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 A B S T R A C T

The extraction and utilization of latent information from sensor data is gaining increasing prominence due 
to its potential for transforming decision-making processes across various sectors. Data mining techniques 
provide robust tools for analyzing large-scale data generated by advanced network management systems, 
offering actionable insights that drive operational efficiency and strategic improvements. However, the sheer 
volume of sensor data, combined with challenges related to real-world sensor deployment and user interaction, 
necessitates the development of advanced data fusion and processing frameworks. This paper presents an 
innovative automatic fusion and fuzzification methodology designed to integrate multi-source sensor data 
into coherent, high-quality intelligent outputs. By applying fuzzy logic, the proposed system enhances the 
interpretability and interoperability of complex sensor datasets. The approach has been validated in a real-
world scenario within sensorized homes of Type II diabetic patients in Cabra (Córdoba, Spain), where it aids 
healthcare professionals in monitoring and optimizing patient routines. Experimental results demonstrate the 
system’s effectiveness in identifying and analyzing behavioral patterns, highlighting its potential to improve 
patient care through advanced sensor data fusion techniques.
. Introduction

Nowadays, advanced sensor technologies and healthcare infrastruc-
ures in hospitals [1], nursing homes [2] or individual homes [3] for 
ependent adults can generate thousands of readings every minute 
rom a wide range of sensors. Health sector entities are progressively 
ecognizing the immense potential [1] that can be harnessed through 
he analysis and utilization of this information. Consequently, the pre-
ailing trend is to store and process such data with the aim of extracting 
aluable insights regarding patterns of activity, behavioral tendencies, 
nd identification of individuals’ actions and behaviors [4,5].
In order to collect data in the real context, it is necessary to develop 

nd deploy systems based on Internet of Things (IoT) technology. This 
ype of systems [1,3,6] are characterized by sensorised devices that 
re capable of recording the activity of the users, communicating this 
nformation wirelessly [7] to the different elements of the system and 
toring all the data in the cloud. Different types of sensorised devices 
an be found in this field [8]: device free, tagged object and wearables. 
hese wearable devices [9] are highly specialized in the healthcare field 
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(Internet of Medical Things) and are characterized by being attached to 
the user’s body and measuring different types of physiological signals, 
such as heart rate, temperature, breathing rate, among others.

Due to the large amount of information generated, the main chal-
lenge [10,11] in processing sensor-generated data is to find efficient 
methods and techniques to improve the quality of the measurement 
data obtained. One of the key steps is data fusion during the pre-
processing phase because, in most cases, data from different sources 
must be imported. In addition, these data are usually of considerable 
size, as they are generated at low frequencies by numerous sensors, 
detailing an inherent context and correlation between them. Therefore, 
pre-processing and data fusion become integral elements to obtain a 
database that encapsulates the relationship and knowledge associated 
with the different sensors.

Sensor measurement data is commonly produced using numerical 
measurements that encapsulate values within a continuous range. This 
characteristic often complicates large-scale analysis due to its fine gran-
ularity. A fundamental approach comprises designating divisions of the 
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possible values into intervals, aiding algorithms in data processing. This 
partitioning, however, could be subjected to significant inconveniences 
since the results could vary drastically based on the applied division, 
and this division might not be intuitive for subsequent result analysis.

Fuzzy sets have proven to effectively represent data with soft edges, 
thereby enhancing the interpretability of results by associating mean-
ingful linguistic labels with the resultant fuzzy sets [12–14]. Alterna-
tively, interval programming methods can be utilized to address the 
imprecise characteristics contained in the data.

Although the literature presents various Artificial Intelligence (IA) 
and data fusion methods applied to healthcare, fuzzy logic [15] contin-
ues to be widely used due to its simplicity. This feature facilitates its use 
in environments with limited computational resources and real-time ap-
plications, and enhances the interpretability and trustworthiness [16] 
of the implemented AI model. Nevertheless, fuzzy logic-based sys-
tems still rely strongly on expert knowledge to define their rules and 
membership functions.

Due to these advantages, fuzzy logic is still widely used in various 
fields of application, such as healthcare [17], cybersecurity [18] and 
sentiment analysis [19]. In addition, it is frequently integrated into 
more complex hybrid models [20] that combine its characteristics 
with other methodologies, such as fuzzy machine learning systems, 
thus taking advantage of the complementary strengths of different 
approaches.

In this article, we propose a fusion that enriches sensor data to 
improve and create a database containing the knowledge and relation-
ships between sensors. In addition, a fuzzification algorithm, which 
does not require expert knowledge, is used to preprocess the data ade-
quately and, in a subsequent step, apply fuzzy data mining techniques 
to discover potentially helpful information that may be hidden in the 
data.

In particular, we have applied association rule discovery [12,21], 
an unsupervised technique capable of finding existing relationships 
between variables and their values. Furthermore, these results allow 
us to find frequent behavior in the behavior of people who live in sen-
sorized houses. Additionally, sensors linked with activities and person-
locating functionalities allow us to comprehend routines-based frequent 
behaviors or activities [1,4,6,22].

The entire system has been successfully applied in a sensorized 
house located in Cabra (Spain), obtaining a set of patterns that describe 
the behavior and activity patterns of the tenant of the house. However, 
the presented approach could also be applied in other types of houses, 
residences with more tenants or different sensors.

The patterns obtained describe the behavior and daily routines of 
the tenant, but could also help to discover routines that are not ben-
eficial or unhealthy for people. Behavioral extraction is crucial in the 
healthcare field, for example in patients with type II diabetes mellitus. 
In this case, it is essential for healthcare professionals to know whether 
patients’ routines are healthy in order to modify their treatment [3].

Therefore, this work proposes a fuzzy logic-based system for the 
discovery of behavioral patterns in older people through the analysis 
of data collected from multimodal sensors. These sensors have been 
deployed in a typical real home environment using a big data archi-
tecture, and present a novel process for modeling the uncertainty of 
the data using fuzzy techniques.

The primary contributions of this work are enumerated below:

1. Development of an automatic fusion and fuzzification methodol-
ogy that integrates multi-source sensor data into a coherent and 
high-quality dataset while leveraging fuzzy logic to enhance the 
interpretability and interoperability of the data.

2. Application of fuzzy association rule mining to discover frequent 
behavioral patterns in smart healthcare environments, validated 
through a real-world deployment in a sensorized home with 
monitored Type II diabetic patients, demonstrating its effective-
ness in optimizing daily routines.
2 
The work is structured as follows. The next section reviews previous 
related research and introduces the necessary background of the related 
concepts. Section 3 describes the design of our system focusing on the 
developed fuzzification algorithm. The Section 4 presents our results for 
the use case of house located in Cabra (Spain). Finally, in Section 5 we 
summarize the conclusions and present possible future research lines.

2. Related works

Activity detection, particularly in human behavior and daily living, 
is a critical area of research with significant implications for healthcare, 
elder care, and pervasive computing environments. The primary goal of 
activity detection applications is to accurately recognize and monitor 
human activities using various sensing technologies and computational 
methods. This capability is crucial for developing intelligent systems 
that can provide timely assistance, enhance safety, and improve the 
quality of life for individuals, especially the elderly or those with special 
needs.

The state of the art in activity detection has evolved to include a 
variety of approaches and technologies. One standard method involves 
the use of wearable sensors, such as accelerometers, to capture motion 
data that can be analyzed to identify specific activities [23]. These sen-
sors are advantageous due to their ability to gather data unobtrusively, 
providing continuous monitoring without significantly impacting the 
user’s daily routine.

A range of studies have explored the use of fuzzy processing and 
fuzzy association rules in activity recognition. In [24,25] both propose 
methods for recognizing human activities, with the former using a 
Neuro-Fuzzy Finite State Machine and the latter using a fuzzy associa-
tion rule mining algorithm. [26] focus on improving the performance 
of existing methods, with Borges adapting the k-Nearest Neighbors 
classifier to incorporate fuzzy rules and Chiang developing a fuzzy com-
puting model for activity recognition in ubiquitous healthcare. [12,27] 
both address the challenge of recognizing activities in smart homes, 
with Gayathri proposing a fuzzy ontology-based approach and Mohmed 
introducing a clustering-based fuzzy finite state machine. In [28], fuzzy 
processing is extended to complex activity recognition. Sakr employs 
a combination of emerging patterns and fuzzy sets, while Nguyen 
proposes a method that integrates Fuzzy Markov Logic Networks with 
Fuzzy Qualitative Spatio-Temporal Activity Graphs.

Fuzzy logic has emerged as a powerful tool in activity detection, 
offering a way to handle the uncertainty and imprecision inherent 
in human activities. Fuzzy logic systems are capable of modeling the 
vagueness and variability of human behavior, making them well-suited 
for applications where traditional binary logic systems might fail [29]. 
These systems use fuzzy rules and inference mechanisms to process 
sensor data and infer activities, allowing for more flexible and adaptive 
activity recognition.

Neuro-fuzzy classifiers combine neural networks and fuzzy logic to 
enhance the classification and recognition processes. These classifiers 
are particularly effective in scenarios where the training data includes 
noise and variability, common in human activity data [13]. The neuro-
fuzzy systems are trained using algorithms that adjust membership 
functions and rule parameters to optimize performance.

The integration of multiple sensors requires the use of data fusion 
techniques. This methodology represents a growing trend in this field, 
as it enhances the robustness and accuracy of artificial intelligence 
models and is commonly applied at different levels [15,30]: data, 
features, and decisions. In the classical literature [30], several tech-
niques for data fusion can be found, such as Bayesian probabilistic 
methods, filters (e.g., Kalman filter), fuzzy logic and rule-based sys-
tems, and machine learning approaches. In recent years, driven by the 
proliferation of artificial intelligence, new data fusion methods have 
emerged, including deep learning [31] through deep neural networks 
and Dempster-Shafer evidence theory [32,33], an extension of tradi-
tional probabilistic methods. However, these recent approaches involve 
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higher computational complexity, are more challenging to interpret 
and explain, and complicate the appropriate parameter tuning process. 
Conversely, fuzzy logic provides good results naturally and straight-
forwardly in environments characterized by ambiguity or imprecision, 
reduces computational cost, and is easier to interpret and parameterize.

In the specific case of activity recognition, combining data from 
multiple sources, such as video cameras and sensors, can provide 
a more comprehensive understanding of the user’s environment and 
behavior [34].

In summary, the field of activity detection is characterized by a 
diverse array of methods and technologies, each offering unique advan-
tages and suited to different applications. The ongoing development of 
these systems holds promise for creating more intelligent and respon-
sive environments, ultimately enhancing safety and quality of life for 
users.

2.1. Data mining system

Data mining techniques have been extensively utilized across vari-
ous scientific fields. One such field is energy, where notable studies [21,
35,36] demonstrate the application of traditional data mining tech-
niques to extract information related to construction. Similarly, in 
social science, numerous studies [37–39] employ text pre-processing 
to analyze data. Other sciences, such as Physics and Astronomy, apply 
pre-processing techniques to images [40–43]. Data mining techniques 
are also widely applied in the medical domain, as observed in studies 
like [10,44,45]. Medical research utilizing data mining generally falls 
into two categories: studies focusing on imaging data [46–49] and those 
analyzing human activity [2,50].

A specific study in the health sector, such as the analysis of brain 
signals [45], encounters challenges like small sample sizes and noisy 
signals. The authors propose a viable method for detecting and dis-
tinguishing directions from Electroencephalography (EEG) signals by 
utilizing feature extraction techniques for brain signal processing.

In another study [46], researchers developed an automated system 
for the extraction and classification of tumors from magnetic resonance 
images. This system consists of five main steps: tumor contrast, tu-
mor extraction, multi-model feature extraction, feature extraction, and 
classification. Other studies, such as [51–54], focus on unsupervised 
algorithms.

Different data types often require distinct pre-processing techniques 
to enhance quality and outcomes. Structured data generally benefit 
from classical pre-processing techniques like data cleaning, data in-
tegration, data transformation, and data reduction [55–57]. Big data 
technology also finds numerous applications in the healthcare sec-
tor [11,44,58,59], including predictive modeling, clinical decision sup-
port, disease surveillance, and research. Big data analytics often lever-
ages data mining methods such as classification, clustering, and regres-
sion.

In our study, we propose a series of techniques that differ from 
previous studies by uniquely applying and unifying these methods. This 
approach ensures that, by the end of the procedure, we have a refined 
set of data ready for knowledge extraction and interpretation.

We have enriched our dataset by incorporating various diagnoses 
occurring during the patient’s medical action protocol to address the 
proposed diagnosis using external sources. Basic pre-processing tech-
niques were employed, such as detecting and eliminating missing val-
ues within the medical data center and removing outliers by selecting 
non-relevant fields.

The next step in our procedure involves transforming our data 
using fuzzy techniques, ultimately creating association rules to detect 
relationships between different fields analyzed in our study.
3 
2.2. Fuzzy-based system

Most of the challenges facing sensor data are related to structur-
ing the information within databases and representing it for correct 
interpretation by end-users. It is essential to apply fuzzy techniques 
to transform imprecise data, including sensor data, into accurate and 
interpretable information for end users. In ¨citecarlos energia, the 
authors propose new measures of accuracy and usability for extracting 
fuzzy association rules from energy sensor databases. Their approach 
allows for a significant reduction in the number of rules without losing 
important information.

An intriguing example of the state of the art is the study [14], which 
focuses on applying fuzzy techniques in healthcare. It demonstrates 
how sensors can be used to develop a system that recommends specific 
prescriptions for patients with diabetes.

In addition, there are theoretical studies [34,60] that explore the use 
of fuzzy programming algorithms to solve linear problems, providing 
results in a way that eliminates uncertainty.

These systems can be fully scalable by employing distributive al-
gorithms [61]. This study presents biomedical data stored in the cloud, 
showing how such algorithms are ideal for solving large-scale problems.

Our study focuses on the fuzzification of particular home sensors, 
analyzing how proximity and sensor data plus some wearables can yield 
results that categorize patients’ activities as recurrent to understand 
their behavior and daily routine. This output and information will 
be obtained by processing the data and using fuzzy logic to add the 
proximity of individuals to places in the house, as well as giving 
more understandable and interpretable linguistic fuzzy labels to the 
continuous data.

2.3. Activity recognition

Another significant aspect addressed in this study is the analysis 
of activity recognition. Activity recognition involves identifying and 
categorizing individual actions using data from various sensors [1,4,
6,22]. While activity data are often reported statistically, mainly in 
the context of academic research to inform health systems and public 
health agencies, few studies focus on dynamic activity recognition for 
initial diagnosis or continuous monitoring.

One study [62] focuses on recognizing activities to categorize the 
degrees of autism in children based on the different activity patterns 
they exhibit. In another study [63] researchers aimed to detect un-
necessary medical procedures by analyzing patients’ activity data. For 
instance, they identified patients with upper gastrointestinal bleeding 
and patients with unspecified gastrointestinal tract bleeding to examine 
the correlation between their activities and laboratory results, such as 
calcium levels and hemocytes in the blood. Their experiments involved 
labeling promising activity patterns and grouping patients according to 
their activity data.

A compelling case study is presented on diabetic retinopathy, an 
activity-induced condition generated by diabetes [5,9]. The study 
demonstrates how applying classification techniques, fuzzy logic, and 
data balancing methods can determine which patients are most at risk 
of developing diabetic retinopathy based on their activity patterns.

Our study extends the scope by focusing on activity recognition in 
medical records. By analyzing activity data, we can categorize patients 
as simple, standard, or complex using fuzzy logic, which helps us better 
interpret their medical history and condition based on their recognized 
activities.

3. A fuzzy-based system for pattern mining in big data

This work proposes a fuzzy logic-based system for the discovery 
of behavioral patterns in older people through the analysis of data 
collected from multimodal sensors. These sensors have been deployed 
in a typical real home environment using a big data architecture, and 



C. Fernandez-Basso et al. Information Fusion 123 (2025) 103307 
Fig. 1. Summary of the system workflow which has been divided into four main 
phases.

present a novel process for modeling the uncertainty of the data using 
fuzzy techniques.

In this research work, the presented process is divided into four 
main blocks: data acquisition, data pre-processing and fusion, fuzzifi-
cation and generation of fuzzy association rules for automatic behavior 
extraction. First, data is collected from multimodal sensors using an 
architecture based on the IoT paradigm. Next, the collected data is pro-
cessed and fused, leading to the fuzzification process. Finally, automatic 
behavior extraction is performed. The whole workflow is summarized 
in Fig.  1.

Each stage of the process is described in detail below.

3.1. Data acquisition

Data acquisition is the first stage of the proposed process. This stage 
is fundamental to provide input data for the following phases and thus 
to discover common behavioral patterns of older people. In this work it 
has been chosen to use multimodal sensors that record all the activities 
of the user in his habitual home.

This type of sensor has a number of advantages over other types 
of proposal. Firstly, these devices provide complementary information 
by capturing different types of data simultaneously, such as movement, 
location, temperature or interaction with the environment. In addition, 
combining data from different sources reduces potential errors and 
provides greater accuracy. Finally, devices can monitor the user in real 
time by processing and sending data instantly.

In the literature, different types of sensors can be found in smart en-
vironments. Considering the proposed data acquisition in older people’s 
homes, systems based on device-free sensors are the most convenient 
because the user does not need to interact directly with the devices. 
4 
However, in real multi-occupancy environments, some identification of 
the occupant is required to recognize who is performing the detected 
activity. Therefore, to achieve activity data collection, a hybrid device-
free data acquisition system combined with wearable devices is used, 
based on the proposal of David et al. [3].

The system deploys a total of five distinct sensorised devices, which 
are as follows: an infrared-based motion sensor, an opening and closing 
sensor, an ambient sensor, a fixed location device and an activity wrist-
band. All pertinent information concerning these devices is provided in 
meticulous detail within Table  1.

Specific devices are employed to monitor the daily behaviors of 
older adults in their domestic environments. The system records infor-
mation pertinent to the most crucial health-related behaviors, including 
physical activity, sleep, hygiene, mealtime routine and medication 
adherence. Additionally, the system utilizes an indoor location system 
to ascertain the individual responsible for activating the sensors. These 
types of systems are widely employed within the scientific community 
and typically utilize radio frequency technology. In this scenario, the 
system is based on Bluetooth Low Energy (BLE) technology and uses 
the Received Signal Strength Indicator (RSSI) as a feature.

The following provides an overview of the types of events related 
to the different behaviors detected by the devices described in Table  1:

• Motion sensor: sleep, personal hygiene, mealtime routine.
• Open and close sensor: physical activity, medication.
• Ambient sensor: personal hygiene.
• Fixed tracking devices: location indoors.
• Activity wristband: physical activity, sleep, location indoors.
The system is based on an edge-fog-cloud architecture for the ac-

quisition of data. In this environment, a variety of communication 
protocols are employed for this purpose. These include the MQTT 
protocol for communication between edge-fog layer devices, the ZigBee 
protocol for receiving data from commercial devices, such as Aqara 
devices, and the HTTPS protocol for communication between fog and 
cloud layer devices. Further clarification on all of these points can be 
found in [3].

Considering the sensitive nature of the data, several techniques are 
applied to ensure the protection of information and the integrity of 
communications at different levels: communication and storage. At the 
communication level, a range of mechanisms are employed, including:

• MQTT protocol: message encryption using TLS/SSL, authentica-
tion and authorization.

• Web service: message encryption using HTTPS and use of Json 
Web Tokens for authentication.

• Database: message encryption between this component and any 
other application, authentication and authorization.

Finally, at the database storage level, all information is encrypted using 
the AES-256 algorithm.

3.2. Pre-processing

In the domain of data pre-processing, an array of diverse methods 
is commonly employed. Notably among them is the technique of data 
granularity normalization. Sensor data, being collected at varying time 
intervals, necessitates alignment to standard time points. This partic-
ular transformation is illustrated in curated examples like Table  2, 
wherein time intervals have been collated and grouped per every 5 min 
of recorded data. Yet, crucial to note here is the flexibility of adjustment 
according to user specifications or analytic requirements.

The methodologies utilized for this kind of grouping activity can dif-
fer significantly in alignment with the nature of the data under scrutiny. 
Taking continuous data as a case in point, one approach could be to use 
average value computations, demonstrated in Table  2. Alternatively, 
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Table 1
A comprehensive description of the specific sensors employed in the system in the data acquisition phase.
 Device Data Type Range Activation Other features  
 Motion sensor1 Motion Binary – Upon the occurrence of 

motion
The device offers 170◦ coverage and a range of up to 
seven meters. Furthermore, the sensitivity and 
frequency of activation can be modified according to 
the user’s preferences. The device has a dimensions of 
55 𝑥 37 𝑥 70 mm and is equipped with a battery that is 
capable of powering the device for a period of two 
years

 

 Open and close 
sensor2

Mechanism state Binary – When users interact with 
door and window 
mechanisms or other 
similar elements 

The device has a dimensions of 41 𝑥 22 𝑥 11 mm and 
is equipped with a battery that is capable of powering 
the device for a period of two years

 

 Ambient sensor3 Temperature Integer [−20, 50] ◦C When significant 
temperature variation 
occurs

The device has a dimensions of 36 𝑥 36 𝑥 9 mm and is 
equipped with a battery that is capable of powering 
the device for a period of two years

 

 Humidity Integer [0, 100] % RH When a significant 
variation in humidity 
occurs 

 

 Fixed tracking 
devices4

RSSI Integer [0, −200] Send data every three 
seconds if the wristband is 
found

General computing unit used to implement the anchor 
element of the indoor localization system. The device 
measures 85 𝑥 49 mm

 

 Activity wristband5 Steps Integer [0, ∞) Sends data every minute The device is equipped with an integrated 
accelerometer and gyroscope, enabling it to calculate 
steps. Its dimensions are 7.9 𝑥 46.9 𝑥 12 mm

 

1 https://www.aqara.com/en/product/motion-sensor-p1/.
2 https://www.aqara.com/en/product/door-and-window-sensor/.
3 https://www.aqara.com/en/product/temperature-humidity-sensor/.
4 https://www.raspberrypi.com/products/raspberry-pi-4-model-b/.
5 https://www.mi.com/cl/mi-band-3/.
Table 2
Example of the temporal granularity processing of some temperature data.
 Time Temperature 
 1/1/2020 15:14:30 16  
 1/1/2020 15:16:45 17  
 ↓
 Time Temperature 
 1/1/2020 15:15:00 16.5  

one could opt for the use of the most recently documented sensor data 
value.

Crucially, this transformative exercise engenders conditions con-
ducive towards the formation of a transactional data framework — an 
operative form particularly well adapted for data mining techniques. 
Extending our perspective on this, such normalization of data granu-
larity not only makes the dataset systematically rigid but also highly 
conducive for temporal data interpretation and lends a sequential sense 
to otherwise scattered intervals.

Moreover, different formulas could be adopted to handle diverse 
data types. For binary or categorical data, the mode, simply put, the 
most appeared category within an interval, can be deployed. Stan-
dardization methods might follow the normalization process to fur-
ther streamline the data to align with the machine algorithm feed 
requirements.

The gathered data is partially sourced from counters, which operate 
as accumulators. This data category is exemplified in Fig.  2, showing 
a consistently escalating value indicative of a person’s step count 
throughout the day. This variable type has undergone a transformation 
function, translating into a representation of an individual’s activity 
level for a specific duration.

Consequently, each data instance signifies the activity level dur-
ing that respective timeframe. After processing the data and obtain-
ing the desired granularity, transactions with lost values and transac-
tions containing outlier measurements made by sensors are eliminated. 
The sklearn python library [64] was used to determine these outliers, 
specifically using the elliptic envelope fitting function [65].
5 
Fig. 2. Sensor steps.

3.3. Fusion data

The data collected by the sensors is often embedded with certain 
contextual significance, calling for an enrichment of the sensor’s rela-
tionship with the user and the household environment. This renders the 
concept of data fusion relevant — integrating multiple data sources to 
produce more consistent, accurate, and useful information. The context 
encapsulates the interactions between the user and the varying sensor 
locations within the house, highlighting the significance of ‘anchors’. 
These ‘anchors’ are utilized as guiding reference points to map a user’s 
positional proximity within a zone of the house. Values approaching 
zero harness interpretation of an increase in closeness to a particular 
position, as exemplified in Fig.  3.

https://www.aqara.com/en/product/motion-sensor-p1/
https://www.aqara.com/en/product/door-and-window-sensor/
https://www.aqara.com/en/product/temperature-humidity-sensor/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.mi.com/cl/mi-band-3/


C. Fernandez-Basso et al. Information Fusion 123 (2025) 103307 
Fig. 3. Distribution of the dwelling used in the case study, location of the devices used and example of the activation range of the monitored elderly person obtained based on 
the proximity of these devices.
Data fusion plays a pivotal role in this context, adroitly synthesizing 
information from disparate sources, in this case, the user and the sensor 
environment. It enhances the understanding of the user’s positioning 
and movement, augments data quality and results in a more compre-
hensive simulation of the household environment. This smart fusion of 
information from different contexts thus facilitates the next phases with 
more coherent and in-depth results.

In order to relate this context with the values of the inhabitants 
of the household, a process of enrichment and transformation of the 
database will be carried out to obtain a database with this added 
knowledge. To this end, the numerical value of the proximity will be 
transformed into two membership values that will mean that the person 
is in the room or not in the room. These membership values will help 
us count the transactions the sensors interact with the user and those 
that do not.

We can see in Fig.  4 how the values will be fuzzified using 2 labels 
for proximity. With them, the transactions that are important will be 
managed, that is, what sensor values have to be in the transaction 
because the person is in that area of the house. We can see in Fig. 
4 how the values will be fuzzified using 2 labels for proximity. With 
them, the important transaction will be managed, that is, what sensor 
values have to be in the transaction because the person is in that area 
of the house. To exemplify this, we have Fig.  4 in which we see how 
on the left are all the sensors and areas close to the house and in the 
figure on the left what data would be the data that would be used to 
add to the transaction.

3.3.1. Fuzzification
Collecting data from various sources, such as sensors, counters, 

or building occupancy metrics, often challenges understanding the 
results obtained by end users due to their continuous nature and often 
complex measurements. Introducing a fuzzification process, a method 
that transforms these continuous values into fuzzy linguistic equations 
for better representation and interpretation can be very beneficial.

Fuzzification addresses the inherent complexity of these multiple 
data points by simplifying their representation into intuitive and easy-
to-use formats, such as linguistic equations. This transformation in-
creases their interpretability and, therefore, facilitates explainable re-
sults. Ultimately, by wrapping this sophisticated nature of the data 
in a simplified interpretable wrapper, fuzzification could significantly 
improve the accuracy of the results retrieved from mining algorithms 
6 
Fig. 4. Fuzzy membership functions to determine closeness as a function of RSSI value.

and make them more acceptable to end users. It promotes a better 
understanding of the data and can lead to more confident and informed 
decision-making.

We propose a fuzzification algorithm that allows automatic process-
ing defined by the machine using the data values according to their 
distribution. The general process is described in Algorithm 1. The algo-
rithm has a dataset, a Python dictionary (hash), and an integer as input. 
The Python dictionary serves as is mechanism for expert-determined 
variable intervals and corresponding labels. In contrast, the algorithm 
computes automatic labels based on distribution for non-user-defined 
variables using a default label count. Along the advanced steps of the 
algorithm (as visible in line 6), a global variable is employed.

The initial procedure begins in line 8 of the algorithm, which is 
detailed in distinct aspects. Initially, the algorithm asserts whether 
the variable name finds a place in the hash list 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠. On find-
ing a match within the Python dictionary, new fuzzy variables are 
successfully created, bearing label names as stipulated by 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠
and accessing relevant settings (e.g., computation of membership de-
grees) corresponding to the pre-set interval, as can be seen in lines 
10–18 of Algorithm 1. Conversely, if the variable cannot be traced 
within the dictionary, the algorithm engages its automatic function 
to segment variable values into a series of intervals, as defined un-
der 𝐷𝑒𝑓𝑎𝑢𝑙𝑡𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠. This division aligns proportionately with the 
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Algorithm 1 Fuzzification function
1: Input: Data: A transaction: 𝑡𝑘 = {𝑖𝑡𝑒𝑚1 ,… , 𝑖𝑡𝑒𝑚𝑚}
2: Global distributed variable: Intervals: Hash-list of intervals for each variable 

: {𝑉 𝑎𝑟𝑖𝑎𝑏𝑙𝑒1 ∶ [{𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠}, {𝐿𝑎𝑏𝑒𝑙𝑠}],… , 𝑉 𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑝 ∶ [{𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠}, {𝐿𝑎𝑏𝑒𝑙𝑠}]}
3: Input: DefaultIntervals: number of intervals automatically generated by the algorithm
4: Output: Fuzzy transaction

Start Algorithm
5: Features = Dataset.NameFeatures()
6: GlobalVariable(Features)
7: i=0
8: do

# Check if the variable exists in the hash list
9:  if Feature[i] ∈ Intervals then
10:  Interval=Intervals[Feature[i][0]]
11:  Labels=Intervals[Feature[i][1]]
12:  else
13:  Interval = GenerateIntervals(DefaultIntervals,Data[Feature[i]])
14:  Labels = GenerateLabels(DefaultIntervals)
15:  end if
16:  for 𝑗 = 0; 𝑗 < |𝐿𝑎𝑏𝑒𝑙𝑠| ; 𝑗++ do
17:  FuzzyData[Label]=FuzzyDivision(Interval[j], Interval[j+1], type)

 # type =‘‘linear’’, ‘‘exponential’’, ‘‘logarithmic’’...
18:  i++
19:  end for
20: while |𝐹𝑒𝑎𝑡𝑢𝑟𝑒| > 𝑖
21: return 𝐹𝑢𝑧𝑧𝑦𝐷𝑎𝑡𝑎

variable percentiles.  To ensure scalability and efficient data pro-
cessing, the code is implemented with Apache Spark’s mapPartition 
functions. This functionality enables distributed computing across mul-
tiple nodes, thereby making the algorithm capable of handling large 
datasets and complex computations seamlessly. By leveraging Spark’s 
distributed processing capabilities, the system efficiently scales to meet 
the demands of extensive healthcare data analysis, ensuring quick and 
accurate fuzzy variable creation even in big data environments. 

Exemplified in Fig.  5 is a scenario where the variable
𝐷𝑒𝑓𝑎𝑢𝑙𝑡𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 = 3. Here, the 𝑦-axis symbolizes the degree of mem-
bership, while the 𝑥-axis represents the variable’s percentile. Notably, 
the percentiles strategically selected are 25 and 37.5, outlining the 
first label’s trapezoidal shape and the left portion of the second label. 
Simultaneously, percentiles 62.5 and 75 aid in defining the right part 
of the second label in conjunction with the third label. This indicates 
applying the 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 function that tactically segments the set 
into 𝑘 evenly distributed fuzzy sets, using their relevant percentiles. For 
instance, if we consider 𝑘 = 4, the subsequent percentiles are computed 
in the following manner:

{ 100
𝑘 + 1

, 100
𝑘 + 1

+ 100
(𝑘 + 1)(𝑘 − 1)

, 2 ⋅ 100
𝑘 + 1

+ 100
(𝑘 + 1)(𝑘 − 1)

,

2 ⋅ 100
𝑘 + 1

+ 2 ⋅ 100
(𝑘 + 1)(𝑘 − 1)

, 3 ⋅ 100
𝑘 + 1

+ 2 ⋅ 100
(𝑘 + 1)(𝑘 − 1)

,

3 ⋅ 100
𝑘 + 1

+ 3 ⋅ 100
(𝑘 + 1)(𝑘 − 1)

}

which results in
{𝑝20, 𝑝26.6, 𝑝46.6, 𝑝53.3, 𝑝73.3, 𝑝80}

On the contrary, the 𝐹𝑢𝑧𝑧𝑦𝐷𝑖𝑣𝑖𝑠𝑖𝑜𝑛 function uses the defined intervals 
contained in the global variable 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠. 
3.3.2. Scalability testing and performance analysis

To assess the scalability of the proposed system, tests were con-
ducted using an augmented dataset. Due to the limited availability 
of real data, the original dataset was duplicated several times to cre-
ate a significantly larger dataset. With the purpose of measuring the 
efficiency of our proposal, we have analyzed the speed up and the
efficiency [66] according to the number of cores. For that, we have 
computed the well-known measure of speed up defined as [66] 
𝑆 = 𝑇 ∕𝑇 (1)
𝑛 1 𝑛

7 
Fig. 5. Example of automatic execution with 3 default intervals.

Fig. 6. Execution time of algorithm.

where 𝑇1 is the time of the sequential algorithm and 𝑇𝑛 is the ex-
ecution time of the distributed algorithm using several cores. This 
approach was intended to emulate larger-scale scenarios and demon-
strate the capability of the fusion process under extended conditions. 
The results, depicted in Fig.  11, illustrate how the algorithm scales 
with system resources, therefore it can process up to 100,000 records. 
Thus we can see how it demonstrates its ability to effectively handle 
increasingly complex and voluminous data entries.  In addition to 
scalability testing, a speed-up analysis was conducted to assess the 
performance improvements achievable through resource optimization. 
Fig.  7 presents the results of this analysis, which reveal the speed-up of 
algorithm execution with increased computational resource allocation 
(between 10 and 30 percent). This exercise highlights the potential 
improvements in processing time, affirming that the system not only 
scales efficiently, but also optimizes resource usage to achieve better 
performance. By performing these analyzes, we demonstrate the ro-
bustness and efficiency of the system in large-scale healthcare data 
processing environments, reinforcing its applicability and scalability for 
real-world applications (see Fig.  6). 

3.4. Data mining: Fuzzy association rules in big data

After data pre-processing, fuzzification and Fusion data, data min-
ing techniques were applied to the processed data. In particular, an 
algorithm for association rule mining was applied in Big Data (BDFARE 
Apriori-TID Big Data Fuzzy Association Rules Extraction [67,68]). The 
algorithm was also developed using the MapReduce paradigm within 
the Spark Framework. This implementation allows for the efficient 
processing of large collections of fuzzy transactions to discover frequent 
itemsets and fuzzy association rules that surpass predefined support and 
confidence thresholds based on a given set of 𝛼-cuts. The algorithm 
operates in two main phases: firstly, extracting frequent items that 
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Fig. 7. Speed up of algorithm.

satisfy a distributed form of support threshold, and secondly, extracting 
association rules that meet the minimum confidence threshold.

4. Use case: Smart home

In this section, a case study to validate the proposal is presented. 
The case study focuses on monitoring the home of an elderly person 
living alone. In order to accomplish this, context and devices deployed 
are illustrated, the fuzzification obtained and finally, the results are 
analyzed.

4.1. Sensor distribution

Activity recognition, especially in multi-occupant environments
where several people may cohabit, requires the use of sensors in 
various locations where the desired activities are performed. Moreover, 
being a multi-occupancy environment, it is necessary to integrate an 
indoor location system, to be able to discern the person performing the 
activities.

The monitored dwelling is illustrated in Fig.  3, which provides a 
detailed visualization of the deployment of various devices across the 
dwelling.

In the kitchen, an open and close sensor is installed within the pill 
box the medication intake alongside with a fixed tracking device, to 
obtain the location.

For the bathroom, several devices are employed: a motion sensor 
monitors tooth brushing. In contrast, another motion sensor and an 
ambient sensor are placed in the shower area to track showering 
activity. Finally a fixed tracking device is installed in the wall.

In the bedroom, a Motion Sensor is located near the headboard to 
detect when the user rests, complemented by an fixed tracking device 
on the bedside table.

The dining area features a motion sensor to monitor meal timese a 
fixed tracking device and a central node that aggregates data from all 
sensors. Additionally, the user wears an activity wristband to monitor 
the location.

4.2. Data transformation and enrichment

Having all the raw data in our architecture, we will explain what the 
knowledge extraction process would be like. This will be done using the 
above data and analyzing the relationships obtained from the data set 
after pre-processing, cleaning and enriching the data. Our objective is 
to study the frequent behaviors and routines of the tenants of the houses 
so that this information can be used by end users such as doctors. To 
do this, it was necessary to carry out the steps described in Section 3.

In the course of our transformation procedure, one-minute intervals 
were respectively appointed for the grouping of our time variables. This 
approach is instrumental in capturing user interactions across the var-
ious components corresponding to household activities. Concurrently, 
8 
Fig. 8. Example of fuzzy-labels of the shower sensor.

sensor fusion was implemented by leveraging the process elucidated 
in Section 2. With this procedure in effect, variables are significantly 
reduced as proximity metrics are merged with the respective proximity, 
humidity, and temperature sensors.

The fusion yields dual benefits, ensuring computational efficiency 
by eliminating sequences of inactive sensors in the regions devoid 
of user presence in every transaction and augmenting these sensors 
with valuable user context and location information - a critical de-
terminant for identifying commonly followed routines based on their 
conducted activities. This transformation method and sensor fusion 
not only streamline data but also enhance the understanding of user 
patterns within a household.

Ultimately, every variable underwent fuzzification, utilizing the 
method delineated in Section 2 and as demonstrated in Algorithm 1. 
This process fosters an improved interpretation for end-users, such as 
medical practitioners, who do not specialize in data mining. Creating 
varied linguistic labels contributes to identifying intriguing daytime 
patterns noteworthy for physicians, setting humidity boundaries indica-
tive of shower usage (as shown in Fig.  8), and the like. In essence, the 
fuzzification step aids in translating large and complex data into more 
understandable and actionable insights for various end users.

Data preprocessing, particularly data fusion, plays a considerable 
role in minimizing the volume of data under analysis. This reduction 
occurs because, through these methods, our focus is narrowed solely to 
the sensors within the user’s sphere of activity.

Any sensor data not associated with the user’s primary location 
context is pruned. In other words, we keep sensors that the user 
interacts with and trim away those within inactive or irrelevant zones. 
This ensures that only interactionally pertinent sensor data is retained, 
reducing unnecessary clutter and enhancing the efficiency of our data 
analysis procedure.

Thus, data fusion, by integrating multiple data sources and facilitat-
ing a centralized overview of sensors working within the user’s activity 
space, directly contributes to simplifying the analysis process and re-
ducing computational burden. This optimization leads to enhanced 
processing and analytical speeds, potentially unlocking swift insights 
into user behavior patterns.

4.3. Results and discussion

In this section, our discussion focuses on the dual benefits of using 
data fusion techniques and fuzzy labels when applying association 
rules. In particular, all the processing discussed above has been applied, 
and in this section, we will check and analyze the results obtained by 
applying fuzzy association rules to the processed data. In particular, we 
want to study two features:
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Fig. 9. Demonstration of most frequent elements with the standard fusion, illustrating 
a high incidence of unused or inactive sensors.

Fig. 10. Result of data fusion as presented in this work, predominantly featuring 
actively-used sensors, affirming the usage context person.

• The improved algorithm performance arises from the decreased 
data volume and results in fewer but more relevant rules for user 
perception.

• The association rules were revealed through our results, empha-
sizing interesting relationships and their interpretive improve-
ment through fuzzy linguistic labels.

Our initial experimentation stage engaged the complete dataset, 
implementing standard aggregation methodologies for data fusion. 
Through this approach, we produced a consolidated set comprising 
9000 transactions and encompassing 67 different features.

While evaluating the frequent elements with standard fusion (as 
depicted in Fig.  9), a preponderance of inactive or unused sensors 
(demonstrated as the ‘off’ status or where linguistic labels suggest 
inactivity) emerges in the dataset’s frequency spectrum. This outcome 
can be attributed to the fusion technique where all the sensor data are 
considered during the rule application to the transactions, regardless of 
the user’s presence in the respective area.

In contrast, Fig.  10 illustrates a more focused demographic, com-
prised mainly of sensors either ‘on’ or in active use. This significant 
distinction in the results owes itself to utilizing the data fusion method 
proposed in this work, which incorporates the individual’s context. As a 
result, the items presented predominantly consist of sensors or elements 
actively engaged by the user, thereby leading to a more utilitarian and 
functional dataset. These findings prove the efficacy of our context-
bearing data fusion in filtering sensor data to only reflect user-relevant, 
active interactions.

On the other hand, as illustrated in Fig.  11, we observed a pro-
nounced reduction in algorithm execution time. This improvement 
stems from an effectively downsized dataset achieved via data fu-
sion, substantially curtailing the required computations, resulting in a 
speedier process.
9 
Fig. 11. Describe the execution speed of the algorithm using standard fusion and fusion 
with our approach.

Fig. 12. Graphical representation of the rules obtained in the form of a graph.

4.3.1. Interpretation of the results
The set of rules obtained has allowed us to discover hidden patterns 

in the relationship between the different sensors and characteristics that 
appear in the data and relate them to the activities and routines carried 
out. This type of relationship allows us to study users’ routines and 
behaviors in the system’s data.

Having a look at the discovered patterns, we can highlight different 
rules. For example: 
{𝑡𝑒𝑒𝑡ℎ = 𝑢𝑠𝑖𝑛𝑔,𝑀𝑒𝑑𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = 𝑜𝑝𝑒𝑛} →

{𝑡𝑖𝑚𝑒 = 𝑒𝑎𝑟𝑙𝑦𝑀𝑜𝑟𝑛𝑖𝑛𝑔}
(2)

This rule describes the relationship between taking the medication 
(the sensor of the box that stores the pills) in the early morning and 
washing the diets. This demonstrates a clear routine that can be useful 
to end users, such as doctors knowing that it is performed frequently, 
indicating that the person is consistent in their healthy routines. On the 
other hand, some rules have been selected, where we can see different 
behaviors. For example, these rules were obtained: 
{𝑡𝑒𝑒𝑡ℎ = 𝑢𝑠𝑖𝑛𝑔} → {𝑡𝑖𝑚𝑒 = 𝑒𝑎𝑟𝑙𝑦𝑀𝑜𝑟𝑛𝑖𝑛𝑔} (3)

and 
{𝑡𝑒𝑒𝑡ℎ = 𝑢𝑠𝑖𝑛𝑔, ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦_𝑠ℎ𝑜𝑤𝑒𝑟} →

{𝑡𝑖𝑚𝑒 = 𝑒𝑎𝑟𝑙𝑦𝑀𝑜𝑟𝑛𝑖𝑛𝑔}
(4)

These rules provide important information about the relationship be-
tween showering and brushing teeth. We can see how a clear routine 
is to brush your teeth in the early morning, and with the other rule, 
we can understand that you also shower before brushing them. In 
conclusion, a graphical presentation of the observed results is provided 
(Fig.  13). Notably, the weekdays, especially Wednesday and Thursday, 
emerge as the most active days. This pattern can be explained by 
the demographic profile of the household, consisting of older, ac-
tive individuals. Moreover, some intriguing correlations are observed, 
such as temperature sensor readings showing patterns reflective of the 
changing seasons — cold in winter or heat in spring, demonstrating 
that the mining results reveal reliable and coherent associations (see 
Fig.  12).

4.3.2. Comparative results using the two fusion methods
In this section, we present a comparative analysis of the results 

obtained using the traditional fusion method and the proposed ap-
proach. One of the main limitations of conventional fusion techniques 
is the generation of a large number of association rules, many of which 
are produced by correlations between sensor data that do not provide 
meaningful insights into the user’s activities. For instance, in traditional 
methods, frequent rules may include:
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Fig. 13. Graphical representation of the rules obtained in the form of a group-table.

Fig. 14. Association rules generated by the traditional fusion method.

• High humidity levels (above 70%) in winter are associated with 
lower room temperatures.

• Temperatures exceeding a certain threshold are more frequent in 
summer.

While these correlations reflect environmental conditions, they do not 
offer actionable information about the user’s behavior, routines, or 
interactions with their living environment. Such rules may increase 
the computational burden and reduce the interpretability of the model, 
making it challenging to derive useful insights for improving healthy 
routines.  Our proposed methodology addresses these limitations 
by integrating user information, activity anchors, and linguistic vari-
ables into the fusion process. By incorporating semantic reasoning 
and context-awareness, the new approach significantly reduces the 
number of generated rules while enhancing their relevance. Some key 
advantages include:

• Reduction in Redundant Rules: By filtering out rules driven 
solely by environmental correlations, our method focuses on 
user-centered patterns.

• More Intuitive and Actionable Insights: Instead of generic en-
vironmental correlations, our approach generates rules that are 
directly linked to user behavior.

• Enhanced Contextual Relevance: The use of linguistic variables 
ensures that the extracted rules align with human reasoning, 
making them more interpretable for caregivers or automated 
recommendation systems.

To quantify the improvements, Figs.  14 and 15 compares the number 
of rules generated and their interpretability scores between the two 
methods. The results demonstrate that our approach not only reduces 
the overall rule set but also increases the proportion of contextu-
ally meaningful rules, improving decision-making in IoT-based health 
monitoring systems. 
10 
Fig. 15. Association rules generated by the fuzzy fusion method.

5. Conclusions and future work

The discovery and utilization of information from home sensors 
have gained significant attention over the past decade, primarily due to 
their economic and health-related benefits. Big Data and IoT technolo-
gies provide an ideal framework for implementing advanced analytical 
techniques that can effectively manage the vast amounts of data gener-
ated, particularly in healthcare systems. Additionally, the use of fuzzy 
logic enhances the interpretability of the collected data, offering more 
meaningful insights to end users.

This study aims to extract hidden knowledge from the sensorization 
of homes and their inhabitants, focusing on analyzing and interpret-
ing this data. We have developed and implemented a data mining 
system, which was applied to a real-world dataset collected from a 
home in Cabra, Spain. In particular, we enriched certain features and 
applied a fuzzification algorithm to improve the performance of data 
mining techniques such as association rule mining. The results of this 
implementation highlight several key improvements:

• Performance Improvement: The application of data fusion tech-
niques significantly reduced the overall dataset size by focusing 
on sensors within the user’s activity domain. This optimization 
led to a reduction in algorithmic processing requirements, thereby 
improving efficiency, conserving computational resources, and 
reducing processing time. The introduction of fuzzified labels 
further minimized interpretive challenges, yielding more concise 
and focused rules that directly improved the end-user experience 
by providing actionable insights.

• Improved interpretation of association rules: The integration 
of fuzzy linguistic labels enhanced the interpretability of asso-
ciation rules, uncovering meaningful and informative connec-
tions within the data. This approach facilitated the generation of 
more comprehensible summaries of complex data patterns. The 
contextualization provided by fuzzy logic allowed end users to 
better understand and utilize these rules, transforming complex 
relationships into practical, user-friendly insights.

• Scalability and generalization of the system: Another key as-
pect of the system is its ability to adapt to different environments 
and populations. Although it has been implemented in a home 
environment in this study, its applicability can be extended to 
other healthcare scenarios, such as hospitals and nursing homes. 
Furthermore, experiments with extended datasets have shown 
that the system maintains optimal performance even with a larger 
volume of transactions and sensors. In terms of generalization, 
although this work has focused on discovering patterns in the 
older persons, the approach can be applied to other demographic 
groups or to people with chronic conditions such as cardio-
vascular disease or cognitive disorders. This provides valuable 
information about activity patterns and adherence to therapeutic 
routines, facilitating its use in different clinical contexts.
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Our experimentation with real-world data demonstrates the viabil-
ity of our proposed system. The system successfully identified valuable 
patterns, such as routines related to medication adherence and healthy 
hygiene habits (e.g., tooth brushing or showering). These insights can 
help end users predict and prevent health issues related to poor routine 
management and behavioral patterns.

This research serves as a foundation for further studies and opens 
new avenues for future work. The next step involves scaling the system 
to include a larger number of sensors and integrating Big Data tools 
to extract a wider array of association rules. This advancement would 
significantly enhance the knowledge extraction process. Additionally, 
future efforts should focus on improving the visualization of results, 
making them more informative and accessible for end users.

Furthermore, it is essential to reinforce the system’s security mech-
anisms, given the sensitivity of the data handled, through approaches 
such as federated learning, which allows distributed analysis without 
compromising privacy. In this context, fuzzy logic is an exception-
ally suitable approach, as it enables the detection of patterns in low-
computing devices, maintaining processing efficiency and ensuring the 
protection of information.

Finally, it is imperative to conduct a qualitative and quantitative 
study in future research to evaluate healthcare professionals’ experi-
ences of utilizing the system and its impact on patients’ adherence to 
treatment routines. A validation phase will be conducted in clinical and 
home environments, involving doctors, nurses and caregivers. These 
professionals will provide feedback on the system’s usefulness, the 
clarity and interpretability of the generated information, and its ease of 
use in daily practice. Furthermore, the monitoring of key therapeutic 
adherence indicators will facilitate the determination of whether the 
identification of behavior patterns contributes to the detection of possi-
ble deviations in patients’ routines, thereby enabling early interventions 
that improve treatment compliance.
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