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Highlights

Tuning Multi-objective Multi-population Evolutionary Models for High-dimensional Problems: The Case of the Migration
Process*

Juan Carlos Gémez-Lépez, Manuel Rodriguez—Alvarez, Daniel Castillo-Secilla, Jesus Gonzalez

o A novel elitist probability-based migration policy.

e A new score metric to cluster statistically similar data and
estimate effect size.

e An approach to find an optimal population partitioning
scheme to get quality solutions efficiently.

e The number of migrants and the migration interval do not
determine the procedure’s efficacy.

e However, the procedure’s efficiency is improved at high
and low values, respectively.
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Abstract

Multi-objective multi-population evolutionary procedures have become one of the most outstanding metaheuristics for solving
problems characterized by the curse of dimensionality. A critical aspect of these models is the migration process, defined as the
exchange of individuals between subpopulations every few iterations or generations, which has typically been adjusted according
to a set of guidelines proposed more than 20 years ago, when the capacity to deal with problems was significantly less than it is
today. However, the constant increase in computational power has made it possible to tackle today’s complex real-world problems
of great interest more plausibly, but with larger populations than before. Against this background, this paper aims to study whether
these classical recommendations are still valid today, when both the magnitude of the problems and the size of the population
have increased considerably, considering how this adjustment affects the performance of the procedure. In addition, the increase
in the population size, coupled with the fact that multi-objective optimization is being addressed, has led to the development
of a novel elitist probabilistic migration strategy that considers only the Pareto front. The results show some interesting and
unexpected conclusions, in which other issues, such as the number of subpopulations or their size, should be considered when
fitting multi-population models. Furthermore, some of the previously mentioned classical recommendations may not be well-suited
for high-dimensional problems.
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1. Motivation

Over the years, many metaheuristics have been proposed to
solve problems characterized by the curse of dimensionality
[1], in which evaluating each possible solution is unmanage-
able with the current computational power. One metaheuristic
that has gained the most recognition from the scientific com-
munity is population-based evolutionary procedures [2]. Here,
a set of individuals evolves over generations to reach a solution
as close as possible to the global optima.

An important consideration in the design of an evolutionary
method is the type of optimization it addresses. As noted in
[3], evolutionary algorithms have shown promising effective-
ness in solving complex problems through multi-objective op-
timization, in which two or three conflicting objectives are op-
timized simultaneously. Therefore, the goal of the evolutionary
procedure in this type of optimization is to identify a set of so-
lutions that are better than the rest but have different satisfaction
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trade-offs for each objective. These solutions are called Pareto-
optimal solutions [4].

On the other hand, regarding the population type, evolution-
ary procedures broadly fall into single-population and multi-
population models. Single-population models offer simplicity
because only one population evolves over generations. Al-
though this approach is widely used and has yielded good re-
sults for large-scale optimization problems [5, 6], its primary
drawback is that it explores only one region of the search space,
which is conditioned by the generation of the initial popula-
tion [7, 8]. Multi-population models emerged to address this
limitation, enabling simultaneous exploration of several search
space regions and thus balancing intensification and diversifica-
tion. For instance, [9] proposes Multiple Populations for Mul-
tiple Objectives (MPMO), a coevolutionary technique that of-
fers a straightforward method to solve multi-objective problems
by assigning each population to a single objective. However,
most multi-population models are based on the island-based
scheme, where multiple subpopulations evolve independently
[10-15]. This scheme is intrinsically highly parallelizable [16]
because subpopulations exchange individuals only during mi-
gration, which has allowed it to achieve optimal efficiency on
large-scale problems [17].

In fact, one of the keys to the proper evolution of a multi-
population model is the migration process, defined as the move-
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ment of individuals between subpopulations. Migration aims to
maintain diversity in the search space to obtain quality solu-
tions. Specifically, the hyperparameters that control the migra-
tion process in multi-population models are:

o Migration interval (m;). Also known as period in many
studies, it indicates the number of generations that must
elapse between each migration process. Although itis usu-
ally set to a fixed value, some studies have considered dy-
namically adjusting it during the search [18-20].

e Migration policy (my). It defines how migrants are se-
lected from the source subpopulation and how they will be
integrated into the destination.

e Migration rate (m,). Also known as grain, it indicates
the number of migrants each subpopulation sends when
migration occurs.

e Migration topology (m,). It determines how the different
subpopulations are connected.

e Number of subpopulations (ny,). Number of subpopula-
tions that run the evolutionary procedure.

e Subpopulation size (syp). Number of individuals for each
one of the subpopulations.

Historically, these hyperparameters have been adjusted con-
sidering studies such as [21-24], in which a series of guidelines
were proposed. Although these works were published about
20 years ago, their indications are still being used nowadays.
However, a significant issue should be considered: thanks to
the exponential increase in computing power, current real-life
complex problems of great interest, such as resource schedul-
ing [25, 26], Feature Selection (FS) in high-dimensional spaces
[27-30], system design [31-33], classifier optimization [34-
37], intelligent transportation [38, 39], or network planning
[40—42], can be tackled much more plausibly now than more
than 20 years ago. In fact, multi-population models have been
applied to this type of problems [43-46], following the recom-
mendations of [21-24] but evolving a significantly higher num-
ber of individuals to maintain diversity over the search space
[8, 47-50]. With this in mind, the following question arises:
Are these guidelines still valid today, when the complexity of
the problems and the size of the populations needed to find ad-
equate solutions have increased considerably?

Related to the previous question, an equally relevant one
arises: How does the adjustment of the migration hyperpa-
rameters affect the efficiency of the procedure? Usually, the
quality of the final results is first considered. However, neither
the execution time nor the energy consumption of the proposal
should be neglected. In a world of limited resources and a cli-
mate change of increasing concern, the development of energy-
efficient approaches is essential [51, 52]. In this sense, the prob-
lem of fitting the migration hyperparameters for large popula-
tions should be tackled not only to obtain quality solutions but
also to care about the execution time or the energy consumption
through efficient computation.

Finally, this increase in the population size, along with the
adoption of multi-objective optimization to adequately address
complex problems, has led to the need for a novel migration
policy that considers only the Pareto optimal individuals, to fa-
vor selection pressure while reducing the number of potential
migrants, which should lead to more efficient computation.

After this introduction, Section 2 presents the state-of-the-
art of migration adjustment for multi-population models and
discusses parametric and non-parametric tests to detect statis-
tically significant differences between the sample distributions
of the results of evolutionary procedures. It also introduces the
concept of effect size as a test for estimating the magnitude
of such differences. These statistical methods are essential for
properly tuning the migration process. Then, Section 3 intro-
duces a novel elitist probability-based migration policy, specif-
ically designed for multi-objective, multi-population evolution-
ary algorithms with large populations, which aims to increase
the selection pressure towards the best solutions while reduc-
ing the number of selected migrants. The experimental study
designed to fine-tune the migration process hyperparameters is
discussed in Section 4, and since a huge amount of results is
expected from running the evolutionary procedure with many
different migration hyperparameter configurations, Section 4.5
presents a new procedure, supported by both parametric and
non-parametric statistical tests, for comparing multiple results
sample distributions for a given metric. Next, Section 5 ap-
plies this experimental study to optimize the migration pro-
cess of a parallel multi-objective, multi-population evolutionary
wrapper that solves an FS problem for several high-dimensional
datasets, and finally, Section 6 concludes the paper.

2. State-of-the-art

After outlining the motivation behind this work, Section 2.1
presents the most relevant state-of-the-art related to the migra-
tion process. Furthermore, given that a study on optimizing mi-
gration hyperparameters for large populations requires robust
statistical analysis, Section 2.2 outlines the most relevant liter-
ature on this matter.

2.1. Migration process

As previously mentioned, one of the keys in multi-population
models is the migration process, so this section outlines issues
such as the historical recommendations for adjusting the mi-
gration hyperparameters, recent studies that have endeavored
to shed light on the subject of their adjustment, and, finally, an
analysis of the suitability of these recommendations for large
populations.

2.1.1. Classical recommendations

The first relevant approaches to adjustment of the migration
process can be attributed to Canti-Paz in the late 1990s [21-
23, 53-55]. These studies aimed to provide a set of recommen-
dations for correct adjustment of the migration process in multi-
population models since, up to that point, there was a prolifera-
tion of papers with expensive experiments, making it difficult to



establish certain generalization criteria. Canti-Paz showed that
an appropriate adjustment of the migration hyperparameters af-
fected the final solution.

On the one hand, Cantd-Paz stated that a degradation in ac-
curacy could occur if the different subpopulations comprised a
significantly low number of individuals [54], showing the im-
portance of s,,. The author also discussed that both ny, and s,
had historically been given less consideration than other fac-
tors, such as the number of migrants and the migration interval.
Therefore, it is expected that the population partitioning scheme
(nsp, S5p), which usually involves the distribution of »; individ-
uals into ng, subpopulations of size sy, following the Tanese
scheme [56], could be the key aspect in the adjustment of the
migration process.

On the other hand, Canti-Paz also focused on migration poli-
cies [55], specifically on random-random and best-worst, with
the first term of this terminology indicating how migrants are
selected in the source subpopulation, while the second one de-
scribing how the individuals to be eliminated in the destination
subpopulation are chosen to accommodate the new ones. Thus,
for the random-random policy, the individuals selected in the
source subpopulation and those removed in the destination sub-
population are randomly selected to provide greater genetic di-
versity. In contrast, for the best-worst policy, the worst individ-
uals in the destination subpopulation are replaced by the best
individuals in the source. Canti-Paz concluded that the best-
worst policy was the best option since the selection pressure
increased with the consequent acceleration in algorithm con-
vergence.

However, m; and m, were not studied as thoroughly by
Canti-Paz, although he stated that 0.1 could be an appropriate
value for m, [22]. In this sense, studies such as [18, 57, 58] can
be highlighted, although their results vary considerably. On the
one hand, [18, 58] suggest that m, should be set at a relatively
low value (as suggested by Canti-Paz in [22]) and m; at a mod-
erate value (10—30 generations). In contrast, [57] found that the
influence of m; and m, is residual when the population is large
enough, also in agreement with the conclusions of Canti-Paz
[54].

Subsequently, Tomassini presented one of the most relevant
experimental works on migration tuning [24], in which some
guidelines for migration hyperparameters adjustment were es-
tablished. Here, classical problems such as Even-Parity-4 or
Artificial Ant on the Santa Fe Trail were solved, with popula-
tions of 100, 500, or 2500 individuals distributed into up to
50 subpopulations. In summary, the main conclusions reached
were as follows:

o The distribution of individuals in isolated subpopulations
[53], in which migration did not occur at any time, pro-
vided better results than using a single population.

o Including migration achieved better solutions, mainly due
to the injection of individuals from other subpopulations,
which improved search diversity.

e The adopted topology was not a fundamental factor, al-
though the best results were obtained with the Ring topol-

ogy, resulting in significant computational savings.

o Finally, a study was performed to adjust the values of m;
and m, through a combination of different values. In this
case, 5 subpopulations with 100 individuals each were
used. Basically, it was concluded that m; should take 5
or 10, while m, should be set to 0.1 or 0.15. To a greater
or lesser extent, this follows the trend previously reported
in [18, 58].

o Furthermore, despite not being the best option, it could
also be observed that if m; increased, m, should increase
accordingly. If migrations occurred sporadically, more in-
dividuals were injected to promote genetic diversity. In
contrast, if m; was very low, causing migrations to oc-
cur very frequently, m, should also be decreased accord-
ingly to prevent the algorithm from converging prema-
turely. Otherwise, many individuals would migrate be-
tween subpopulations too quickly, causing all of them to
start sharing the same individuals after only a few gener-
ations. This lack of diversity would negatively affect the
quality of the final solutions, stagnating the algorithm at
local optima.

2.1.2. Recent studies

Although most studies set their migration processes based
on the guidelines mentioned above, some works have tried to
contribute their grain of sand to this subject. They can be split
into two types depending on the population sizes they use.

On the one hand, works such as [59-61] can be highlighted,
in which some novel metaheuristics are used for small popula-
tions. Here, m;, m,, ny,, and sy, are analyzed, with s, rang-
ing from 60 to 100 and n,, from 2 to 15, by evaluating a set
of IEEE-CEC2005 unimodal and multimodal benchmark func-
tions with different complexity. Although the trend is toward
tuning m; to intermediate values and m, to relatively low val-
ues, as Tomassini noted, it seems that the adjustment of the
migration process depends on the metaheuristic and the func-
tions to be optimized. Anyway, due to the small size of the
population and the type of problem addressed in these studies,
these conclusions should not be extrapolated for large popula-
tion setups. Of particular interest for m;, is [62], which divides a
population of 100 individuals into 1 to 12 subpopulations to de-
termine the relationship between migration topology and prob-
lem structure. Several topologies (including Ring, Fully con-
nected, Grid, and others) are examined, and it is concluded that
none is inherently the best in all scenarios because the relation-
ship between the population structure and the problem is highly
complex. Finally, in relation to m,, [63] agrees with the find-
ings of Canti-Paz and suggests that the best-worst policy is the
most appropriate approach.

On the other hand, concerning medium or large-sized popu-
lations, the work [64] can stand out, in which 2048 individu-
als are distributed into 10 subpopulations. Here, the best value
for m; is analyzed, concluding that small intervals should be
avoided, although the remaining hyperparameters are not stud-
ied in depth. However, [65] states that a large number of indi-



viduals should migrate in short migration intervals, which con-
flicts with the recommendation of [64]. This could be caused by
the fact that each hyperparameter is studied in isolation, lead-
ing to contradictory conclusions. Concerning m,, Rucinski ad-
dressed the study of this hyperparameter for large populations
in [66], concluding that the Ring topology and, more specifi-
cally, two versions of it (Ring + 1 + 2 and Ring + 1 + 2 + 3)
provided the best results. Finally, in relation to m,, the study
conducted in [67], in which 2 000 individuals are divided into
10 subpopulations, also supports the conclusions derived from
the work of Canti-Paz for this hyperparameter, indicating that
best-worst is the most appropriate as it is consistent with the
natural selection mechanism for survival of the fittest.

2.1.3. Adjustment suitability for multi-objective problems and
large populations

It should be noted that migration hyperparameters have not
received equal attention in the literature. Most studies have fo-
cused on analyzing m; and m,, leaving ng, and s, in a sec-
ondary role, a limitation already discussed in Section 2.1.1.
However, there seems to be a consensus on the importance of
properly tuning m, and m;.

Regarding migration policies, although several alternatives
have been proposed [68—70], many are derived to some ex-
tent from the best-worst strategy. This observation supports
the early recommendation of Canti-Paz in [55], who concluded
that this migration policy improves selection pressure, thus ac-
celerating the convergence of algorithms. However, it is im-
portant to note that the effectiveness of the best-worst policy is
highly problem-dependent. In the case of multi-objective opti-
mization, it is common to find a large number of non-dominated
solutions along the Pareto front. Consequently, many stud-
ies have adapted the best-worst approach to these problems by
selecting migrants exclusively from the Pareto front. Several
works [71-76] have proposed implementations that emphasize
this elitist strategy. This method is especially attractive for large
populations, as it increases selection pressure while reducing
the number of candidate individuals.

As for the topology (m;), the studies by Tomassini [24] and
Ruciniski [66] suggest that further exploration may be unnec-
essary. Ring topologies and their variants have shown strong
performance in a wide range of problems [77-79], while more
complex topologies have not demonstrated clear advantages de-
spite their higher computational cost.

Finally, there is a notable lack of experimental studies that
jointly consider the number and size of subpopulations, along
with other migration hyperparameters. A comprehensive eval-
uation of their interactions, especially in the context of large
populations, remains largely unexplored.

2.2. Statistical analysis

Search strategies such as evolutionary procedures are known
to exhibit stochastic behavior. Furthermore, optimization of
migration hyperparameters and experimental analysis of their
interactions will generate a significant amount of data, thus re-
quiring a robust statistical study to provide useful information.

Although most studies originally compared their results with
those of other approaches using the average of multiple runs,
this methodology was considered unfair, so works such as
[80-82] proposed a comparison using various parametric tests
(ANOVA, t-test, etc.) based on mean and variance. These
tests provide a high level of statistical rigor when compar-
ing different results sample distributions, although their use is
quite restrictive. Specifically, all results sample distributions
must satisfy three conditions: independence, normality, and ho-
moscedasticity.

The most commonly used statistical tests to assess normality
are the Shapiro-Wilk and the Kolmogorov-Smirnov tests. The
former is recommended when the number of samples is less
than 50, while the Kolmogorov-Smirnov test is indicated oth-
erwise. Once normality has been confirmed, homoscedasticity
can be confirmed using the Barlett test [83, 84].

On the other hand, since the sample distributions of the re-
sults may be neither normal nor homoscedastic, it is particu-
larly interesting to use non-parametric tests [85], which analyze
the median of the results instead of their mean and variance.
Among non-parametric tests, the Kruskal-Wallis test is one of
the most relevant methods [86].

In either case, both parametric and non-parametric tests yield
a p-value, which, if less than a certain significance level a, in-
dicates rejection of the null hypothesis, i.e., that the compared
results present statistically significant differences with a confi-
dence level of (1 — @) X 100%. For example, rejecting the null
hypothesis with a p-value less than @ = 0.05 means that the
results are different at a confidence level of 95%.

Although a p-value less than « reveals a statistically signif-
icant difference among several results distributions, it does not
indicate the magnitude of that difference. Therefore, only a part
of the statistical study is carried out, as detailed in [§7-89]. In
this context, a measure or index called effect size arises, which
can be considered equal to or even more relevant than the p-
value. The effect size can be used to quantify the difference
between two result distributions once the p-value reveals that
such a difference exists. Although the effect size could be con-
sidered to have been introduced more than 100 years ago [90],
it was not until the late 1960s that J. Cohen standardized it with
his well-known Cohen’s d index [91].

The study of effect size has gained special relevance in count-
less studies, mainly due to the valuable information it provides.
This fact is exemplified in [90], in which it is mentioned that
19 scientific journals of different natures require a study of the
effect size to publish papers. Over the years, dozens of indexes
have been proposed to quantify the effect size [92, 93], among
which Hedge’s g, Pearson’s r, or Glass’s A stand out. However,
to date, Cohen’s d, which standardizes such a practical differ-
ence or effect size as small (d = 0.2), medium (d = 0.5), large
(d = 0.8), and very large (d > 1.3), remains one of the most
widely used.

3. Elitist probabilistic migration: A novel migration policy

As discussed above, the best-worst policy has been widely
used in countless studies. Thus, it is an appropriate choice for
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Figure 1: Flow chart of the new elitist probabilistic migration policy.

the m, hyperparameter. In addition, since multi-objective opti-
mizations of complex problems are addressed in this work and
the population consists of a considerable number of individuals,
the aim is to select the best migrants from the source subpopu-
lation P; from its Pareto front Fy(P;) to favor elitism and reduce
the number of potential migrants. Figure 1 shows the flow chart
of this novel migration policy, which is explained in more detail
below.

Typically, hyperparameter m,, which remains constant
throughout the evolutionary process, determines the number of
migrants chosen from the source subpopulation. Howeyver, a
policy based on selecting individuals from %((P;) depends on
its variable size in each generation. To address this and stream-
line the process, a new hyperparameter my; is proposed to re-
place m,. It is defined as the likelihood that one Pareto-optimal
solution becomes a migrant. Since all %,(P;) members have an
my probability of being selected as migrants, the average num-
ber of selected migrants (n,,) depends on both the generation
and the subpopulation. It can be estimated as:

Ny, = My X | Fo, (Py) (D

in which |F,(P;)| is the number of Pareto-optimal solutions of
the i — th subpopulation at generation j.

It could be the case that no migrant is selected, either due to
a low value of m; or |Fo,(P;)|. In this improbable scenario, a
randomly selected solution from the Pareto front is chosen as
a migrant to avoid performance degradation caused by running
the subpopulations in isolation, as discussed in Section 2.1.1.

Finally, when migrants arrive at the destination subpopula-
tion, they are added to the population. Later, the survival se-
lection mechanism keeps the best s, individuals for the next
generation, thus eliminating the worst Ty from P;.

4. Experimental study design to optimize the migration
process

After presenting the novel elitist migration policy, this sec-
tion discusses the proposed methodology for optimizing the
migration hyperparameters of multi-objective, multi-population
evolutionary procedures with large populations.

4.1. Problem and evolutionary procedure choice

Before applying the methodology proposed in the following
subsections, it is important to define two points. On the one
hand, a current complex real-world problem of great interest
involving large populations should be selected. In particular,
several instances of this problem should be addressed in order
to generalize the results obtained. This approach should avoid
any potential bias that might arise from focusing on a single in-
stance. On the other hand, a multi-objective, multi-population
evolutionary method, which has proven to be effective in solv-
ing this type of problem, should be chosen. Furthermore, since
solving complex problems is a resource-intensive task, the cho-
sen method should be a parallel approach to achieve efficient
computation.

4.2. Hyperparameters analyzed

Note that not all hyperparameters that control the migration
process require analysis. As discussed in Section 2.1.3, it is not
recommended to further investigate the hyperparameters m, and
my. Regarding the former, an Uni-directional Ring topology
has been selected because it is a good choice for procedures in-
volving large populations, as it achieves an appropriate balance
between diversification and intensification while presenting a
low complexity. On the other hand, the novel elitist probabilis-
tic migration policy presented in Section 3 has been chosen for
mp.

With this in mind, the hyperparameters under consideration
are m;, my, gy, and sy, as there is currently no existing work
that addresses the study of each of them and their interactions
when evolving large populations.

4.3. Metrics considered

Several metrics are obtained from each execution to allow
analysis of the behavior of the evolutionary procedure with re-
spect to its hyperparameter configuration. Concerning its ef-
fectiveness, the objectives it optimizes should be taken into ac-
count. Since multi-objective problems are solved, each run pro-
vides several Pareto optimal solutions. Thus, the average value
of each objective is used for the Pareto front solutions, since in
this way the average quality of the Pareto front solutions can be
estimated. In addition, execution time and energy consumption
should also be measured to estimate its efficiency.

4.4. Relevance of the population partitioning scheme

Once all the aspects regarding the migration hyperparame-
ters under study, the problem, and the evolutionary procedure
have been chosen, it is time to focus on the proposed steps to
optimize the migration process for evolutionary processes with



large populations. As discussed in Section 2.1.1, the accurate
calibration of s, could be the most critical factor, while m; and
my; should play a secondary role. Thus, the first step is to estab-
lish the set of possible values of ny, as follows:

-/Vsp = {nsp, “hgp; € [1, ncores] N N} 2)

with 7., being the number of physical CPU cores of the pro-
cessor on which the multi-population model is executed. As
stated in [94-96], the use of more threads/processes than the
number of physical cores is not recommended for intensive cal-
culations to avoid the efficiency degradation that occurs when
several threads or processes demand the resources of a single
core.

Next, in line with Tanese’s recommendation outlined in Sec-
tion 2.1.1, a population partitioning scheme can be defined for
each subpopulation size ny, as follows:

(”spj’ sspf) CSsp; = [ni/nsp,-] vnspj € -/Vsp 3)

On the other hand, the possible values for the migration in-
terval (m;) and the migration likelihood (m;) can be defined,
respectively, as follows:

-%i = {m,-l L mj; € N} (4)

My = {my, = my) € (0, 1) 5)

Following Section 2.1.1, both too high m; values and too low
my values would lead to an isolated subpopulations-like behav-
ior, in which migrations are practically residual. In contrast,
too-low values of m; would result in very frequent migration,
while too-high values of m; would result in a significant injec-
tion of migrants into the population, both leading to premature
convergence.

Given the aforementioned considerations, while four hyper-
parameters are to be analyzed, only three independent variables
are considered: m;, my, and ng), given that sy, is dependent on
ngp and n;.

Once the sets of possible values for the three independent
variables under consideration have been established, a grid
search could be performed, evaluating a total of n, different
procedure configurations for a given problem instance:

ne = |Wpl X || X | A (©)

in which [#,|, |.#;l, and |.#)| are the number of values for n,,
m;, and my, respectively. Furthermore, the procedure should be
run n, times with each different hyperparameter configuration
to allow for robust statistical analysis, resulting in a total of
n. X n, executions.

Since the objective is to analyze the influence of the popu-
lation partitioning scheme on the procedure behavior, all data
obtained by the grid search for each behavioral metric M con-
cerning the same partitioning scheme (1, sy,,) should be col-
lected to form a sampling distribution of M for each different
scheme (np;, ssp;). Therefore, |45, sampling distributions of
| ;| x || X n, samples can be obtained for each different

metric M. This substantial amount of data motivates the devel-
opment of a score metric that allows for a complete sorting of
multiple sampling distributions for a given metric, each one as-
sociated with a different procedure configuration. This score is
described in the next section.

On the other hand, although the grid search obtains a value
for all the behavioral metrics each time the multi-population
procedure is run, since the goal is to evaluate the effective-
ness of the procedure for each population partitioning scheme,
only the metrics related to the objectives to be optimized are
currently considered. Premature convergence can be easily
detected by identifying the population partitioning schemes
whose solutions quality deteriorates significantly, especially
when subpopulations have few individuals (schemes with low
Ssp, values), mainly due to the lack of diversity in the subpopu-
lations.

4.5. Multiple comparison of the procedure configurations

The grid search mentioned in the previous section generates
a total of n. X n, values for each procedure behavior metric,
which can be partitioned into n,; sampling distributions, each
corresponding to a different configuration for a subset of hyper-
parameters. The need to rank all these sampling distributions
in order to sort the different hyperparameter configurations has
motivated the development of a score metric, which is inspired
by that presented in [97].

Let . be the set:

M= {Mc, i€ ZN[0,ny)) )

with M standing for one of the different metrics of the pro-
cedure behavior, while C; denotes a concrete hyperparameter
combination out of n, possible configurations.

The first step when comparing two sampling distributions of
a given metric M, Mc, and Mc;, obtained by two different hy-
perparameter configurations, C; and Cj, is to decide whether to
apply a parametric or a non-parametric test. Parametric tests
can be used only if the two distributions are normal and ho-
moscedastic, while non-parametric tests can be applied in the
remaining cases. In this sense, the Shapiro-Wilk test is applied
to Mc, and M, if the number of samples is less than 50. Oth-
erwise, the Kolmogorov—Smirnov test is used. If both distribu-
tions are normal, the Bartlett test is used to detect homoscedas-
ticity. Then, the ANOVA test is applied to Mc, and M, if both
are normal and homoscedastic. Otherwise, the Kruskal-Wallis
test is used.

All the aforementioned statistical tests return a p-value es-
timating the suitability of the samples to the null hypothesis.
This p-value is then compared to a certain significance level, «,
which causes the null hypothesis to be rejected if the p-value
is less than a. The lower the a, the greater the confidence in
rejecting the null hypothesis. A typical value of @ is 0.05.

Once the corresponding statistical tests are applied, the com-
parison of distributions Mc, and Mc;, is defined by the following
relations:



MC, < MC/ < peic; <a A mg < ﬁ’lc] (8)
Mc, =~ Mc, & pc.c;, >« 9
MC, < MC/ =4 MC,- < MCj \% MC; =~ Mcj (10)

in which pc, ¢, is the p-value obtained by comparing the dis-
tributions Mc, and Mc;, imc, and ¢, denote the means of Mc,
and Mc,, respectively, and the < operator applied to scalar val-
ues such as the distribution means indicates that the left-hand
expression is better than the right-hand one, i.e., it means lower
for minimization and higher for maximization objectives. In
fact, the set . of the sampling distributions of a metric M ob-
tained for different hyperparameter configurations can be par-
tially sorted as follows:

Me, <Mc, & i<j, VMc,Mc, €(,<) (11)

That is, the lower i, the better the procedure behavior for met-
ric M. On the other hand, the equivalence relation defined in
Equation (9) allows partitioning . into clusters of configura-
tions that produce statistically similar behavior for metric M:

@ = {sim(Mc,) = [54] : 54 € M} (12)

Thus, the rank of a hyperparameter configuration C; for a
metric M can be calculated as the average of the positions in /#
of all Mc; that are statistically similar to Mc,, i..:

( ) Mcje sim(MC,.) (13)
rMc,) = ————
[sim(Mc,)|
Then, the score of a hyperparameter configuration C; for a
metric M is obtained by dividing its rank by the number of hy-
perparameter configurations:

HMc,)
||

Although the rank defined in Equation (13) allows for the
comparison of hyperparameter configurations for a given met-
ric (the lower the rank, the better the configuration), the score
proposed in Equation (14) provides better interpretability be-
cause its values are always defined in [0, 1), independently of
the number of hyperparameter configurations compared.

Finally, for those configurations that yield statistically dif-
ferent results for a given metric, i.e., a different score, the ef-
fect size should be calculated to estimate the magnitude of such
differences. The effect size obtained should correlate with the
score differences obtained. Specifically, Cohen’s d has been
used in this work.

s(Mc,) =

(14)

4.6. Optimization of the population partitioning scheme

On the one hand, the methodology outlined in Section 4.4
should show a tendency for the multi-population procedure to
converge prematurely as the subpopulation size (s,,) decreases
because the number of subpopulations (ny,) increases, mainly
due to the lack of diversity in the subpopulations. Thus, it is

likely that there is a minimum threshold for the subpopulation
size (syp,,) to avoid the problem of premature convergence.
This section proposes an approach to estimate such a threshold.

On the other hand, avoiding the premature convergence is-
sue by updating the population partitioning schemes (1, 5sp;)
to (ngp;» Ssp,,,) Tor all sy, < s5p,. would cause the total num-
ber of individuals to increase as ny, increases, which may not
improve the results for large values of ny,, although it would re-
quire more computational resources. Therefore, there should be
a maximum threshold for the number of subpopulations (n,,, )
that allows the procedure to find appropriate solutions while
minimizing its computational time and energy consumption.
Thus, the optimal partitioning scheme would be (nyp,,.., Ssp,..)-

In light of the considerations above, the first step should be
to identify sy, . , which should be between two successive pop-
ulation partitioning schemes, (115, $sp;) and (Rsp,,,» Ssp,,,)> With
Ngp, > Ngp,, and sg, < sy, in which the degradation be-
gins to be noticeable, i.e., premature convergence should be ob-
served when using a subpopulation size of s;,,, but not when
using syp,,,,. Therefore, the minimum value of sy, that main-
tains the quality of the solutions, sy, , should be in the interval
[Ssp;» Ssp;.i]- This interval must be searched with ng,, subpopu-
lations because scheme (nyy,, 55p,) has shown a clear tendency
to converge prematurely. The increase in the subpopulation size
from sy, to s5p,,, 1S expected to prevent premature convergence
when using ng,. subpopulations.

As an exhaustive search in the [s,, s5p,.,] interval is rather
costly, a binary search-based approach has been proposed,
which features several modifications regarding the original al-
gorithm [98]. However, before proceeding with a detailed ex-
amination of this approach, it is important to highlight four cru-
cial aspects:

e The purpose of determining the value of sy, . is to iden-
tify a minimum threshold for the subpopulation size that
enables the maintenance of solution quality, which is mea-
sured by the objectives optimized by the evolutionary pro-
cedure, so their scores are considered to guide the search.
Nevertheless, sample distributions of the other efficiency-
related metrics (computing Time, 7', and consumed En-
ergy, E) are also obtained because although not used now,
they will be used later to confirm the estimation of n,, .

e Each time a new subpopulation size is evaluated, the
scores of all the previously evaluated subpopulation sizes
must be recalculated, since adding a new distribution of
metric values affects the previous scores.

e Two score values are considered similar based on the fol-
lowing similarity criterion:

s(Mc,) = s(Mc,) & Is(Mc,) = s(Mc,)| < sy (15)

in which M¢, and Mc, are the sampling distributions of
metric M for two different configurations C, and Cj, re-
spectively, in this case consisting of the procedure config-
ured with two different values for sy, (s,,, and s,,), and



Algorithm 1: Procedure designed to find s, within interval [syp,,,, S5p,0]-

1 Function findSspMin sy, » Ssp» Wins Mis M1, ey i)

Input : Lower extreme of the interval in which to search s, Ssp,,.
Input : Higher extreme of the interval in which to search sy, S
Input : Threshold for the minimum width of [s;p,, Sspyuls Win
Input : Set of different values for m;, /;
Input : Set of different values for m;,
Input : Number of executions, 7,
Input : Number of subpopulations, n,
Output: Minimum subpopulation size
2 nScores « 2
3 (00,5 o> Oy,ﬂh/,l/(m_, Tiows Elow) < gridSearch(A;, M), n,, nyp, Ssp,,)
4 | (Ooygs - Ongyymr, > Thighs Enign) < gridSearch(Mi, My, e, Nsp, Sspyiy,)
5 repeat
6 SSPmed « |—SS[7I(M + SS[’/ngh-l/ 2
7 (00,45 -+ 0,10,)_,,_1]”«1, Trneds Emeq) < gridSearch(4;, M, ne, ngp, Ssp,..)
8 nScores < nScores + 1
9 for j < 0 to nScores — 1 do
10 ‘ (s(Ooj), s S(On,,;,,—l/)) « Score of the n,;; objectives after n. X n, executions with sy, = s,
11 end
12 if s(O,,,) = 5(Ok,,,) Yk € ZN]0,n,;) then
13 | G O0ugrs s Ony1,10) < spags Qs o5 Oy, )
14 else
15 | Gspinr Q0o oo Oy 1) < (Sspaa> O0s -+ Ongy 1, )
16 end
17 | until (sx,,,“gh = Sspn < w,h) or (S(Ok,,,",) ~ $(Ok,,,) Yk€ZNIO, ’lahj))§
18 return s,
19 End

sy, 1s a similarity threshold. As with the adjustment of @ in
parametric and non-parametric tests, an adjustment should
be made according to the desired precision for the score
similarity. In this sense, a value of 0.05 might be an ap-
propriate choice.

The evaluation of each possible value for sy, . is quite
costly. Specifically, the number of different procedure
configurations evaluated for each population partitioning
scheme are:

ne = | M| X | A (16)

which generates a total of n. X n, executions for each new
subpopulation size to be analyzed. Therefore, the search
could be stopped if the interval to be searched is too nar-
row, since the possible change in s, . is not worth the
computational cost. This premature stopping criterion is
regulated by the hyperparameter wy,, a threshold for the
minimum width of the interval, which should be adjusted
considering the total number of individuals (n;). This value
should be low enough to achieve a balance between re-
source consumption and the desired precision for the sy, ..

fit, but not too low, since analyzing very small intervals
would not result in a notable change for the value of sy, ..,
despite the extensive number of executions required to per-
form a new grid search for each potential value for s, .

With this in mind, Algorithm 1 shows the pseudocode of
the binary search approach proposed. The gridSearch func-
tion is responsible for performing the grid search outlined in
Section 4.4 for a given population partitioning scheme and all
the possible combinations of values for m; and m;, generating a
sample distribution of n. X n, samples of each behavioral met-
ric (the average of each objective Oy of the n,,; objectives for
the solutions found by the procedure, the computation time and
the energy consumed) for that partitioning scheme. Then, once
the s,,,, value has been determined (Line 6), and the new grid
search using sy, . has been performed (Line 7), all nScores
scores must be recalculated (Lines 9 to 11), considering each
one of the subpopulation sizes analyzed for s;,. Next, the scores
of the sample distributions of all the objectives obtained for the
upper extreme of the interval (s, ) and at the midpoint (syp,,,)
are compared using Equation (15). If the scores for all objec-
tives for the upper extreme of the interval are similar to those
obtained for the other half of the interval, the upper half of the



interval is rejected. Otherwise, the lower half is discarded.
The algorithmic complexity of the binary search is:

o (10g2 ((ssp_,u,] — Ssp; — W) X Re X e X f(no’ nl))) (17)

Given the minimum interval size wy, and the fact that the algo-
rithm discards half of the interval at each iteration, the maxi-
mum number of iterations is limited to log,(ssp,,, — Ssp; — W)
iterations, although it could stop earlier if the scores of all ob-
jectives for the two extremes of the interval are similar. At each
iteration, the binary search performs n. X n, executions of the
evolutionary procedure (see Equation (16)), whose complexity
order depends on the number of objectives (n,) and the number
of individuals (n;). Since the complexity order of the evolution-
ary procedure depends on the concrete procedure, it is denoted
as f(n,, n;).

Once the binary search is complete, the next step is to check
for the absence of premature convergence, given the value ob-
tained for the s, . threshold. For this purpose, all population
partitioning schemes proposed in Section 4.4 must be updated
as follows:

Sspi 0F Sgp > S,
Sspe = (18)
Sspnn  Otherwise

Then, the grid search should be repeated for all partitioning
schemes whose s, has been replaced by s, ., to obtain new
behavioral metrics for the updated schemes. Finally, the scores
for all n,; objectives optimized by the evolutionary procedure
should be recalculated for all partitioning schemes to consider
the newly obtained distributions. There should not be statisti-
cally significant differences for any distribution, indicating that
the premature convergence issue has indeed disappeared.

Estimating ng,  is straightforward. Since all updated par-
titioning schemes have made the evolutionary procedure yield
statistically similar results, ngp,,, should be ng,,, the number
of subpopulations used by the binary search to find sy, ., i.e.,
the minimum value of 7y, among all schemes whose subpopu-
lation size was updated to s, ... Increasing ng, beyond ny,
has not improved the results, although it probably has required
more computational resources. No further runs of the evolu-
tionary procedure are needed to confirm ny,, ., since all new
population partitioning schemes have already been evaluated to
validate s, . . In fact, the grid search provides distributions of
all behavioral metrics for each population partitioning scheme,
as discussed earlier. The values of the objectives optimized
by the evolutionary process have already been used to verify
Sspnn- Therefore, the only remaining task is to compute and
compare the values of the efficiency-related metrics. Since all
partitioning schemes with ny, > ng, now have s;, = sy, .,
their scores for both computation time and energy consumed
should be worse than those of (7y,,,.» Sspu)-

4.7. Influence of the migration interval and the number of mi-
grants

Once the optimal population partitioning scheme

(Msp,ae> Sspmin) Das been identified for each problem instance, it

can be used to analyze the influence of m; and m,. Again, no
further runs of the multi-population evolutionary procedure are
required because all the combinations of .#; and .#; values
have already been evaluated for the population partitioning
scheme (ngp,,., Ssp,..,)- However, the samples of every behav-
ioral metric must now be split into different distributions, each
corresponding to each possible (m;,m;) combination. Then,
the scores of these new sample distributions can be calculated
for the behavioral metrics, which allows an assessment of the
influence of m; and m; on the procedure’s behavior.

5. Experimental results

After presenting the proposed methodology for the migration
hyperparameter optimization for evolutionary procedures with
large populations, this section presents the experimental results
for each previously described method.

5.1. Setup

In order to study the optimization of the migration process, it
is first necessary to choose an appropriate problem that involves
a sufficiently large population of individuals, as discussed in
Section 4.1. Therefore, among all the problems mentioned in
Section 1, a high-dimensional FS problem has been chosen,
since it is of great importance nowadays, mainly due to the
increasing size of current datasets. In addition, since several
instances of the problem should be analyzed to obtain statisti-
cally robust results, three Brain-Computer Interface (BCI) Mo-
tor Imagery (MI) datasets corresponding to three anonymized
subjects, coded 104, 107, and 110, and recorded in the BCI Lab-
oratory at the University of Essex, will be processed [101]. The
datasets comprise Electroencephalogram (EEG) signals corre-
sponding to three movements: left hand, right hand, and feet.
The number of samples of each class is balanced. All are split
into training and test data, consisting of 178 samples and 3 600
features each. With this in mind, these datasets meet the re-
quirements of this experimental study since the population size
in this type of problem should be set to a value close to the
dataset dimensionality to cover the search space appropriately,
as stated in [47].

The next step is to choose an adequate population-based al-
gorithm to solve FS problems. Wrapper methods are commonly
used for such problems. Basically, they are based on a search
strategy that uses an induction method to evaluate the potential
solutions for the problem [102]. Specifically, the efficient paral-
lel multi-objective multi-population evolutionary wrapper pro-
posed in [16], which applies a Non-dominated Sorting Genetic
Algorithm IT (NSGA-II) and the k-NN classifier as the induc-
tion method, has been chosen because it has previously been
successfully applied to the three Essex BCI datasets [16]. This
wrapper dedicates each CPU core to managing the evolution
of a different subpopulation, and performs the exchange of mi-
grants between subpopulations asynchronously, i.e., each sub-
population can send its migrants to the destination one without
stalling its execution flow, which achieves a higher efficiency
than synchronous communication, in which all subpopulations



Table 1: Hyperparameter values setting for all the experiments.

Hyperparameter Value
Number of executions (,) 307
Crossover probability (p.) 0.8
Mutation probability (p,,) 0.2

Independent mutation probability for each feature (p;,q) 0.00028 #

Maximum number of generations performed (1) 1000
Number of generations analyzed to detect convergence (g,) 15
Intra-generation convergence threshold for the standard 0.1

deviation of the current population Kappa index (sx,,)

Inter-generation convergence threshold for the average of the 0.01

current population Kappa index (k)
Migration policy (m,)
Migration topology (m;,)

Elitist probabilistic migration

Uni-directional Ring

¥ 1/ Number of features, as proposed in [100].

Table 2: Cluster node configuration.

Number of CPUs 2
CPU Intel Xeon Silver 4214
12 cores/ 24 threads
2200 Mhz, 85 W
RAM 64 GB DDR4

must synchronize, so that the slowest subpopulation is the one
that determines the execution flow of the others [103-105]. Fur-
thermore, the wrapper also provides an adaptive stop criterion
regulated by hyperparameters g,, s, and k., [8], which evalu-
ates the evolution of the quality of solutions. The wrapper has
been configured according to the hyperparameter values listed
in Table 1. For more information about the wrapper method or
its hyperparameter configuration, the reader is referred to [16].

Two points about the wrapper should be emphasized in order
to properly apply the methodology proposed in Section 4:

e The wrapper is implemented in Python using the DEAP
library, which requires the subpopulation size to be a mul-
tiple of 4 for all NSGA-II-based algorithms [106]. Thus,
all values of s, proposed for experimentation must satisfy
this constraint.

e The two objectives optimized by the wrapper are the
Kappa index and the number of selected features.

Furthermore, for the application of the statistical tests de-
scribed in Section 4.5, an @ = 0.5 has been used, as this is a
value commonly used for this type of study.

Finally, concerning the execution platform, all experiments
have been performed on a homogeneous high-performance
cluster running Rocky Linux 8.4, whose characteristics are de-
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A value in [20, 50] is indicated as adequate regardless of the study addressed, as proposed in [99].

tailed in Table 2. In addition, each node is equipped with a Vam-
pire smart energy meter [107], which measures active power,
voltage, current, power factor, and other energy information ev-
ery 200 ms.

5.2. Assessment of the population partitioning scheme influ-
ence on the wrapper behavior

As described in Section 4.4, the first step is to determine the
influence of the population partitioning scheme on the wrapper
effectiveness. Regarding n,),, the set of possible values for this
hyperparameter has been defined as:

Nsp =1{2,4,8,16,24} 19)

i.e., it takes increasing powers of 2 until the number of CPU
cores is reached (7.0r.s = 24). To define the population parti-
tioning schemes, it is necessary to fix the total population size
(n;) beforehand since, as stated in Equation (3), each Ssp, de-
pends on both its corresponding Tp, and n;. As indicated in
[7, 47,97, 108], n; should be close to the number of features of
the dataset (ny = 3600), provided that all Ssp; Must also be a
multiple of 4 to satisfy the DEAP constraint mentioned in Sec-
tion 5.1. Therefore, n; has been set to 3 840, resulting in the
following partitioning schemes:

{(24,160), (16, 240), (8,480),
(4,960), (2,1920)}

(159, 5p) (20)

Regarding my;, the literature seems to indicate that the recom-
mended values for the migration interval range between 5 and
20 generations, so the values proposed in this study are:

M; = 15,10, 15,20} (21)

Finally, as m, does not usually exceed 30% of s, in most
papers, the values assigned to m; are:
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Figure 2: Score values for both the average test Kappa index and the average number of selected features, obtained for the three Essex datasets and different

population partitioning schemes.
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Figure 3: Absolute difference in scores for the average test Kappa index between different partitioning schemes for the three Essex datasets.
1.0

o (24, 160) 0 0 0
s 038
%(16,240)  0.062 0 0.133 0 0.165 0
£ 0.6
:‘E (8,480) 0.123 0.059 0 0.163 0.041 0 0.272 0.118 0
§ 0.4
'% (4,960) 0.099 0.033 0.033 0 0.223 0.085 0.033 0 0.309 0.149 0.016 0
?,- -0.2
%(2,1920) 0.213 0.151 0.095 0.139 0 0.319 0.233 0.234 0 0.315 0.164 0.164 0

(24,160) (16,240) (8,480)  (4,960) (2,1920) (24,160) (16,240) (8,480)  (4,960) (2,1920)  (24,160) (16,240) (8,480)  (4,960) (2, 1920) 00

Population partitioning scheme Population partitioning scheme Population partitioning scheme
(a) 104 (b) 107 (c) 110

Figure 4: Effect size for the average test Kappa index obtained for the three Essex datasets for different population partitioning schemes.

A, =1{0.01,0.05,0.1,0.15,0.2,0.25,0.3} (22)
With these probability values, an average percentage of (m; X
100)% of individuals from the Pareto front of each subpopula-
tion are selected as migrants in every generation.
Considering Equation (6), the number of different configura-
tions for the wrapper is:

Ne = \Wipl X M X M) = 54T =140 (23)
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Since the wrapper was run n, 30 times for the three
datasets, a total of 12 600 executions have been performed. Fig-
ure 2 shows the score values obtained for both the average test
Kappa index and the average number of selected features for the
three Essex datasets and every population partitioning scheme.
On the one hand, Figure 2a shows a deterioration of the aver-
age test Kappa index as individuals are distributed into more
subpopulations, mainly for subjects 107 and 110. The smaller
the subpopulation size, the worse the average test Kappa index,
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Figure 5: Absolute difference in scores for the average number of selected features between different partitioning schemes for the three Essex datasets.
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Figure 6: Effect size for the average number of selected features obtained for the three Essex datasets for different population partitioning schemes.

which deteriorates significantly with 24 subpopulations. Since
each partitioning scheme received a different score, statistically
significant differences between each pair of schemes are appre-
ciated. The magnitude of such differences could also be es-
timated by the absolute difference in the score for each pair
of schemes. Figure 3 shows such differences. It can be seen
that the trend of deterioration in the average test Kappa index
is modest as the subpopulation size is reduced for subject 104.
Figure 4a confirms this, since the effect size is insignificant for
most of the comparisons of population partitioning schemes,
except for the pair ((24, 160), (2, 1 920)), for which a value close
to 0.2 is obtained, representing a small effect size. On the other
hand, the tendency to deterioration of the average test Kappa
index is stronger for subjects 107 and 110, since medium effect
size values are obtained in Figures 4b and 4c. Small effect sizes
appear between schemes (8,480), (4,960) and (2, 1920), and
a medium effect size appears between schemes (24, 160) and
(2,1920). Finally, since both the absolute difference in scores
and the effect size seem to follow the same trends for the three
subjects, the Pearson correlation coefficient was calculated for
subjects 104, 107, and 110 between the two estimates of the
magnitude of the difference, obtaining values of 0.659, 0.850,
and 0.935, respectively, which reinforces the hypothesis that
the novel score metric introduced in this paper can detect both
statistically significant differences and the magnitude of such
differences.

On the other hand, regarding the number of selected fea-
tures, Figure 2b shows a steady improvement as the subpop-
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ulation size decreases, except for scheme (24,160) whose
score increases drastically. This trend can also be seen in
Figures 5a to Sc, which show the absolute difference in the
score for each pair of schemes, and also in Figures 6a to 6c,
which confirm these difference magnitudes by their effect size
estimation since their Pearson correlation coeflicient is 0.795,
0.538, and 0.728 for subjects 104, 107, and 110, respectively.
Small to medium effect sizes are observed when comparing
schemes with a large difference between their scores. In short,
the largest feature subsets are obtained with 2 and 24 subpopu-
lations, while the smallest are obtained with 8 or 16 subpopula-
tions.

In summary, after analyzing the two objectives optimized by
the evolutionary procedure, it can be observed that as s, de-
creases due to an increase in n,, a deterioration of the average
test Kappa index is observed, which, together with a decrease
in the average number of features selected, confirms that the al-
gorithm has an increasing tendency to converge prematurely to
local optima, as discussed in Section 4.4.

Finally, the trend observed in the scores for both metrics has
been confirmed by the subsequent analysis of the effect size,
showing the potential of the score presented in Section 4.5, as
it allows easy estimation of both statistical similarity and effect
size.
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Figure 7: Score values for both the average test Kappa index and the average number of selected features, obtained for the three Essex datasets and the population
partitioning schemes analyzed in the binary search to determine the value for syp,,., -
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Figure 8: Absolute difference in scores for the average test Kappa index on the comparison of the population partitioning schemes analyzed in the binary search to
determine the value for sy, for the three Essex datasets.
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Figure 9: Effect size for the average test Kappa index on the comparison of the population partitioning schemes analyzed in the binary search to determine the value
for sgp,,;,, for the three Essex datasets.

5.3. Determination of the optimal population partitioning source consumption, following the methodology proposed in
scheme Section 4.6. In this sense, since the degradation of results has
started to become more evident for scheme (16, 240) and those

According to the analysis in the previous section, the size of  ith smaller subpopulation sizes, the value of s, should
subpopulations seems to be a critical factor in multi-population probably be in the interval [240,480], whose extremes are
models. Therefore, the next step is to determine the optimal  the subpopulation sizes of successive schemes (16,240) and

population partitif)ning scheme (”_Spmax’ Sspy,) that prevents the (g, 480), the former generating degraded results and the latter
search from stalling at local optima and also minimizes re-
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Figure 10: Score values for each metric obtained for the three Essex datasets and the population partitioning schemes updated to consider s, -

not. Therefore, this interval has been explored with the bi-
nary search proposed in Algorithm 1 to find a value for s, .
that does not degrade the results. In addition, the number of
subpopulations has been set at 16, as suggested in Section 4.6,
since this is the number of subpopulations of scheme (16, 240),
the scheme that started to show noticeable degradation.

The remaining hyperparameters controlling the binary search
were set as follows. Regarding wy;,, which defines the minimum
width of the search interval to stop the search as described in
Section 4.6, since the total number of individuals is n; = 3 840,
wy, has been set to 50 to obtain an adequate trade-off between
resource consumption and the desired precision for sy, . Fi-
nally, sy, the similarity threshold for comparing scores (see
Equation (15)) has been set to 0.05.

Figure 7 shows the scores for both the average test Kappa
index and the average number of selected features and for all
the schemes analyzed during the binary search procedure used
to determine the value for sg,,.. As observed in Figure 7a,
the average test Kappa index remains relatively stable when
ssp 2 300, deteriorating for scheme (16,268) and especially
for scheme (16,240), which was expected from the results ob-
tained in the previous section. This trend can also be observed
in Figure 8, which shows the absolute difference in the aver-

age test Kappa index scores for comparison of population parti-
tioning schemes. Again, these estimates of average test Kappa
index differences are confirmed by Figure 9, which shows the
effect size for the same scheme comparison, and by the Pear-
son correlation coefficient between the absolute difference in
scores and the effect size, which is 0.553, 0.792, and 0.793 for
subjects 104, 107, and 110, respectively. It can be observed
that small or small-medium effect size values are obtained for
schemes (16, 268) and (16, 240), especially for datasets 107 and
110, verifying the degradation of the average test Kappa in-
dex. By contrast, considering the average number of selected
features, Figure 7b shows that for schemes (16,480), (16, 360),
and (16,300), the results show some stability. In contrast, for
schemes (16,268) and (16, 240), depending on the dataset, an
erratic trend starts to appear. This behavior could be a symptom
of premature convergence to local optima. Absolute differences
in scores and effect size are not reported in this case because the
scores are relatively similar. In particular, the effect size is less
than 0.2 in all cases. In this context, it seems that the value
for sgp,., should be between 300 and 268 individuals. However,
since it is not worth searching further because this interval is
too narrow, the minimum threshold for the subpopulation size
has been estimated to be s, ., = 300, which is about 10% of
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Figure 11: Speedup in execution time and savings in energy consumption
achieved by the (24,300) and the (16,300) schemes concerning the (2, 1 920)
scheme using the three Essex datasets.

Table 3: Effect size for the average test Kappa index and the average number of
selected features when comparing schemes (24, 300) and (16, 300) for the three
Essex datasets.

Metric Dataset Effect size value

104 0.013

Average test
. 107 0.077

Kappa index
110 0.063
Average number 104 0.070
of selected 107 0.106
features 110 0.131

the total number of individuals.

Now it is time to verify that the premature convergence
problem has been successfully solved considering values of
Ssp = Ssp,..- This can be confirmed in Figure 10, which shows
the score obtained for each metric using the three Essex datasets
for different population partitioning schemes and considering
Sspun- As shown in Figure 10a, the average test Kappa index
has stabilized for all schemes, so premature convergence seems
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to have been mitigated. Furthermore, Figure 10b indicates that
the best subsets of selected features are obtained with schemes
(24,300) and (16, 300).

According to Section 4.6, the maximum threshold for the
number of subpopulations should be ny, = 16, the number of
subpopulations fixed to perform the binary search of s, ... This
can also be confirmed by Figures 10c and 10d, which show
that the efficiency of the wrapper improves as individuals are
distributed into an increasing number of subpopulations until
ng, = 16 is reached, and then drops for scheme (24, 300), as
expected. In this context, Figure 11 shows the speedup in ex-
ecution time and the energy savings achieved by the (24, 300)
and the (16,300) schemes with respect to the slower scheme,
i.e., (2,1920). It can be seen that scheme (16, 300) is more effi-
cient than (24, 300), especially in terms of energy consumption.
On the other hand, the scores for both the average test Kappa
index and the average number of selected features are slightly
lower for scheme (24, 300) than for scheme (16,300). How-
ever, such differences are negligible and both schemes should
be considered to produce statistically similar results. This is
confirmed by Table 3, which shows effect sizes below 0.2 for
both metrics when comparing the schemes. Therefore, it can
be confirmed that values of ng, > ng, . require additional com-
putational time and energy that are not worth a nonsignificant
improvement in the quality of solutions.

5.4. Influence of the migration interval and the number of mi-
grants

Once the problem of premature convergence seems to have
been mitigated, this section analyzes the wrapper’s behavior ac-
cording to hyperparameters m; and m;. The study has been con-
ducted using the (16,300) population partitioning scheme be-
cause it makes the evolutionary procedure to obtain appropriate
solutions while minimizing both its execution time and energy
consumption.

Every possible combination of m; and m; for the three Es-
sex datasets yielded the same score value in terms of both the
average test Kappa index and the average number of features
selected, indicating that there are no statistically significant dif-
ferences regardless of the combination of m; and m; used, so
no further analysis is required. However, hyperparameters m;
and m; do affect the efficiency of the procedure, as can be seen
in Figure 12, which shows a heat map of the energy consump-
tion scores obtained with different combinations of m; and m;
using the three Essex datasets. Since the trends in energy con-
sumption and execution time are co-dependent, as a decrease in
execution time necessarily leads to an improvement in energy
consumption, as noted in the previous section, only the energy
consumption results are reported. The same trend for hyper-
parameters m; and my is presented for the three datasets. An
improvement in efficiency is observed for each value of m; as
the value of mj is increased. In addition, low values of m; seem
to be more suitable to obtain the best efficiency. In this sense,
the scores indicate that tuning m; to low values and m; to high
values is the best strategy to accelerate convergence. Figure 13
shows that these differences are due to the number of genera-
tions required for convergence. As can be seen, the evolutionary
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Figure 12: Score values obtained for the energy consumption with different m; and m; combinations using the three Essex datasets and the population partitioning
scheme (16, 300).

wrapper converges faster as m; decreases and my; increases for ~ experiences a degradation in its effectiveness when the random-
the three datasets. random policy is used, which could be due to the lack of elitism
of the policy. Regardless of the effectiveness of the wrapper,
Figure 14c shows how the number of migrants was consider-
ably reduced by the elitist probabilistic policy compared to the

After optimizing the migration process, it is worth compar- other two strategies, as expected, from a fixed number of 60
ing the performance of the novel migration policy presented in ~ migrants selected by both the best-worst and random-random
Section 3 with that of the two most commonly used policies in  policies to about 10 migrants for the elitist probabilistic policy.

5.5. Validation of the elitist probabilistic migration policy

the literature: the best-worst and random-random policies (see Figure 15 shows the scores obtained for the average test
Section 2.1.1). For this purpose, it is important to remember  Kappa index, the average number of selected features, and the
the difficulty of selecting the best individuals from a subpopu- average number of migrants chosen by the wrapper, confirming
lation when solving a multi-objective problem (Section 2.1.3). that the elitist probabilistic migration policy and the best-worst
Indeed, this issue motivates the development of the elitist prob- policy obtain comparable results for both objectives. In con-
abilistic migration proposed in this paper. However, this prob- trast, the random-random policy obtains results with a compa-
lem is not common to all multi-objective evolutionary methods. ~ rable average number of features, although it cannot reach the

In the case of NSGA-II, which is the basis of the wrapper ap- average test Kappa index obtained by the elitist policies. On
plied previously, the crowding distance [109] allows sorting of  the other hand, Figure 15¢ shows that the number of migrants
the individuals within each front of non-dominated solutions, is significantly reduced, receiving a score value of 0. Therefore,
leading to a completely ordered population. In this case, apply- it can be stated that the novel proposed policy achieves appro-
ing the best-worst policy, as originally defined by Cantd-Paz  priate solutions while minimizing the overhead of the migration
[55], is straightforward. For other multi-objective evolutionary ~ process, mainly due to the significant reduction in the number
procedures, an adaptation of the method, such as the one pro- of migrants.

posed in this paper, is required.

In light of the aforementioned considerations, the migration ~ 5.6. Wrapper behavior assessment

policy comparison is based on the same experimental condi- Once the migration hyperparameters have been properly ad-
tions as in the previous section. Therefore, the same wrap- justed, it becomes relevant to assess the effectiveness of the
per procedure was used, run on the same datasets, and con-  wrapper used in this study, referred to as MOEW (Multi-
figured with the previously estimated optimal hyperparameters, Objective Evolutionary Wrapper), when analyzing the Essex

ie., ng = 16, sy = 300, and m; = 5. For elitist probabilis-  EEG datasets, and to compare it against other state-of-the-art
tic migration, m; was set to 0.3 as described above. This value  approaches. These alternative methods are described as fol-

was also used for m, when applying the best-worst and random- lows. On the one hand, LeOCCEA is a Lexicographic Opti-
random policies. The wrapper was run n, = 30 times for 500  mization Cooperative Co-Evolutionary Algorithm proposed in
generations for each dataset and each migration policy. [97]. On the other hand, MEW, a Multi-objective Evolution-

Figure 14 shows the average test Kappa index, the average ary Wrapper method described in [47], has also been applied to
number of selected features, and the average number of mi- the same datasets using different classifiers. Specifically, four
grants chosen by the wrapper when using the three different mi- classification approaches have been used: k-NN, a Naive Bayes

gration policies for the three Essex datasets. It can be observed Classifier (NBC), and the application of Linear Discriminant
that the new proposed migration policy and the best-worst pol- Analysis (LDA) before trying with either k-NN or NBC, thus
icy obtain similar results for the two objectives optimized by the providing four wrapper approaches: MEW-KNN, MEW-NBC,
wrapper, which was expected since both consider the best indi- MEW-LDA-KNN, and MEW-LDA-NBC. Finally, PGA-CNN
viduals in the population. In contrast, it seems that the wrapper is a hyperparameter optimization procedure based on Genetic
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Figure 13: Average number of generations needed to achieve convergence for
different m; and m; combinations using the three Essex datasets.

Algorithms for Convolutional Neural Networks (CNNs) pro-
posed in [110]. The rest of the hyperparameters have been ad-
justed as previously described.

Figure 16 depicts the average test Kappa index and the aver-
age number of selected features obtained by the different wrap-
per methods for the Essex EEG datasets. As can be observed,
MOEW may appear to obtain competitive subsets of features.
This is further supported by Figure 17, which shows the score
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Figure 14: Average test Kappa index, average number of selected features, and
average number of migrants chosen by the wrapper for the different migration
policies and the three Essex datasets.

values obtained for the average test Kappa index and average
number of selected features for the different wrapper alterna-
tives, confirming the effectiveness of MOEW.

6. Conclusions

An experimental methodology has been proposed to deter-
mine the influence of the most relevant migration hyperpa-
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Figure 15: Score values for the average test Kappa index, average number of
selected features, and average number of migrants for the different migration
policies and the three Essex datasets.

rameters on the performance of a multi-objective and multi-
population evolutionary method applied to complex problems
requiring large populations, to confirm whether the guide-
lines proposed 20 years ago by authors such as Canti-Paz or
Tomassini are still valid today, when both the dimensionality of
the problems and the size of the population required to solve
them have increased considerably. In particular, hyperparam-
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Figure 16: Average test Kappa index and average number of selected features
obtained by the different wrapper alternatives for the Essex EEG datasets.

eters m;, my, and ng, are analyzed. Tanese’s guideline is used
to determine all population partitioning schemes (), 55,) ac-
cording to the total number of individuals n; and each possible
value for ng,. In addition to the objectives optimized by the evo-
lutionary procedure, its execution time and energy consumption
are also considered metrics to be optimized. Furthermore, the
large number of individuals, and the fact that multi-objective
optimization problems are considered, have led to the devel-
opment of a new elitist probability-based migration policy, in
which migrants are selected from the Pareto front, aiming to
reduce the number of migrants while favoring elitism. Since
the size of the Pareto front is variable in each generation, the
hyperparameter m; is proposed to set the probability that each
Pareto optimal individual will become a migrant. If no migrant
is finally selected, an individual is randomly selected from the
Pareto front.

First, the influence of the population partitioning scheme is
analyzed by a grid search over all possible migration hyperpa-
rameter combinations to find a narrow interval for the subpopu-
lation size at which premature convergence becomes apparent.
Then, this interval is explored with a binary search procedure
to find an adequate estimate for sy, , the minimum threshold
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Figure 17: Score values for the average test Kappa index and average number
of selected features for the different wrapper alternatives for the Essex EEG
datasets.

for the subpopulation size. Next, ng, ., the maximum thresh-
old for the number of subpopulations is determined, resulting
in (ngp,.,.» Ssp.)» the optimal population partitioning scheme for
the problem. Finally, this scheme is used to determine the in-
fluence of m; and m; on the behavior of the procedure.

This experimental study is supported by a novel ranking-
based score that combines both parametric and non-parametric
statistical tests to split the results sample distributions of all the
experiments performed into clusters of migration hyperparame-
ter combinations that provide similar results. These clusters can
be ranked and assigned a scalar score that allows multiple com-
parison of the results obtained by the evolutionary procedure
with different configurations. The lower the score, the better
the parameterization.

This methodology was validated by an NSGA-II-based wrap-
per applied to three high-dimensional FS datasets related to a
BCI motor imagery problem. The results showed a high prob-
ability of premature convergence as the size of the subpopula-
tions decreases, consistent with the conclusions of Canti-Paz in
[54]. The optimal population partitioning scheme (ny,, ., Ssp,...)
was then determined for the three datasets, showing that the
use of 16 subpopulations yields results comparable to those of
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the use of 24 but is more computationally efficient. A priori,
this behavior might be unexpected, as it has been assumed over
the years that increasing the number of subpopulations is the
best guideline to follow [69, 111, 112]. However, it seems that
issues such as the appropriate values for hyperparameters ny,
and sg,, with s, > s, and ng, = ng, ., should be con-
sidered to achieve the best performance of a multi-population
model. Next, the influence of m; and m; on the evolutionary
procedure was analyzed, and it was found that they only affect
the efficiency of the procedure, causing it to converge faster as
m; decreases and m; increases. This may contradict the guide-
lines given by Tomassini [24], who recommended the use of
average values for both hyperparameters. In fact, Tomassini
reported a degradation in the quality of solutions when these
hyperparameters were tuned in this way. Perhaps this degrada-
tion could have been avoided by properly adjusting 7, and s,.
Finally, regarding the new elitist probabilistic migration policy,
it has shown comparable results to the classical best-worst pol-
icy while requiring significantly fewer migrants, thus reducing
the migration overhead.

It is worth mentioning the extent of the experimental study
carried out to obtain the results presented in this work. The re-
lationship between the population partitioning scheme and the
likelihood of premature convergence was confirmed by apply-
ing the wrapper to three high-dimensional datasets, using five
population partitioning schemes, four values for the migration
interval, and seven values for m;. Each different combination
of these hyperparameters was used to run the wrapper 30 times,
resulting in 12 600 runs of the wrapper. Then, the binary search
used to estimate the optimal population partitioning scheme
tried another four additional population partitioning schemes,
requiring 10080 executions, and finally, the validation of the
optimal population partitioning scheme needed another 2 520
runs of the wrapper. Thus, only the experimental part of this
work took more than a year to complete, despite using six high-
performance computing nodes.

Regarding the score metric proposed to allow multiple com-
parison of the results sampling distributions of the huge amount
of data generated, it has proven useful to detect statistically
significant differences among distributions and also allows the
clustering of hyperparameter combinations that yield compara-
ble results. Its most relevant aspect, however, is that it can also
be used to estimate the effect size of differences in results, tak-
ing into account the high correlation between the score differ-
ence and the Cohen’s d index obtained for all the experiments
performed.
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Multi-objective multi-population evolutionary procedures have become one of the
most outstanding metaheuristics for solving problems characterized by the curse
of dimensionality. A critical aspect of these models is the migration process,
defined as the exchange of individuals between subpopulations every few
iterations or generations, which has typically been adjusted according to a set
of guidelines proposed more than 20 years ago, when the capacity to deal with
problems was significantly less than it is today. However, the constant increase
in computational power has made it possible to tackle today's complex real-world
problems of great interest more plausibly, but with larger populations than
before. Against this background, this paper aims to study whether these
classical recommendations are still valid today, when both the magnitude of the
problems and the size of the population have increased considerably, considering
how this adjustment affects the performance of the procedure. In addition, the
increase in the population size, coupled with the fact that multi-objective
optimization is being addressed, has led to the development of a novel elitist
probabilistic migration strategy that considers only the Pareto front. The
results show some interesting and unexpected conclusions, in which other issues,
such as the number of subpopulations or their size, should be considered when
fitting multi-population models. Furthermore, some of the previously mentioned
classical recommendations may not be well-suited for high-dimensional problems.
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