱⋆;
𝐒 A similarity matrix;
𝐀 An affinity matrix;
𝐃 A degree matrix;
𝐋 A Laplacian matrix;
𝐏 A probability;
SC Spectral clustering;
CC Correlation clustering;

3.2. Approximate clustering of large-scale data

Assume a dataset D is too large and cannot be held in memory. We
cannot run a clustering function on D to estimate the number of clus-
ters. If we could obtain the number of clusters of the entire dataset D by
analyzing a subset to satisfy the limited available computing resources,
we would be able to reduce computational costs and accomplish the
ask of big data clustering.

We know that the precondition for approximate analysis of big
data with a subset is that the distribution of data in the subset is
equired to be similar to the distribution of the original full dataset.
owever, the data subsets generated by the common data partitioning
ethods, i.e., range and hash partitioning, do not necessarily satisfy

he precondition since they do not consider the properties of the
tatistical distribution in the data. In fact, the records of a big dataset
re rarely arranged randomly [5]. However, statistical and inferen-

tial thinking requires random samples for approximate clustering of
large-scale datasets [6].

For approximately clustering of a big dataset, random sampling is a
popular and cost-effective method. However, sampling techniques for
big data clustering are not always feasible because of the sampling
efficiency issue and the poor match between the sampling design. A
promising solution is block-level sampling, which is considerably more
fficient than record-level sampling. Another issue is that we can avoid
ampling bias by using multiple random samples of a large dataset in

a clustering ensemble. The RSPCA adapts an incremental approximate
computing approach to estimate the number of clusters in a large
dataset.

3.3. RSP data model

Suppose given a big dataset D, we want to analyze D, but it is too
big to be analyzed due to the limitations of the computing resources. A
random sample partitioning (RSP) operation on D is applied to produce
random samples {𝐷1, 𝐷2,… , 𝐷𝑚} that hold
⎧

⎪

⎪

⎨

⎪

⎪

𝐷𝑖 ≠ ∅,
𝐷𝑖 ∩𝐷𝑗 = ∅,
⋃𝑚

𝑖=1 𝐷𝑖 = D,
(1)
⎩

𝐹 (𝐷𝑖) ≈ 𝐹 (D), 1 ≤ 𝑖 ≤ 𝑚,



Pattern Recognition 161 (2025) 111321M.S. Mahmud et al.

t

d
a

b

d
T

o

r
n
q
e
r
s

d
G
f
c
a

i

D

n
T

d
b

p
o

l
t
o
b

o
A
R
p

c
m
p
i
a
t
a

l
p

Algorithm 1: Random Sample Partitioning (RSP).
Input : D: A big dataset.

𝑛: RSP sample size.
1 begin
2 𝑁 = getNumberOfObjects(D); /* estimate the number

of objects in the dataset */
3 𝑚 = getNumberOfPartitions(𝑁 , 𝑛); /* estimate the

number of total RSP data blocks */
4 𝑟𝑎𝑛𝑑 = generateRandomNumbers(𝑁);
5 D ← 𝑟𝑎𝑛𝑑.append(D);
6 𝐽 = getOrder(D); /* ascending or descending order,

sorted by 𝑟𝑎𝑛𝑑 */
7 for 𝑖 = 1 to m do
8 𝐷𝑖 = getRS(𝐽 , 𝑚); /* sequentially cut from sorted

data */

Output : {𝐷1, 𝐷2, ..., 𝐷𝑚}, a set of random sample of D.

where 𝐹 (.) is the cumulative distribution function. The first three rela-
tions define a data partition of D, whereas the last relation categorizes
a random sample partition.

In the RSP data model, all RSP data blocks {𝐷1, 𝐷2,… , 𝐷𝑚} satisfy
he definition of a random sample1 of D and are ready-to-use. To create

multiple random samples, we can simply randomly select a few RSP
ata blocks from the RSP data model without repeatedly going through
ll the records in D. Therefore, the sampling process for multiple

random samples has been significantly improved. Since 𝐷𝑖 preserves
statistical properties as D does and is decidedly smaller than D in size,
it can be processed and analyzed efficiently using existing sequential as
well as parallel algorithms.

In this work, we adopt the RSP data model [28] to represent a
ig dataset as a set of ready-to-use random sample data blocks, so the

block-level sampling method is used to select multiple random samples
efficiently. The RSP data block generation is explained in Algorithm 1.
The inputs of the algorithm are a big dataset D and the size of each RSP
ata block 𝑛. The output is a set of 𝑚 RSP data blocks, where 𝑚 = 𝑁∕𝑛.
his process is carried out as follows:

Lines 2–3 compute the total number of objects 𝑁 and the number
f RSP blocks 𝑚, respectively. Line 4 generates a series of 𝑁 unique

random numbers with a uniform distribution. Line 5 appends the
andom numbers as one additional ID in D. Line 6 sorts the random
umber ID in order to randomize the D records. Lines 7–8 cuts the se-
uence of randomized records of D into 𝑚 sub-sequences, consecutively,
ach subsequence being an RSP data block. We state that the sequence
epresents the sequence of the sorted random numbers, the records in each
ubsequence are unrelated and the order of data records in all subsequences
are completely random.

3.4. Identifying the number of clusters and initial centroids in RSP data
blocks

We consider that natural clusters in data have a single modal
istribution. A dataset with multiple clusters can be modeled with
aussian or Gamma distributions. In these distributions, the significant

eature is density peaks, each representing the modal of a cluster. We
onsider the number of density peaks to be the number of clusters,
nd peaks as cluster locations. Since the number of clusters in data

is an input parameter, we need to know or guess in order to run the
clustering algorithm. The density-peak-based I-niceDP algorithm [29]
s suitable for identifying the number of clusters modeled as Gamma

1 Let 𝐷 is a subset of big dataset D, i.e., 𝐷 ⊂ D. 𝐷 is a random sample of
if 𝐹 (𝐷) ≈ 𝐹 (D), where 𝐹 (.) is the cumulative distribution function.
4

distribution. In RSPCA, we used I-niceDP as an operator to find the
umber of clusters and initial cluster centroids from RSP data blocks.
he procedure of I-niceDP is outlined in Algorithm 2. The input to the

algorithm is RSP data blocks, and the output is the number of clusters
and centroids discovered in the RSP data blocks. Each RSP data block
is calculated as follows:

Line 3 sets an observation point as a reference to calculate the
istance distribution of objects. In line 4, the distance vector originates
y calculating the distances between the observation point and the data

points of an RSP sample. Line 5 employs the kernel density estimation
(KDE) method to determine the maximum number of GMM components
max (i.e., the number of clusters), where the probable number of
components is regulated by two thresholds, 𝛥1 and 𝛥2. In lines 6–9,
a set of GMMs with a number of components less than or equal to
the maximal number max are computed from the distance vector,
and each GMM model is constructed using the EM algorithm. Lines
10–12 determine which model is the best fit using the AICc criterion.
Lines 13–15 use the density peaks (DP) mechanism to identify the high-
density data points for each GMM component, and these high-density
data points are used as the initial cluster centroids. Finally, lines 16–17
allocate the initial cluster centroids to the 𝑘-means scheme to cluster
the input data and optimize the discovered cluster centroids as the
outcome of the random sample.

Generally, I-niceDP combines the findings of multiple observation
oints to obtain a correct estimation of the distance distributions of
bjects, allowing more accurate detection of a large number of clusters.

Like other density-peak-based clustering algorithms, I-niceDP considers
the number of peaks to be the number of clusters, and peaks as cluster
ocations in this way. The advantage of multiple observation points is
hat if a cluster is missed by one observation point, it can be found by
ther observation points. However, calculating the Euclidean distances
etween the multiple observation points and data points, albeit at an

increased computing cost. Ideally, in RSPCA, we deal with a subset
of a big dataset, and each RSP data block produces a local clustering
utcome using the I-niceDP scheme with a single observation point.
fterwards, a collaborative result is dynamically formed from multiple
SP data block outcomes. Collectively, multiple RSP data blocks can
ortray multiple views (a set of RSP data blocks can be considered

as multi-observations) of a dataset simultaneously, and thus it can
apture the latent knowledge within the data in a more comprehensive
anner. Our experiments have demonstrated that single observation
oint-based I-niceDP is capable of determining the high-density areas
n the original data space. We consider that each RSP data block is
 single-observation process to produce local clustering insights, and
he collaborative step is to share information about their memberships
mong different observation views of RSP data blocks.

4. Clustering approximation with ensemble of multiple samples

In this section, we first formulate the clustering problem for very
arge-scale datasets by making the memory and time constraints ex-
licit. Then, we present our proposed clustering ensemble solution,

RSPCA, to approximate big data clustering in detail.

4.1. Problem definition

Assume that D is a big dataset of 𝑁 records and cannot be analyzed
efficiently on a single machine directly. To enable clustering analysis,
D is divided into 𝑚 non-overlapping RSP data blocks of equal size (each
with 𝑛 ≪ 𝑁 records), where the following relation holds:
𝑚
⋃

𝑖=1
𝐷𝑖 = D and 𝐷𝑖 ∩𝐷𝑗 = ∅, for ∀𝑖 ≠ 𝑗 and 𝑖, 𝑗 ∈ {1, 2,… , 𝑚}. (2)

Now, we assume that a randomly selected set of RSP data blocks
fit into memory and can be analyzed independently using a sequential
clustering algorithm (the computation can be conducted in a parallel



Pattern Recognition 161 (2025) 111321M.S. Mahmud et al.

d
t

t

𝑏

h
d
r
s
b

e
s
p

Algorithm 2: I-niceDP.
Input : A set of RSP data blocks, {𝐷1, 𝐷2, ..., 𝐷𝑏}.

1 begin
2 forall 𝐷𝑏

𝑖=1 do
3 Generate a random observation point, 𝑂;
4 Calculate the Euclidean distance vector 𝑋𝑂 between the data points of 𝐷𝑖 and 𝑂;
5 Estimate the number of GMM components max using the KDE;
6 for 𝑀 = max − 𝛥1;𝑀 ≤ max + 𝛥2;𝑀 + + do
7 Model 𝑋𝑂 to GMM(𝑂 , 𝑀);
8 Apply the EM algorithm to solve GMM(𝑂 , 𝑀);
9 Compute AICc(𝑀) of GMM(𝑂 , 𝑀);

10 Choose the best-fitted model GMM(𝑂) with the minimum AICc;
11 Determine the GMM(𝑂) as the final model GMM𝑓 and 𝐾 as the number of clusters;
12 Obtain the IDs of data points for each GMM component of the GMM𝑓 ;
13 Compute the local density of each data point in the 𝑘-th GMM component;
14 Select the data points with the top 50% local density scores;
15 Find the high-density points in the 𝑘-th GMM component via the DP mechanism;
16 Apply the 𝑘-means with assigning 𝐾 and the initial cluster centroids;
17 Determine the final clusters number 𝐾 and cluster centroids;

Output : 𝑏 sets of cluster centroids {𝑐𝑖1, 𝑐𝑖2, ..., 𝑐𝑖𝑘𝑖}, 𝑖 = 1, 2, ..., 𝑏.
s

o

s
a
m

d

r

t

and distributed manner). In practice, we can randomly select a few RSP
ata blocks {𝐷1, 𝐷2,… , 𝐷𝑏},where 𝑏 < 𝑚, as random samples and use
hem for approximate ensemble clustering as the estimated result of D.

In general, a big dataset is unknown and the knowledge of the number
of clusters in the dataset is not available. However, we can estimate
he number of clusters and centroids of a dataset. Assume that 𝑏 data

blocks provide 𝑏 sets of cluster centroids, formulated as follows:

𝜋(𝐷𝑖) ← 𝛷(𝐷𝑖), 𝜋(𝐷𝑖) = (𝑘𝑖, 𝐶𝑖), (3)

where 𝛷(.) is a clustering function on 𝐷𝑖 and returns 𝜋(𝐷𝑖) with two
values. The first term 𝑘𝑖 is the number of clusters in 𝐷𝑖, and the second
term, 𝐶𝑖 = {𝑐𝑖1 , 𝑐𝑖2 ,… , 𝑐𝑖𝑘}, is the set of centroids of the 𝑘 clusters. The

sets of results are represented as

𝛱⋆ = {𝜋(𝐷1), 𝜋(𝐷2),… , 𝜋(𝐷𝑏)}. (4)

The set 𝛱⋆ is the input to a consensus function to compute the
ensemble result by aggregating the 𝑏 sets of results. A key challenge is
ow to combine the 𝑏 sets of results that are generated from disjoint
ata blocks into an ensemble. There is no common object IDs for
eference, as used in the classical ensemble clustering process. To
olve this problem, we take two scenarios into consideration, discussed
elow.

4.2. The proposed RSPCA approach

In this section, we present RSPCA, a novel approximate clustering
nsemble method that makes use of the recent techniques of random
ample partition and clustering approximation for big data. The com-
utation framework of RSPCA is depicted in Fig. 1. We summarize the

basic steps in the following:

1. First, the random sample partitioning (RSP) operation P is
performed to generate a set of random samples (i.e., RSP data
blocks) for a given big dataset D.

2. Then, using block-level sampling operation S , we randomly
select a subset of RSP data blocks to find the number of clusters
and centroids. Each RSP data block provides a local model L of
clustering.

3. Use the outcomes of selected random samples and ensemble
operation E to get a global approximation A .

4. Finally, the 𝑘-means algorithm is used to cluster all RSP data
blocks and save the output with cluster IDs.
5

d

Algorithm 3 is an illustration of the RSPCA’s computation process
and is executed as follows: The inputs are a big dataset (D) and the
RSP sample size (𝑛). First, in line 2, the RSP(.) operator converts D
into a set of RSP data blocks. Line 3 randomly selects a subset of RSP
blocks. In lines 4–6, I-niceDP(.) and 𝑘-means(.) operators compute each
selected data block independently and estimate the local number of
clusters and centroids. Line 7 obtains the meta-data of the selected RSP
data blocks. Line 8 uses ensemble operators, spectral clustering SC or
correlation clustering CC, to integrate the centroids into the final set of
the approximate number of clusters of D. Lines 9–10 use the 𝑘-means
scheme to cluster all the data blocks. Finally, the algorithm outputs the
et of centroids and the clustering results.

We can improve the clustering results gradually by combining new
utputs from other random samples until a stable result is obtained

or all samples are used up. The size of RSP data blocks is decidedly
maller than the entire big dataset, so it can be efficiently processed on
 traditional or virtual machine as well as in a parallel and distributed
anner.

The key steps of the proposed RSPCA method are explained below.

4.2.1. Generating RSP data model and block-level sampling
Random sample partitioning (RSP) is the basis of this work. For big

ata analysis, we represent a big dataset as a set of disjoint random
sample data blocks so that each is used as a random sample of the big
dataset. Therefore, for the clustering approximation of a big dataset, we
convert it to a set of ready-to-use RSP data blocks for efficient random
sample selection as

{𝐷1, 𝐷2,… , 𝐷𝑚} = 𝐑𝐒𝐏(D), (5)

where 𝐑𝐒𝐏(.) is the conversion function to an RSP data model.
Then, using block-level sampling, a subset of RSP data blocks is

andomly selected as follows

{𝐷1, 𝐷2,… , 𝐷𝑏} = 𝐒𝐚𝐦𝐩𝐥𝐢𝐧𝐠(D, 𝑏), 𝑏 < 𝑚, (6)

where 𝑏 is the user-specified number of RSP data blocks.

4.2.2. Finding the number of clusters and centroids in RSP data blocks
In this step, we estimate the number of clusters and centroids of

selected 𝑏 RSP data blocks. For each RSP data block, we determine
he number of clusters and initial centroids independently using the
ensity-peak-based I-niceDP algorithm. The high-density peaks for the



Pattern Recognition 161 (2025) 111321M.S. Mahmud et al.
Fig. 1. The computation framework of RSPCA.
Algorithm 3: RSPCA.
Input : D: A big dataset.

𝑛: Sample size.
1 begin
2 {𝐷1, 𝐷2, ..., 𝐷𝑚} ← RSP(D, 𝑛); /* generates the RSP data

model of D */
3 {𝐷1, 𝐷2, ..., 𝐷𝑏} ⊂ {𝐷1, 𝐷2, ..., 𝐷𝑚}; /* randomly select a

subset of RSP data blocks */
4 forall 𝐷𝑖 ∈ {𝐷1, 𝐷2, ..., 𝐷𝑏} do
5 (𝑘𝑖, 𝐶𝑖) = I-niceDP(𝐷𝑖); /* finding the initial

number of clusters and centroids */
6 𝐶∗

𝑖 = 𝑘-means(𝑘𝑖, 𝐷𝑖, 𝐶𝑖); /* refining the initial
centroids */

7 𝛱⋆ = 𝐶1 ∪ 𝐶2 ∪ ... ∪ 𝐶𝑏; /* collect all the centroids
of selected RSP data blocks */

8 𝐶⋆ = SC(𝛱⋆) or CC(𝛱⋆); /* integrate the centroids
into the final estimate 𝐾 */

9 forall 𝐷𝑖 do
10 D⋆ = 𝑘-means(𝐾𝑖, 𝐷𝑖); /* use 𝑘-means to cluster

all RSP data blocks */

Output : 𝐾: The number of clusters and D⋆ ∶ Clustering result.

candidate cluster centroids are identified via the I-niceDP operation as
follows

(𝑘𝑖, 𝐶 ′
𝑖 ) = 𝐈-𝐧𝐢𝐜𝐞𝐃𝐏(𝐷𝑖), (7)

where 𝐈-𝐧𝐢𝐜𝐞𝐃𝐏(.) is an operator on RSP data block 𝐷𝑖, and (𝑘𝑖, 𝐶 ′
𝑖 ) are

the two return values of the function. The first term is the number of
clusters in 𝐷𝑖, and the second term, 𝐶 ′

𝑖 = {𝑐′1𝑖, 𝑐′2𝑖,… , 𝑐′𝑘𝑖}, is the set of
centroids of the 𝑘 clusters.

I-niceDP provides preliminary insights into clusters, and the 𝑘-
means algorithm refines them. The output of I-niceDP is used as initial
centroids in the 𝑘-means clustering scheme to determine the precise
centroids for each RSP data block locally, as follows

𝐶𝑖 = 𝑘-𝐦𝐞𝐚𝐧𝐬(𝑘𝑖, 𝐶 ′
𝑖 , 𝐷𝑖), 1 ≤ 𝑖 ≤ 𝑏, (8)

where 𝐶𝑖 = {𝑐1𝑖, 𝑐2𝑖,… , 𝑐𝑘𝑖} is the set of the refined centroids of 𝑘𝑖
clusters in 𝐷𝑖.

Applying the two operators I-niceDP and 𝑘-means to selected 𝑏
random samples {𝐷 , 𝐷 ,… , 𝐷 }, we obtain 𝑏 sets of local centroids
6

1 2 𝑏
and make a union of these sets to form a new set as

𝛱∗ = 𝐶1 ∪ 𝐶2 ∪⋯ ∪ 𝐶𝑏. (9)

The set 𝛱∗ contains totally ∪𝑏
𝑖=1𝑘𝑖 cluster centroids from 𝑏 RSP

data blocks. Since the RSP samples are taken from the big dataset,
they should have similar inherent clusters. Therefore, the numbers of
clusters in them should be very close to each other, and the centroids
of the same clusters in different random samples should also be located
closely. Considering these characteristics, in the next section, we sug-
gest using the spectral and correlation clustering techniques to combine
the centroids in 𝛱∗ into an ensemble set of centroids that will serve as
estimated centroids of the big dataset.

4.2.3. Ensemble the clusters of RSP data blocks
A measure is needed to combine multiple clustering outcomes. More

specifically, in this case, we aggregate the ‘‘centroids’’ of clusters in the
selected data subsets. A cluster ball model was proposed to combine
the centroids of data subsets in [30]. A limitation of the cluster ball
ensemble is that it does not perform well when applied to a dataset with
irregular-shaped clusters, such as moon-shaped and Swiss-roll data. We
solve this problem with two different graph-based schemes to merge the
centroids of subsets as follows:

Scheme 1: RSP ensemble using spectral clustering (RSPCA-SC)
Spectral clustering (SC) is a graph-based method for locating 𝑘 arbitrar-
ily shaped clusters in data. Based on pairwise closeness or similarity,
spectral clustering groups objects in clusters. The spectral clustering
function is implemented as follows:

1. Using Euclidean distance to calculate a similarity matrix 𝐒 from
𝛱∗.

2. Transform the similarity matrix 𝐒 to an affinity matrix 𝐀.
3. Calculate the degree matrix 𝐃 and the Laplacian matrix 𝐋 =

𝐃 − 𝐀.
4. Calculate the eigenvalues and eigenvectors of the Laplacian

matrix 𝐋. The number of zero eigenvalues infers the number of
connected components in a similarity graph, which provides a
reliable estimate of the number of clusters in the data.

5. Finally, cluster the graphs with the 𝑘-means scheme.

Scheme 2: RSP ensemble using correlation clustering (RSPCA-
CC) Correlation clustering (CC) is also graph-based clustering. This
clustering method represents a set of points in an arbitrary feature
space as a weighted or unweighted complete undirected graph, where
the vertices of the graph represent the items and edges are labeled
either + or − indicating whether their end vertices are similar or



Pattern Recognition 161 (2025) 111321M.S. Mahmud et al.

a

i
t
r
c

w
b
o
k
b

c

w

i

o
g
b

i
i

Fig. 2. An illustration of RSPCA approach using 2M2D10C dataset. (a-e) Randomly selected five RSP data blocks with 5000 points each and individually obtained cluster centroids
using I-niceDP. (f) The discovered cluster centroids from the five RSP data blocks. (g-h) The final ensemble cluster centroids using SC and CC, respectively. (i-j) For the RSPCA-SC
nd RSPCA-CC ensembles, the matching clustering results, respectively, with the actual centroids indicated by the ‘‘×’’. Different colors and symbols represent individual cluster

assignments of each observation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
i
c
q
S
p

m
t
b
u
m
m
e

c

n

different. The aim is to produce a partition of the vertices (clustering)
that maximizes agreement with the edge label.

To start, we compute a similarity matrix 𝐒 for 𝛱∗ using the negative
squared Euclidean similarity function, which takes a numerical value 𝑠𝑖𝑗
for each pair of points 𝑖, 𝑗. Then, construct a sparse graph,  = (𝑣, 𝑒, 𝑤),
n which the data objects are represented by the set of vertices 𝑣,
he edges 𝑒, and the weights of the edges 𝑒. A weight of an edge,
eflecting with a probability 𝐏𝑖𝑗 the strength of the relationship between
orresponding objects, indicates whether nodes 𝑖 and 𝑗 are members of

the same cluster. Our goal is to find a clustering that is described as a
new graph ′ with edges 𝑥𝑖𝑗 ∈ {0, 1}, where nodes 𝑖 and 𝑗 are assigned
to the same cluster if 𝑥𝑖𝑗 = 1. To ensure consistency, the edges must
specify an equivalence relationship: 𝑥𝑖𝑖 = 1 and 𝑥𝑖𝑗 = 𝑥𝑗 𝑘 = 1 implies
𝑥𝑖𝑗 = 𝑥𝑖𝑘.

Our goal is to discover a clustering that is as consistent as possible
ith the idea that edges with high probability should not cross cluster
oundaries, while those with low probability should. We define the cost
f cutting edges 𝑖 and 𝑗 as 𝑤+

𝑖𝑗 , whose probability is 𝐏𝑖𝑗 , and the cost of
eeping them as 𝑤−

𝑖𝑗 , respectively. Mathematically, this objective can
e expressed as follows, as described in [27]:

min
∑

𝑖<𝑗
𝑤−

𝑖𝑗𝑥𝑖𝑗 +𝑤+
𝑖𝑗 (1 − 𝑥𝑖𝑗 ),

s.t. 𝑥𝑖𝑗 + 𝑥𝑗 𝑘 ≥ 𝑥𝑖𝑘 ∀𝑖, 𝑗 , 𝑘,
𝑥𝑖𝑗 ∈ {0, 1} ∀𝑖, 𝑗 ,

(10)

where 𝑥𝑖𝑗 = 0 indicates that vertices 𝑖 and 𝑗 belongs to a common
luster, and 𝑥𝑖𝑗 = 1 indicates they are in separate clusters.

There are two plausible formulations, additive and logarithmic
eights, for the costs 𝑤+ and 𝑤−, both of which have gained support

in literature. We can use either 𝑤+
𝑖𝑗 = 𝐏𝑖𝑗 and 𝑤−

𝑖𝑗 = 1 − 𝐏𝑖𝑗 as
n [27], or 𝑤+

𝑖𝑗 = log(𝐏𝑖𝑗 ) and 𝑤−
𝑖𝑗 = log(1 − 𝐏𝑖𝑗 ) as in [31]. Since the

logarithmic technique chooses maximum-likelihood clustering, based
n the assumption that 𝐏𝑖𝑗 are independent and identically distributed,
iven for the edge 𝑖𝑗 in actual clustering, it has a weak mathematical
asis.

4.3. A numerical example

To better illustrate the key steps of the proposed clustering approx-
mation, we provide a small exaggerated numerical example as shown
n Fig. 2. In this example, for the 2M2D10C dataset, which has 10
7

clusters. Five RSP data blocks (i.e., block id #{132, 63, 89, 151, 208}) of
5000 objects each were randomly taken. Intuitively, using the I-niceDP
algorithm in each selected RSP data block, the clusters correspond to
{8, 9, 9, 8, 7}. In other words, the I-niceDP and 𝑘-means combination
calculates the centroids as illustrated in Fig. 2(a-e).

We gather the associated set of centroids in Fig. 2(f) that results
n a conclusion synthesized by an ensemble function. The collective
entroids are compact and coreset representations of subsets. Conse-
uently, to solve this ensemble problem, we employ two schemes,
C and CC. According to both RSPCA-SC and RSPCA-CC aggregation
rocesses, the number of approximations is 10 clusters, as shown in

Fig. 2(g-h). Finally, Fig. 2(i-j) demonstrate the impact of ensemble
results by comparing them with the actual cluster centroids.

4.4. Computational complexity analysis

We analyze the computational complexity of RSPCA. It has three
ajor steps that need to be conducted: (1) performing an RSP operation

o generate RSP data blocks and randomly selecting a subset of data
locks; (2) determining the initial centroids and number of clusters
sing the I-niceDP scheme and refining explored centroids via the 𝑘-
eans algorithm on each selected RSP data block; and (3) gathering the
eta-data of intermediate results in RSP data blocks and performing an

nsemble operation to obtain the final clustering results.
Suppose we have a dataset with 𝑁 objects. We generate 𝑚 RSP

data blocks, each containing 𝑛 data points, and then randomly select
𝑏 subsets, where 𝑏 < 𝑚. The first step involves applying an RSP
operation with (𝑛 log(𝑁∕𝑛)) complexity. When considering the RSP
operation as a data preprocessing step, its computational complexity
can be ignored. Then, the I-niceDP scheme generates one-dimensional
data and density peaks from each RSP data block to define initial
luster centroids with (𝑛𝑓 ) complexity, where 𝑓 is the dimension

of the data. Then, to estimate the number of clusters and the initial
centroids, a Gamma mixture model (GMM) is solved using the EM
technique. It has a computational cost of (𝜌𝜇 𝑛𝑘), where 𝜌 is the
umber of iterations needed to determine 𝛼 for the GMM and 𝜇 is

the number of EM algorithm iterations. Refining centroids using the
𝑘-means scheme requires (𝑛𝑡𝑓 𝑘) operations, where 𝑡 is the maximum
number of iterations and 𝑘 is the number of clusters. Consequently,
the I-niceDP algorithm requires (𝑛𝑓 + 𝜌𝜇 𝑛𝑘 + 𝑛𝑡𝑓 𝑘) operations on a
single node. The final step is to merge the individual results of RSP



Pattern Recognition 161 (2025) 111321M.S. Mahmud et al.

s

c

k

c
e
a

o

t
o
d

S
t

i
t
t

t
A
H
a
a

d
a

data blocks, for which we propose two graph-based ensemble schemes:
pectral and correlation clustering.

In the RSPCA-SC process, spectral clustering (SC) involves com-
puting affinity and Laplacian matrices, resulting in a computational
omplexity of (𝑛3) for 𝑛 objects. Here, 𝑛 represents a set of cen-

troids, and in practice, 𝑛 ≪ 𝑛 ≪ 𝑁 . In the RSPCA-CC, correlation
clustering (CC) utilizes a signed graph as input. Similar to SC, CC
also calculates a similarity matrix 𝑛 × 𝑛 among the objects (centroids),
incurring a complexity of (𝑛2). The optimization problems of CC are
nown to be NP-complete. The overall computation required by CC is
(𝑛 log2 𝑛) with a high probability. In summary, the total computational
omplexities of the two proposed RSPCA-SC and RSPCA-CC clustering
nsemble schemes are approximately (𝑛 log(𝑁∕𝑛) + 𝜌𝜇 𝑛𝑘 + 𝑛𝑡𝑓 𝑘 + 𝑛3)
nd (𝑛 log(𝑁∕𝑛) + 𝜌𝜇 𝑛𝑘 + 𝑛𝑡𝑓 𝑘 + 𝑛 log2 𝑛), respectively.

We can operate a distributed and parallel computing framework
to utilize a computing cluster with 𝑄 nodes, such as Apache Spark
r Hadoop. The individual result vectors are then sent back to the

master node with a communication complexity of (1). Additionally,
he RSPCA is distributed computing framework, enabling the execution
f serial algorithms independently on local nodes without the need for
ata communication among the nodes.

5. Experiments

In this section, we report on extensive experiments to evaluate the
performance of the proposed RSPCA. First, we introduce the datasets
used, including the experimental setting. Then, we illustrate the pa-
rameter sensitivity and convergence of the RSPCA. Finally, we present
a performance comparison with several state-of-the-art algorithms.

5.1. Datasets

We evaluated the proposed clustering methods using both synthetic
and real-world datasets. The characteristics of the seven datasets are
detailed in Table 2. To illustrate the advantages of RSPCA, we com-
menced the evaluation with two-dimensional (2D) synthetic datasets.
The datasets used for this purpose are as follows:

• 3M2D5C is designed for clustering tasks and is used in [32].
This synthetic dataset comprises 3 million objects drawn from a
mixture of five bivariate normal distributions. Note that there are
overlapping objects from components in the mixture.

• 2M2D10C and 2M2D20C are two synthetic datasets from the
multivariate Gaussian distribution models  (0, 1). The observa-
tions have independent and identically distributed dimensions
with different parameters. Our focus is on varying sizes and the
number of clusters.

• Covertype (CT)2 contains 581,012 objects and describes seven
forest cover types using 54 different geographic measurements.
It is important to note that 84% of the items belong to 2 classes
(36.5% type-1 and 48.7% type-2).

• KDDcup’99 (KDD)3 is from the KDD Cup 1999 competition and
contains network intrusion detection data. There are about 4.9
million objects with 42 features. There are 23 classes in this
dataset, and 98.3% of the objects belong to 3 classes (normal
19.6%, neptune 21.6%, and smurf 56.8%).

• PokerHand (PH)4 has about 1.2 million data points with ten
predictive features. In this dataset, each record is an example of a
hand consisting of five playing cards drawn from a standard deck
of 52. There are ten classes, and two dominant classes account
for over 90% of the samples (nothing in hand 49.9% and one pair
42.4%).

2 https://archive.ics.uci.edu/ml/datasets/covertype.
3 https://www.kdd.org/kdd-cup/view/kdd-cup-1999/Data.
4 https://archive.ics.uci.edu/ml/datasets/Poker+Hand.
8

• SUSY 5 has been produced using Monte Carlo simulations. There
are 5 million objects, and each object has 18 numerical features
to help discriminate between two classes.

We retain all the characteristics of real-world datasets and convert
the categorical features into numerical ones. Then, we create two-
dimensional data using the truncated SVD (also known as LSA) tool.
Additionally, we normalize features for all datasets using the max–min
normalization technique.

5.2. Computation environment

All experiments are conducted on an Apache Spark cluster of 30
nodes equipped with Intel Xeon E5-2650 v2 2.60 GHz, 128 GB of
memory, and 1.6 TB of SSD. All algorithms are implemented on the
Python Anaconda platform.

To improve computational efficiency and data scalability, multiple
samples are analyzed independently and in parallel, with no communi-
cation overhead between nodes during the computing. The clustering
components are very small in size, so this process needs short time and
almost negligible. This means that the overhead of generating cluster-
ing components of RSP data blocks constitutes the main portion of the
CPU runtime in this framework, and it is linearly proportional to the
data scale. It is worth noting that the Spark uses executors as the actual
computing units. In this experiment, each executor is allocated 4 cores
and 16 GB of memory, which means that the maximum parallelism
supported by the experimental cluster is 240.

5.3. Experiment setup and parameter analysis

Table 3 summarizes the experimental parameters of the RSPCA in
order to fairly test the influence of RSP data block size (𝑛) and ensemble
size (𝑒𝑠). In the experiment, we investigate the performance of RSPCA-
C and RSPCA-CC schemes under various parameter settings. In order
o explore the effect of the parameters, the value of each of them is

trialed 20 times independently.

5.4. Competitors

We compare the RSPCA-SC and RSPCA-CC schemes with several
state-of-the-art clustering algorithms that can process big datasets and
estimate the number of clusters, including CAMUSA [33], kluster [22],
nbootstrap [21], SNN-DPC [34], and U-SENC [2]. We conducted our
experiments using the following settings:

COMUSA [33] is a similarity graph-based algorithm. It constructs
a similarity graph by calculating the co-associations of objects in the
nput data. To start a new cluster, COMUSA selects a pivot vertex, and
he cluster expands by adding its neighbors if they are the most similar
o the pivot.
kluster [22] is a scalable method for estimating the number of clus-

ers using the BIC (Bayesian Information Criterion), PAM (Partitioning
round Medoids), AP (Affinity Propagation), and CAL (Calinski and
arabasz Index) approaches. It applies these statistical methods iter-
tively to small data subsets and gives the most frequent and average
pproximate number of clusters.
nbootstrap [21] involves selecting the number of clusters through re-

sampling. Two bootstraps are drawn from the dataset, and the number
of clusters is determined by optimizing an instability estimation from
these pairs. In this experiment, 20 resamples are utilized.

SNN-DPC [34] is a clustering approach based on the fast search and
density peaks mechanism. The parameter 𝑘 is an important factor that
etermines the granularity of clusters in SNN-DPC. When 𝑘 is small, the
lgorithm identifies small and tightly packed clusters, whereas a large

5 https://archive.ics.uci.edu/ml/datasets/SUSY.

https://archive.ics.uci.edu/ml/datasets/covertype
https://www.kdd.org/kdd-cup/view/kdd-cup-1999/Data
https://archive.ics.uci.edu/ml/datasets/Poker+Hand
https://archive.ics.uci.edu/ml/datasets/SUSY


Pattern Recognition 161 (2025) 111321M.S. Mahmud et al.

i

a

i

e

Table 2
Characteristics of the datasets (𝑁 : number of observations,  : number features, 𝐾: number of clusters or classes).

Datasets 𝑁  𝐾 Cluster distributions

3M2D5C 3,000,000 2 5 300,000 × (2 : 2 : 3 : 1 : 2)
2M2D10C 2,000,000 2 10 100,000 × (2 : 3 : 3 : 1 : 1 : 2 : 2 : 3 : 1 : 2)
2M2D20C 2,000,000 2 20 10,000 × (15 : 5 : 13 : 7 : 10 : 12 : 8 : 10 : 15 : 5 : 8 : 12 : 13 : 7 : 10 : 13 : 7 : 12 : 8 : 10)
CT 581,012 2 7 211,840 : 283,301 : 35,754 : 2747 : 9493 : 17,367 : 20,510
KDD 4,898,431 42 23 972,781 : 2,807,886 : 1,072,017 : 15,892 : 12,481 : 10,413 : 2316 : 2203 : 1020 : 979 : 264 :

53 : 30 : 21 : 20 : 12 : 10 : 9 : 8 : 7 : 4 : 3 : 2
PH 1,025,010 10 10 513,702 : 433,097 : 48,828 : 21,634 : 3978 : 2050 : 1460 : 236 : 17 : 8
SUSY 5,000,000 18 2 2,712,173 : 2,287,827

Minor classes are indicated as noise data, which is underlined.
Fig. 3. Influence of RSP block size and ensemble size on the estimated number of clusters using RSPCA (average of 20 trails).
2
1
m
E

b

i
d
b
N
t
m
l
t
c

i
c
r
c
c

Table 3
Summary of some key parameters.

Parameters Values

RSP data block size (𝑛) 2000; 5000; 10 000
Ensemble data size (𝑒𝑠) 5%; 10%; 15%; 20%
Number of observation points in I-niceDP 1

𝑘 detects larger and well-separated clusters. In our experiment, we set
𝑘 to 20.

U-SENC [2] depends on the efficient construction of an affinity
submatrix and a bipartite graph formulation. The U-SENC method
nvolves a common parameter, 𝑝. In the experiments, we use 𝑝 = 1000,

and the number of clusters is determined by the 𝑘 smallest eigenvectors
close to zero that are obtained.

5.5. Evaluation metrics

It is challenging to effectively compare various clustering algo-
rithms, especially when they yield different results. We use two widely
used internal evaluation measures, the Davies–Bouldin index (DBI) [35]
nd Calinski–Harabasz index (CHI) [36], and three external evaluation

measures, the adjusted mutual information (AMI) [37], adjusted rand
ndex (ARI) [37], and Fowlkes–Mallows index (FMI) [38], to assess

their effectiveness.

5.6. Experimental result analysis

5.6.1. Influence of RSP data block size and ensemble size
In order to assess the influence of the RSP data block size (𝑛) and

nsemble size (𝑒𝑠) in cluster approximations, we tested three different
9

b

sizes of RSP data blocks: 2000, 5000, and 10 000. The performances of
RSPCA-SC and RSPCA-CC approaches on three synthesis datasets are
illustrated in Fig. 3. From Fig. 3, we can see that small samples (𝑛 =
000) are unable to identify the clusters, as are large samples (𝑛 =
0 000). On the other hand, moderate-sized samples (𝑛 = 5000) can
ore efficiently capture the clusters with increasing ensemble data size.
mpirically, a relatively larger ensemble data size is beneficial.

5.6.2. Comparison with state-of-the-art algorithms
Table 4 displays the number of clusters identified using various

algorithms across a range of ensemble sizes for different datasets. The
values in parentheses for the three synthetic datasets represent the per-
centage of relative error in the estimated number of clusters determined
y the applied algorithms. The results indicate that the RSPCA-SC,

RSPCA-CC, kluster, COMUSA, and U-SENC algorithms can correctly
dentify clusters, while the nselecboot and SNN-DPC algorithms fail in
oing so. For three synthetic datasets, the number of clusters identified
y U-SENC and SNN-DPC is much lower than the actual number.
either kluster and COMUSA nor U-SENC can accurately recognize

he cluster centroids. The nselecboot algorithm splits the cluster into
ultiple clusters, rendering it unsuitable for centrocentric selection,

eading to unsatisfactory outcomes. Visual judgment and results reveal
hat the SNN-DPC and U-SENC algorithms struggle to identify small
lusters.

In our experiment, we considered four different ensemble sizes,
ncluding 5%, 10%, 15%, and 20%, that are much bigger than the
lassical statistical method. The fact that it is derived from several
andom samples, i.e., RSP data blocks, and is much bigger than the
lassical statistical method. It has broader coverage to identify all
lusters. The RSPCA-SC and RSPCA-CC schemes accurately identify
oth the clusters and their corresponding centroids. We observe that as



Pattern Recognition 161 (2025) 111321M.S. Mahmud et al.

S
d
C
s
t

c
c
o
R

o

t
n
r
b
i
t

Table 4
Comparison results of the cluster number approximation (mean ± std over 20 runs). Values in parenthesis () show relative errors.

Datasets 𝑒𝑠 COMUSA kluster nselectboot SNN-DPC U-SENC RSPCA-SC RSPCA-CC

3M2D5C

5% 3.2±0.8 (40.0) 4.0±0.8 (20.0) 2.6±0.5 (48.0) 2.5±0.5 (50.0) 3.2±0.6 (35.0) 4.7±0.5 (8.0) 4.4±0.8 (12.0)
10% 3.4±0.5 (30.0) 4.5±0.6 (10.0) 2.8±0.5 (44.0) 2.8±0.6 (45.0) 3.7±0.8 (25.0) 5.0±0.0 (0.0) 5.0±0.5 (0.0)
15% 4.0±0.6 (20.0) 4.6±0.5 (6.7) 3.0±0.0 (40.0) 2.8±0.9 (35.0) 4.1±0.8 (20.0) 5.0±0.0 (0.0) 5.0±0.0 (0.0)
20% 4.2±0.5 (20.0) 4.8±0.6 (5.0) 3.0±0.0 (40.0) 3.3±0.8 (35.0) 4.2±0.5 (16.0) 5.0±0.0 (0.0) 5.0±0.0 (0.0)

2M2D10C

5% 7.1±0.7 (30.0) 8.6±0.6 (15.0) 18.5±1.2 (85.0) 4.2±1.1 (57.5) 5.7±1.1 (42.5) 8.8±0.9 (14.0) 7.9±0.8 (24.0)
10% 7.8±0.6 (22.5) 8.7±0.5 (12.5) 18.1±2.0 (80.0) 4.6±1.7 (55.0) 7.3±0.9 (27.5) 9.7±0.6 (4.0) 8.6±0.6 (16.0)
15% 8.0±0.7 (20.0) 8.6±0.5 (13.3) 18.2±1.6 (83.0) 5.4±1.6 (45.0) 7.5±0.7 (25.0) 9.9±0.3 (1.6) 9.4±0.5 (14.0)
20% 8.3±0.5 (17.5) 9.1±0.7 (7.5) 17.4±1.9 (78.0) 6.2±1.5 (37.5) 8.2±0.7 (20.0) 10.0±0.0 (0.0) 9.7±0.5 (6.0)

2M2D20C

5% 12.0±1.5 (40.0) 12.5±1.1 (36.7) 33.1±2.4 (65.0) 7.7±1.6 (61.3) 10.5±1.4 (47.5) 16.4±1.4 (29.0) 12.6±1.4 (48.0)
10% 12.1±2.0 (38.8) 13.6±1.4 (31.8) 32.5±2.1 (63.0) 8.2±1.1 (58.8) 12.3±2.1 (38.7) 17.1±1.2 (13.0) 14.3±1.1 (40.0)
15% 13.7±1.1 (31.3) 14.4±0.6(28.3) 32.6±2.5 (63.3) 9.2±1.9 (55.0) 13.1±1.7 (33.8) 18.9±0.8 (8.0) 16.2±1.3 (21.0)
20% 14.0±1.3 (30.0) 14.7±0.5 (26.7) 33.3±1.4 (67.0) 9.7±1.5 (51.3) 14.0±0.8 (30.0) 19.7±0.6 (3.0) 17.5±0.9 (15.0)

CT

5% 8.3±1.1 10.3±0.6 2.2±0.6 3.4±0.8 5.4±1.4 4.5±0.6 5.1±0.8
10% 10.2±1.5 11.0±0.8 2.3±0.6 3.5±1.1 7.1±0.9 4.9±0.6 5.7±0.6
15% 10.1±1.5 10.8±0.6 2.2±0.5 4.4±0.9 7.7±0.9 5.1±0.5 5.9±0.6
20% 10.3±1.6 10.6±0.5 2.1±0.5 4.7±1.2 9.2±0.8 5.2±0.5 6.1±0.4

KDD

5% 6.7±0.8 9.7±1.1 2.7±0.7 4.2±1.1 8.7±1.6 3.8±1.1 4.1±0.6
10% 8.3±1.1 10.6±0.8 2.6±0.7 6.8±0.7 9.6±1.1 4.1±0.9 4.9±0.5
15% 9.9±1.8 10.5±0.6 2.5±0.6 8.2±0.8 10.3±1.5 4.4±0.8 5.1±0.5
20% 11.3±2.1 9.9±1.7 2.5±0.5 8.5±1.1 10.6±1.1 4.5±0.6 5.2±0.4

PH

5% 3.5±1.1 3.5±0.6 2.7±0.6 3.5±0.7 3.6±0.8 3.1±0.8 3.4±0.9
10% 4.2±0.9 3.8±0.6 2.4±0.8 4.8±1.5 4.2±0.5 3.6±0.5 3.7±0.7
15% 4.6±1.3 4.2±0.5 2.4±0.7 5.3±1.2 4.4±0.6 3.8±0.6 4.1±0.5
20% 5.5±1.1 4.1±0.5 2.3±0.5 6.2±1.5 4.6±0.6 3.9±0.5 4.2±0.6

SUSY

5% 5.3±0.9 8.2±0.7 2.5±0.8 4.5±1.5 8.2±0.9 2.5±0.5 3.1±0.5
10% 6.8±1.3 9.1±0.8 2.6±0.5 4.9±1.2 9.1±1.4 2.8±0.4 3.3±0.6
15% 6.7±1.1 8.7±0.5 2.3±0.7 5.5±1.4 8.8±1.5 3.1±0.4 3.4±0.5
20% 7.5±1.4 9.2±0.6 2.4±0.5 6.0±0.9 9.1±1.2 3.1±0.5 3.4±0.6

RSP block size 𝑛 = 5000. The best and second best-results are highlighted in bold and underlined, respectively.
5

s

a
t

the ensemble sizes increase, the clustering approximation of the RSPCA-
C and RSPCA-CC schemes gradually improves. We were interested in
etermining the amount of data needed for the RSPCA-SC and RSPCA-
C schemes to achieve the most stable and optimal solution. The results
how that the RSPCA-SC and RSPCA-CC schemes exhibit stability when
hey utilize ≈ 15 − 20% of the entire dataset. Tables 5 and 6 presented

clustering quality using internal and external validation measures.
Both RSPCA-SC and RSPCA-CC consistently outperform other clustering
methods in terms of DBI, CHI, AMI, ARI, and FMI for both synthetic
and real-world datasets across different ensemble sizes. Additionally, it
is worth noting that the clustering performance of all these methods
improves as the percentage of data sizes increases.

Our primary goal is to develop effective and scalable methods for
lustering big data. These methods should address issues such as high
omputational complexity and the challenge of determining the number
f clusters when dealing with large datasets. We have introduced
SPCE [30], ACEM [39], and MSFC [40] solutions, which involve

using multiple disjoint samples of a large dataset and combining their
results to approximate the characteristics of the entire dataset. To
ensure a fair comparison, we have conducted a comparative analysis
of six datasets using multiple sample ensemble clustering techniques
for cluster estimation, as shown in Fig. 4. The corresponding averages
f 20 trials are included in the analysis.

Note that the RSPCE method yields higher accuracy in estimating
he number of clusters for three synthetic datasets. However, it does
ot perform well when dealing with high-dimensional and complex
eal-world datasets. One limitation of RSPCE’s cluster ball ensem-
le algorithm is its poor performance when applied to datasets with
rregular-shaped clusters, such as moon-shaped and Swiss-roll data. On
he other hand, we found that graph-based clustering ensemble algo-

rithms demonstrate outstanding performance in estimating the number
of irregularly shaped clusters in complex real-world datasets.
10
5.6.3. Scalability with ensemble data size
We study the scalability of RSPCA with varying ensemble data sizes.

In the experiment, we randomly select four ensemble sizes, including
%, 10%, 15%, and 20% of the entire dataset, to evaluate the efficiency

of the methods. Fig. 5 depicts the running time of our RSPCA methods
and other state-of-the-art clustering algorithms with varying ensemble
data sizes on the tested datasets. We can see that RSPCA-SC, RSPCA-CC,
and U-SPEC generally require less computational time than the other
methods across most datasets. The CPU time required by COMUSA,
SNN-DPC, and nselectboot algorithms increases linearly with the en-
semble data size and is mainly independent of 𝐾. We were interested
in knowing the computation duration of RSPCA-SC and RSPCA-CC
chemes scales with ensemble cardinality to achieve the optimal solu-

tion. Remarkably, both the RSPCA-SC and RSPCA-CC schemes perform
substantially better and exhibit advantageous scalability within nearly
the same amount of time.

It is worth noting that in this experiment, the RSPCA uses at most
20% ensemble data size (e.g., 80 RSP data blocks for 2M2D10C and
2M2D20C datasets), which is significantly less than the maximum
parallelism of 240 supported by the experimental environment. This
indicates that the experiment can complete all RSP data block cluster-
ing in parallel with one batch. Thus, the CPU time in the experimental
results can be regarded as the sum of the CPU time of a single machine
and the CPU time for ensemble the clustering components, with the
latter being very short, typically requiring only about 5–10 s.

5.6.4. Statistical analysis
To evaluate the estimated centroids of different algorithms, we have

lso used the two-sample Kolmogorov–Smirnov (KS) test to compare
he results in Table 7. The KS test helps us determine whether two dis-

tributions (in this case, the centroids distance distributions of estimated
and actual centroids) are different or the same. We have examined the
cumulative distribution functions (CDF) of the centroids distance distri-
butions, which are compared in Fig. 6 across three different synthesis
datasets with two varying ensemble sizes, i.e., 𝑒𝑠 = {10%, 20%}.



Pattern Recognition 161 (2025) 111321M.S. Mahmud et al.

o

t
v

Table 5
Clustering performance comparison in terms of internal validation measures (average scores over 20 runs).

Datasets Methods DBI (lower values better) CHI (higher values better)

𝑒𝑠 = 5% 10% 15% 20% 5% 10% 15% 20%

3M2D5C

COMUSA 0.635 0.550 0.512 0.512 2.5e+5 5.7e+5 1.1e+5 1.4e+6
kluster 0.512 0.475 0.466 0.460 3.9e+5 8.8e+5 1.4e+6 2.0e+6
nselectboot 0.723 0.687 0.596 0.596 2.1e+5 4.4e+5 7.5e+5 1.0e+6
SNN-DPC 0.728 0.665 0.715 0.613 2.1e+5 4.5e+5 6.6e+5 1.0e+6
U-SENC 0.571 0.536 0.512 0.497 2.7e+5 6.9e+5 1.1e+6 1.7e+6
RSPCA-SC 0.504 0.447 0.445 0.445 4.0e+5 1.1e+6 1.7e+6 2.3e+6
RSPCA-CC 0.594 0.446 0.446 0.446 3.9e+5 1.1e+6 1.7e+6 2.3e+6

2M2D10C

COMUSA 0.479 0.437 0.410 0.393 2.4e+5 6.0e+5 1.1e+6 1.5e+6
kluster 0.371 0.349 0.356 0.285 4.4e+5 1.0e+6 1.4e+6 3.9e+6
nselectboot 0.789 0.758 0.817 0.773 2.0e+6 4.2e+6 6.4e+6 8.4e+6
SNN-DPC 0.748 0.731 0.574 0.567 1.3e+5 2.9e+5 6.2e+5 8.0e+5
U-SENC 0.583 0.465 0.448 0.409 1.7e+5 5.4e+5 8.5e+5 1.4e+6
RSPCA-SC 0.350 0.226 0.216 0.162 5.4e+5 1.1e+6 4.1e+6 8.9e+6
RSPCA-CC 0.440 0.375 0.369 0.243 2.9e+5 8.9e+5 1.3e+6 5.5e+6

2M2D20C

COMUSA 0.517 0.521 0.443 0.521 2.3e+5 5.1e+5 8.8e+5 1.2e+6
kluster 0.489 0.434 0.393 0.392 2.5e+5 6.1e+5 9.5e+5 1.3e+6
nselectboot 0.712 0.687 0.701 0.702 8.2e+6 1.6e+7 2.5e+7 3.3e+7
SNN-DPC 0.647 0.651 0.636 0.716 1.5e+5 3.3e+5 5.3e+5 7.5e+5
U-SENC 0.601 0.521 0.490 0.422 1.9e+5 5.1e+5 8.2e+5 1.2e+6
RSPCA-SC 0.419 0.285 0.212 0.109 2.9e+5 1.0e+6 3.8e+6 2.1e+7
RSPCA-CC 0.552 0.489 0.343 0.314 1.9e+5 4.8e+5 1.2e+6 2.0e+6

CT

COMUSA 0.828 0.828 0.828 0.827 2.7e+4 5.4e+4 8.0e+4 1.0e+5
kluster 0.806 0.810 0.811 0.804 2.7e+4 5.4e+4 8.1e+4 1.0e+5
nselectboot 0.879 0.837 0.837 0.837 3.1e+4 6.5e+4 9.8e+4 1.3e+5
SNN-DPC 0.936 0.895 0.912 0.905 2.8e+4 5.7e+4 8.2e+4 1.0e+5
U-SENC 0.862 0.849 0.848 0.826 2.8e+4 5.4e+4 8.0e+4 1.0e+5
RSPCA-SC 0.869 0.854 0.852 0.830 2.8e+4 5.4e+4 8.1e+4 1.1e+5
RSPCA-CC 0.856 0.870 0.828 0.825 2.9e+4 5.4e+4 8.0e+4 1.1e+5

KDD

COMUSA 0.482 0.496 0.562 0.600 1.3e+7 2.7e+7 4.2e+7 5.3e+7
kluster 0.578 0.602 0.627 0.566 1.3e+7 2.6e+7 4.1e+7 5.4e+7
nselectboot 0.283 0.318 0.425 0.403 3.2e+6 5.9e+6 7.1e+6 1.1e+7
SNN-DPC 0.890 0.843 0.853 0.848 3.4e+4 6.9e+4 1.3e+5 2.3e+5
U-SENC 0.524 0.554 0.591 0.619 1.4e+7 2.6e+7 4.1e+7 5.3e+7
RSPCA-SC 0.373 0.360 0.401 0.396 5.4e+6 1.8e+7 2.7e+7 4.1e+7
RSPCA-CC 0.310 0.367 0.384 0.368 6.8e+6 2.0e+7 3.4e+7 4.6e+7

PH

COMUSA 0.993 0.917 0.901 0.875 3.2e+4 6.6e+4 1.3e+5 2.3e+5
kluster 0.921 0.917 0.904 0.907 3.3e+4 6.8e+4 2.4e+5 1.3e+5
nselectboot 1.123 1.108 1.103 1.192 2.9e+4 5.9e+4 1.1e+5 2.1e+5
SNN-DPC 0.348 0.353 0.403 0.561 6.1e+6 1.8e+7 3.2e+7 4.9e+7
U-SENC 0.921 0.917 0.903 0.901 3.3e+4 6.7e+4 2.4e+5 1.3e+5
RSPCA-SC 0.998 0.984 0.987 0.903 3.0e+4 6.7e+4 1.4e+5 2.4e+5
RSPCA-CC 0.915 0.905 0.837 0.845 3.4e+4 6.6e+4 1.3e+5 2.4e+5

SUSY

COMUSA 0.827 0.834 0.841 0.845 1.6e+5 3.7e+5 5.9e+5 7.7e+5
kluster 0.838 0.831 0.837 0.844 1.6e+5 3.7e+5 5.8e+5 7.6e+5
nselectboot 0.943 0.952 0.924 0.937 1.7e+5 3.9e+5 6.1e+5 8.0e+5
SNN-DPC 0.880 0.835 0.839 0.836 1.8e+5 3.8e+5 5.8e+5 5.9e+5
U-SENC 0.835 0.839 0.832 0.841 1.7e+5 3.7e+5 5.8e+5 7.7e+5
RSPCA-SC 0.914 0.922 0.901 0.824 1.8e+5 3.6e+5 5.8e+5 7.5e+5
RSPCA-CC 0.852 0.820 0.835 0.809 1.8e+5 3.8e+5 5.6e+5 7.5e+5

RSP block size 𝑛 = 5000. The best and second best-scores are highlighted in bold and underlined, respectively.
Fig. 4. A comparison of multiple sample ensemble clustering methods for cluster estimation.
To determine whether the algorithm is significantly different from
thers, we compute the 𝑧 and 𝑝-values of the KS test. The 𝑧-value mea-

sures the distance between two distributions. The 𝑝-value represents
he probability of observing a test statistic as extreme as the observed
alue under the null hypothesis. The null hypothesis assumes that the
11
distance distribution between the actual and estimated centroids of the
algorithm is the same, while the alternative hypothesis assumes that
the estimated centroid’s distribution is larger or different compared
to the actual one. Our results show that the proposed RSPCA-SC and
RSPCA-CC are statistically better than the five competitors at the 95%



Pattern Recognition 161 (2025) 111321M.S. Mahmud et al.
Table 6
Clustering performance comparison in terms of external validation measures (average scores over 20 runs).

Datasets Methods AMI (higher values better) ARI (higher values better) FMI (higher values better)

𝑒𝑠 = 5% 10% 15% 20% 5% 10% 15% 20% 5% 10% 15% 20%

3M2D5C

COMUSA 0.699 0.777 0.838 0.839 0.585 0.679 0.773 0.773 0.728 0.776 0.842 0.842
kluster 0.844 0.900 0.912 0.935 0.782 0.867 0.904 0.924 0.850 0.904 0.930 0.945
nselectboot 0.618 0.655 0.725 0.726 0.448 0.528 0.605 0.605 0.674 0.695 0.735 0.735
SNN-DPC 0.619 0.670 0.645 0.723 0.489 0.545 0.526 0.620 0.675 0.702 0.697 0.749
U-SENC 0.754 0.813 0.838 0.872 0.644 0.737 0.773 0.829 0.759 0.820 0.842 0.881
RSPCA-SC 0.920 0.968 0.968 0.968 0.910 0.978 0.980 0.980 0.930 0.982 0.980 0.980
RSPCA-CC 0.878 0.968 0.968 0.967 0.856 0.976 0.979 0.978 0.892 0.973 0.974 0.978

2M2D10C

COMUSA 0.903 0.940 0.948 0.955 0.753 0.857 0.875 0.885 0.808 0.880 0.895 0.903
kluster 0.960 0.965 0.963 0.975 0.900 0.912 0.910 0.948 0.902 0.915 0.923 0.955
nselectboot 0.878 0.886 0.883 0.884 0.673 0.703 0.695 0.691 0.734 0.778 0.754 0.748
SNN-DPC 0.745 0.760 0.852 0.854 0.508 0.555 0.685 0.664 0.646 0.678 0.765 0.748
U-SENC 0.848 0.919 0.933 0.947 0.655 0.804 0.849 0.874 0.741 0.843 0.876 0.896
RSPCA-SC 0.974 0.990 0.995 0.998 0.939 0.972 0.972 1.000 0.939 0.976 0.977 1.000
RSPCA-CC 0.946 0.957 0.966 0.985 0.852 0.894 0.915 0.958 0.889 0.922 0.930 0.964

2M2D20C

COMUSA 0.903 0.908 0.930 0.933 0.725 0.733 0.790 0.795 0.768 0.775 0.818 0.760
kluster 0.913 0.927 0.940 0.940 0.753 0.778 0.805 0.813 0.790 0.817 0.830 0.837
nselectboot 0.916 0.926 0.926 0.923 0.762 0.770 0.770 0.767 0.796 0.797 0.800 0.797
SNN-DPC 0.804 0.824 0.833 0.860 0.521 0.558 0.579 0.633 0.623 0.649 0.665 0.639
U-SENC 0.876 0.906 0.923 0.932 0.665 0.731 0.773 0.794 0.726 0.775 0.806 0.823
RSPCA-SC 0.933 0.973 0.984 0.994 0.807 0.917 0.952 0.980 0.832 0.925 0.958 0.982
RSPCA-CC 0.882 0.935 0.952 0.968 0.692 0.754 0.868 0.895 0.724 0.798 0.870 0.905

CT

COMUSA 0.086 0.091 0.093 0.093 0.012 0.012 0.014 0.013 0.244 0.228 0.229 0.230
kluster 0.089 0.091 0.091 0.094 0.012 0.012 0.014 0.014 0.225 0.220 0.220 0.223
nselectboot 0.057 0.052 0.052 0.052 −0.009 −0.015 −0.016 0.001 0.410 0.429 0.429 0.428
SNN-DPC 0.065 0.067 0.070 0.075 −0.001 −0.002 0.001 0.003 0.362 0.355 0.327 0.314
U-SENC 0.076 0.085 0.089 0.093 0.000 0.007 0.010 0.013 0.298 0.258 0.251 0.237
RSPCA-SC 0.081 0.084 0.088 0.094 0.006 0.007 0.012 0.015 0.354 0.322 0.325 0.297
RSPCA-CC 0.082 0.088 0.091 0.093 0.007 0.009 0.014 0.015 0.322 0.287 0.287 0.258

KDD

COMUSA 0.805 0.817 0.794 0.780 0.902 0.908 0.891 0.881 0.937 0.946 0.935 0.929
kluster 0.794 0.784 0.769 0.795 0.891 0.887 0.872 0.891 0.935 0.933 0.924 0.935
nselectboot 0.804 0.791 0.756 0.791 0.831 0.800 0.799 0.800 0.917 0.903 0.877 0.904
SNN-DPC 0.801 0.843 0.812 0.839 0.838 0.906 0.903 0.920 0.920 0.944 0.939 0.953
U-SENC 0.800 0.802 0.782 0.779 0.900 0.898 0.882 0.881 0.931 0.940 0.930 0.928
RSPCA-SC 0.806 0.857 0.815 0.848 0.848 0.929 0.860 0.923 0.925 0.958 0.928 0.955
RSPCA-CC 0.877 0.856 0.850 0.854 0.943 0.928 0.923 0.925 0.966 0.957 0.954 0.959

PH

COMUSA 0.006 0.008 0.007 0.009 0.004 0.005 0.005 0.006 0.371 0.329 0.323 0.292
kluster 0.005 0.006 0.007 0.007 0.003 0.003 0.003 0.003 0.357 0.349 0.331 0.332
nselectboot 0.001 0.001 0.000 0.000 0.001 0.001 0.000 0.000 0.438 0.436 0.437 0.455
SNN-DPC 0.007 0.008 0.010 0.010 0.004 0.006 0.006 0.006 0.310 0.264 0.245 0.239
U-SENC 0.005 0.007 0.007 0.008 0.003 0.004 0.004 0.006 0.357 0.337 0.324 0.317
RSPCA-SC 0.002 0.005 0.005 0.006 0.003 0.004 0.005 0.005 0.414 0.379 0.369 0.347
RSPCA-CC 0.006 0.006 0.009 0.009 0.004 0.005 0.007 0.006 0.339 0.295 0.264 0.256

SUSY

COMUSA 0.083 0.084 0.084 0.083 0.066 0.070 0.070 0.062 0.404 0.384 0.389 0.360
kluster 0.082 0.083 0.083 0.082 0.058 0.058 0.059 0.057 0.345 0.335 0.340 0.334
nselectboot 0.065 0.077 0.081 0.081 0.078 0.091 0.100 0.103 0.535 0.527 0.544 0.549
SNN-DPC 0.079 0.082 0.087 0.086 0.067 0.076 0.077 0.071 0.453 0.442 0.429 0.399
U-SENC 0.081 0.080 0.082 0.080 0.062 0.059 0.059 0.058 0.354 0.338 0.340 0.338
RSPCA-SC 0.058 0.066 0.067 0.072 0.079 0.070 0.078 0.084 0.534 0.518 0.524 0.497
RSPCA-CC 0.065 0.071 0.072 0.078 0.072 0.069 0.069 0.069 0.505 0.487 0.468 0.440

RSP block size 𝑛 = 5000. The best and second best-scores are highlighted in bold and underlined, respectively.
Fig. 5. Execution time (average of 20 runs) of our methods and the compared clustering methods.
12



Pattern Recognition 161 (2025) 111321M.S. Mahmud et al.

s

p

l
l
A
a
d

a
a
i
c

Fig. 6. The cumulative distribution functions show the centroid’s distance distributions of three synthesis datasets. Two distributions are shown for 10% and 20% of the ensemble
izes.
t
w
e
r
S
a
o
s
t
B
p
e
f

Table 7
Results of the Kolmogorov–Smirnov (KS) test. 𝑧 and 𝑝 represent the test statistics and
the probability of observing a test statistic, respectively. A higher 𝑝 value indicates
better results.

Datasets Methods 𝑒𝑠 = 10% 𝑒𝑠 = 20%
𝑧 𝑝 𝑧 𝑝

3M2D5C

COMUSA 0.600 0.242 0.400 0.473
kluster 0.333 0.603 0.400 0.472
nselectboot 0.600 0.589 0.267 0.785
SNN-DPC 0.366 0.725 0.400 0.473
U-SENC 0.600 0.242 0.400 0.472
RSPCA-SC 0.400 0.313 0.300 0.675
RSPCA-CC 0.400 0.312 0.300 0.671

2M2D10C

COMUSA 0.168 0.773 0.167 0.677
kluster 0.168 0.671 0.163 0.705
nselectboot 0.102 0.884 0.114 0.747
SNN-DPC 0.244 0.859 0.333 0.263
U-SENC 0.152 0.865 0.186 0.546
RSPCA-SC 0.111 0.930 0.111 0.929
RSPCA-CC 0.117 0.961 0.083 0.998

2M2D20C

COMUSA 0.094 0.754 0.110 0.426
kluster 0.111 0.553 0.117 0.347
nselectboot 0.118 0.086 0.122 0.043
SNN-DPC 0.176 0.275 0.213 0.063
U-SENC 0.088 0.927 0.093 0.709
RSPCA-SC 0.066 0.894 0.053 0.952
RSPCA-CC 0.061 0.900 0.068 0.751

confidence level. In other words, the proposed RSPCA-based schemes
are the ‘‘winners’’ in this scenario.

5.6.5. Discussions
The current mainstream big data paradigms use the distributed and

arallel data clustering model, but the high computational cost makes
computing an entire dataset inefficient. In the RSPCA computing frame-
work, we eliminate inter-node data communication by not iterating
on the entire dataset. We have demonstrated that by representing a
arge dataset as an RSP data model, we can replace the costly record-
evel sample with an efficient block-level sample clustering process.
dditionally, the big dataset clustering analysis transforms into the
nalysis of multiple random RSP data blocks. Once we convert a large
ataset into an RSP data model, we no longer need to analyze it all

at once to estimate clustering properties. Consequently, we compute
ensemble estimations from multiple RSP samples via a serial clustering
lgorithm in a parallel manner. As we see in the experiment results,
 few RSP sample ensembles can obtain the global clustering approx-
mation. Also, we can enrich results incrementally by appending new
lustering outcomes from newly analyzed RSP data blocks.
Merits and Limitation. The experimental results reveal some attrac-

tive merits of RSPCA. Specifically, RSPCA can efficiently identify the
number of clusters in large-scale data, is scalable, is not sensitive to
noise, and is parameter-free. Nevertheless, we also found the limitation
of RSPCA is ineffective on high-dimensional datasets.
13
6. Conclusions

In this paper, we propose a novel approximate clustering ensemble
method, RSPCA, for big data clustering to improve the robustness of
the result, the computation efficiency, and data scalability. Specifically,
o make the large-scale data clustering problem tractable, in RSPCA,
e introduced a non-MapReduce computing framework, that allows

xecution of serial algorithms independently to generate component
esults so as to improve the computation efficiency and data scalability.
ubsequently, in RSPCA, two clustering ensemble schemes, spectral
nd correlation, were designed to efficiently integrate the clustering
utcomes of multiple samples for handling irregular clusters. Exten-
ive experiments have been conducted, and the results demonstrate
he scalability and approximation robustness of the new approach.
esides, RSPCA yields a more accurate and interpretable solution com-
ared to the existing clustering methods. Therefore, computational
fficiency, data scalability and easy-to-use make RSPCA a desirable tool
or exploration of big data.

In the future, we will conduct a stringent theoretical investigation
on ensemble clustering with multiple random samples and investi-
gate the problems of RSPCA’s poor performance on high-dimensional
datasets. A possible solution would be to explore a subspace cluster
identification method for multiple random samples of a big dataset.
Clearly, as a general clustering ensemble framework for large-scale
datasets, our method has a potential to be applied to new data domains,
such as stream data. But special operations must be implemented to
compute the component clustering results and the clustering ensemble.
Moreover, the general idea of RSPCA can be extended to evolutionary
learning algorithms, e.g., genetic algorithms (GA) and particle swarm
optimization (PSO), to optimize the number of clusters in multiple
random samples in large-scale data clustering ensembles.

CRediT authorship contribution statement

Mohammad Sultan Mahmud: Writing – original draft, Software,
Methodology, Conceptualization. Hua Zheng: Writing – review & edit-
ing, Investigation, Formal analysis. Diego Garcia-Gil: Writing – re-
view & editing, Validation, Formal analysis. Salvador García: Writing
– review & editing, Supervision, Conceptualization. Joshua Zhexue
Huang:Writing – review & editing, Supervision, Methodology, Funding
acquisition, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.



Pattern Recognition 161 (2025) 111321M.S. Mahmud et al.
Acknowledgments

This research has been supported by the Key Basic Research Foun-
dation of Shenzhen under Grant No. JCYJ20220818100205012 and
partially supported by Project PID2023-150070NB-I00 by MICINN/AEI
and is part of the I+D+i project granted by C-ING-250-UGR23 co-
funded by Consejería de Universidad, Investigación e Innovación and
for the European Union related to the FEDER Andalucía Program
2021-2027.

Data availability

Data will be made available on request.

References

[1] S. Ma, J. Huai, Approximate computation for big data analytics, ACM SIGWEB
Newsl. (2021) 1–8, http://dx.doi.org/10.1145/3447879.3447883.

[2] D. Huang, C.-D. Wang, J.-S. Wu, J.-H. Lai, C.-K. Kwoh, Ultra-scalable spectral
clustering and ensemble clustering, IEEE Trans. Knowl. Data Eng. 32 (6) (2020)
1212–1226, http://dx.doi.org/10.1109/TKDE.2019.2903410.

[3] F. Li, Y. Qian, J. Wang, C. Dang, L. Jing, Clustering ensemble based on sample’s
stability, Artificial Intelligence 273 (2019) 37–55, http://dx.doi.org/10.1016/J.
ARTINT.2018.12.007.

[4] J. Luengo, D. García-Gil, S. Ramírez-Gallego, S. García, F. Herrera, Big Data
Preprocessing: Enabling Smart Data, Springer Nature, 2020, http://dx.doi.org/
10.1007/978-3-030-39105-8.

[5] M.S. Mahmud, J.Z. Huang, S. Salloum, T.Z. Emara, K. Sadatdiynov, A survey
of data partitioning and sampling methods to support big data analysis, Big
Data Min. Anal. 3 (2) (2020) 85–101, http://dx.doi.org/10.26599/BDMA.2019.
9020015.

[6] X.-L. Meng, Statistical paradises and paradoxes in big data (I): Law of large
populations, big data paradox, and the 2016 US presidential election, Ann. Appl.
Stat. 12 (2) (2018) 685–726, http://dx.doi.org/10.1214/18-AOAS1161SF.

[7] N. Iam-On, T. Boongoen, S. Garrett, C. Price, A link-based approach to the
cluster ensemble problem, IEEE Trans. Pattern Anal. Mach. Intell. 33 (12) (2011)
2396–2409, http://dx.doi.org/10.1109/TPAMI.2011.84.

[8] D. Huang, J. Lai, C.-D. Wang, Ensemble clustering using factor graph, Pattern
Recognit. 50 (2016) 131–142, http://dx.doi.org/10.1016/j.patcog.2015.08.015.

[9] F. Cicalese, E.S. Laber, Information theoretical clustering is hard to approximate,
IEEE Trans. Inform. Theory 67 (1) (2021) 586–597, http://dx.doi.org/10.1109/
TIT.2020.3031629.

[10] X. Niu, C. Zhang, X. Zhao, L. Hu, J. Zhang, A multi-view ensemble clustering
approach using joint affinity matrix, Expert Syst. Appl. 216 (2023) 119484,
http://dx.doi.org/10.1016/j.eswa.2022.119484.

[11] R. Mussabayev, N. Mladenovic, B. Jarboui, R. Mussabayev, How to use K-
means for big data clustering? Pattern Recognit. 137 (2023) 109269, http:
//dx.doi.org/10.1016/j.patcog.2022.109269.

[12] A.M. Ikotun, A.E. Ezugwu, L. Abualigah, B. Abuhaija, J. Heming, K-means
clustering algorithms: A comprehensive review, variants analysis, and advances
in the era of big data, Inform. Sci. 622 (2023) 178–210, http://dx.doi.org/10.
1016/j.ins.2022.11.139.

[13] B. Bahmani, B. Moseley, A. Vattani, R. Kumar, S. Vassilvitskii, Scalable k-
means++, Proc. VLDB Endow. 5 (7) (2012) 622–633, http://dx.doi.org/10.
14778/2180912.2180915.

[14] M. Servetnyk, C.C. Fung, Distributed dual averaging based data clustering, IEEE
Trans. Big Data 9 (1) (2023) 372–379, http://dx.doi.org/10.1109/TBDATA.2022.
3146169.

[15] J. Lu, Y. Zhao, K. Tan, Z. Wang, Distributed density peaks clustering revisited,
IEEE Trans. Knowl. Data Eng. 34 (8) (2022) 3714–3726, http://dx.doi.org/10.
1109/TKDE.2020.3034611.

[16] T. Qiu, Y.-J. Li, Fast LDP-MST: An efficient density-peak-based clustering method
for large-size datasets, IEEE Trans. Knowl. Data Eng. 35 (5) (2023) 4767–4780,
http://dx.doi.org/10.1109/TKDE.2022.3150403.

[17] D. Cheng, J. Huang, S. Zhang, X. Zhang, X. Luo, A novel approximate spectral
clustering algorithm with dense cores and density peaks, IEEE Trans. Syst. Man
Cybern.: Syst. 52 (4) (2022) 2348–2360, http://dx.doi.org/10.1109/TSMC.2021.
3049490.

[18] L. Yaohui, M. Zhengming, Y. Fang, Adaptive density peak clustering based on
K-nearest neighbors with aggregating strategy, Knowl.-Based Syst. 133 (2017)
208–220, http://dx.doi.org/10.1016/j.knosys.2017.07.010.

[19] Y. He, H. Tan, W. Luo, S. Feng, J. Fan, MR-DBSCAN: a scalable MapReduce-based
DBSCAN algorithm for heavily skewed data, Front. Comput. Sci. 8 (1) (2014)
83–99, http://dx.doi.org/10.1007/S11704-013-3158-3.
14
[20] C. Patil, I. Baidari, Estimating the optimal number of clusters 𝑘 in a dataset using
data depth, Data Sci. Eng. 4 (2019) 132–140, http://dx.doi.org/10.1007/s41019-
019-0091-y.

[21] Y. Fang, J. Wang, Selection of the number of clusters via the bootstrap method,
Comput. Statist. Data Anal. 56 (3) (2012) 468–477, http://dx.doi.org/10.1016/
j.csda.2011.09.003.

[22] H. Estiri, B.A. Omran, S.N. Murphy, Kluster: An efficient scalable procedure for
approximating the number of clusters in unsupervised learning, Big Data Res.
13 (2018) 38–51, http://dx.doi.org/10.1016/j.bdr.2018.05.003.

[23] U. von Luxburg, A tutorial on spectral clustering, Stat. Comput. 17 (4) (2007)
395–416, http://dx.doi.org/10.1007/S11222-007-9033-Z.

[24] L. Ding, C. Li, D. Jin, S. Ding, Survey of spectral clustering based on graph theory,
Pattern Recognit. 151 (2024) 110366, http://dx.doi.org/10.1016/J.PATCOG.
2024.110366.

[25] N. Bansal, A. Blum, S. Chawla, Correlation clustering, Mach. Learn. 56 (2002)
89–113, http://dx.doi.org/10.1023/B:MACH.0000033116.57574.95.

[26] J. Hua, J. Yu, M. Yang, Star-based learning correlation clustering, Pat-
tern Recognit. 116 (2021) 107966, http://dx.doi.org/10.1016/J.PATCOG.2021.
107966.

[27] N. Ailon, M. Charikar, A. Newman, Aggregating inconsistent information: Rank-
ing and clustering, J. ACM 55 (5) (2008) 1–27, http://dx.doi.org/10.1145/
1411509.1411513.

[28] S. Salloum, J.Z. Huang, Y. He, Random sample partition: A distributed data
model for big data analysis, IEEE Trans. Ind. Inform. 15 (11) (2019) 5846–5854,
http://dx.doi.org/10.1109/TII.2019.2912723.

[29] Y. He, Y. Wu, H. Qin, J.Z. Huang, Y. Jin, Improved I-nice clustering algorithm
based on density peaks mechanism, Inform. Sci. 548 (2021) 177–190, http:
//dx.doi.org/10.1016/j.ins.2020.09.068.

[30] M.S. Mahmud, J.Z. Huang, R. Ruby, K. Wu, An ensemble method for estimating
the number of clusters in a big data set using multiple random samples, J. Big
Data 10 (1) (2023) 40, http://dx.doi.org/10.1186/S40537-023-00709-4.

[31] J.R. Finkel, C.D. Manning, Enforcing transitivity in coreference resolution, in:
Proceedings of the 46th Annual Meeting of the Association for Computational
Linguistics on Human Language Technologies: Short Papers, in: HLT-Short’08,
2008, pp. 45–48, http://dx.doi.org/10.5555/1557690.1557703.

[32] X. Zhao, J. Liang, C. Dang, A stratified sampling based clustering algorithm for
large-scale data, Knowl.-Based Syst. 163 (2019) 416–428, http://dx.doi.org/10.
1016/j.knosys.2018.09.007.

[33] S. Mimaroglu, E. Erdil, Combining multiple clusterings using similarity graph,
Pattern Recognit. 44 (3) (2011) 694–703, http://dx.doi.org/10.1016/j.patcog.
2010.09.008.

[34] R. Liu, H. Wang, X. Yu, Shared-nearest-neighbor-based clustering by fast search
and find of density peaks, Inform. Sci. 450 (2018) 200–226, http://dx.doi.org/
10.1016/j.ins.2018.03.031.

[35] D.L. Davies, D.W. Bouldin, A cluster separation measure, IEEE Trans. Pattern
Anal. Mach. Intell. 1 (2) (1979) 224–227, http://dx.doi.org/10.1109/TPAMI.
1979.4766909.

[36] T. Caliński, J. Harabasz, A dendrite method for cluster analysis, Commun. Stat.
3 (1) (1974) 1–27, http://dx.doi.org/10.1080/03610927408827101.

[37] N.X. Vinh, J. Epps, J. Bailey, Information theoretic measures for clusterings
comparison: Variants, properties, normalization and correction for chance, J.
Mach. Learn. Res. 11 (2010) 2837–2854, http://dx.doi.org/10.5555/1756006.
1953024.

[38] E.B. Fowlkes, C.L. Mallows, A method for comparing two hierarchical clusterings,
J. Amer. Statist. Assoc. 78 (383) (1983) 553–569, http://dx.doi.org/10.1080/
01621459.1983.10478008.

[39] M.S. Mahmud, J.Z. Huang, R. Ruby, A. Ngueilbaye, K. Wu, Approximate
clustering ensemble method for big data, IEEE Trans. Big Data 9 (4) (2023)
1142–1155, http://dx.doi.org/10.1109/TBDATA.2023.3255003.

[40] M.S. Mahmud, J.Z. Huang, S. García, Clustering approximation via a fusion of
multiple random samples, Inf. Fusion 101 (2024) 1–13, http://dx.doi.org/10.
1016/J.INFFUS.2023.101986.

Mohammad Sultan Mahmud received the Ph.D. degree
from Shenzhen University, China, in 2023, and the master’s
degree from King Mongkut’s University of Technology North
Bangkok, Thailand, in 2014. Currently, Dr. Mahmud is a
Research Fellow with the College of Computer Science and
Software Engineering, Shenzhen University, China. He is one
of the pioneers in the distributed clustering ensemble of big
data research. Dr. Mahmud has published research articles
in esteemed journals such as Information Fusion, IEEE
Transactions on Big Data, Big Data Mining and Analytics,
and the Journal of Big Data. He has organized a special
issue in Information Fusion (Elsevier) entitled Mixture of
Experts (MoE) and Ensemble Learning for Big Data. He
was a recipient of several awards or honours, notable
among which are the Guangdong Government Outstanding
International Student Scholarship in 2022 and 2023, the

http://dx.doi.org/10.1145/3447879.3447883
http://dx.doi.org/10.1109/TKDE.2019.2903410
http://dx.doi.org/10.1016/J.ARTINT.2018.12.007
http://dx.doi.org/10.1016/J.ARTINT.2018.12.007
http://dx.doi.org/10.1016/J.ARTINT.2018.12.007
http://dx.doi.org/10.1007/978-3-030-39105-8
http://dx.doi.org/10.1007/978-3-030-39105-8
http://dx.doi.org/10.1007/978-3-030-39105-8
http://dx.doi.org/10.26599/BDMA.2019.9020015
http://dx.doi.org/10.26599/BDMA.2019.9020015
http://dx.doi.org/10.26599/BDMA.2019.9020015
http://dx.doi.org/10.1214/18-AOAS1161SF
http://dx.doi.org/10.1109/TPAMI.2011.84
http://dx.doi.org/10.1016/j.patcog.2015.08.015
http://dx.doi.org/10.1109/TIT.2020.3031629
http://dx.doi.org/10.1109/TIT.2020.3031629
http://dx.doi.org/10.1109/TIT.2020.3031629
http://dx.doi.org/10.1016/j.eswa.2022.119484
http://dx.doi.org/10.1016/j.patcog.2022.109269
http://dx.doi.org/10.1016/j.patcog.2022.109269
http://dx.doi.org/10.1016/j.patcog.2022.109269
http://dx.doi.org/10.1016/j.ins.2022.11.139
http://dx.doi.org/10.1016/j.ins.2022.11.139
http://dx.doi.org/10.1016/j.ins.2022.11.139
http://dx.doi.org/10.14778/2180912.2180915
http://dx.doi.org/10.14778/2180912.2180915
http://dx.doi.org/10.14778/2180912.2180915
http://dx.doi.org/10.1109/TBDATA.2022.3146169
http://dx.doi.org/10.1109/TBDATA.2022.3146169
http://dx.doi.org/10.1109/TBDATA.2022.3146169
http://dx.doi.org/10.1109/TKDE.2020.3034611
http://dx.doi.org/10.1109/TKDE.2020.3034611
http://dx.doi.org/10.1109/TKDE.2020.3034611
http://dx.doi.org/10.1109/TKDE.2022.3150403
http://dx.doi.org/10.1109/TSMC.2021.3049490
http://dx.doi.org/10.1109/TSMC.2021.3049490
http://dx.doi.org/10.1109/TSMC.2021.3049490
http://dx.doi.org/10.1016/j.knosys.2017.07.010
http://dx.doi.org/10.1007/S11704-013-3158-3
http://dx.doi.org/10.1007/s41019-019-0091-y
http://dx.doi.org/10.1007/s41019-019-0091-y
http://dx.doi.org/10.1007/s41019-019-0091-y
http://dx.doi.org/10.1016/j.csda.2011.09.003
http://dx.doi.org/10.1016/j.csda.2011.09.003
http://dx.doi.org/10.1016/j.csda.2011.09.003
http://dx.doi.org/10.1016/j.bdr.2018.05.003
http://dx.doi.org/10.1007/S11222-007-9033-Z
http://dx.doi.org/10.1016/J.PATCOG.2024.110366
http://dx.doi.org/10.1016/J.PATCOG.2024.110366
http://dx.doi.org/10.1016/J.PATCOG.2024.110366
http://dx.doi.org/10.1023/B:MACH.0000033116.57574.95
http://dx.doi.org/10.1016/J.PATCOG.2021.107966
http://dx.doi.org/10.1016/J.PATCOG.2021.107966
http://dx.doi.org/10.1016/J.PATCOG.2021.107966
http://dx.doi.org/10.1145/1411509.1411513
http://dx.doi.org/10.1145/1411509.1411513
http://dx.doi.org/10.1145/1411509.1411513
http://dx.doi.org/10.1109/TII.2019.2912723
http://dx.doi.org/10.1016/j.ins.2020.09.068
http://dx.doi.org/10.1016/j.ins.2020.09.068
http://dx.doi.org/10.1016/j.ins.2020.09.068
http://dx.doi.org/10.1186/S40537-023-00709-4
http://dx.doi.org/10.5555/1557690.1557703
http://dx.doi.org/10.1016/j.knosys.2018.09.007
http://dx.doi.org/10.1016/j.knosys.2018.09.007
http://dx.doi.org/10.1016/j.knosys.2018.09.007
http://dx.doi.org/10.1016/j.patcog.2010.09.008
http://dx.doi.org/10.1016/j.patcog.2010.09.008
http://dx.doi.org/10.1016/j.patcog.2010.09.008
http://dx.doi.org/10.1016/j.ins.2018.03.031
http://dx.doi.org/10.1016/j.ins.2018.03.031
http://dx.doi.org/10.1016/j.ins.2018.03.031
http://dx.doi.org/10.1109/TPAMI.1979.4766909
http://dx.doi.org/10.1109/TPAMI.1979.4766909
http://dx.doi.org/10.1109/TPAMI.1979.4766909
http://dx.doi.org/10.1080/03610927408827101
http://dx.doi.org/10.5555/1756006.1953024
http://dx.doi.org/10.5555/1756006.1953024
http://dx.doi.org/10.5555/1756006.1953024
http://dx.doi.org/10.1080/01621459.1983.10478008
http://dx.doi.org/10.1080/01621459.1983.10478008
http://dx.doi.org/10.1080/01621459.1983.10478008
http://dx.doi.org/10.1109/TBDATA.2023.3255003
http://dx.doi.org/10.1016/J.INFFUS.2023.101986
http://dx.doi.org/10.1016/J.INFFUS.2023.101986
http://dx.doi.org/10.1016/J.INFFUS.2023.101986


Pattern Recognition 161 (2025) 111321M.S. Mahmud et al.
Excellent Paper Award 2021 Big Data Mining and Analytics,
the Shenzhen Universiade International Student Scholarship
in 2018, and the Outstanding Doctoral Student of Shenzhen
University in 2017. His current research focuses on big
data mining, distributed and parallel computing, ensemble
learning, and mixture of experts.

Hua Zheng received a Ph.D. degree from Bournemouth
University, UK, in 2024. He is an Associate Professor at
the Software Engineering Institute Guangzhou, China. His
research interests include Graph Neural Networks, Graph
Transformers, Geometric Deep Learning, Graph Clustering,
Computational Biology, and AI Pharmaceuticals.

Diego García-Gil received his M.Sc. degree in computer
science in 2015, and Ph.D. degree in 2020, both from
the University of Granada, Spain. Currently, Dr. García-Gil
is an Assistant Professor in the Department of Software
Engineering at the University of Granada and a Research
Fellow at the Andalusian Research Institute in Data Science
and Computational Intelligence (DaSCI Institute). He has
authored several scientific articles in esteemed journals such
as Information Fusion, International Journal of Intelligent
Systems, and Information Sciences. Additionally, he has
published a monograph with the prestigious Springer, titled
‘‘Big Data Preprocessing - Enabling Smart Data,’’ released
in 2020. He has also delivered numerous courses, both
nationally and internationally, related to his research area.
His career has been marked by the study and development
of methodologies in various fields of data science and
computational intelligence, focusing on ensemble methods
for classification and data preprocessing in Big Data. Within
artificial intelligence, his main research interests focus on
big data science, ensemble learning, mixture of experts, and
anomaly detection.
15
Salvador García received the Ph.D. degree in Computer
Science from the University of Granada, Granada, Spain,
in 2008. Currently, he is a Professor at the Department of
Computer Science and Artificial Intelligence, University of
Granada, Spain. Prof. García has published more than 80
papers in international journals (more than 60 in Q1), an h-
index of 43, and over 60 papers in international conference
proceedings (data from Web of Science). He has organized
several special sessions and workshops related to data
preprocessing and evolutionary learning in conferences such
as ‘‘Hybrid Intelligent Systems’’, ‘‘Intelligent Systems Design
and Applications’’ and ‘‘International Joint-Conference of
Neural Networks’’. He has been associated with the inter-
national program committees and organizing committees
of several regular international conferences, including IEEE
CEC, ICPR, ICDM, IJCAI, etc. As part of his editing activities,
he has co-edited two special issues in international journals.
He is the Chief Editor of ‘‘Information Fusion’’ (Elsevier) and
‘‘Swarm and Evolutionary Computation’’ (Elsevier), and he
is Co-Editor in Chief of the international journal ‘‘Progress
in Artificial Intelligence’’ (Springer). He is a co-author of
the books entitled ‘‘Data Preprocessing in Data Mining’’
and ‘‘Learning from Imbalanced Data Sets,’’ both published
by Springer. His research interests include data science,
data preprocessing, Big Data, evolutionary learning, Deep
learning, metaheuristics and biometrics.

Joshua Zhexue Huang received the Ph.D. degree from the
Royal Institute of Technology, Sweden, in 1993. He is a
Distinguished Professor at Shenzhen University, China. Also,
he is the Director of the Big Data Institute and the Deputy
Director of the National Engineering Laboratory for Big Data
System Computing Technology. His main research interests
include big data technology and applications. Prof. Huang
has published over 260 research papers in conferences and
journals. In 2006, he received the most influential paper
award at the First Pacific-Asia Conference on Knowledge
Discovery and Data Mining. Prof. Huang is known for his
contributions to the development of a series of k-means
type clustering algorithms in data mining, such as k-modes,
fuzzy k-modes, k-prototypes, and w-kmeans, that are widely
cited and used, and some of which have been included in
commercial software. He has extensive industry expertise
in business intelligence and data mining, and has been
involved in numerous consulting projects in Australia and
China.


	RSPCA: Random Sample Partition and Clustering Approximation for ensemble learning of big data
	Introduction
	Motivation
	Contributions

	Related Work
	Preliminaries
	Notations
	Approximate clustering of large-scale data
	RSP data model 
	Identifying the number of clusters and initial centroids in RSP data blocks 

	Clustering Approximation with Ensemble of Multiple Samples 
	Problem definition 
	The proposed RSPCA approach
	Generating RSP data model and block-level sampling
	Finding the number of clusters and centroids in RSP data blocks
	Ensemble the clusters of RSP data blocks

	A numerical example
	Computational complexity analysis

	Experiments 
	Datasets
	Computation environment
	Experiment setup and parameter analysis
	Competitors
	Evaluation metrics
	Experimental result analysis
	Influence of RSP data block size and ensemble size
	Comparison with state-of-the-art algorithms
	Scalability with ensemble data size
	Statistical analysis
	Discussions


	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References


