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ABSTRACT
Phytoplankton, such as the coccolitophore Gephyrocapsa huxleyi (G. huxleyi), has a major ecological impact through photo-
synthesis—the production of oxygen and organic material. A significant threat to G. huxleyi populations is viral infection with 
the specific Gephyrocapsa huxleyi virus (GhV). Previous research has provided important insight into the infection cycle of G. 
huxleyi. However, research including quantitative morphological information on infected cells is lacking, potentially masking 
heterogeneity in the infection cycle. In this study, we propose a machine learning (ML) pipeline to incorporate morphological 
profiling into the analysis of spatially resolved single- molecule mRNA fluorescence in situ hybridization (smFISH)—imaging 
flow cytometry (IFC) data acquired on infected G. huxleyi populations. First, we propose to simplify infection monitoring by 
using a classification model that does not rely on mRNA staining. Second, we propose an exploratory data analysis pipeline to 
disentangle two modes of cell death in infected cultures and a subpopulation of healthy cells that potentially will not die from 
infection, but from programmed cell death (PCD). Overall, we show that morphological profiling of smFISH–IFC data is highly 
suited for studying microbial interactions in phytoplankton populations.

1   |   Introduction

Photosynthetic microeukaryotes and cyanobacteria have a major 
ecological impact through the conversion of atmospheric and 
aqueous carbon dioxide to organic material and oxygen [1–3]. 
These organisms, such as the coccolitophore Gephyrocapsa 
huxleyi (G. huxleyi), form enormous blooms in the ocean [4]. 
A significant driver of bloom collapse is G. huxleyi's suscepti-
bility to infection by the large double- stranded DNA (dsDNA) 
Gephyrocapsa huxleyi virus (GhV) [5, 6]. This lytic viral infec-
tion can lead to the viral shunt, the release of algal biomass to 
the ocean's dissolved organic matter (DOM) pool, which makes 

GhV infection an important regulator of nutrient flux in biogeo-
chemical cycles, microbial communities, and carbon export to 
the deep ocean [7–9]. Therefore, optimizing the tracking of viral 
infection in algal blooms is of vital importance to monitoring 
and understanding the marine ecosystem.

In recent years, image- based cell profiling [10, 11] has led to nu-
merous biological discoveries [10, 12]. For example, it has been 
applied to drug discovery [13], stain- free classification of leuko-
cytes in human blood [14], and to perform cell sorting based on 
spatial phenotypes, such as nuclear translocation [15]. Image- 
based profiling summarizes high- throughput, spatially resolved 
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imaging information into a vector of quantitative measurements 
representing cellular morphological characteristics, such as 
shape and texture, as well as fluorescence signal intensity and 
distribution. It uses machine learning (ML) techniques, such as 
clustering and classification, to analyze these profiles and ex-
tract meaningful patterns.

Imaging flow cytometry (IFC) is an ideal candidate for image- 
based profiling experiments because it combines the fluorescence 
imaging capabilities of microscopy with the high throughput of 
conventional flow cytometry. This allows it to capture an abun-
dance of single- cell, spatially resolved data [16, 17]. IFC has been 
used extensively in phytoplankton research, for instance, for 
characterizing functional traits [18, 19], environmental monitor-
ing [20–22], and species classification [23, 24]. IFC is also used to 
quantify gene expression at high throughput in morphologically 
intact cells by combining it with single- molecule mRNA fluores-
cence in situ hybridization (smFISH) [25]. Specifically, smFISH–
IFC has been used to quantify active GhV infection in G. huxleyi 
blooms, leading to numerous insights on GhV infection [5].

However, while fluorescence staining and manual gating can ef-
fectively classify infection cell states, it is labor- intensive, expen-
sive, and a possible point of failure in an experiment. Furthermore, 
the downstream manual gating analysis to identify infected cells 
is rather slow, prone to subjectivity, and prone to error for the un-
trained eye. This raises the need for an automated approach that 
relies exclusively on brightfield (BF), darkfield (DF), and poten-
tially 4',6- diamidino- 2- phenylindole (DAPI) information.

Along with [5], previous research has improved understanding 
of GhV's infection strategies and transcriptome regulation of the 
host [26], and how it affects viral- induced DOM [27]. However, 
research including ML analysis of quantitative, morphological 
information on infected cells is lacking. In related research, ML 
has achieved outstanding performance in both supervised and 
unsupervised analyses, which highlights its great potential to 
optimize GhV's infection monitoring and to understand the dy-
namics of the infected populations.

In this study, we propose an ML pipeline to augment the analysis 
of the spatially resolved smFISH–IFC data collected in [5] with 
image- based, morphological profiling. First, we trained and 
validated a model to classify cells into different infection states 
to substantially simplify the time- consuming fluorescent stain-
ing protocols used for monitoring viral infection in G. huxleyi 
populations. Second, we used a SHapley Additive exPlanations 
(SHAP)- based analysis [28] to reveal which feature types have 
the most impact on cell state classification, bringing insight into 
what channels and features drive classification performance. 
Finally, we perform an unsupervised clustering and dimension-
ality reduction analysis to uncover novel biological heterogene-
ity in the GhV infection cycle driven by morphology. We find 
evidence for two modes of cell death in infected cultures: lysis 
after infection and programmed cell death (PCD) without infec-
tion. These findings point to a potential seed of resistant cells 
that could regrow the culture.

Overall, our study demonstrates that image- based profiling is a 
valuable and highly suited approach for an in- depth analysis of 
smFISH–IFC data of microbial interactions in phytoplankton.

2   |   Results and Discussion

In this section, we present classification and exploratory analy-
sis results obtained on a time course smFISH–IFC dataset mon-
itoring GhV infection in G. huxleyi phytoplankton populations 
[5]. Infection monitoring was done from 0 to 72 h post infection 
(hpi) by tracking the expression of the viral major capsid protein 
(mcp) gene and the host photosystem II protein D1 (psbA) gene. 
mcp encodes the major capsid protein, a structural protein in 
the viral capsid, and indicates active viral infection. psbA is a 
chloroplast- encoded gene that encodes a core protein of the host 
photosynthetic machinery, and indicates host metabolic activity. 
Figure 1 shows an overview of the dataset. See Section 4.1 for 
details on the data acquisition protocol.

In the following sections, cells are categorized based on their 
culture origin and manually gated infection state. Two cultures 
are used in this analysis: infected and control, with and without 
virus added, respectively. The infection state was determined 
based on mcp and psbA expression and is divided into four cat-
egories: healthy (mcp−/psbA+), dead (mcp−/psbA−), early infec-
tion (mcp+/psbA+) or late infection (mcp+/psbA−) (Figure  1a). 
Because the control culture is not infected with GhV, it contains 
cells in only two possible infection states: dead (mcp−/psbA−) and 
healthy (mcp−/psbA+). Due to the heterogeneity of the infection 
process, the infected cultures contain cells in all four infection 
states. See Section 4.1 for details on the manual gating procedure.

2.1   |   Gradient Boosting Models Enable the Use of a 
Simplified and Automated Infection Monitoring 
Protocol

To simplify and automate infection monitoring in G. huxleyi 
blooms, we explore the use of image- based, ML models, reducing 
the need for fluorescent staining to rely only on BF, DF, and option-
ally, DAPI information. To explore this, we set up a classification 
pipeline that predicts one of four ground- truth infection states, as 
defined above. The classification is based on each cell's extensive 
morphological profile derived from BF, DF, and DAPI images. 
These images capture forward scattered light, side scattered light, 
and light emitted from stained nucleotides, respectively. We test 
two settings with profiles derived from different subsets of images: 
(i) the stain- free BD profile (BF and DF images), and (ii) the BD + D 
profile (BF, DF, and DAPI images). In all settings, features are 
weighted equally when training the classification models.

We specifically test the impact of DAPI as it may significantly 
improve classification performance without adding too much 
complexity: it is a routinely added, low- cost stain, and could po-
tentially be applied to live cells [29]. Finally, we assess the im-
pact of training the models using cells from the infected culture 
only and using cells from both the infected and control cultures, 
as the heterogeneity between both cultures might affect classifi-
cation performance.

An eXtreme gradient boosting (XGB) [30] model was trained 
to predict the four states achieving a maximum cross- 
validated balanced accuracy of 0.81 (±0.002) using the BD + D 
profiles from infected culture cells. With the BD profile we 
achieved a balanced accuracy of 0.75 (±0.003) training on 
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infected and control cultures. Figure 2 shows obtained accu-
racies for all settings, along with confusion matrices. For both 
feature profiles, we found that including control culture cells 
for training decreased healthy (mcp−/psbA+) state prediction 
performance. For the BD feature set, this performance drop 
was offset by a performance gain in the remaining states, 
leading to a better overall performance. The latter was not the 
case for the BD + D profile.

The confusion matrices indicate that dead (mcp−/psbA−) cells 
are the most difficult to predict. This is likely due to the smaller 
number of dead cells in the dataset and large morphological 
variability within this class. The recall of dead and healthy cells 
drops most between BD + D and BD settings, indicating that the 
model relies strongly on DAPI information for these states. This 
is expected as DAPI correlates with infection due to increased 
de novo nucleotide synthesis for virion production during infec-
tion [5, 31]. For reference, a small analysis of the incorrectly pre-
dicted cells is shown in Supplementary Figure 4.

In conclusion, we find it is possible to simplify and automate 
infection monitoring using ML models by using only DAPI 

staining, or no staining at all. However, accuracy can still be 
improved, mainly in dead cell classification.

2.2   |   SHAP Analysis Provides Insight Into 
Important Features for Classification

To gain more insight into the importance of the features used 
by the XGB classification models, we performed a SHAP anal-
ysis [28]. SHAP is an approach rooted in game theory that 
fairly distributes a model's output value over the input fea-
tures according to the impact each feature has on the output. 
The SHAP values allow us to assess which features were im-
portant for the classification of a particular input and to eval-
uate the overall impact of the feature by aggregating values 
across the dataset. For easier interpretation, we group the fea-
tures into three categories: intensity (e.g., mean, standard de-
viation, skewness), shape (e.g., eccentricity, major axis length, 
and area) and texture (e.g., gray level co- occurrence matrix 
(GLCM) dissimilarity, Sobel mean, and Sobel standard devi-
ation). Figure 3 shows two summarizing views of the SHAP 
values for the 20 features with the highest mean absolute 

FIGURE 1    |    Overview of the single- molecule mRNA fluorescence in situ hybridization imaging flow cytometry dataset of Gephyrocapsa huxleyi 
phytoplankton infected with the G. huxleyi virus. (a) Scatter plot colored according to manually gated infection states showing logicle- transformed 
expression of metabolic (psbA) and viral (mcp) activity probes. Example images for each infection state show spatially resolved expression of probes 
and cell morphology. (b) Cell counts for control and infected cultures per time point post infection. (c) Cell counts per time point post infection 
grouped by infection state. [Color figure can be viewed at wileyonlinelibrary.com]

psbA intensity

mcp intensity

(a)

(b) (c)
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SHAP value. Figures S5 and S6 show the distribution of SHAP 
values for these 20 features in more detail. Figure S7 depicts 
the distribution of two features identified by SHAP as having 
high impact on classification.

The composition of the 20 features with the highest contribution 
for both the BD and BD + D models shows that for each infec-
tion state, the intensity features contribute most, followed by 
the texture and shape features. In the BD model, all channels 
contribute equally, with a bias towards DF features for dead 
(mcp−/psbA−) cell classification. In the BD + D model, this is 
also the case, but the contribution of the DF channel is partially 
shifted to the DAPI channel. This is likely due to the aforemen-
tioned correlation of DAPI with infection through de novo nu-
cleotide synthesis. DAPI also has a high contribution to healthy 
(mcp−/psbA+) cell classification through the texture features. 
In both models, all shape features in the top 20 are derived from 
both BF channels. This is expected, as the BF- derived masks 

capture the morphology of the cell most clearly. Morphology 
captured by the DAPI and DF masks proved to be less interest-
ing. This could be due to the small size of G. huxleyi combined 
with IFC's limited resolution.

In addition to this analysis, it also appeared in the data that the 
skewness of the BF pixel distribution was bimodal, with one neg-
ative peak and one positive peak (Figure S14a). This bimodality 
does not correspond to batch effects nor to the masking process, 
and more experiments would be necessary to identify its cause.

Following the SHAP analysis contributing most importance 
to the intensity features, we trained classifiers with only those 
features and found that this causes a limited, yet non- negligible 
drop in performance. For the BD + D model, average balanced 
accuracy drops from 0.81 to 0.79, and for the BD profile, it drops 
from 0.75 to 0.72. This result confirms that an optimal classi-
fication pipeline should include texture and shape features. 

FIGURE 2    |    Confusion matrices and balanced accuracy show performance of infection state classification obtained with an XGB classifier trained 
without features derived from mcp and psbA images. Models were compared when trained with features derived from two sets of images: (i) bright-
field and darkfield, and (ii) brightfield, darkfield, and DAPI. Both feature sets were also compared when trained with cells from only infected cultures 
and from both control and infected cultures. Test metrics are obtained on infected culture cells only. Classification performance is best when DAPI 
is included and the classifier is trained on infected cultures only.
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Furthermore, it highlights the potential of ML to analyze multi-
dimensional data to unravel properties that are not identified by 
manual analyses.

2.3   |   Clustering Analysis Suggests That a Group 
of Resistant Cells in Infected Cultures Likely Die 
From NVCD

To uncover heterogeneity beyond the previously identified 
states of the GhV infection cycle, we performed an unsuper-
vised clustering and dimensionality reduction analysis of the 
dataset. The obtained clustering is shown on the 2D uniform 
manifold approximation (UMAP) reduction in Figure  4. We 
hypothesize, based on this analysis, that there are two mech-
anisms of cell death in infected cultures: one involving direct 
lysis from GhV infection and one involving PCD prior to any 
viral infection. We find evidence that could support this hy-
pothesis in the clusters of healthy (mcp−/psbA+) and dead 
(mcp−/psbA−) cells.

First, we find a group of clusters predominantly containing 
healthy (mcp−/psbA+), non- infected cells, which are likely in 
later stages of the cell cycle. These clusters contain 75% of all 
healthy control culture cells, which are mainly expected to go 
through the cell cycle. Figure S10 shows the distribution of cul-
ture origin in these clusters. Interestingly, in these clusters, we 
find a small fraction of cells from the infected culture (0.3% of 
all infected culture cells) that are not infected (mcp−) and age 
beyond 24 hpi. Additionally, a SHAP analysis of the clustering 
indicates that these cells are on average larger and more met-
abolically active compared to other healthy cells (Figure  S11). 
Cell- to- cell heterogeneity within a monoclonal population of G. 
huxleyi can lead to varying degrees of resistance [32], and size 
may convey higher fitness to the host. Larger cells may also be 
a consequence of resistance: during their life cycle, cells double 

their volume before dividing, and resistance could be accompa-
nied by cell division arrest. These uninfected cells could be a 
seed for regrowing the culture after infection.

Additionally, the clusters containing the dead (mcp−/psbA−) 
cell population provide more evidence for the presence of cells in 
the infected culture not dying from infection. An analysis of this 
observation is shown in Figure 5. The dead cells are divided over 
5 clusters, which vary in culture origin, as shown in Figure 5a. 
Two of these clusters [18 and 25] are composed of cells originat-
ing equally in control samples from all time points and infected 
culture samples from early time points (mainly before 24 hpi). 
Given that control culture cells can only die from PCD without 
infection, we hypothesize that the dead cells of the infected cul-
ture clustered with them also die from PCD without infection. 
To verify that mcp−/psbA− cells indeed represent dead cells, it 
was previously shown with Sytox staining – a marker for cell 
death – that the proportion of Sytox- positive cells correlated well 
with mcp−/psbA− cells [5].

In addition to a majority of dead cells, clusters 18 and 25 also 
contain some healthy (mcp−/psbA+), uninfected cells, likely 
close to PCD.

Besides this, we also find that cluster 28 is composed entirely 
of cells originating from the infected culture that likely died 
after viral infection. The SHAP analysis shows that this clus-
ter contains small cells with a high DAPI intensity (Figure 5b–d 
and Figure S9). Indeed, large dsDNA viruses, such as GhV, re-
quire large amounts of nucleotides to meet demand for virion 
production. To this end, they hijack the cell to promote de novo 
nucleotide synthesis, increasing DAPI signal intensity [5, 31]. 
Furthermore, Figure  5e,f shows that cells in cluster 28 are 
smaller and less structurally intact compared to those of clus-
ter 18 and 25, supporting the fact that cluster 28 contains cells 
that died after lysis. We refer the reader to the supplementary 

FIGURE 3    |    SHAP was used to compute the contribution of each feature to the classification of each infection state for the (a) BD and (b) BD + D 
model. To ease interpretation, the features are subdivided into three categories: Intensity, shape, and texture. We show the 20 features with the 
highest absolute SHAP values averaged across the dataset. The arrow annotations show the most impactful feature for each state. Figure S7 shows 
example images of the BF inertia feature identified in (a) and the DAPI contrast feature identified in (b). [Color figure can be viewed at wileyonlineli-
brary.com]
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material (Section 3, Figures S12–S15) for a complementary anal-
ysis of some of the clusters and features.

Our clustering- based detection of subpopulations likely dying 
from PCD in infected cultures aligns with previous studies doc-
umenting resistance mechanisms in G. huxleyi. Earlier work 
demonstrated that G. huxleyi can escape viral infection through 
a strategy where the calcified diploid phase transitions to a re-
sistant haploid phase [33, 34]. Cell- to- cell heterogeneity within 
monoclonal populations was also shown to drive stable host- 
virus coexistence [32]. These findings support our hypothesis of 
discovering resistant subpopulations within infected cultures. 
To validate these mechanisms, future work should combine the 
smFISH–IFC approach with genomic and transcriptomic analy-
ses to find a molecular basis of resistance to GhV infection, and 
potentially link them to morphological differences we observed.

3   |   Conclusion

Previous research has studied infection of G. huxleyi blooms 
with its specific coccolithovirus GhV using various technologies: 

single- cell RNA sequencing of infected cells revealed how in-
fection changes the cellular transcriptome [26], untargeted ex-
ometabolomics of infected algal blooms showed how infection 
contributes to the DOM [27], and smFISH–IFC was used to show 
the diversity of cell fates after viral infection [5]. In this study, 
we expanded on this research by employing ML techniques to 
analyze morphological profiles derived from smFISH–IFC data.

First, we expanded on research in stain- free analysis of phyto-
plankton [24, 35–37] by setting up a ML pipeline for classifying 
cells into four infection states based on BF, DF, and, optionally, 
DAPI information. The achieved performance demonstrates 
that this pipeline can simplify infection monitoring by mitigat-
ing the need for smFISH and automating the quantification of 
viral infection after acquisition. This result therefore allows for 
more efficient and less labor- intensive data acquisition, poten-
tially leading to a better understanding of viral infection in algal 
blooms.

Second, we used clustering techniques to unravel additional 
biological heterogeneity in the infection cycle. We were able 
to disentangle modes of cell death within infected cultures, 

FIGURE 4    |    We performed unsupervised Leiden clustering and UMAP dimensionality reduction of the full dataset with features derived from all 
available images (brightfield, darkfield, DAPI, mcp and psbA). The obtained 2D reduction is shown colored according to the (a) Leiden clustering, (b) 
culture origin (control or infected), and (c) manually gated labels for healthy (mcp−/psbA+), early infection (mcp+/psbA+), late infection (mcp+/ps-
bA−) or dead (mcp−/psbA−) cells. (d) Fraction of manually gated infection states in the clusters obtained with Leiden clustering. [Color figure can be 
viewed at wileyonlinelibrary.com]

 15524930, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cyto.a.24944 by D

aniel Peralta - U
niversidad D

e G
ranada , W

iley O
nline L

ibrary on [16/06/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://onlinelibrary.wiley.com/


7 of 12

FIGURE 5    |    (a) Clustering divides manually gated dead (mcp−/psbA−) cells over five clusters. Clusters 18 and 25 contain cells originating equally 
from infected and control cultures. Clusters 26, 28, and 34 contain predominantly cells from infected samples. A SHAP analysis comparing dead cell 
cluster 28 against other dead cell clusters shows that (b) the minor axis length, (c) the GLCM energy feature derived from the BF, and (d) the mean 
value of the Sobel map derived from the DAPI image have a high impact on clustering. Examples of BF images from clusters 18 and 25 (e) show struc-
turally intact dead cells that likely died from PCD prior to infection, and lysed cells from cluster 28 (f) that died from infection. [Color figure can be 
viewed at wileyonlinelibrary.com]
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differentiating between cells that move directly to PCD versus 
those that go through viral infection. We also found evidence 
for two groups of healthy (mcp−/psbA+) cells in infected cul-
tures: those that follow their development and those that do not, 
pointing to two potential subpopulations of resistant cells that 
could regenerate the culture. Figure 6 shows a schematic repre-
sentation of the subpopulations and transitions between them, 
for which we found evidence in the dataset.

Next, we highlight some unexpected findings which require 
future research. First, given the results of the classification 
model SHAP analyses, we want to investigate how shape and 
texture- based features could be improved to increase their 
discriminative power. Second, we find a bimodal distribution 
of the skewness of the BF pixel distribution feature across the 
dataset. More investigation is needed to uncover what drove 
this split.

Finally, in future work, we would also like to generate a dataset 
with a shorter time interval between samples to allow for au-
tomated trajectory inference. This analysis could provide addi-
tional evidence for the previously and newly identified cell fates 
in GhV infection. Furthermore, deep learning methods are pop-
ular in phytoplankton research for species and trait classifica-
tion [38]. In this work, we opted for feature- based ML methods 
to allow for better interpretability. It would be relevant to inves-
tigate whether there are performance improvements when using 
deep learning- based methods.

In conclusion, our work has provided contributions to the study 
of infection in G. huxleyi blooms by setting up an end- to- end 
ML pipeline to analyze smFISH–IFC data from a supervised 
perspective, to make monitoring more efficient, and from an 
unsupervised perspective, allowing for the discovery of novel 
biological insights. This study demonstrated that image- based 
profiling is a valuable approach for an in- depth analysis of 
smFISH–IFC data, allowing us to identify avenues for further 
research.

4   |   Materials and Methods

4.1   |   Monitoring Viral Infection With 
smFISHMonitoring Viral Infection With

We refer to [5] for all detailed information on the experimen-
tal setup and manual gating approach. We provide a sum-
mary below.

G. huxleyi CCMP 2090 was used and infected with a 5:1 mul-
tiplicity of infection (MOI) ratio of infectious virus per cell, 
thereby guaranteeing that all cells encountered an infectious 
particle 30 min post infection. The time courses of infected 
and noninfected cultures were sampled simultaneously in 
triplicates.

Cells were stained with two smFISH probes tracking host met-
abolic activity and active viral infection. Metabolic activity is 
tracked through the mRNA expression of psbA, a chloroplast- 
encoded gene of the D1 protein. The D1 protein is involved in the 
early stages of photosynthesis and is essential for optimal viral 
infection [39, 40]. Viral infection is tracked through the mRNA 
expression of the mcp gene that encodes the major capsid pro-
tein, expressed in viral infection [26].

Data were analyzed using IDEAS6.2 (Amnis, Luminex). The 
compensation matrix was built using the IDEAS wizard and 
manually checked before being applied to all the acquired files. 
Based on the area and circularity of DAPI, three populations 
were identified as single cells (mainly, DAPI area < 60 a.u.), 
doublets, and aggregates (mainly, DAPI area > 60 a.u.). Single 
cells were selected in the same focal plane using the BF gra-
dient and contrast. All gates were defined on a single file be-
fore being applied to the total data set. Each file was manually 
inspected to check the accuracy of single- cell and aggregate 
gating. Classification of mcp− and psbA− populations was 
based on negative controls of uninfected and unstained cells 
respectively.

FIGURE 6    |    (a) Schematic representation of cell states and transitions leading from healthy (mcp−/psbA+) to dead (mcp−/psbA−) cells for which 
we find evidence in the dataset using the Leiden clustering approach discussed in Section 2.3. Colors of the arrows indicate in which culture each 
transition occurs. (b) States and transitions from (a) plotted onto the UMAP embedding obtained in Section 2.3. The letters in (b) correspond to the 
letters on the schematic representation in (a). [Color figure can be viewed at wileyonlinelibrary.com]
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4.2   |   Dataset Acquisition

Images were collected using the Amnis ImageStream MK- II 
IFC platform at 0, 1, 4, 8, 24, 32, 48, 56, and 72 hpi. Three bi-
ological replicates are available for infected cultures, and two 
for control cultures. Six channels were collected: the DAPI, 
mcp, and psbA fluorescence channels; two BF channels cap-
turing transmitted light at wavelengths of 420–480 nm and 
57–595 nm; and a DF image capturing scattered light. We 
refer to Vincent et al. [5] for acquisition details and staining 
procedure.

Data were analyzed using IDEAS 6.3 (Amnis, Luminex). The 
compensation matrix was built using the IDEAS wizard and 
manually checked before being applied to all the acquired files. 
Based on the area (the number of microns squared in a mask) 
and circularity (the degree of the mask's deviation from a cir-
cle) of DAPI, three populations were identified as single cells 
(mainly, DAPI area < 60 a.u.), doublets, and aggregates (mainly, 
4′,6- diamidino- 2- phenylindole (DAPI) area > 60 a.u.). Single 
cells were additionally selected in the same focal plane using the 
BF gradient and contrast (both gradient and contrast measure 
the sharpness quality of an image by detecting large changes of 
pixel values in the image).

The dataset can be downloaded from the Bioimage Archive 
under accession number S- BIAD617.

4.3   |   Morphological Profiling With SCIP

We obtained detailed morphological profiles of the 6- channel 
IFC images with SCIP [41], a software for processing image cy-
tometry data. This involved export from IDEAS, background 
masking, and feature computation.

To process the images, we exported them from IDEAS 6.3 to 
16- bit, nonpadded TIFF files using an AutoHotKey script to 
automate the point- and- click procedure. This was done on a 
Windows machine. We stored the images in a Zarr array, an 
efficient on- disk array storage format, which can be loaded 
by SCIP.

We computed two types of masks for each image and channel. 
The first mask (Figure S1) is computed by:

1. smoothing the input with a Gaussian filter with a standard 
deviation of 0.5 (1 for mcp and psbA),

2. computing a Sobel map,

3. smoothing the map with a Gaussian filter with standard 
deviation of 1 (2 for mcp and psbA)

4. computing the Li threshold,

5. and masking all pixels with a value below the threshold.

The second mask (Figure S2) is computed by:

1. subtracting a median filtered version of the input (filter 
size 5 × 5) from itself,

2. smoothing the result with a Gaussian filter with a standard 
deviation of 0.5 (1 for mcp and psbA),

3. computing a Sobel map,

4. smoothing the map with a median filter with size 5 × 5,

5. computing the Otsu threshold,

6. and masking all pixels with a value below the threshold.

Finally, for both masks, small holes (with a maximum area of 
25% of the input image) were filled and small objects (with a 
maximum area of 20 pixels) were removed.

We then computed 406 features per channel and per mask. 
These features describe the cell's phenotype in terms of shape, 
texture, and image intensity. We refer to Lippeveld et al. [41] for 
more details on the features. The profiles were exported to a 
Parquet file for further downstream processing.

Prior to the downstream analysis, 38,287 events were dis-
carded after being identified as multiplets or debris based 
on the BF and DAPI mask's major over minor axis ratio and 
eccentricity. We also removed 113 cells from control cultures 
that were positive for mcp, which was likely due to residual 
smFISH probes remaining in the sample after the washing 
step. After quality control filtering, 104,164 cells remained for 
further analysis.

4.4   |   Classification With XGBoost

The classification pipeline was trained and evaluated with 
nested fivefold cross- validation (CV) stratified for the infection 
states. Models are trained using either only infected culture cells 
or infected and control culture cells. In both cases, the identical 
CV folds of infected culture cells are used. When controls are 
also used, a separate CV is done and training folds of infected 
and control cultures are concatenated. Performance is recorded 
separately on infected and control validation folds. To avoid 
overrepresentation of control cells in the training data, they are 
undersampled to a maximum of 20,000 cells per timepoint.

The pipeline starts with a filter removing zero- variance 
features, followed by a random undersampling of healthy 
(mcp−/psbA+) cells to the level of the second most abundant 
type of cells (early infection (mcp+/psbA+)), and a random 
oversampling of all other infection states. The resulting train-
ing set is then used to train an XGB classifier. We opted for 
XGB because it has a fast graphical processing unit (GPU)- 
accelerated implementation for training and inference, and 
it can be efficiently explained using the SHAP TreeExplainer 
algorithm [28].

The inner cross- validation was used to find optimal hyper- 
parameters with the successive halving random search method 
[42] as implemented in the scikit- learn Python package. 
The search was initiated with 500 randomly sampled candidate 
hyper- parameter settings and 10 XGBoost estimators for train-
ing. At each iteration, the top 50% amount of candidate settings 
was halved based on the balanced accuracy, and the number 
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of boosting rounds was doubled. This was repeated until 640 
boosting rounds were reached, to keep optimization computa-
tionally feasible. Figure S3 shows the search evolution of both 
configurations and the optimal hyperparameters selected for 
each outer fold.

4.5   |   Dimensionality Reduction With Feature 
Clustering to Reduce Correlation

To reduce correlation between image- derived features, we per-
form a feature selection step following the procedure outlined in 
[43]. First, we compute a Spearman rank correlation [44] matrix 
of all features. We use the nonparametric Spearman rank cor-
relation since we cannot make assumptions on the distribution 
of the features. Agglomerative hierarchical clustering with aver-
age linkage and Euclidean distance is used to cluster the correla-
tion matrix. We flatten the hierarchy to create clusters that have 
at least a correlation of 0.9. From each of the clusters, the feature 
with the highest variance is selected.

4.6   |   Dimensionality Reduction and Clustering

To visualize heterogeneity in the dataset, we mapped the cell 
profiles to a two- dimensional (2D) embedding with UMAP. 
Figure 4 shows the UMAP reduction colored according to the 
manually gated infection state and culture origin.

In order to uncover subpopulations of cells in the dataset, we 
used the Leiden algorithm [45] to cluster cells based on their pro-
file similarity (see Figure 4 and Figure S8). As seen in Figure 4d, 
the obtained clusters have high homogeneity with respect to the 
manually gated labels. This means that the unsupervised clus-
tering is able to reconstruct the populations found by manual 
gating, as well as identify subpopulations within them.

We used the ScanPy package [46] to perform dimensionality re-
duction and clustering. First, all features were independently Z- 
score normalized. A principal component analysis was performed 
on the normalized features [47]. We selected the 81 first compo-
nents, which explained 90% of the variance. Next, a 20- nearest 
neighbor graph was constructed using UMAP connectivity and 
Euclidean distance [48]. This graph was then used to perform 
Leiden clustering with a resolution of 2.5. UMAP was applied to 
the PCA components to reduce it to two dimensions using the pre-
viously computed 20- nearest neighbor graph. PAGA [49] was used 
to estimate connectivity structures in the graph and provide an 
initialization for the UMAP low- dimensional embedding [48, 50].

4.7   |   Model Explanations With SHAPModel 
Explanations With

Shapley values are a concept from game theory that allows for 
fair credit allocation to players in a cooperative game based on 
their contribution to the outcome. SHAP values are a reformu-
lation of Shapley values in the context of ML where the game is 
the ML model, the outcome is the model's prediction, and the 
players are input features.

SHAP values are a unifying framework for the class of additive 
feature attribution methods. This class of methods provides 
local explanations, meaning they attribute feature importances 
per instance x [51]. SHAP values are challenging to compute ex-
actly, so in general, we need to resort to approximation meth-
ods. However, TreeExplainer exploits the structure of tree- based 
models, such as random forests or gradient boosted trees, to 
compute exact SHAP values in polynomial time [28]. It is imple-
mented in the SHAP Python package.

In this work, we used TreeExplainer in two contexts. First, to 
explain the infection state classification with an XGB model. 
This model was cross- validated, so we concatenated explana-
tions on the test set from all folds to obtain explanations for the 
full dataset. Features were then prioritized based on their mean 
absolute SHAP value across the dataset.

Second, we used TreeExplainer to prioritize features that could 
drive the clustering of cells found with Leiden clustering. To 
achieve this, we trained a proxy XGB model to predict assigned 
cluster labels based on input features. The proxy models were 
validated using a 90/10 train- test split. We then explained the 
proxy model and prioritized features based on their mean abso-
lute SHAP value across the dataset.
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