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Abstract
Federated learning enables collaborative data analysis without the need to share sen-
sitive information among participants, addressing privacy concerns in domains such 
as healthcare and finance. However, current federated simulation environments face 
challenges like limited flexibility in experiment configuration and difficulties ensur-
ing data privacy. We present SimulaFed, a federated simulation environment based 
on a custom architecture that offers a personalised and configurable approach to data 
analysis using the Docker platform. SimulaFed allows researchers to create experi-
ments tailored to their specific needs, ensures communication privacy, and incorpo-
rates various security and governance techniques. We demonstrate the effectiveness 
of SimulaFed through a real-world medical case, implementing and comparing two 
privacy-preserving federated algorithms for association rule mining: Tassa’s and 
Chahar’s algorithms. Our experiments show that while Tassa’s algorithm performs 
better in environments with a moderate number of participants due to lower compu-
tational and communication overhead, Chahar’s algorithm, though offering robust 
security through homomorphic encryption, suffers from efficiency limitations owing 
to high encryption and decryption costs. These findings provide valuable insights 
into the performance and limitations of existing algorithms, highlighting the need 
for more efficient methods in federated settings.
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1 Introduction

As the digital era progresses, the importance of data privacy and security has esca-
lated. Federated Learning (FL) offers a transformative solution by enabling data 
analysis and machine learning without the need to share the data itself. Globally, 
growing concerns about data privacy have accelerated the adoption of federated 
learning techniques. In the healthcare sector, hospitals and research institutions 
across different countries want to collaborate on medical research and patient care 
analytics without violating strict privacy regulations such as the European Union’s 
General Data Protection Regulation (GDPR) [1] and the United States’ Health Insur-
ance Portability and Accountability Act (HIPAA) [2]. For instance, collaborative 
studies on rare diseases require the pooling of data from different locations around 
the world, but the sharing of sensitive patient information is severely restricted [3]. 
Federated learning allows these institutions to train models on decentralised data 
while maintaining patient confidentiality.

Similarly, in the financial industry, international banking institutions need to 
detect fraud and money laundering activities that span multiple countries and juris-
dictions. Sharing customer transaction data across borders raises significant privacy 
and compliance concerns [4]. Federated learning enables these organisations to col-
laboratively analyse patterns of fraudulent activity without exposing sensitive cus-
tomer data, improving security while complying with privacy regulations.

However, a significant challenge remains in accurately simulating real-world 
scenarios in which FL could be applied. Although current methods provide a foun-
dation, they often fail to fully capture the complexity of real-life data interactions. 
There is a clear need for a simulation environment that offers advanced features such 
as adaptability, support for both supervised and unsupervised learning, a compre-
hensive simulation suite, a flexible API, and open-source accessibility, all while pri-
oritising data privacy and security [5].

This paper aims to describe such an environment. Our proposed solution focuses 
on creating an adaptable simulation platform that combines the current Federated 
Learning simulation needs and is designed for future challenges. This research is 
not limited to compare existing frameworks, but lays the foundations for a base envi-
ronment in which further simulations of real-world characteristics can be built and 
improved. The scope of this work includes the design and development of the simu-
lation environment and the provision of initial simulation results to demonstrate its 
potential.

Our proposal, called SimulaFed, makes several necessary contributions to the 
field of Federated Learning. Development of an adaptable simulation platform that 
can be easily customised to replicate diverse real-world scenarios, accommodating 
different data distributions and participant configurations. It gives support for both 
supervised and unsupervised learning, including the implementation of association 
rule mining techniques; the ability to incorporate comprehensive security measures 
such as Secure Multi-Party Computation (SMC), Differential Privacy (DP), and 
Homomorphic Encryption (HE) (see Sect. 4.3).
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SimulaFed ensures robust privacy protection while offering a highly flexible 
open-source API layer that simplifies the integration of new algorithms and meth-
ods, fostering further research and development. Moreover, it improved scal-
ability and real-world applicability by using Docker and Docker Compose (see 
Sect.  4), thus facilitating the transition from experimental setups to practical 
applications in different domains. Together, these contributions extend the capa-
bilities of the Federated Learning simulation and provide a robust foundation for 
future advances in privacy-preserving collaborative data analysis.

Our work represents a significant advancement in federated learning simula-
tion environments. SimulaFed is a flexible and algorithm-agnostic framework, 
enabling researchers to implement their own algorithms or seamlessly integrate 
third-party algorithms. Unlike many existing frameworks, SimulaFed supports 
federated learning of unsupervised algorithms, as demonstrated by our imple-
mentation of Association Rule Mining (ARM) algorithms. This capability is 
essential, as unsupervised learning plays a vital role in deriving insights from 
unlabelled data, which is prevalent in real-world applications.

Our framework also enables dynamic resource allocation, along with the abil-
ity to dynamically adjust the number of participants in an experiment. This flex-
ibility allows for the simulation of different configurations, accurately refleting 
different real-world scenarios. Furthermore, SimulaFed supports both centralised 
and decentralised governance architectures to accommodate different organisa-
tional requirements and collaboration models.

By implementating and comparing Tassa’s and Chahar’s privacy-preserving 
ARM algorithms within SimulaFed, we have gained valuable insights into their 
performance and practical deployment considerations. Our findings highlight the 
strengths of our framework in supporting such implementations and underscore 
the importance of flexibility and configurability in federated learning environ-
ments. These findings contribute to a deeper understanding of how different algo-
rithms function in federated settings, laying a solid foundation for future develop-
ments in this field.

This work presents a tool that allows us to perform different experiments in 
federated environments with a wide range of parameters, integrating different 
techniques available in the literature used to guarantee privacy and confidentiality 
in federated environments. The contributions of this study are as follows: 

1. A review of some prominent frameworks in federated learning and their respec-
tive strengths and weaknesses is conducted, comparing our tool against different 
criteria.

2. A tool called SimulaFed is proposed, which is parameterisable and capable of 
simulating a federated system by integrating a wide configuration, allowing the 
researcher to perform various experiments with different parameters quickly and 
agilely.

3. An overview of the system’s functionality is provided through its various compo-
nents, demonstrating its application in a real-world healthcare context. We analyse 
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the scalability and performance of the developed simulation system through dif-
ferent configurations.

By thoroughly analysing existing frameworks and identifying their limitations (as 
detailed in Tables 1 and 2), our work advances the state of the art by providing a 
federated learning simulation environment that combines flexibility, scalability, and 
support for unsupervised learning algorithms. SimulaFed’s capacity to dynamically 
allocate resources and adjust participant configurations enables researchers to model 
and simulate a wide range of real-world scenarios, addressing a critical gap in cur-
rent federated learning research tools.

While this paper focuses primarily on the healthcare, the challenges addressed 
by SimulaFed are prevalent across multiple industries. Data privacy concerns and 
the need for collaborative analysis without sharing sensitive information are critical 
in numerous sectors. By providing a flexible and secure federated learning environ-
ment, SimulaFed has the potential to transform data collaboration practices across 
various domains.

The paper is organised as follows: Sect.  2 explains the fundamental concepts 
of federated learning and the challenges associated with its simulation. Section  3 
reviews existing work in the field, identifying areas for improvement. Section  4 
describes the SimulaFed architecture, security measures, and deployment strategies. 
Section 5 presents the results of our experiments with a health real-world use case, 
validating the benefits of our approach. Section 6 concludes the paper with a sum-
mary of our findings and potential directions for future research.

2  Fundamentals and applications of federated learning

This chapter establishes the basic context and importance of FL, especially in the 
healthcare sector. Here we explain what FL is, its general benefits and challenges, 
and how it is specifically applied in the healthcare sector. This chapter prepares the 
reader to understand why we need specific tools such as frameworks and simulation 
environments to carry out FL.

2.1  Introduction to federated learning (FL)

Federated Learning (FL) is a collaborative machine learning paradigm that enables 
multiple clients to learn a global model without exposing their data to each other 
[6]. It is particularly useful in scenarios where data privacy is a concern, such as 
in healthcare [7], finance and banking [8], telecommunications [9], manufacturing 
and industry 4.0 [10], SmartCities and IoT [11], Retail [12], and Energy [13]. The 
process involves clients training models locally and then sending weight updates to a 
central server, which aggregates these updates to create a global model [14].

FL emerges as a paradigm-shifting approach in the landscape of machine learn-
ing, where the training process is distributed across multiple devices or servers. 
Rather than pooling data into a central repository, FL allows for the model to be 
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trained locally on users’ devices, with only model updates being communicated to 
a central server. This not only preserves bandwidth but also enhances users’ privacy 
by not transferring sensitive data over the network. The core principle of FL is to 
maintain data sovereignty and privacy, thereby reducing the risk of data exposure 
and breach. Despite these benefits, FL presents unique security and privacy chal-
lenges, as the distributed nature of the model training process can expose the system 
to new attack vectors.

2.2  Federated learning in the healthcare sector

Federated learning (FL) has emerged as a transformative approach in the healthcare 
sector, addressing critical challenges related to data privacy, security, and the need 
for large, diverse datasets. Traditional centralised machine learning models require 
data to be aggregated in a single location, which poses significant privacy risks, 
especially in healthcare where patient data is highly sensitive [15, 16]. FL mitigates 
these concerns by enabling the training of machine learning models across distrib-
uted datasets without the need to share raw data, thus preserving patient privacy [17, 
18].

As far as we know and have been able to review, there are no specific federated 
learning systems applied to health, but there are certainly applications of federated 
systems applied to health. One of the primary applications of FL in healthcare is 
in medical image analysis and human behaviour recognition, where it allows for 
the development of robust models without compromising data privacy [15]. For 
instance, in the context of brain tumour segmentation, FL has been successfully 
implemented to train models on data from multiple healthcare centres located in 

Table 2  Comparison of Federated Learning Simulation Frameworks

LEAF [27] PySyft + PyGrid [46] FedML [47] TFF [29] SimulaFed

Realism and Precision High Medium Low Medium High
Flexibility and Configur-

ability
High High Medium Medium High

Performance Medium Medium Medium Medium High
Interoperability Medium High Medium High High
Validation and Verifica-

tion
Medium Low High Medium Medium

Security and Privacy Medium High High Medium High
Visualisation Low Low Low Low Low
Reproducibility High Medium High Medium Medium
Extensibility Medium High High High High
Dynamic Resource 

Allocation
No No No No Yes

Supported Learning 
Types

Supervised Supervised Supervised Supervised Supervised, 
Unsuper-
vised
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different countries, demonstrating its capability to handle real-time distributed net-
working and maintaining high accuracy while preserving privacy [16].

FL is also crucial in the realm of mobile health (mHealth) applications, where 
data is often siloed and patients are concerned about privacy implications. By 
enabling collaborative training of models without sharing raw data, FL facilitates 
remote monitoring, diagnostic support, and treatment planning, thereby enhancing 
the quality of healthcare services [19]. This is particularly important for monitor-
ing self-care ability, health status, and disease progression in patients using sensor 
devices [19].

In addition to these applications, FL has been leveraged to predict heart diseases 
by integrating IoT-generated health data with Electronic Health Records (EHRs). 
This approach not only improves the accuracy of disease prediction but also ensures 
data privacy, encouraging broader participation from healthcare providers [20, 21]. 
The use of advanced algorithms like the soft-margin L1-regularised Support Vec-
tor Machine (SVM) further enhances the computational efficiency and scalability of 
these predictive models [20].

Moreover, the potential of FL extends to collaborative frameworks that combine 
blockchain technology to ensure secure and trusted data aggregation. For example, 
the HealthFed framework leverages FL and blockchain to enable privacy-preserving 
and distributed learning among multiple clinician collaborators, ensuring the secure 
aggregation of local model updates [22].

Despite its promising applications, FL in healthcare still faces challenges such as 
latency, security risks, and the need for robust communication protocols. Address-
ing these issues is crucial for the widespread adoption of FL in healthcare settings 
[17, 23]. Nonetheless, the ability of FL to maintain data privacy while enabling 
the development of accurate and generalizable models makes it a valuable tool in 
advancing healthcare technologies and improving patient outcomes [23].

3  Evaluation and comparison of federated learning frameworks 
and simulation environments

As the field of Federated Learning advances, selecting the most suitable frame-
work and simulation environment has become essential for effective research and 
development. A framework in FL provides the tools and libraries needed to imple-
ment and execute distributed learning algorithms while ensuring data remains on 
local devices. Examples include TensorFlow Federated (TFF), FATE, and PySyft + 
PyGrid [4, 24, 25].

In contrast, a simulation environment is a controlled setting that allows research-
ers to test and optimise these algorithms under various conditions before deploy-
ment. These environments are crucial for replicating real-world scenarios, managing 
diverse data distributions, and ensuring the validity of simulation results [26, 27]. 
Examples include LEAF and FedML.

Frameworks facilitate the practical implementation and execution of FL algo-
rithms, while simulation environments allow thorough testing and optimisation in 
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controlled conditions. It is crucial that these tools enable a seamless transition from 
simulation to production to ensure the scalability and efficiency of FL systems.

In the previous chapter, we discussed the fundamental principles and technical 
challenges of FL, emphasising the critical role of robust simulation environments 
in overcoming these challenges. Building on this foundation, this chapter evaluates 
existing FL frameworks and simulation environments to determine their suitabil-
ity for various research and application scenarios. The goal is to identify the most 
effective tools and highlight the need for advanced solutions like SimulaFed, which 
can overcome current limitations and better support the diverse requirements of FL 
research.

By conducting this evaluation, we aim to provide a clear understanding of the 
available options and their respective advantages and disadvantages. This will ena-
ble researchers and practitioners to make informed decisions when selecting frame-
works and simulation environments, ultimately enhancing the effectiveness and 
impact of their FL projects.

3.1  Characteristics desirable in federated learning frameworks

In evaluating frameworks for Federated Learning (FL), it is essential to establish cri-
teria that reflect the practical needs and challenges encountered in real-world appli-
cations. The selected criteria are based on their relevance to performance, security, 
and usability in a federated context.

Effective communication is crucial for FL frameworks, as it directly impacts 
the efficiency and security of the learning process. This involves ensuring security 
through adherence to established standards like TLS and end-to-end encryption to 
maintain data integrity and confidentiality during transmission [4]. Additionally, 
performance is essential, requiring high-performance, low-latency communication 
methods achieved through advanced protocols and optimised data handling tech-
niques [28]. Furthermore, the communication architecture should exhibit modular-
ity and flexibility, allowing adaptation to various protocols and requirements [26]. 
Lastly, interoperability is vital for seamless communication across different frame-
works and platforms, ensuring the FL framework can operate effectively in diverse 
environments [25].

Governance refers to the way the learning process is managed and coordinated 
within the framework. Effective governance ensures that the framework can handle 
various organisational structures and policies. This involves centralised governance, 
where control is managed by a central entity, simplifying management but poten-
tially creating a single point of failure and scalability issues. Alternatively, decen-
tralised governance distributes control among multiple entities, increasing robust-
ness and scalability but adding complexity to coordination and communication [24].

Supported Learning Types refers to the framework’s ability to support differ-
ent types of learning tasks, which enhances its versatility. This includes supervised 
learning, which is essential for tasks where the training data includes labels and the 
desired output is known, and unsupervised learning, which is crucial for discovering 
hidden patterns in unlabelled data, expanding the framework’s applicability [4].
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Dynamic Resource Allocation is vital for optimising performance and scalabil-
ity in FL frameworks. Efficient resource management ensures optimal performance 
and load balancing across multiple nodes. This capability enhances scalability and 
overall system performance, as the framework should dynamically manage compu-
tational resources like CPU shares across multiple nodes [25, 26].

These criteria provide a comprehensive basis for evaluating FL frameworks, 
ensuring that they meet the essential requirements for real-world deployment.

3.2  Evaluation of specific federated learning frameworks

To provide a comprehensive overview of available Federated Learning (FL) frame-
works, we evaluate several prominent frameworks based on the criteria established 
in the previous section. This evaluation highlights the strengths and limitations of 
each framework in terms of communication, governance, supported learning types, 
dynamic resource allocation, and overall limitations, specifically focusing on their 
adequacy as simulation environments.

TensorFlow Federated (TFF) is a framework developed by Google for experi-
menting with FL using the TensorFlow infrastructure. It offers a secure and flex-
ible API but is primarily suited for development rather than production applications. 
Additionally, TFF is limited to centralised governance and only supports supervised 
learning [29]. While TFF excels in secure communication and ease of use, it lacks 
comprehensive simulation tools and support for unsupervised learning tasks.

FATE (Federated AI Technology Enabler), developed by WeBank, excels in high-
performance and secure computing, offering a modular architecture for scalability. It 
supports both supervised and unsupervised learning. However, its centralised gov-
ernance and lack of comprehensive simulation tools limit its flexibility and adapta-
bility [30]. FATE’s robust security measures are offset by its limitations in providing 
detailed simulation capabilities.

Flower Framework is highly flexible and platform-agnostic, allowing integration 
with various machine learning systems. Its modular design supports high scalability, 
but its simulation capabilities are limited. Flower can adapt to both centralised and 
decentralised governance, supporting supervised and unsupervised learning [31]. 
Despite its adaptability, Flower’s limited simulation tools hinder its application in 
complex scenarios.

PySyft + PyGrid combines WebRTC and Websockets for secure communication, 
providing high adaptability and a decentralised governance model. While it supports 
supervised learning, it has limitations in unsupervised learning support and lacks a 
comprehensive simulation environment [32]. The framework’s strong security fea-
tures are marred by its insufficient simulation capabilities.

Open Federated Learning (OpenFL) supports interoperability between Tensor-
Flow and PyTorch. It offers a basic simulation environment and centralised govern-
ance, suitable for supervised learning tasks. However, it is limited in handling more 
complex or unsupervised learning scenarios [33]. OpenFL’s basic simulation tools 
limit its effectiveness in detailed FL studies.
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IBM Federated Learning provides secure and highly scalable solutions primarily for 
the IBM ecosystem. Its main limitation is the lack of a real-use simulation environ-
ment, restricting its application to development and testing within the IBM infrastruc-
ture [34]. IBM’s strong security and scalability are offset by its inadequate simulation 
capabilities.

NVIDIA Clara offers encrypted and secure communication with high scalability. 
However, its proprietary nature and healthcare-specific design limit its adaptability 
across different sectors and its use for unsupervised learning tasks [35]. Clara’s propri-
etary nature restricts its broader applicability and simulation scope.

Substra uses blockchain for transparency and security, being highly scalable but 
complex to integrate. While it supports supervised learning well, it lacks a compre-
hensive simulation environment and faces challenges in supporting unsupervised learn-
ing [36]. Substra’s blockchain integration adds complexity and limits its simulation 
capabilities.

In summary, although these frameworks offer valuable features, as shown in Table 1, 
they present significant limitations regarding simulation capabilities. This evaluation 
underscores the need for advanced simulation environments to address these shortcom-
ings, which will be examined in detail in a series of critical limitations.

As summarised in Table 1, existing federated learning frameworks often lack sup-
port for unsupervised learning algorithms and dynamic resource allocation. For 
instance, while TensorFlow Federated [29] and PySyft + PyGrid [32] provide secure 
environments, they are limited to supervised learning and do not offer comprehensive 
simulation capabilities. SimulaFed fills these gaps by supporting both supervised and 
unsupervised learning types, including association rule mining algorithms, and by 
allowing dynamic adaptation of resources and participants.

We are faced with lack of detailed and precise simulation capabilities, where many 
frameworks do not provide comprehensive tools for simulating real-world FL sce-
narios. There exist limitations in flexibility and configurability, often a lack of adapt-
ability to different scenarios and research needs, which hampers detailed experimenta-
tion. Another important limitation is the difficulties in interoperability, which presents 
a challenge in integrating with other tools and systems and limits the versatility of the 
frameworks.

The need for better visualisation and validation tools requires creating enhanced 
tools for the visualisation and validation of results to achieve thorough analysis and 
debugging. Most frameworks do not support dynamic management of computational 
resources, which affects scalability and performance. Dynamic resource allocation not 
supported is one of the limitations of this type of system. The last key detachable is 
the limitations in support for unsupervised learning types, where many frameworks 
are primarily designed for supervised learning, with limited support for unsupervised 
learning tasks.

3.3  Desirable characteristics in federated learning simulation environments

In order to create a robust and effective simulation environment for Federated Learn-
ing (FL), it is essential to identify and integrate key characteristics that address the 
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unique challenges and requirements of FL. Below, we discuss these desirable char-
acteristics, providing justifications for their importance.

Realism and Precision A simulation environment must accurately replicate the 
conditions and complexities of real-world FL scenarios. This includes handling 
diverse data distributions, participant configurations, and network conditions to 
ensure the validity and applicability of the simulation results [28].

Flexibility and Configurability The ability to easily configure and adjust the sim-
ulation environment to reflect various real-world scenarios is crucial. This includes 
supporting different data distributions (IID1 and non-IID2), participant setups, and 
varying resource allocations [26, 37].

Performance High-performance simulation environments can efficiently handle 
large-scale simulations with numerous participants and extensive data sets. This 
includes optimising resource utilisation and ensuring minimal latency and overhead 
during simulations [25, 38].

Interoperability The simulation environment should seamlessly integrate with 
various FL frameworks and other machine learning tools. This ensures flexibility 
and ease of use across different platforms and systems [39].

Validation and Verification Robust mechanisms for validating and verifying the 
results of simulations are necessary to ensure their accuracy and reliability. This 
includes providing tools for debugging, testing, and performance evaluation [40].

Security and Privacy Given the sensitive nature of the data often used in FL, 
robust security and privacy measures must be integrated into the simulation envi-
ronment. This includes techniques such as Secure Multi-Party Computation (SMC), 
Differential Privacy (DP), and Homomorphic Encryption (HE) to protect data 
throughout the simulation process [4, 41–43].

Visualisation Effective visualisation tools are essential for interpreting and ana-
lysing the results of simulations. This includes dashboards, graphical representations 
of data flows, and real-time monitoring of simulation progress [44].

Reproducibility To ensure the scientific validity of simulation studies, the envi-
ronment must support reproducibility. This includes providing mechanisms for sav-
ing and sharing simulation configurations, datasets, and results [45].

Extensibility The simulation environment should be designed to allow for easy 
extension and adaptation to future requirements and advancements in FL. This 
includes modular architectures and open-source frameworks that facilitate commu-
nity contributions and ongoing development [39].

In the next section, we will evaluate existing simulation environments for FL 
based on these criteria, highlighting their strengths and limitations in addressing the 
needs of FL research and practice.

1 Independent and Identically Distributed.
2 Non-Independent and Identically Distributed.
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3.4  Evaluation of specific simulation environments

The environments selected for this evaluation are widely used in federated learn-
ing research and have publicly available code, ensuring their representativeness and 
accessibility. These environments were chosen because they offer a broad perspec-
tive on the capabilities and limitations present in current FL simulation tools. The 
results of this evaluation are summarised in Table 2.

Moreover, as shown in Table 2, our framework offers high flexibility and config-
urability, interoperability, and support for both centralised and decentralised gov-
ernance models. This versatility distinguishes SimulaFed from other frameworks, 
facilitating the simulation of diverse real-world scenarios and fostering extensive 
research opportunities.

From the evaluation, several key limitations in current simulation environments 
are identified. As shown in Table 2, most frameworks lack detailed and precise sim-
ulation capabilities. Additionally, there are significant limitations in flexibility and 
configurability to adapt to different scenarios. The interoperability with other tools 
and systems also poses challenges, and there is a need for better visualisation and 
validation tools. Dynamic resource allocation is not supported by most frameworks, 
and there are limitations in support for unsupervised learning types.

LEAF offers high flexibility and configurability, but falls short in visualisation 
and dynamic resource allocation. PySyft + PyGrid is strong in security and privacy, 
but limited in ease of use and lacks comprehensive simulation tools. FedML has 
high flexibility and configurability and is limited in visualisation capabilities. TFF 
integrates well with TensorFlow, but lacks support for unsupervised learning and 
dynamic resource allocation.

Once we have analysed the various frameworks from the literature, we will ana-
lyse our tool, SimulaFed, in the next section, covering all the features it maintains.

4  SimulaFed framework

In the field of Federated Learning (FL), both a robust framework and a comprehen-
sive simulation environment are crucial. A framework facilitates the practical imple-
mentation and execution of FL algorithms, while a simulation environment allows 
for thorough testing and optimisation in controlled conditions. It is essential that 
these tools enable a seamless transition from simulation to production to ensure the 
scalability and efficiency of FL systems.

Our comparative analysis reveals that existing FL frameworks, despite their valu-
able features, have significant limitations, particularly in simulation capabilities, 
flexibility, and support for advanced learning types. SimulaFed addresses these gaps 
by offering a comprehensive set of features tailored to the evolving needs of FL 
research and practice.

SimulaFed provides secure and robust communication by integrating differ-
ent algorithms within the framework. Initially, the Chahar [48] and Tassa [49] 
algorithms have been integrated, allowing the communication between nodes to 
the integrated federated learning algorithms uses a cutting-edge homomorphic 
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encryption-based approach, allowing operations to be performed on encrypted data 
without decryption. This advanced technique ensures the privacy of local data dur-
ing the aggregation and updating process of the global model.

It also integrates governance by implementing a centralized communication pro-
tocol based on message authentication, where a miner node and a combiner node 
manage the governance of the system, allowing the encryption and decryption of 
keys to send data to different nodes. It also implements a protocol for decentralized 
governance among nodes using multi-party computation techniques, where nodes 
collaborate to compute a common function without revealing their private data.

As an open-source platform, SimulaFed encourages collaboration and continu-
ous improvement, making it an ideal tool for researchers aiming to advance the field 
of FL. By bridging the gaps identified in existing frameworks, SimulaFed provides 
a secure, adaptable, and scalable environment for both simulation and production, 
supporting the diverse requirements of FL research.

SimulaFed supports both supervised and unsupervised learning, providing flex-
ibility for diverse machine learning tasks. Its detailed simulation environment allows 
for extensive testing and fine-tuning of various parameters, supporting the simula-
tion of up to 100 nodes. This scalability is crucial for conducting exhaustive tests 
and understanding the performance of FL algorithms under different conditions.

One of SimulaFed’s standout features is advanced dynamic resource allocation, 
ensuring optimal performance and load balancing across multiple nodes for effi-
cient large-scale simulations. Our tool allows users to adjust and distribute resources 
because the execution of the different nodes is carried out through containers.

While developing SimulaFed, we acknowledge that leveraging the full potential 
of the platform may require adequate computational resources, especially when sim-
ulating environments with a very large number of nodes. However, this is a common 
consideration in distributed systems and depends on the hardware on which Simu-
laFed is deployed rather than a limitation of the platform itself.

Simulated environments are virtual representations of real-world systems, reali-
ties, or scenarios created to experiment, train, research, or develop new ideas in a 
controlled and safe environment. These environments are used in various disciplines 
and sectors, including education, medicine, engineering, defence, scientific research, 
and entertainment. We have implemented a simulation environment based on feder-
ated computational models capable of creating a system that represents a federated 
environment.

The degree of realism and precision can vary from simplified models with two 
nodes to highly complex simulations with multiple nodes that can interact while 
maintaining data privacy through governance. SimulaFed allows researchers to 
interact with the simulated environment by configuring files that enable experiments 
based on modified environmental variables. It gives the system the capability of flex-
ibility and configurability. We aim to enhance its adaptability and robustness. The 
performance of SimulaFed is enhanced through the integration with Docker, which 
provides high scalability and flexibility, limited only by the computational resources 
of the host machine.

One of the essential features of SimulaFed is its support for Security and Privacy. 
While the framework provides basic security inherent in federated learning-since 
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data remains on local nodes and only model updates are shared-it allows users to 
implement advanced security techniques within their algorithms. Techniques such as 
Secure Multi-Party Computation (SMC), Differential Privacy (DP), and Homomor-
phic Encryption (HE) can be integrated by users to enhance data protection through-
out the simulation process. This flexibility enables users to tailor the security meas-
ures to their specific needs and research goals. In future work, we plan to include 
implementations of these advanced security techniques within SimulaFed, providing 
users with ready-to-use tools to enhance data protection in their simulations.

Additionally, SimulaFed supports different data distributions and topologies, 
allowing users to simulate various real-world scenarios. The framework permits the 
implementation of algorithms like those proposed by Chahar [48] and Tassa [49], 
which enable the selection of different data distribution strategies, such as Independ-
ent and Identically Distributed (IID) and Non-Independent and Identically Distrib-
uted (non-IID) executions. This capability enhances the realism and applicability of 
the simulations."

SimulaFed has a validation and verification system that currently performs a sim-
ple verification of the execution process, ensuring that all nodes have executed cor-
rectly and providing a warning if they have not. The reproducibility in this environ-
ment allows for reduced enforced repetition of various experiments by modifying 
configurations. SimulaFed has a logging system that records the executions of dif-
ferent experiments.

The flexible API design of SimulaFed simplifies the integration of new algo-
rithms, enhancing its interoperability and extensibility. As an API-REST service, 
it also supports the creation of microservices capable of communicating with other 
frameworks. Although it is not currently connected to any, it is ready to do so at any 
time.

Finally, SimulaFed has, in the field of simulated environments, a series of limita-
tions that will be addressed in future research, such as visualisation aspect has yet 
to be essayed, but we will focus on implementing a user-friendly interface that com-
forts our users.

In summary, simulated environments provide a safe and controlled means for 
experimentation, learning, and development. Next, we will detail the architecture of 
the SimulaFed system.

4.1  Overview of the architecture

In a Federated Learning environment, the deployment and interaction of nodes 
with other participants can be a complex task. With a dynamic number of partici-
pants and a wide array of resources required by each node, implementing a system 
of these characteristics with Docker, Docker Compose, and Dockerfile offers us the 
flexibility to adjust different characteristics of our system, making it more adaptable 
and efficient.

Docker’s containerisation technology plays a crucial role in our federated 
learning environment. It allows us to encapsulate each participating node as an 
independent, isolated entity, mirroring the autonomy of real-world entities in a 
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federated setup. This emulation ensures efficient resource allocation and repli-
cates the collaborative nature of federated data analysis, making our system more 
efficient and robust.

The Docker Compose configuration file serves as the backbone of our envi-
ronment, efficiently deploying nodes and managing communication channels. By 
encapsulating these aspects in the Docker Compose configuration, the deploy-
ment of our system and communication channels are efficiently managed, contrib-
uting to a cohesive and functional federated environment. The Docker Compose 
technology thus enables the quick and simple deployment of the required con-
tainers with the specified parameters that will adjust to the requirements of our 
federated environment experimental setting. It should also be noted that Docker 
Compose sets up a single network for the framework. Each container for a service 
joins the default network and can be both reachable by other containers on that 
network and discoverable by them at a hostname identical to the container name, 
which significantly facilitates inter-container communication.

The Dockerfile of each participating node is instrumental in encapsulating 
their functionalities and dependencies. These files define the environment within 
which each node operates, ensuring consistency across the distributed architec-
ture. By specifying the base image, installing necessary packages, and incor-
porating essential scripts, the Dockerfile streamlines the setup process for each 
node. This approach not only simplifies deployment, but also enables reproduc-
ibility and scalability. The Dockerfile of every participant node can be analysed, 
allowing the specification of their dependencies. It is important to note that the 
requirements file will vary from node to node, and since each role is associated 
with specific tasks, their code dependencies will vary. For instance, in some algo-
rithms like the one proposed in [48], there are nodes with special roles like Miner 
and Combiner, that involve specific tasks of the algorithm.

By emulating a federated environment using Docker, Docker Compose and 
Dockerfile, we provide a practical and scalable platform for testing and refining 
our system, enabling seamless validation of a federated algorithm. These tech-
nologies also transition from an experimental setup like the one we have imple-
mented to a more real-world setting since the containerisation technology of 
Docker enables the simple deployment of containers to the desired hosts without 
requiring extensive overhauls.

4.2  System configuration

The collaborative dynamics of a federated simulated environment are imple-
mented through a network of participating nodes. Each node represents an inde-
pendent participant fulfilling a role (see Fig. 1), contributing to the collective data 
analysis process. These nodes are designed to emulate the real-world scenario 
of distributed entities collaborating towards a common goal. We will now cover 
their distinct roles, functionalities, and interactions that can appear in a federated 
learning/mining process.
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4.2.1  Controller

In a real-world environment, data is already present in the nodes and can follow the 
characteristics explained in Section 2.3.1; however, in the experimental setting, data 
needs to be added to the nodes, generally by splitting a preobtained dataset. This 
opens up a wide array of possibilities, from the origin of the data to how it is distrib-
uted among the nodes.

One type of distribution is Independent and Identically Distributed (IID), which 
means that each sample in a data set is drawn from the same probability distribu-
tion and is statistically independent of the other samples. This implies that the data 
at each node is representative of the overall data distribution. In practice, however, 
data in federated systems is often Non-Independent and Identically Distributed 
(non-IID), meaning that the data is not uniformly distributed across the participat-
ing nodes, either in terms of quantity, data labels, or feature space. For example, 
different clients may collect data in different contexts or environments, resulting in 
different distributions; and/or data is not independent. For example, data collected 
by a single client may be correlated because it comes from the same user or device.

Additionally, in FL, model updates are typically exchanged between the central 
server and the participating devices during training. However, when dealing with 
many devices, the communication overhead becomes a significant concern. Trans-
ferring model parameters or gradients from each device to the central server and 
aggregating them can be time-consuming and resource-intensive. This bottleneck 
requires efficient communication protocols and strategies to minimize network traf-
fic and latency, such as compression techniques, selective device participation, or 
hierarchical aggregation schemes.

These settings can result in interesting insights when comparing how our feder-
ated environment performs with diverse data distributions. With these requirements 
in mind, a container named db controller is created with Docker to allow the 
user to manage the data distribution before starting the algorithm process. The main 
tasks that the user can configure are the following:

Fig. 1  Architectural view of an 
implemented system
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• Dataset selection The user can visualise the datasets that are available to load 
them into the participant nodes. The user selects the desired file based on the 
experiment they want to conduct. To select it, they must modify the DEFAULT 
DATASET FILENAME option in the .env file by specifying the full path. 
The user can add their own simply by moving the desired .csv into the des-
ignated /datasets/ folder in the db controller.

• Distribution type selection Whether IID or non-IID, this ensures that the data 
distribution strategy is in line with the analytical objectives. This allows the 
user to replicate conditions similar to those found in the real world, where 
nodes’ data will vary based on their location, collection tools and other fac-
tors. An example of this distribution could be a dataset containing different 
medical units with values [‘Cardiology’, ‘Coronary Care’, ‘Dialysis’, ‘Gastro-
enterology’, …]. The user could choose to distribute all instances of ‘Cardiol-
ogy’ data to one node and instances of ‘Dialysis’ to another node. This would 
help researchers to highlight differences in data according to the selected cat-
egory. Once the user has selected the splitting parameters in the DEFAULT 
DATASET DISTRIBUTION option in the .env configuration file, the db 
controller script scans the Docker Compose network and sends the data 
to the participants.

4.2.2  Participant nodes setting

The participant nodes simulate real-life entities participating in the federated pro-
cess. These nodes also act as data holders, receiving the data using the distribu-
tion selected by the user.

In complying with the algorithms, the participating nodes compute the sub-
protocols necessary to obtain the desired results. It is important to note that par-
ticipant nodes have different roles internally according to their container id (par-
ticipants with ids 1, 2, and M may have distinct roles), and they can also scan 
the Docker Compose network to detect all other participants and their role in the 
learning/mining process. Data sharing and communication among participant 
nodes are pivotal for collaborative analysis in our enhanced federated environ-
ment. This section outlines how these crucial aspects are managed through the 
use of API calls. Each participant node is equipped with its API application, ena-
bling it to send and receive data over HTTP seamlessly.

API calls enable the coordination and execution of actions between nodes on 
a network, using specific endpoints to transfer data and communicate parameters. 
Docker compose simplifies the deployment and management of containers, by 
creating a standard network that enables interaction between nodes and a scal-
able, manageable deployment process. To achieve this, our federated environ-
ment obtains the configuration through the .env file by modifying the param-
eters N_PARTICIPANTS, PARTICIPANT_NAME, CONTROLLER_NAME, and 
DEFAULT_NETWORK_NAME. In this way the system will create the participants 
needed for the experiment in question.
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4.2.3  Script to run the experiments

An external script using Docker Compose is crucial in managing the experimen-
tation process in the advanced federated environment setup. This script experi-
ment.py is given a dictionary of parameter options representing different con-
figurations for the federated experiments. It orchestrates the iterative execution of 
Docker Compose, dynamically modifying the environment variables in the .env 
file according to the specified parameters. By initiating and terminating experimental 
runs based on the provided options and exploring different settings such as the num-
ber of participants, transactional details, and algorithm variations. This approach 
allows efficient and automated testing of federated algorithms under diverse condi-
tions, providing insights into their performance across different scenarios.

4.3  Security strategies

Our architecture is designed to be inherently flexible, allowing for the interplay of 
established privacy-preserving techniques used in the federated learning setting to 
protect sensitive data while allowing collaborative model training, such as Secure 
MultiParty Computation (SMC) [50, 51], Differential Privacy (DP) [52, 53] and 
cryptographic techniques [54–56]. Adapting the integration of additional protocols 
as required by evolving security landscapes and use cases within FL. This versatility 
is critical, as it enables our framework to support a wide range of privacy-preserving 
strategies and to adapt to new advancements in security technology, thus maintain-
ing robust defence mechanisms in the face of ever-changing cyber threats and pri-
vacy concerns. Our framework is not prescriptive, but allows for the selection and 
integration of these techniques to create a bespoke security solution tailored to the 
unique requirements of each FL scenario.

Secure Multiparty Computation (SMC) ensures that during a computation, partic-
ipants only know their inputs and the final results, without any knowledge about the 
inputs of other participants [50]. This can be achieved without relying on a trusted 
third party [51]. Instead, SMC utilises communication among the participants to 
perform the computation securely. The aim of SMC is to achieve the same outcome 
without needing a trusted third party. This involves establishing secure communi-
cation channels between the participants and executing cryptographic protocols to 
jointly compute the desired results while preserving the confidentiality of individual 
inputs. Among this type of techniques is the secure sum [50], which allows the com-
putation of the sum of a given value among the different participating nodes. The 
secure set union [57] is used to share the standard sets of elements without revealing 
the contents, and a one-way commutative hash function is utilised in different tech-
niqueslike the secure size of set intersection [48].

Differential privacy (DP) [58] is one of the main approaches proven to ensure 
strong privacy protection in data analysis [52]. DP protects the users’ privacy 
by adding noise to the original dataset or the learning parameters [53]. Thus, an 
attacker could not retrieve an individual’s sensitive information in the training data-
set. A comprehensive overview of various attacks is provided in [59], highlighting 
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significant threats such as Membership Inference Attacks, Training Data Extraction, 
and Model Extraction

Our framework has also been designed to be adaptable to various cryptographic 
techniques, such as Homomorphic Encryption(HE) [48, 54], which allows computa-
tions to be performed on encrypted data without first decrypting the data, keeping it 
private and secure even in addition to multiplication computations [48]. Commuta-
tive Encryption [55] and Elliptic Curve Cryptography (ECC) [56, 60] provide layers 
of security for data during its transit and storage. Techniques like Secret Sharing 
[61] and Oblivious Transfer [62] can be seamlessly integrated to provide additional 
mechanisms to protect data from unauthorised access and collusion.

In summary, we can achieve secure communication between the nodes, allowing 
us to adapt the experiments to any desired federated algorithm. Currently, the Tassa 
[49] and Chahar [48] algorithms are incorporated, with the ability to configure the 
execution by dynamically assigning different resources and modifying the various 
parameters in the .env file of the system. By using Docker, we were able to con-
figure the experiments to run on up to 100 nodes, allowing us to observe different 
behaviours of our system. Governance can be centralised or decentralised, depend-
ing on the distribution of communication among the different nodes involved in the 
experiment. SimulaFed has implemented a set of machine learning algorithms that 
support supervised and unsupervised learning problems. The implementation of the 
REST API allows us to have decentralised resources; but, certain limitations need 
improvement. These limitations are due to scalability issues related to hardware 
requirements that do not have high capacity, and to the parametrisation of the algo-
rithms, which could be extended to include specific encryption techniques.

5  SimulaFed in a healthcare real‑life setting

This section provides an overview of the system’s functionality through its vari-
ous components, demonstrating its application in a real healthcare context. Specifi-
cally, we describe an example involving the analysis of patient health data to extract 
relationships in medical records across various departments using association rules 
within the federated learning paradigm. It is important to note that sensitive data has 
been properly anonymised to ensure compliance with the General Data Protection 
Regulation (GDPR).

In Fig. 2, we depict the workflow of our use case. It focuses on two key com-
ponents applied to a set of patient medical records: the processing of the dataset 
to execute the algorithm and the application of association rules within a federated 
learning environment.

5.1  Data sources

The datasets used for the experiments follow the structure of the Andalusian Mini-
mum Basic Data Set (CMDB) [63]. They are based on Electronic Health Records 
(EHR) and contain health records of real patients in two hospitals, covering different 
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departments (emergency, mental health, maternity, etc.). Each record is linked to a 
hospital episode. Due to the different data sources, the records have different for-
mats. The characteristics of the raw datasets are shown in Table 3, providing key 
insights into their structure and scale, which lay the groundwork for the experiments 
and highlight the complexity of the healthcare data, strengthening the credibility and 
applicability of the research.

When extracting valuable knowledge from large datasets, an essential stage is 
to prepare the datasets for the effective application of data mining techniques. This 
crucial phase, known as data preprocessing, involves a series of data processing 
techniques to optimise the dataset for knowledge extraction. Several preprocessing 
modules have been introduced in the dataset used, focusing on the transformation of 
variables to better encapsulate the underlying information and the enrichment of the 
variables in the dataset with external data sources that can be queried in [63].

After the data pre-processing phase, the study delves into specific mod-
ules designed to enhance and enrich the data sets. Notable transformations 
include normalisation of values, conversion of factor variables, and refinement 
of medical data representations. For example, postcodes are transformed into 

Fig. 2  Use Case workflow

Table 3  Data source features description

1 Rest of the variables related to the management and information of the Andalusian hospital system

Features Codification Method for enrichment

Diagnoses International classification of diseases (ICD) External API
Origin of patients Spanish health service system Database
Reason for discharge International classification of diseases (ICD) External API
Reason for admission International classification of diseases (ICD) External API
Surgical procedures International classification of procedures External API
Diagnostic tests International classification of Test External API
Departments Spanish health service system Database
Other  data1 Andalusian health service system (SAS) Database
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geographical data, dates are parsed into detailed temporal attributes, and patient-
related data such as age and hospitalization details are integrated. In addition, a 
data enrichment module is implemented to enhance variables from external cod-
ing dictionaries, further enriching the datasets with valuable information. All 
data and information related to the dataset is available at [63].

Dealing such large and complex datasets requires the use of advanced big 
data management algorithms, as emphasised by Andronie et  al. [64], to effi-
ciently process and analyse the data. By using these algorithms, we ensure that 
our system can cope with the scale and complexity inherent in healthcare data, 
facilitating effective federated learning.

5.2  Data processing

One critical phase in extracting valuable knowledge from large datasets is data 
pre-processing, which involves preparing the data for the application of a learn-
ing/mining technique. This proposal includes several pre-processing modules 
where some variables are transformed to better model the information they con-
tain, external data are used to enrich the variables in the dataset, and continuous 
data are discretised using linguistic variables. A novel process of applying lin-
guistic labels automatically or with expert guidance to improve interpretability 
has been applied in this case [65].

Initially, classical pre-processing is performed, eliminating irrelevant codes, 
normalising values, and transforming factor variables [63]. Healthcare-oriented 
data processing follows, converting variables like history codes, postcodes, and 
dates into more meaningful data representations. For instance, postcodes are 
mapped to municipalities, cities, and countries, while dates are expanded to 
include patient age, admission times, and hospital stay details. Additionally, a 
data enrichment module integrates external coding dictionaries to enhance vari-
ables like diagnoses and surgical procedures with additional context from exter-
nal taxonomies and databases, as shown in [63].

Effective data pre-processing is crucial when dealing with large and complex 
healthcare datasets, as it has a significant impact on the quality of the extracted 
knowledge. Similar to the approaches described by Mavrogiorgou et  al. [66], 
who proposed an optimized KDD process for collecting and processing ingested 
and streaming healthcare data, our methodology includes advanced pre-process-
ing techniques tailored for healthcare applications. Additionally, the use of data 
processing tools for graph data modeling in big data analytics, as discussed by 
Voulgaris et  al. [67], highlights the importance of selecting appropriate data 
structures and processing methods to effectively handle complex relationships 
within the data. By incorporating these strategies, we increase the robustness 
and effectiveness of our data pre-processing pipeline, ensuring that the subse-
quent federated learning processes are based on high-quality, well-prepared data.



Simulafed: an enhanced federated simulated environment for… Page 23 of 30 3

5.3  Association rules in federated environment

In this section, we delve into the importance of experimental parameters, exploring 
how variations in the number of participants, transactions, features, and data distri-
bution can help us understand the scalability, efficiency and effectiveness of the sim-
ulated system. For that, we will use a federated approach for association rule mining.

5.3.1  Number of participants (medical‑units)

This parameter determines the size and complexity of our simulated federated envi-
ronment. By varying the number of hospital departments, we can evaluate the scala-
bility of our federated association rule mining algorithms. To perform an experiment 
to demonstrate the scalability of our system, we will vary the number of partici-
pants. Specifically, in this real use case, the number of participants is iteratively set 
to values within the interval [3, 20], keeping all other parameters the same.

Figure 3 shows a linear and scalable growth with respect to the number of par-
ticipants. As we incrementally increase the number of participants, the output met-
rics (computational time) exhibit a proportional and consistent increase. This linear 
trend indicates that our federated system can efficiently handle additional partici-
pants efficiently without an exponential increase in resource requirements. There-
fore, the system maintains scalability, making it possible to increase the number of 
participants while ensuring that performance remains predictable and manageable. 
This behavior is essential for practical applications where the number of participants 
can vary significantly.

5.3.2  Number of transactions

The number of transactions in our dataset is crucial, as it influences the data that 
participants need to share and process. This parameter affects the communication 
overhead and computational requirements of the federated learning process, so it is 
important to investigate the performance of the algorithms in relation to the trans-
action load. For this experiment, the number of transactions was iteratively set to 

Fig. 3  Total execution time vs. the number of participants in the simulation
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values between 1000 and 20,000 by replicating some records in departments with 
lower workloads to facilitate this performance test. The following parameters were 
set: participants = 12,minsupp = 0.2 , and nitems = 32.

5.3.3  Number of features

The number of features in our dataset is important because it affects the complex-
ity of the mining task. Increasing the number of features can challenge algorithms 
in terms of computational efficiency and the discovery of meaningful association 
rules, as the computational complexity with respect to this parameter is exponential 
in exhaustive search algorithms. Exploring this parameter helps to assess the adapt-
ability of algorithms to high-dimensional data. In this experiment, the number of 
selected features was iteratively set to values between 5 and 60, while keeping all 
other parameters constant ( participants = 12 and ntransactions = 5000) (Figs. 4, 5).

The first metric to consider is the total execution time with respect to the number 
of items, a metric that behaves exponentially and is equal to that of the algorithm 
without the federated environment. After this experimentation, we can conclude that 
the higher dimensionality of the data affects the algorithm’s performance.

Fig. 4  Effect of the number of transactions on the size of the sent messages

Fig. 5  Total execution time vs the number of items for the algorithm
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This experiment has been very useful for analysing an algorithm’s performance 
by varying one of the most important parameters in frequent itemset mining and 
association rules. Although most of the metrics behave similarly, the mining costs 
are drastically different and could be a real challenge in a production environment.

5.4  Discussion of the results

Performance tests have been conducted on the aforementioned dataset, including a 
comprehensive evaluation using the 57 most significant variables within a federated 
environment comprising different departments of the Clinical Hospital of Granada. 
This evaluation involved 35 departments (nodes) and led to the discovery of several 
interesting association rules. Detailed results and experimentation details are pre-
sented below.

The experiments were carried out with different threshold configurations. Here 
we present the results obtained with a minimum support of 0.1 and a minimum con-
fidence of 0.8.

The derived set of rules has enabled the discovery of hidden patterns in the rela-
tionships between different diagnoses present in patients, linking them to patient 
characteristics. This type of relationship facilitates the study of co-morbidities 
within the dataset.

By examining the discovered patterns, several notable rules emerge. For example:

Federated environments allow for more general rules by extracting information from 
the whole set while preserving the privacy of the different nodes, taking advantage 
of a higher volume of transactions. This is why we can extract these types of more 
general rules, whereas if we had analysed by department, there would not have been 
enough data to establish general rules.

6  Conclusions

We have introduced and developed the SimulaFed system, a federated environ-
ment that offers a customized and configurable approach to data analysis, as well 
as flexibility, scalability and versatility in a simulation environment that supports 
both supervised and unsupervised learning. We have analysed the state-of-the-art 
approaches for simulating federated systems and evaluated their advantages and 
limitations. Our proposal aims to address these weaknesses by enabling researchers 
to create experiments tailored to their specific needs through the Docker platform. 
The architecture ensures communication privacy by means of several cryptographic 
techniques, Secure Multiparty Computation and differential privacy, generating 
final global results without sharing data from the nodes, providing robust privacy 
protection.

(1)
{Age = long,Timeofadmission = long} →

{Reason_medical_discharge = death}
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Our adaptive framework aims to achieve secure inter-node communication and 
adapts experiments for any desired federated learning/mining algorithm. Tested on 
up more than 100 nodes, our system shows versatility in governance (centralised or 
decentralised) and supports a wide range of machine learning algorithms.

We validated the system in a real-world medical scenario, avoiding direct access 
to confidential information while taking advantage of a larger volume of data to 
achieve more robust results using federated algorithms for mining association rules 
on patient health data across multiple departments. Performance tests demonstrated 
linear and scalable growth, efficient handling of a variable number of participants, 
and the ability to adapt to high-dimensional data. Furthermore, the results obtained 
show the potential to uncover hidden patterns and aid in the study of comorbidities.

Moving forward, we aim to expand the system to incorporate various Federated 
Learning algorithms from the literature, as well as to implement enhancements for 
handling the different requirements and challenges in enterprise (cross-silo) and 
mobile/edge (cross-device) federated learning scenarios. By continuing to evolve 
and adapt our framework, we work to meet the ever-changing demands of data anal-
ysis and security in federated environments.
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