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t

jective multi-population evolutionary procedures have become one of the most outstanding metaheuristics for
characterized by the curse of dimensionality. A critical aspect of these models is the migration process, define
of individuals between subpopulations every few iterations or generations, which has typically been adjusted ac

f guidelines proposed more than 20 years ago, when the capacity to deal with problems was significantly less t
owever, the constant increase in computational power has made it possible to tackle today’s complex real-world p
nterest more plausibly, but with larger populations than before. Against this background, this paper aims to study
ssical recommendations are still valid today, when both the magnitude of the problems and the size of the po
reased considerably, considering how this adjustment affects the performance of the procedure. In addition, the
pulation size, coupled with the fact that multi-objective optimization is being addressed, has led to the deve
el elitist probabilistic migration strategy that considers only the Pareto front. The results show some interest
ed conclusions, in which other issues, such as the number of subpopulations or their size, should be considere
ulti-population models. Furthermore, some of the previously mentioned classical recommendations may not be we
dimensional problems.

s: Multi-objective Optimization, Multi-population Models, Evolutionary Algorithms, Migration Process, Energy-
ng, Feature Selection

ation

he years, many metaheuristics have been proposed to
oblems characterized by the curse of dimensionality
hich evaluating each possible solution is unmanage-
the current computational power. One metaheuristic

gained the most recognition from the scientific com-
s population-based evolutionary procedures [2]. Here,
ndividuals evolves over generations to reach a solution
as possible to the global optima.
portant consideration in the design of an evolutionary
is the type of optimization it addresses. As noted in
utionary algorithms have shown promising effective-
olving complex problems through multi-objective op-
n, in which two or three conflicting objectives are op-
imultaneously. Therefore, the goal of the evolutionary
e in this type of optimization is to identify a set of so-
at are better than the rest but have different satisfaction
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trade-offs for each objective. These solutions are called
optimal solutions [4].

On the other hand, regarding the population type, ev
ary procedures broadly fall into single-population an
population models. Single-population models offer si
because only one population evolves over generation
though this approach is widely used and has yielded g
sults for large-scale optimization problems [5, 6], its
drawback is that it explores only one region of the searc
which is conditioned by the generation of the initial
tion [7, 8]. Multi-population models emerged to addr
limitation, enabling simultaneous exploration of severa
space regions and thus balancing intensification and div
tion. For instance, [9] proposes Multiple Populations f
tiple Objectives (MPMO), a coevolutionary technique
fers a straightforward method to solve multi-objective p
by assigning each population to a single objective. H
most multi-population models are based on the islan
scheme, where multiple subpopulations evolve indepe
[10–15]. This scheme is intrinsically highly paralleliza
because subpopulations exchange individuals only dur
gration, which has allowed it to achieve optimal effici
large-scale problems [17].

In fact, one of the keys to the proper evolution of
population model is the migration process, defined as th

bmitted to Neurocomputing May
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ndividuals between subpopulations. Migration aims to
diversity in the search space to obtain quality solu-

ecifically, the hyperparameters that control the migra-
ess in multi-population models are:

ration interval (mi). Also known as period in many
ies, it indicates the number of generations that must
se between each migration process. Although it is usu-
set to a fixed value, some studies have considered dy-
ically adjusting it during the search [18–20].

ration policy (mp). It defines how migrants are se-
ed from the source subpopulation and how they will be
grated into the destination.

ration rate (mr). Also known as grain, it indicates
number of migrants each subpopulation sends when
ration occurs.

ration topology (mt). It determines how the different
populations are connected.

ber of subpopulations (nsp). Number of subpopula-
s that run the evolutionary procedure.

population size (ssp). Number of individuals for each
of the subpopulations.

ically, these hyperparameters have been adjusted con-
studies such as [21–24], in which a series of guidelines
posed. Although these works were published about
ago, their indications are still being used nowadays.

, a significant issue should be considered: thanks to
nential increase in computing power, current real-life
problems of great interest, such as resource schedul-
6], Feature Selection (FS) in high-dimensional spaces
system design [31–33], classifier optimization [34–

lligent transportation [38, 39], or network planning
can be tackled much more plausibly now than more
ears ago. In fact, multi-population models have been

o this type of problems [43–46], following the recom-
ns of [21–24] but evolving a significantly higher num-
dividuals to maintain diversity over the search space
0]. With this in mind, the following question arises:
e guidelines still valid today, when the complexity of
ems and the size of the populations needed to find ad-
lutions have increased considerably?
d to the previous question, an equally relevant one
ow does the adjustment of the migration hyperpa-
affect the efficiency of the procedure? Usually, the

f the final results is first considered. However, neither
tion time nor the energy consumption of the proposal

e neglected. In a world of limited resources and a cli-
nge of increasing concern, the development of energy-
approaches is essential [51, 52]. In this sense, the prob-
tting the migration hyperparameters for large popula-
uld be tackled not only to obtain quality solutions but
re about the execution time or the energy consumption

efficient computation.

Finally, this increase in the population size, along w
adoption of multi-objective optimization to adequately
complex problems, has led to the need for a novel m
policy that considers only the Pareto optimal individua
vor selection pressure while reducing the number of p
migrants, which should lead to more efficient computat

After this introduction, Section 2 presents the state
art of migration adjustment for multi-population mod
discusses parametric and non-parametric tests to detec
tically significant differences between the sample distr
of the results of evolutionary procedures. It also introd
concept of effect size as a test for estimating the ma
of such differences. These statistical methods are esse
properly tuning the migration process. Then, Section
duces a novel elitist probability-based migration policy
ically designed for multi-objective, multi-population ev
ary algorithms with large populations, which aims to
the selection pressure towards the best solutions while
ing the number of selected migrants. The experiment
designed to fine-tune the migration process hyperparam
discussed in Section 4, and since a huge amount of r
expected from running the evolutionary procedure wi
different migration hyperparameter configurations, Sec
presents a new procedure, supported by both parame
non-parametric statistical tests, for comparing multiple
sample distributions for a given metric. Next, Sectio
plies this experimental study to optimize the migrati
cess of a parallel multi-objective, multi-population evol
wrapper that solves an FS problem for several high-dim
datasets, and finally, Section 6 concludes the paper.

2. State-of-the-art

After outlining the motivation behind this work, Sec
presents the most relevant state-of-the-art related to the
tion process. Furthermore, given that a study on optimiz
gration hyperparameters for large populations require
statistical analysis, Section 2.2 outlines the most releva
ature on this matter.

2.1. Migration process

As previously mentioned, one of the keys in multi-po
models is the migration process, so this section outline
such as the historical recommendations for adjusting
gration hyperparameters, recent studies that have end
to shed light on the subject of their adjustment, and, fin
analysis of the suitability of these recommendations f
populations.

2.1.1. Classical recommendations
The first relevant approaches to adjustment of the m

process can be attributed to Cantú-Paz in the late 199
23, 53–55]. These studies aimed to provide a set of rec
dations for correct adjustment of the migration process i
population models since, up to that point, there was a p
tion of papers with expensive experiments, making it di

2
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certain generalization criteria. Cantú-Paz showed that
priate adjustment of the migration hyperparameters af-
e final solution.

one hand, Cantú-Paz stated that a degradation in ac-
ould occur if the different subpopulations comprised a
ntly low number of individuals [54], showing the im-
of ssp. The author also discussed that both nsp and ssp

rically been given less consideration than other fac-
as the number of migrants and the migration interval.

e, it is expected that the population partitioning scheme
, which usually involves the distribution of ni individ-
nsp subpopulations of size ssp following the Tanese
56], could be the key aspect in the adjustment of the

n process.
other hand, Cantú-Paz also focused on migration poli-

, specifically on random-random and best-worst, with
term of this terminology indicating how migrants are
in the source subpopulation, while the second one de-
how the individuals to be eliminated in the destination
lation are chosen to accommodate the new ones. Thus,
andom-random policy, the individuals selected in the
bpopulation and those removed in the destination sub-
n are randomly selected to provide greater genetic di-
n contrast, for the best-worst policy, the worst individ-
he destination subpopulation are replaced by the best
ls in the source. Cantú-Paz concluded that the best-
licy was the best option since the selection pressure

with the consequent acceleration in algorithm con-
.
ver, mi and mr were not studied as thoroughly by
z, although he stated that 0.1 could be an appropriate
mr [22]. In this sense, studies such as [18, 57, 58] can

ghted, although their results vary considerably. On the
, [18, 58] suggest that mr should be set at a relatively

e (as suggested by Cantú-Paz in [22]) and mi at a mod-
ue (10−30 generations). In contrast, [57] found that the

of mi and mr is residual when the population is large
also in agreement with the conclusions of Cantú-Paz

quently, Tomassini presented one of the most relevant
ntal works on migration tuning [24], in which some
s for migration hyperparameters adjustment were es-
. Here, classical problems such as Even-Parity-4 or
Ant on the Santa Fe Trail were solved, with popula-

100, 500, or 2 500 individuals distributed into up to
pulations. In summary, the main conclusions reached
ollows:

distribution of individuals in isolated subpopulations
, in which migration did not occur at any time, pro-
d better results than using a single population.

uding migration achieved better solutions, mainly due
he injection of individuals from other subpopulations,
ch improved search diversity.

adopted topology was not a fundamental factor, al-
gh the best results were obtained with the Ring topol-

ogy, resulting in significant computational savings

• Finally, a study was performed to adjust the valu
and mr through a combination of different values
case, 5 subpopulations with 100 individuals eac
used. Basically, it was concluded that mi should
or 10, while mr should be set to 0.1 or 0.15. To a
or lesser extent, this follows the trend previously
in [18, 58].

• Furthermore, despite not being the best option,
also be observed that if mi increased, mr should
accordingly. If migrations occurred sporadically, m
dividuals were injected to promote genetic diver
contrast, if mi was very low, causing migration
cur very frequently, mr should also be decreased
ingly to prevent the algorithm from converging
turely. Otherwise, many individuals would mig
tween subpopulations too quickly, causing all of
start sharing the same individuals after only a few
ations. This lack of diversity would negatively a
quality of the final solutions, stagnating the algo
local optima.

2.1.2. Recent studies
Although most studies set their migration processe

on the guidelines mentioned above, some works have
contribute their grain of sand to this subject. They can
into two types depending on the population sizes they u

On the one hand, works such as [59–61] can be high
in which some novel metaheuristics are used for small
tions. Here, mi, mr, nsp, and ssp are analyzed, with s
ing from 60 to 100 and nsp from 2 to 15, by evaluati
of IEEE-CEC2005 unimodal and multimodal benchma
tions with different complexity. Although the trend is
tuning mi to intermediate values and mr to relatively l
ues, as Tomassini noted, it seems that the adjustmen
migration process depends on the metaheuristic and th
tions to be optimized. Anyway, due to the small siz
population and the type of problem addressed in these
these conclusions should not be extrapolated for large
tion setups. Of particular interest for mt is [62], which d
population of 100 individuals into 1 to 12 subpopulation
termine the relationship between migration topology an
lem structure. Several topologies (including Ring, Fu
nected, Grid, and others) are examined, and it is conclu
none is inherently the best in all scenarios because the r
ship between the population structure and the problem i
complex. Finally, in relation to mp, [63] agrees with t
ings of Cantú-Paz and suggests that the best-worst poli
most appropriate approach.

On the other hand, concerning medium or large-size
lations, the work [64] can stand out, in which 2 048 in
als are distributed into 10 subpopulations. Here, the be
for mi is analyzed, concluding that small intervals sh
avoided, although the remaining hyperparameters are n
ied in depth. However, [65] states that a large number

3
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hould migrate in short migration intervals, which con-
h the recommendation of [64]. This could be caused by
that each hyperparameter is studied in isolation, lead-
ntradictory conclusions. Concerning mt, Ruciński ad-
he study of this hyperparameter for large populations
concluding that the Ring topology and, more specifi-
o versions of it (Ring + 1 + 2 and Ring + 1 + 2 + 3)
the best results. Finally, in relation to mp, the study

d in [67], in which 2 000 individuals are divided into
pulations, also supports the conclusions derived from
of Cantú-Paz for this hyperparameter, indicating that

st is the most appropriate as it is consistent with the
election mechanism for survival of the fittest.

djustment suitability for multi-objective problems and
rge populations
ld be noted that migration hyperparameters have not
equal attention in the literature. Most studies have fo-
analyzing mi and mr, leaving nsp and ssp in a sec-

ole, a limitation already discussed in Section 2.1.1.
, there seems to be a consensus on the importance of
tuning mp and mt.

ding migration policies, although several alternatives
n proposed [68–70], many are derived to some ex-

the best-worst strategy. This observation supports
recommendation of Cantú-Paz in [55], who concluded
migration policy improves selection pressure, thus ac-
g the convergence of algorithms. However, it is im-
o note that the effectiveness of the best-worst policy is
oblem-dependent. In the case of multi-objective opti-
, it is common to find a large number of non-dominated

along the Pareto front. Consequently, many stud-
adapted the best-worst approach to these problems by
migrants exclusively from the Pareto front. Several

1–76] have proposed implementations that emphasize
t strategy. This method is especially attractive for large
ns, as it increases selection pressure while reducing
er of candidate individuals.
the topology (mt), the studies by Tomassini [24] and
[66] suggest that further exploration may be unnec-
ing topologies and their variants have shown strong

nce in a wide range of problems [77–79], while more
topologies have not demonstrated clear advantages de-

ir higher computational cost.
, there is a notable lack of experimental studies that

onsider the number and size of subpopulations, along
er migration hyperparameters. A comprehensive eval-
f their interactions, especially in the context of large
ns, remains largely unexplored.

istical analysis

strategies such as evolutionary procedures are known
it stochastic behavior. Furthermore, optimization of
n hyperparameters and experimental analysis of their
ns will generate a significant amount of data, thus re-
robust statistical study to provide useful information.

Although most studies originally compared their resu
those of other approaches using the average of multip
this methodology was considered unfair, so works
[80–82] proposed a comparison using various paramet
(ANOVA, t-test, etc.) based on mean and variance.
tests provide a high level of statistical rigor when
ing different results sample distributions, although the
quite restrictive. Specifically, all results sample distr
must satisfy three conditions: independence, normality,
moscedasticity.

The most commonly used statistical tests to assess no
are the Shapiro-Wilk and the Kolmogorov-Smirnov te
former is recommended when the number of sample
than 50, while the Kolmogorov-Smirnov test is indica
erwise. Once normality has been confirmed, homosced
can be confirmed using the Barlett test [83, 84].

On the other hand, since the sample distributions o
sults may be neither normal nor homoscedastic, it is
larly interesting to use non-parametric tests [85], which
the median of the results instead of their mean and v
Among non-parametric tests, the Kruskal-Wallis test i
the most relevant methods [86].

In either case, both parametric and non-parametric te
a p-value, which, if less than a certain significance lev
dicates rejection of the null hypothesis, i.e., that the co
results present statistically significant differences with
dence level of (1 − α) × 100%. For example, rejecting
hypothesis with a p-value less than α = 0.05 means
results are different at a confidence level of 95%.

Although a p-value less than α reveals a statistically
icant difference among several results distributions, it d
indicate the magnitude of that difference. Therefore, on
of the statistical study is carried out, as detailed in [87
this context, a measure or index called effect size arises
can be considered equal to or even more relevant tha
value. The effect size can be used to quantify the di
between two result distributions once the p-value reve
such a difference exists. Although the effect size could
sidered to have been introduced more than 100 years a
it was not until the late 1960s that J. Cohen standardize
his well-known Cohen’s d index [91].

The study of effect size has gained special relevance i
less studies, mainly due to the valuable information it p
This fact is exemplified in [90], in which it is mentio
19 scientific journals of different natures require a stud
effect size to publish papers. Over the years, dozens of
have been proposed to quantify the effect size [92, 93]
which Hedge’s g, Pearson’s r, or Glass’s ∆ stand out. H
to date, Cohen’s d, which standardizes such a practica
ence or effect size as small (d = 0.2), medium (d = 0.5
(d = 0.8), and very large (d ≥ 1.3), remains one of t
widely used.

3. Elitist probabilistic migration: A novel migration

As discussed above, the best-worst policy has been
used in countless studies. Thus, it is an appropriate ch

4
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e 1: Flow chart of the new elitist probabilistic migration policy.

yperparameter. In addition, since multi-objective opti-
s of complex problems are addressed in this work and
lation consists of a considerable number of individuals,
s to select the best migrants from the source subpopu-
from its Pareto front F0(Pi) to favor elitism and reduce
er of potential migrants. Figure 1 shows the flow chart
vel migration policy, which is explained in more detail

lly, hyperparameter mr, which remains constant
ut the evolutionary process, determines the number of
chosen from the source subpopulation. However, a
sed on selecting individuals from F0(Pi) depends on
le size in each generation. To address this and stream-
process, a new hyperparameter ml is proposed to re-
. It is defined as the likelihood that one Pareto-optimal
becomes a migrant. Since all F0(Pi) members have an
bility of being selected as migrants, the average num-
lected migrants (nm) depends on both the generation
ubpopulation. It can be estimated as:

nmi j = ml × |F0 j (Pi)| (1)

|F0 j (Pi)| is the number of Pareto-optimal solutions of
subpopulation at generation j.

d be the case that no migrant is selected, either due to
lue of ml or |F0 j (Pi)|. In this improbable scenario, a

selected solution from the Pareto front is chosen as
t to avoid performance degradation caused by running
opulations in isolation, as discussed in Section 2.1.1.
, when migrants arrive at the destination subpopula-

y are added to the population. Later, the survival se-
echanism keeps the best ssp individuals for the next
n, thus eliminating the worst nmi j from Pi.

4. Experimental study design to optimize the mi
process

After presenting the novel elitist migration policy, t
tion discusses the proposed methodology for optimiz
migration hyperparameters of multi-objective, multi-po
evolutionary procedures with large populations.

4.1. Problem and evolutionary procedure choice

Before applying the methodology proposed in the fo
subsections, it is important to define two points. On
hand, a current complex real-world problem of great
involving large populations should be selected. In pa
several instances of this problem should be addressed
to generalize the results obtained. This approach shou
any potential bias that might arise from focusing on a si
stance. On the other hand, a multi-objective, multi-po
evolutionary method, which has proven to be effective
ing this type of problem, should be chosen. Furthermor
solving complex problems is a resource-intensive task,
sen method should be a parallel approach to achieve
computation.

4.2. Hyperparameters analyzed

Note that not all hyperparameters that control the m
process require analysis. As discussed in Section 2.1.3,
recommended to further investigate the hyperparameter
mp. Regarding the former, an Uni-directional Ring t
has been selected because it is a good choice for proced
volving large populations, as it achieves an appropriate
between diversification and intensification while pres
low complexity. On the other hand, the novel elitist pro
tic migration policy presented in Section 3 has been ch
mp.

With this in mind, the hyperparameters under consi
are mi, ml, nsp, and ssp, as there is currently no existin
that addresses the study of each of them and their inte
when evolving large populations.

4.3. Metrics considered

Several metrics are obtained from each execution t
analysis of the behavior of the evolutionary procedure
spect to its hyperparameter configuration. Concernin
fectiveness, the objectives it optimizes should be taken
count. Since multi-objective problems are solved, each
vides several Pareto optimal solutions. Thus, the averag
of each objective is used for the Pareto front solutions,
this way the average quality of the Pareto front solution
estimated. In addition, execution time and energy cons
should also be measured to estimate its efficiency.

4.4. Relevance of the population partitioning scheme

Once all the aspects regarding the migration hyper
ters under study, the problem, and the evolutionary pr
have been chosen, it is time to focus on the proposed
optimize the migration process for evolutionary proces
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ulations. As discussed in Section 2.1.1, the accurate
n of ssp could be the most critical factor, while mi and

d play a secondary role. Thus, the first step is to estab-
et of possible values of nsp as follows:

Nsp =
{
nsp j : nsp j ∈ [1, ncores] ∩ N

}
(2)

es being the number of physical CPU cores of the pro-
n which the multi-population model is executed. As
[94–96], the use of more threads/processes than the
f physical cores is not recommended for intensive cal-
to avoid the efficiency degradation that occurs when

hreads or processes demand the resources of a single

in line with Tanese’s recommendation outlined in Sec-
1, a population partitioning scheme can be defined for
population size nsp j as follows:

(nsp j , ssp j ) : ssp j = ⌈ni/nsp j⌉ ∀nsp j ∈Nsp (3)

other hand, the possible values for the migration in-
i) and the migration likelihood (ml) can be defined,
ely, as follows:

Mi =
{
mi j : mi j ∈ N

}
(4)

Ml =
{
ml j : ml j ∈ (0, 1)

}
(5)

ing Section 2.1.1, both too high mi values and too low
s would lead to an isolated subpopulations-like behav-
hich migrations are practically residual. In contrast,
values of mi would result in very frequent migration,
-high values of ml would result in a significant injec-
igrants into the population, both leading to premature
nce.
the aforementioned considerations, while four hyper-
rs are to be analyzed, only three independent variables

idered: mi, ml, and nsp, given that ssp is dependent on
i.
the sets of possible values for the three independent

under consideration have been established, a grid
ould be performed, evaluating a total of nc different
e configurations for a given problem instance:

nc = |Nsp| × |Mi| × |Ml| (6)

|Nsp|, |Mi|, and |Ml| are the number of values for nsp,
l, respectively. Furthermore, the procedure should be

mes with each different hyperparameter configuration
for robust statistical analysis, resulting in a total of

xecutions.
the objective is to analyze the influence of the popu-
rtitioning scheme on the procedure behavior, all data
by the grid search for each behavioral metric M con-
he same partitioning scheme (nsp j , ssp j ) should be col-
form a sampling distribution of M for each different

(nsp j , ssp j ). Therefore, |Nsp| sampling distributions of
Ml| × ne samples can be obtained for each different

metric M. This substantial amount of data motivates th
opment of a score metric that allows for a complete so
multiple sampling distributions for a given metric, each
sociated with a different procedure configuration. This
described in the next section.

On the other hand, although the grid search obtains
for all the behavioral metrics each time the multi-po
procedure is run, since the goal is to evaluate the e
ness of the procedure for each population partitioning
only the metrics related to the objectives to be optim
currently considered. Premature convergence can b
detected by identifying the population partitioning s
whose solutions quality deteriorates significantly, es
when subpopulations have few individuals (schemes w
ssp j values), mainly due to the lack of diversity in the s
lations.

4.5. Multiple comparison of the procedure configuratio

The grid search mentioned in the previous section g
a total of nc × ne values for each procedure behavior
which can be partitioned into nd sampling distribution
corresponding to a different configuration for a subset o
parameters. The need to rank all these sampling distr
in order to sort the different hyperparameter configurat
motivated the development of a score metric, which is
by that presented in [97].

Let M be the set:

M =
{
MCi : i ∈ Z ∩ [0, nd)

}

with M standing for one of the different metrics of
cedure behavior, while Ci denotes a concrete hyperpa
combination out of nd possible configurations.

The first step when comparing two sampling distribu
a given metric M, MCi and MC j , obtained by two diffe
perparameter configurations, Ci and C j, is to decide wh
apply a parametric or a non-parametric test. Paramet
can be used only if the two distributions are normal
moscedastic, while non-parametric tests can be applie
remaining cases. In this sense, the Shapiro-Wilk test is
to MCi and MC j if the number of samples is less than 5
erwise, the Kolmogorov–Smirnov test is used. If both d
tions are normal, the Bartlett test is used to detect homo
ticity. Then, the ANOVA test is applied to MCi and MC

are normal and homoscedastic. Otherwise, the Kruska
test is used.

All the aforementioned statistical tests return a p-v
timating the suitability of the samples to the null hyp
This p-value is then compared to a certain significance
which causes the null hypothesis to be rejected if the
is less than α. The lower the α, the greater the confid
rejecting the null hypothesis. A typical value of α is 0.0

Once the corresponding statistical tests are applied, t
parison of distributions MCi and MC j is defined by the fo
relations:

6
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i ≺ MC j ⇔ pCi,C j ≤ α ∧ m̄Ci ≺ m̄C j (8)

i ≈ MC j ⇔ pCi,C j > α (9)

i ⪯ MC j ⇔ MCi ≺ MC j ∨ MCi ≈ MC j (10)

pCi,C j is the p-value obtained by comparing the dis-
s MCi and MC j , m̄Ci and m̄C j denote the means of MCi

, respectively, and the ≺ operator applied to scalar val-
as the distribution means indicates that the left-hand
n is better than the right-hand one, i.e., it means lower

mization and higher for maximization objectives. In
set M of the sampling distributions of a metric M ob-
r different hyperparameter configurations can be par-
ted as follows:

MCi ⪯ MC j ⇔ i ≤ j, ∀MCi ,MC j ∈ (M,⪯) (11)

, the lower i, the better the procedure behavior for met-
n the other hand, the equivalence relation defined in
(9) allows partitioning M into clusters of configura-

t produce statistically similar behavior for metric M:

M

≈ =
{
sim(MCi ) = [sa] : sa ∈M} (12)

the rank of a hyperparameter configuration Ci for a
can be calculated as the average of the positions in M

j that are statistically similar to MCi , i.e.:

r(MCi ) =

∑
MC j∈ sim(MCi )

j

|sim(MCi )|
(13)

the score of a hyperparameter configuration Ci for a
is obtained by dividing its rank by the number of hy-
eter configurations:

s(MCi ) =
r(MCi )
|M| (14)

gh the rank defined in Equation (13) allows for the
on of hyperparameter configurations for a given met-
ower the rank, the better the configuration), the score

in Equation (14) provides better interpretability be-
values are always defined in [0, 1), independently of
er of hyperparameter configurations compared.
, for those configurations that yield statistically dif-

sults for a given metric, i.e., a different score, the ef-
should be calculated to estimate the magnitude of such
es. The effect size obtained should correlate with the
erences obtained. Specifically, Cohen’s d has been

his work.

imization of the population partitioning scheme

e one hand, the methodology outlined in Section 4.4
how a tendency for the multi-population procedure to
prematurely as the subpopulation size (ssp) decreases

the number of subpopulations (nsp) increases, mainly
e lack of diversity in the subpopulations. Thus, it is

likely that there is a minimum threshold for the subpo
size (sspmin ) to avoid the problem of premature conve
This section proposes an approach to estimate such a th

On the other hand, avoiding the premature converg
sue by updating the population partitioning schemes (n
to (nsp j , sspmin ) for all ssp j < sspmin would cause the tot
ber of individuals to increase as nsp increases, which
improve the results for large values of nsp, although it w
quire more computational resources. Therefore, there sh
a maximum threshold for the number of subpopulations
that allows the procedure to find appropriate solution
minimizing its computational time and energy consu
Thus, the optimal partitioning scheme would be (nspmax

In light of the considerations above, the first step sh
to identify sspmin , which should be between two success
ulation partitioning schemes, (nsp j , ssp j ) and (nsp j+1 , ssp j

nsp j > nsp j+1 and ssp j < ssp j+1 , in which the degrada
gins to be noticeable, i.e., premature convergence shoul
served when using a subpopulation size of ssp j , but n
using ssp j+1 . Therefore, the minimum value of ssp tha
tains the quality of the solutions, sspmin , should be in the
[ssp j , ssp j+1 ]. This interval must be searched with nsp j s
lations because scheme (nsp j , ssp j ) has shown a clear t
to converge prematurely. The increase in the subpopula
from ssp j to sspmin is expected to prevent premature conv
when using nsp j subpopulations.

As an exhaustive search in the [ssp j , ssp j+1 ] interval
costly, a binary search-based approach has been pr
which features several modifications regarding the orig
gorithm [98]. However, before proceeding with a deta
amination of this approach, it is important to highlight f
cial aspects:

• The purpose of determining the value of sspmin is
tify a minimum threshold for the subpopulation s
enables the maintenance of solution quality, which
sured by the objectives optimized by the evolution
cedure, so their scores are considered to guide the
Nevertheless, sample distributions of the other effi
related metrics (computing Time, T , and consum
ergy, E) are also obtained because although not us
they will be used later to confirm the estimation of

• Each time a new subpopulation size is evalua
scores of all the previously evaluated subpopulati
must be recalculated, since adding a new distrib
metric values affects the previous scores.

• Two score values are considered similar based on
lowing similarity criterion:

s(MCa ) ≈ s(MCb )⇔ |s(MCa ) − s(MCb )| < sth

in which MCa and MCb are the sampling distribu
metric M for two different configurations Ca and
spectively, in this case consisting of the procedure
ured with two different values for ssp (sspa and ss

7
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hm 1: Procedure designed to find sspmin within interval [ssplow , ssphigh ].

ion findSspMin(ssplow , ssphigh ,wth,Mi,Ml, ne, nsp)
put : Lower extreme of the interval in which to search sspmin , ssplow

put : Higher extreme of the interval in which to search sspmin , ssphigh

put : Threshold for the minimum width of [ssplow , ssphigh ], wth

put : Set of different values for mi, Mi

put : Set of different values for ml, Ml

put : Number of executions, ne

put : Number of subpopulations, nsp

tput: Minimum subpopulation size

cores← 2
0low , ...,Onob j−1low

,Tlow, Elow)← gridSearch(Mi,Ml, ne, nsp, ssplow )
0high , ...,Onob j−1high

,Thigh, Ehigh)← gridSearch(Mi,Ml, ne, nsp, ssphigh )

peat
sspmed ← ⌈ssplow + ssphigh⌉/2
(O0med , ...,Onob j−1med

,Tmed, Emed)← gridSearch(Mi,Ml, ne, nsp, sspmed )
nScores← nScores + 1

for j← 0 to nScores − 1 do(
s(O0 j ), ..., s(Onob j−1 j

)
)
← Score of the nob j objectives after nc × ne executions with ssp = ssp j

end

if s(Okmed ) ≈ s(Okhigh ) ∀k ∈ Z ∩ [0, nob j) then
(ssphigh ,O0high , ...,Onob j−1high

)← (sspmed ,O0med , ...,Onob j−1med
)

else
(ssplow ,O0low , ...,Onob j−1low

)← (sspmed ,O0med , ...,Onob j−1med
)

end
til
(
ssphigh − ssplow < wth

)
or
(
s(Oklow ) ≈ s(Okhigh ) ∀k ∈ Z ∩ [0, nob j)

)
;

turn ssplow

s a similarity threshold. As with the adjustment of α in
metric and non-parametric tests, an adjustment should
ade according to the desired precision for the score

ilarity. In this sense, a value of 0.05 might be an ap-
riate choice.

evaluation of each possible value for sspmin is quite
ly. Specifically, the number of different procedure
figurations evaluated for each population partitioning
me are:

nc = |Mi| × |Ml| (16)

ch generates a total of nc × ne executions for each new
population size to be analyzed. Therefore, the search
ld be stopped if the interval to be searched is too nar-
, since the possible change in sspmin is not worth the
putational cost. This premature stopping criterion is
lated by the hyperparameter wth, a threshold for the
imum width of the interval, which should be adjusted
sidering the total number of individuals (ni). This value
uld be low enough to achieve a balance between re-
rce consumption and the desired precision for the sspmin

fit, but not too low, since analyzing very small i
would not result in a notable change for the value
despite the extensive number of executions require
form a new grid search for each potential value fo

With this in mind, Algorithm 1 shows the pseudo
the binary search approach proposed. The gridSearc
tion is responsible for performing the grid search out
Section 4.4 for a given population partitioning scheme
the possible combinations of values for mi and ml, gene
sample distribution of nc × ne samples of each behavio
ric (the average of each objective Ok of the nob j objec
the solutions found by the procedure, the computation t
the energy consumed) for that partitioning scheme. The
the sspmed value has been determined (Line 6), and the n
search using sspmed has been performed (Line 7), all
scores must be recalculated (Lines 9 to 11), consideri
one of the subpopulation sizes analyzed for ssp. Next, th
of the sample distributions of all the objectives obtained
upper extreme of the interval (ssphigh ) and at the midpoin
are compared using Equation (15). If the scores for al
tives for the upper extreme of the interval are similar
obtained for the other half of the interval, the upper ha

8
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s rejected. Otherwise, the lower half is discarded.
gorithmic complexity of the binary search is:

g2

(
(ssp j+1 − ssp j − wth) × nc × ne × f (no, ni)

))
(17)

e minimum interval size wth and the fact that the algo-
cards half of the interval at each iteration, the maxi-
ber of iterations is limited to log2(ssp j+1 − ssp j − wth)

, although it could stop earlier if the scores of all ob-
or the two extremes of the interval are similar. At each
the binary search performs nc × ne executions of the
ary procedure (see Equation (16)), whose complexity
ends on the number of objectives (no) and the number

duals (ni). Since the complexity order of the evolution-
dure depends on the concrete procedure, it is denoted
i).

the binary search is complete, the next step is to check
bsence of premature convergence, given the value ob-
r the sspmin threshold. For this purpose, all population
ing schemes proposed in Section 4.4 must be updated
s:

sspk =



sspk if sspk > sspmin

sspmin otherwise
(18)

the grid search should be repeated for all partitioning
whose sspk has been replaced by sspmin , to obtain new
al metrics for the updated schemes. Finally, the scores
b j objectives optimized by the evolutionary procedure
e recalculated for all partitioning schemes to consider
y obtained distributions. There should not be statisti-
nificant differences for any distribution, indicating that
ature convergence issue has indeed disappeared.
ting nspmax is straightforward. Since all updated par-
schemes have made the evolutionary procedure yield
lly similar results, nspmax should be nsp j , the number
pulations used by the binary search to find sspmin , i.e.,

um value of nsp among all schemes whose subpopu-
e was updated to sspmin . Increasing nsp beyond nspmax

mproved the results, although it probably has required
mputational resources. No further runs of the evolu-
rocedure are needed to confirm nspmax , since all new
n partitioning schemes have already been evaluated to

sspmin . In fact, the grid search provides distributions of
ioral metrics for each population partitioning scheme,

ssed earlier. The values of the objectives optimized
volutionary process have already been used to verify
herefore, the only remaining task is to compute and
the values of the efficiency-related metrics. Since all

ing schemes with nsp > nspmax now have ssp = sspmin ,
res for both computation time and energy consumed
e worse than those of (nspmax , sspmin ).

ence of the migration interval and the number of mi-
nts

the optimal population partitioning scheme
spmin ) has been identified for each problem instance, it

can be used to analyze the influence of mi and ml. A
further runs of the multi-population evolutionary proce
required because all the combinations of Mi and M

have already been evaluated for the population part
scheme (nspmax , sspmin ). However, the samples of every
ioral metric must now be split into different distributio
corresponding to each possible (mi,ml) combination.
the scores of these new sample distributions can be ca
for the behavioral metrics, which allows an assessmen
influence of mi and ml on the procedure’s behavior.

5. Experimental results

After presenting the proposed methodology for the m
hyperparameter optimization for evolutionary procedu
large populations, this section presents the experimenta
for each previously described method.

5.1. Setup

In order to study the optimization of the migration pr
is first necessary to choose an appropriate problem that
a sufficiently large population of individuals, as discu
Section 4.1. Therefore, among all the problems ment
Section 1, a high-dimensional FS problem has been
since it is of great importance nowadays, mainly du
increasing size of current datasets. In addition, since
instances of the problem should be analyzed to obtain
cally robust results, three Brain-Computer Interface (B
tor Imagery (MI) datasets corresponding to three anon
subjects, coded 104, 107, and 110, and recorded in the B
oratory at the University of Essex, will be processed [10
datasets comprise Electroencephalogram (EEG) signal
sponding to three movements: left hand, right hand, a
The number of samples of each class is balanced. All
into training and test data, consisting of 178 samples an
features each. With this in mind, these datasets meet
quirements of this experimental study since the populat
in this type of problem should be set to a value clos
dataset dimensionality to cover the search space appro
as stated in [47].

The next step is to choose an adequate population-b
gorithm to solve FS problems. Wrapper methods are co
used for such problems. Basically, they are based on
strategy that uses an induction method to evaluate the p
solutions for the problem [102]. Specifically, the efficie
lel multi-objective multi-population evolutionary wrap
posed in [16], which applies a Non-dominated Sorting
Algorithm II (NSGA-II) and the k-NN classifier as th
tion method, has been chosen because it has previous
successfully applied to the three Essex BCI datasets [1
wrapper dedicates each CPU core to managing the e
of a different subpopulation, and performs the exchang
grants between subpopulations asynchronously, i.e., ea
population can send its migrants to the destination one
stalling its execution flow, which achieves a higher effi
than synchronous communication, in which all subpop

9
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Table 1: Hyperparameter values setting for all the experiments.

Hyperparameter Value
Number of executions (ne) 30 †

Crossover probability (pc) 0.8

Mutation probability (pm) 0.2

pendent mutation probability for each feature (pind) 0.00028 ‡

aximum number of generations performed (mg) 1 000

er of generations analyzed to detect convergence (ga) 15

a-generation convergence threshold for the standard
iation of the current population Kappa index (skth )

0.1

eneration convergence threshold for the average of the
current population Kappa index (kth)

0.01

Migration policy (mp) Elitist probabilistic migration

Migration topology (mt) Uni-directional Ring
ue in [20, 50] is indicated as adequate regardless of the study addressed, as proposed in [99].
umber of features, as proposed in [100].

Table 2: Cluster node configuration.

umber of CPUs 2

CPU Intel Xeon Silver 4214

12 cores/ 24 threads

2 200 Mhz, 85 W

RAM 64 GB DDR4

chronize, so that the slowest subpopulation is the one
rmines the execution flow of the others [103–105]. Fur-
, the wrapper also provides an adaptive stop criterion
by hyperparameters ga, skth , and kth [8], which evalu-

evolution of the quality of solutions. The wrapper has
figured according to the hyperparameter values listed
1. For more information about the wrapper method or
parameter configuration, the reader is referred to [16].
oints about the wrapper should be emphasized in order
ly apply the methodology proposed in Section 4:

wrapper is implemented in Python using the DEAP
ary, which requires the subpopulation size to be a mul-

of 4 for all NSGA-II-based algorithms [106]. Thus,
alues of ssp proposed for experimentation must satisfy
constraint.

two objectives optimized by the wrapper are the
pa index and the number of selected features.

rmore, for the application of the statistical tests de-
n Section 4.5, an α = 0.5 has been used, as this is a
mmonly used for this type of study.
, concerning the execution platform, all experiments
n performed on a homogeneous high-performance
nning Rocky Linux 8.4, whose characteristics are de-

tailed in Table 2. In addition, each node is equipped with
pire smart energy meter [107], which measures active
voltage, current, power factor, and other energy informa
ery 200 ms.

5.2. Assessment of the population partitioning schem
ence on the wrapper behavior

As described in Section 4.4, the first step is to determ
influence of the population partitioning scheme on the
effectiveness. Regarding nsp, the set of possible values
hyperparameter has been defined as:

Nsp = {2, 4, 8, 16, 24}
i.e., it takes increasing powers of 2 until the number
cores is reached (ncores = 24). To define the populatio
tioning schemes, it is necessary to fix the total populat
(ni) beforehand since, as stated in Equation (3), each
pends on both its corresponding nsp j

and ni. As indi
[7, 47, 97, 108], ni should be close to the number of fea
the dataset (n f = 3 600), provided that all ssp j

must a
multiple of 4 to satisfy the DEAP constraint mentioned
tion 5.1. Therefore, ni has been set to 3 840, resultin
following partitioning schemes:

{(nsp j
, ssp j

)} = {(24, 160), (16, 240), (8, 480),
(4, 960), (2, 1 920)}

Regarding mi, the literature seems to indicate that the
mended values for the migration interval range betwee
20 generations, so the values proposed in this study are

Mi = {5, 10, 15, 20}
Finally, as mr does not usually exceed 30% of ssp

papers, the values assigned to ml are:

10
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(b) Average number of selected features

Score values for both the average test Kappa index and the average number of selected features, obtained for the three Essex datasets and
partitioning schemes.
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Figure 3: Absolute difference in scores for the average test Kappa index between different partitioning schemes for the three Essex datasets.
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Figure 4: Effect size for the average test Kappa index obtained for the three Essex datasets for different population partitioning schemes.

Ml = {0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3} (22)

se probability values, an average percentage of (ml ×
f individuals from the Pareto front of each subpopula-
elected as migrants in every generation.
ering Equation (6), the number of different configura-
the wrapper is:

nc = |Nsp| × |Mi| × |Ml| = 5 × 4 × 7 = 140 (23)

Since the wrapper was run ne = 30 times for th
datasets, a total of 12 600 executions have been perform
ure 2 shows the score values obtained for both the aver
Kappa index and the average number of selected feature
three Essex datasets and every population partitioning
On the one hand, Figure 2a shows a deterioration of t
age test Kappa index as individuals are distributed in
subpopulations, mainly for subjects 107 and 110. The
the subpopulation size, the worse the average test Kapp
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re 5: Absolute difference in scores for the average number of selected features between different partitioning schemes for the three Essex datas
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ure 6: Effect size for the average number of selected features obtained for the three Essex datasets for different population partitioning scheme

teriorates significantly with 24 subpopulations. Since
titioning scheme received a different score, statistically
nt differences between each pair of schemes are appre-
The magnitude of such differences could also be es-
by the absolute difference in the score for each pair
es. Figure 3 shows such differences. It can be seen

trend of deterioration in the average test Kappa index
t as the subpopulation size is reduced for subject 104.
a confirms this, since the effect size is insignificant for
the comparisons of population partitioning schemes,
r the pair ((24, 160), (2, 1 920)), for which a value close
obtained, representing a small effect size. On the other
e tendency to deterioration of the average test Kappa
stronger for subjects 107 and 110, since medium effect
es are obtained in Figures 4b and 4c. Small effect sizes
etween schemes (8, 480), (4, 960) and (2, 1 920), and

effect size appears between schemes (24, 160) and
). Finally, since both the absolute difference in scores
ffect size seem to follow the same trends for the three
the Pearson correlation coefficient was calculated for
104, 107, and 110 between the two estimates of the
e of the difference, obtaining values of 0.659, 0.850,
5, respectively, which reinforces the hypothesis that
l score metric introduced in this paper can detect both
lly significant differences and the magnitude of such
es.
e other hand, regarding the number of selected fea-
gure 2b shows a steady improvement as the subpop-

ulation size decreases, except for scheme (24, 160)
score increases drastically. This trend can also be
Figures 5a to 5c, which show the absolute difference
score for each pair of schemes, and also in Figures 6
which confirm these difference magnitudes by their eff
estimation since their Pearson correlation coefficient i
0.538, and 0.728 for subjects 104, 107, and 110, resp
Small to medium effect sizes are observed when co
schemes with a large difference between their scores. I
the largest feature subsets are obtained with 2 and 24 s
lations, while the smallest are obtained with 8 or 16 sub
tions.

In summary, after analyzing the two objectives optim
the evolutionary procedure, it can be observed that as
creases due to an increase in nsp, a deterioration of the
test Kappa index is observed, which, together with a d
in the average number of features selected, confirms tha
gorithm has an increasing tendency to converge premat
local optima, as discussed in Section 4.4.

Finally, the trend observed in the scores for both me
been confirmed by the subsequent analysis of the effe
showing the potential of the score presented in Section
it allows easy estimation of both statistical similarity an
size.
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core values for both the average test Kappa index and the average number of selected features, obtained for the three Essex datasets and the p
schemes analyzed in the binary search to determine the value for sspmin .
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bsolute difference in scores for the average test Kappa index on the comparison of the population partitioning schemes analyzed in the binary
the value for sspmin for the three Essex datasets.

(16, 240) (16, 268) (16, 300) (16, 360) (16, 480)
Population partitioning scheme

0

0.118 0

0.081 0.056 0

0.017 0.153 0.097 0

0.151 0.147 0.112 0.135 0
0.0

0.2

0.4

0.6

0.8

1.0

(a) 104

(16, 240) (16, 268) (16, 300) (16, 360) (16, 480)
Population partitioning scheme

(16, 240)

(16, 268)

(16, 300)

(16, 360)

(16, 480)Po
pu

la
tio

n 
pa

rti
tio

ni
ng

 sc
he

m
e 0

0.095 0

0.19 0.125 0

0.265 0.228 0.102 0

0.319 0.299 0.163 0.128 0
0.0

0.2

0.4

0.6

0.8

1.0

(b) 107

(16, 240) (16, 268) (16, 300) (16, 360) (16, 480
Population partitioning scheme

(16, 240)

(16, 268)

(16, 300)

(16, 360)

(16, 480)Po
pu

la
tio

n 
pa

rti
tio

ni
ng

 sc
he

m
e 0

0.127 0

0.149 0.021 0

0.273 0.152 0.136 0

0.315 0.243 0.152 0.103 0

(c) 110

ffect size for the average test Kappa index on the comparison of the population partitioning schemes analyzed in the binary search to determine
or the three Essex datasets.

ermination of the optimal population partitioning
me

ding to the analysis in the previous section, the size of
lations seems to be a critical factor in multi-population
Therefore, the next step is to determine the optimal
n partitioning scheme (nspmax , sspmin ) that prevents the
om stalling at local optima and also minimizes re-

source consumption, following the methodology prop
Section 4.6. In this sense, since the degradation of res
started to become more evident for scheme (16, 240) an
with smaller subpopulation sizes, the value of sspmin

probably be in the interval [240, 480], whose extre
the subpopulation sizes of successive schemes (16, 2
(8, 480), the former generating degraded results and th
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(d) Computation time

igure 10: Score values for each metric obtained for the three Essex datasets and the population partitioning schemes updated to consider sspmin

erefore, this interval has been explored with the bi-
rch proposed in Algorithm 1 to find a value for sspmin

not degrade the results. In addition, the number of
lations has been set at 16, as suggested in Section 4.6,
s is the number of subpopulations of scheme (16, 240),

e that started to show noticeable degradation.
maining hyperparameters controlling the binary search
as follows. Regarding wth, which defines the minimum
the search interval to stop the search as described in
.6, since the total number of individuals is ni = 3 840,
een set to 50 to obtain an adequate trade-off between
consumption and the desired precision for sspmin . Fi-
, the similarity threshold for comparing scores (see
(15)) has been set to 0.05.
7 shows the scores for both the average test Kappa

d the average number of selected features and for all
es analyzed during the binary search procedure used
ine the value for sspmin . As observed in Figure 7a,
ge test Kappa index remains relatively stable when

00, deteriorating for scheme (16, 268) and especially
e (16, 240), which was expected from the results ob-
the previous section. This trend can also be observed
8, which shows the absolute difference in the aver-

age test Kappa index scores for comparison of populatio
tioning schemes. Again, these estimates of average tes
index differences are confirmed by Figure 9, which sh
effect size for the same scheme comparison, and by th
son correlation coefficient between the absolute diffe
scores and the effect size, which is 0.553, 0.792, and 0
subjects 104, 107, and 110, respectively. It can be o
that small or small-medium effect size values are obta
schemes (16, 268) and (16, 240), especially for datasets
110, verifying the degradation of the average test Ka
dex. By contrast, considering the average number of
features, Figure 7b shows that for schemes (16, 480), (1
and (16, 300), the results show some stability. In cont
schemes (16, 268) and (16, 240), depending on the dat
erratic trend starts to appear. This behavior could be a s
of premature convergence to local optima. Absolute diff
in scores and effect size are not reported in this case bec
scores are relatively similar. In particular, the effect siz
than 0.2 in all cases. In this context, it seems that th
for sspmin should be between 300 and 268 individuals. H
since it is not worth searching further because this in
too narrow, the minimum threshold for the subpopulat
has been estimated to be sspmin = 300, which is about
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(a) Execution time speedup
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Dataset
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(b) Energy saving

Speedup in execution time and savings in energy consumption
y the (24, 300) and the (16, 300) schemes concerning the (2, 1 920)
ng the three Essex datasets.

ect size for the average test Kappa index and the average number of
atures when comparing schemes (24, 300) and (16, 300) for the three
sets.

etric Dataset Effect size value
104 0.013

age test
107 0.077

pa index
110 0.063

e number 104 0.070

elected 107 0.106

atures 110 0.131

number of individuals.
it is time to verify that the premature convergence
has been successfully solved considering values of
min . This can be confirmed in Figure 10, which shows
obtained for each metric using the three Essex datasets

rent population partitioning schemes and considering
s shown in Figure 10a, the average test Kappa index
lized for all schemes, so premature convergence seems

to have been mitigated. Furthermore, Figure 10b indic
the best subsets of selected features are obtained with s
(24, 300) and (16, 300).

According to Section 4.6, the maximum threshold
number of subpopulations should be nspmax = 16, the nu
subpopulations fixed to perform the binary search of ssp

can also be confirmed by Figures 10c and 10d, whic
that the efficiency of the wrapper improves as individ
distributed into an increasing number of subpopulatio
nsp = 16 is reached, and then drops for scheme (24,
expected. In this context, Figure 11 shows the speedu
ecution time and the energy savings achieved by the (
and the (16, 300) schemes with respect to the slower
i.e., (2, 1 920). It can be seen that scheme (16, 300) is m
cient than (24, 300), especially in terms of energy consu
On the other hand, the scores for both the average tes
index and the average number of selected features are
lower for scheme (24, 300) than for scheme (16, 300)
ever, such differences are negligible and both schemes
be considered to produce statistically similar results.
confirmed by Table 3, which shows effect sizes below
both metrics when comparing the schemes. Therefore
be confirmed that values of nsp > nspmax require addition
putational time and energy that are not worth a nonsig
improvement in the quality of solutions.

5.4. Influence of the migration interval and the numbe
grants

Once the problem of premature convergence seems
been mitigated, this section analyzes the wrapper’s beha
cording to hyperparameters mi and ml. The study has be
ducted using the (16, 300) population partitioning sch
cause it makes the evolutionary procedure to obtain app
solutions while minimizing both its execution time and
consumption.

Every possible combination of mi and ml for the th
sex datasets yielded the same score value in terms of
average test Kappa index and the average number of
selected, indicating that there are no statistically signific
ferences regardless of the combination of mi and ml u
no further analysis is required. However, hyperparam
and ml do affect the efficiency of the procedure, as can
in Figure 12, which shows a heat map of the energy co
tion scores obtained with different combinations of m
using the three Essex datasets. Since the trends in ener
sumption and execution time are co-dependent, as a dec
execution time necessarily leads to an improvement in
consumption, as noted in the previous section, only the
consumption results are reported. The same trend fo
parameters mi and ml is presented for the three datas
improvement in efficiency is observed for each value
the value of ml is increased. In addition, low values of
to be more suitable to obtain the best efficiency. In thi
the scores indicate that tuning mi to low values and ml

values is the best strategy to accelerate convergence. F
shows that these differences are due to the number of
tions required for convergence. As can be seen, the evol
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Score values obtained for the energy consumption with different mi and ml combinations using the three Essex datasets and the population p
, 300).

converges faster as mi decreases and ml increases for
datasets.

dation of the elitist probabilistic migration policy

optimizing the migration process, it is worth compar-
erformance of the novel migration policy presented in
with that of the two most commonly used policies in

ture: the best-worst and random-random policies (see
.1.1). For this purpose, it is important to remember
ulty of selecting the best individuals from a subpopu-
en solving a multi-objective problem (Section 2.1.3).

his issue motivates the development of the elitist prob-
migration proposed in this paper. However, this prob-
t common to all multi-objective evolutionary methods.
se of NSGA-II, which is the basis of the wrapper ap-
viously, the crowding distance [109] allows sorting of
iduals within each front of non-dominated solutions,
o a completely ordered population. In this case, apply-
est-worst policy, as originally defined by Cantú-Paz
traightforward. For other multi-objective evolutionary
es, an adaptation of the method, such as the one pro-
this paper, is required.
t of the aforementioned considerations, the migration
mparison is based on the same experimental condi-
in the previous section. Therefore, the same wrap-
edure was used, run on the same datasets, and con-
ith the previously estimated optimal hyperparameters,
= 16, ssp = 300, and mi = 5. For elitist probabilis-
tion, ml was set to 0.3 as described above. This value
used for mr when applying the best-worst and random-
policies. The wrapper was run ne = 30 times for 500
ns for each dataset and each migration policy.
14 shows the average test Kappa index, the average

of selected features, and the average number of mi-
osen by the wrapper when using the three different mi-
olicies for the three Essex datasets. It can be observed
ew proposed migration policy and the best-worst pol-

n similar results for the two objectives optimized by the
which was expected since both consider the best indi-

n the population. In contrast, it seems that the wrapper

experiences a degradation in its effectiveness when the r
random policy is used, which could be due to the lack o
of the policy. Regardless of the effectiveness of the w
Figure 14c shows how the number of migrants was c
ably reduced by the elitist probabilistic policy compare
other two strategies, as expected, from a fixed numbe
migrants selected by both the best-worst and random-
policies to about 10 migrants for the elitist probabilistic

Figure 15 shows the scores obtained for the aver
Kappa index, the average number of selected features,
average number of migrants chosen by the wrapper, con
that the elitist probabilistic migration policy and the be
policy obtain comparable results for both objectives.
trast, the random-random policy obtains results with a
rable average number of features, although it cannot re
average test Kappa index obtained by the elitist polic
the other hand, Figure 15c shows that the number of m
is significantly reduced, receiving a score value of 0. Th
it can be stated that the novel proposed policy achieve
priate solutions while minimizing the overhead of the m
process, mainly due to the significant reduction in the
of migrants.

5.6. Wrapper behavior assessment
Once the migration hyperparameters have been prop

justed, it becomes relevant to assess the effectivenes
wrapper used in this study, referred to as MOEW
Objective Evolutionary Wrapper), when analyzing th
EEG datasets, and to compare it against other state-o
approaches. These alternative methods are described
lows. On the one hand, LeOCCEA is a Lexicograph
mization Cooperative Co-Evolutionary Algorithm prop
[97]. On the other hand, MEW, a Multi-objective Ev
ary Wrapper method described in [47], has also been ap
the same datasets using different classifiers. Specifica
classification approaches have been used: k-NN, a Naiv
Classifier (NBC), and the application of Linear Discr
Analysis (LDA) before trying with either k-NN or NB
providing four wrapper approaches: MEW-KNN, MEW
MEW-LDA-KNN, and MEW-LDA-NBC. Finally, PG
is a hyperparameter optimization procedure based on
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Average number of generations needed to achieve convergence for
i and ml combinations using the three Essex datasets.

ms for Convolutional Neural Networks (CNNs) pro-
[110]. The rest of the hyperparameters have been ad-
previously described.
16 depicts the average test Kappa index and the aver-

ber of selected features obtained by the different wrap-
ods for the Essex EEG datasets. As can be observed,
may appear to obtain competitive subsets of features.
urther supported by Figure 17, which shows the score
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Figure 14: Average test Kappa index, average number of selected fea
average number of migrants chosen by the wrapper for the different
policies and the three Essex datasets.

values obtained for the average test Kappa index and
number of selected features for the different wrapper
tives, confirming the effectiveness of MOEW.

6. Conclusions

An experimental methodology has been proposed t
mine the influence of the most relevant migration h
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Score values for the average test Kappa index, average number of
atures, and average number of migrants for the different migration
d the three Essex datasets.

on the performance of a multi-objective and multi-
n evolutionary method applied to complex problems
large populations, to confirm whether the guide-

posed 20 years ago by authors such as Cantú-Paz or
i are still valid today, when both the dimensionality of

lems and the size of the population required to solve
e increased considerably. In particular, hyperparam-
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Figure 16: Average test Kappa index and average number of selecte
obtained by the different wrapper alternatives for the Essex EEG data

eters mi, ml, and nsp are analyzed. Tanese’s guideline
to determine all population partitioning schemes (nsp,
cording to the total number of individuals ni and each
value for nsp. In addition to the objectives optimized by
lutionary procedure, its execution time and energy cons
are also considered metrics to be optimized. Furtherm
large number of individuals, and the fact that multi-o
optimization problems are considered, have led to th
opment of a new elitist probability-based migration p
which migrants are selected from the Pareto front, ai
reduce the number of migrants while favoring elitism
the size of the Pareto front is variable in each generat
hyperparameter ml is proposed to set the probability th
Pareto optimal individual will become a migrant. If no
is finally selected, an individual is randomly selected f
Pareto front.

First, the influence of the population partitioning sc
analyzed by a grid search over all possible migration h
rameter combinations to find a narrow interval for the s
lation size at which premature convergence becomes a
Then, this interval is explored with a binary search pr
to find an adequate estimate for sspmin , the minimum th
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Score values for the average test Kappa index and average number
features for the different wrapper alternatives for the Essex EEG

ubpopulation size. Next, nspmax , the maximum thresh-
he number of subpopulations is determined, resulting
, sspmin ), the optimal population partitioning scheme for
lem. Finally, this scheme is used to determine the in-
f mi and ml on the behavior of the procedure.
xperimental study is supported by a novel ranking-

ore that combines both parametric and non-parametric
l tests to split the results sample distributions of all the
nts performed into clusters of migration hyperparame-
inations that provide similar results. These clusters can
d and assigned a scalar score that allows multiple com-
f the results obtained by the evolutionary procedure

erent configurations. The lower the score, the better
eterization.
ethodology was validated by an NSGA-II-based wrap-
ed to three high-dimensional FS datasets related to a
or imagery problem. The results showed a high prob-
f premature convergence as the size of the subpopula-
reases, consistent with the conclusions of Cantú-Paz in
optimal population partitioning scheme (nspmax , sspmin )
determined for the three datasets, showing that the
subpopulations yields results comparable to those of

the use of 24 but is more computationally efficient. A
this behavior might be unexpected, as it has been assum
the years that increasing the number of subpopulation
best guideline to follow [69, 111, 112]. However, it see
issues such as the appropriate values for hyperparame
and ssp, with ssp ≥ sspmin and nsp = nspmax , should
sidered to achieve the best performance of a multi-po
model. Next, the influence of mi and ml on the evol
procedure was analyzed, and it was found that they on
the efficiency of the procedure, causing it to converge
mi decreases and ml increases. This may contradict th
lines given by Tomassini [24], who recommended the
average values for both hyperparameters. In fact, To
reported a degradation in the quality of solutions whe
hyperparameters were tuned in this way. Perhaps this d
tion could have been avoided by properly adjusting nsp

Finally, regarding the new elitist probabilistic migration
it has shown comparable results to the classical best-wo
icy while requiring significantly fewer migrants, thus r
the migration overhead.

It is worth mentioning the extent of the experiment
carried out to obtain the results presented in this work.
lationship between the population partitioning scheme
likelihood of premature convergence was confirmed by
ing the wrapper to three high-dimensional datasets, us
population partitioning schemes, four values for the m
interval, and seven values for ml. Each different com
of these hyperparameters was used to run the wrapper 3
resulting in 12 600 runs of the wrapper. Then, the binar
used to estimate the optimal population partitioning
tried another four additional population partitioning s
requiring 10 080 executions, and finally, the validatio
optimal population partitioning scheme needed anoth
runs of the wrapper. Thus, only the experimental par
work took more than a year to complete, despite using s
performance computing nodes.

Regarding the score metric proposed to allow multip
parison of the results sampling distributions of the huge
of data generated, it has proven useful to detect stat
significant differences among distributions and also all
clustering of hyperparameter combinations that yield c
ble results. Its most relevant aspect, however, is that it
be used to estimate the effect size of differences in resu
ing into account the high correlation between the scor
ence and the Cohen’s d index obtained for all the expe
performed.
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ti-objective multi-population evolutionary procedures have become one of th
t outstanding metaheuristics for solving problems characterized by the curs
dimensionality. A critical aspect of these models is the migration process,
ined as the exchange of individuals between subpopulations every few 
rations or generations, which has typically been adjusted according to a se
guidelines proposed more than 20 years ago, when the capacity to deal with 
blems was significantly less than it is today. However, the constant increa
computational power has made it possible to tackle today's complex real-wor
blems of great interest more plausibly, but with larger populations than 
ore. Against this background, this paper aims to study whether these 
ssical recommendations are still valid today, when both the magnitude of th
blems and the size of the population have increased considerably, consideri
 this adjustment affects the performance of the procedure. In addition, the
rease in the population size, coupled with the fact that multi-objective 
imization is being addressed, has led to the development of a novel elitist
babilistic migration strategy that considers only the Pareto front. The 
ults show some interesting and unexpected conclusions, in which other issue
h as the number of subpopulations or their size, should be considered when 
ting multi-population models. Furthermore, some of the previously mentioned
ssical recommendations may not be well-suited for high-dimensional problems
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