
Detection of microplastics in sea salt using hyperspectral imaging and 
machine learning methods: Pollution control in the Mediterranean sea as a 
case study☆

Miriam Medina–García a, Miguel A. Martínez-Domingo b,*, Eva M. Valero b,  
Luis Cuadros-Rodríguez a , Ana M. Jiménez–Carvelo a,*
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H I G H L I G H T S G R A P H I C A L  A B S T R A C T

• Hyperspectral imaging (HSI) to monitor 
microplastics in Mediterranean Sea is 
proposed.

• Key methodology features to evaluate 
microplastic in natural salt samples are 
optimised.

• Multivariate analysis is applied to 
discriminate polluted and unpolluted 
salt samples.

A R T I C L E  I N F O

Keywords:
Microplastic sea pollution
Hyperspectral imaging
Machine learning
Mediterranean Sea

A B S T R A C T

Microplastics represent 80% of the marine waste, becoming one of the main problems worldwide today, one of 
the reasons they have been categorised as the 10th greatest threat in the World Economic Forum’s Global Risks 
Report 2024. To address this issue, many recognised organisations have developed action plans for monitori-
zation, mitigation and prevention of microplastic contamination. This includes the development of analytical 
methods for the detection, characterisation and quantification of these contaminants. In this regard, this work 
presents a novel approach for the direct detection and analytical evaluation of microplastics in sea salt sampled 
from solar sea saltworks. These factories act as a natural ’pre-concentrator’ of solid pollutants, and sea salt is thus 
a good indicator of their presence in the marine environment.

The developed methodology is based on the application of hyperspectral imaging a non-destructive/non- 
invasive analytical technique, in combination with machine learning methods, to detect five of the most com-
mon microplastics (PE, PET, PS, PP, PVC) in natural sea salt samples collected directly from a solar saltworks 
located on the Mediterranean coast of southern Spain. For this purpose, some key features were assessed to 
develop the methodology, including sample bank generation, particle size determination, imaging conditions, 
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and others. Finally, once the HSI analyses were performed directly on the solid salt samples, partial least square- 
discriminant analysis was applied to develop a classification model capable of identifying salt-containing pixels 
and thus detecting µP pollution.

1. Introduction

Plastic can be defined as a material which contains as an essential 
ingredient a high polymer and which, at some stage in its processing into 
finished products, can be shaped by flow [1]. The global production of 
these materials started around 1950′s, growing rapidly, reaching a 
staggering 413 million metric tons in 2023 and expecting to double this 
amount by 2039. This unprecedented growth is mainly explained by the 
exceptional characteristics of plastics, such as strength, lightness and 
durability, which have made them valuable in countless industry sec-
tors. Nevertheless, their stability and resistance to degradation com-
bined with a poor waste management has resulted in their accumulation 
across multiple ecosystems [2,3]. According to the last studies, 14 
million tons of plastic enter the ocean system annually, representing the 
80 % of the marine waste and becoming one of the main problems 
worldwide today [4]. Polluting plastics in the environment, particularly 
in the sea, are subject to degradation process due to the exposition to UV 
light, temperature, currents, waves and other natural factors which 
cause their fragmentation. These small-sized plastic fragments are called 
’microplastics’ (µP) when their size ranges from 5 mm to 1 µm, and 
’nanoplastics’ (nP) from 1 µm to 1 nm [5].

µP enter food chains when animals ingest them by mistaking them 
for food. These materials, although chemically inert, may absorb toxic 
substances found in the ecosystem and thus become toxic carriers. Once 
ingested by animals, they pass into the circulatory and lymphatic sys-
tems, even accumulating in fatty tissues, making them a potential health 
hazard [6,7]. This is one of the reasons why µP are ranked as the 10th 
greatest threat in the World Economic Forum’s Global Risks Report 
2024, for which concerted and urgent action is required [8]. To meet 
this challenge, several international organizations have developed ac-
tion plans for monitoring, mitigating and preventing these pollutants. 
Among them, it is worth mentioning the action plan published by the 
European Commission in 2023 against µP. These actions include support 
for research into new methods for detecting µP in the sea and for 
harmonised monitoring and assessment methods for nano-, macro- and 
micro-plastic pollution [9].

Evidence of the growing concern for this issue is the drastic increase 
in scientific publications in recent years [10]. In this regard, several 
recent studies have focused their research on the development of 
analytical methods capable of detecting, typifying and/or quantify µP in 
different environmental samples, i.e., atmospheric air, natural water 
bodies (seas, lakes, rivers, etc.), sediments, and soils [11–15]. In addi-
tion, analytical monitoring of µP in food samples has recently gained 
rising interest as a response to the increasing occurrence of these con-
taminants in the food chain [16–18]. Despite the diversity of these 
samples, their preparation for analysis converges in the follow steps: 
filtration and/or density separation, digestion, often using H2O2, and, 
for solid samples, a water-based pre-dispersion step [19–22]. The shared 
purpose of these sample preparation methods is to separate µP (analytes) 
from the material matrix. Subsequently, they are analysed applying one 
of the analytical techniques mentioned bellow.

The most widely applied analytical techniques are visual inspection 
[23], Raman spectroscopy and Fourier transform infrared spectroscopy 
(FT-IR) [24], including the use of portable miniaturised instruments 
[25]. However, when higher quantification reliability is required, 
methods combining thermal decomposition with gas chromatography 
coupled to mass spectrometry (GC–MS) are more convenient [26]. 
Depending on the analytical technique applied, the result of the µP 
content quantification is expressed differently. Visualisation-based 
methodologies such as optic microscopy and spectroscopic techniques 

report it as µP ’items’ or particles per gram (or per litre) of sample, 
according to the material’s original physical state. In contrast, when a 
chromatographic method is used, results are usually expressed in µg/g or 
µg/L of material. This dichotomy makes it very difficult to compare 
results as the equivalence between the two units is not easy to establish 
since it is necessary to know the density and size of each µP ’item’ or 
particle. Detection capabilities vary significantly: optical microscopy 
can reveal µP particles up to 50 µm in size, Raman spectroscopy detects 
particles as small as 1 µm and FT-IR reaches 10 µm. GC–MS, in com-
parison, has detection limits of 100 to 1000 µg of µP [11,27].

Notwithstanding this range of options, or perhaps as a result of it, 
there is concern about the lack of harmonisation and standardisation of 
test procedures used by different laboratories, which all too often leads 
to inconsistent results [28]. Nevertheless, efforts are being made to 
mitigate this disadvantage, and some standardised methods have been 
published or are in preparation by recognised standardisation bodies, e. 
g. ASTM [29,30] or ISO [31–33]. In addition, the European Union has 
recently reported a directive setting a methodology for sampling and 
characterising µP in water intended for human consumption [34]. These 
initiatives have recently been reinforced with the EU funding of a COST 
Action, titled ’ISO compatible, efficient and reproducible protocols/ 
equipment for micronanoplastic detection through machine-learning 
(ICPLASTIC)’ (https://www.cost.eu/actions/CA23131/).

Despite these successes, a critical challenge persists: no analytical 
method has yet been developed to analyse environmental samples 
directly, without requiring a prior preparation. The steps of sample 
preparation procedure, which involve separating µP from solid or liquid 
matrices, may be complex and resource-intensive, relying on solvents, 
filters, and other materials. Imaging analytical techniques, particularly 
hyperspectral imaging (HSI), which is able to perform non-invasive, in 
situ analysis and real-time monitoring, has great potential to address this 
issue [35–38]. In this context, there are studies that address the optimal 
spatial resolution and the most suitable spectral ranges in an integrated 
manner. For example, Huang et al. [39] conducted a review in which 
they highlighted that most of the studies employed reflectance mode for 
their analyses, covering a spectral range from 370 nm to 2500 nm. All of 
them applied principal component analysis (PCA) as an exploratory 
analysis and the classification methods were support vector machine 
(SVM) or partial least squares-discriminant analysis (PLS-DA). The re-
view also highlights the relationship between detection limits and 
spatial resolution, emphasizing that increasing spatial resolution can 
lower the minimum detectable particle size. The smallest reported 
detection limit (LOD) was greater than 0.2 mm, achieved with a spatial 
resolution of 30 µm. Faltynkova et al. [40] conducted another literature 
review in which they highlighted that the spectral range covered in the 
reviewed studies spans from 375 to 2500 nm, identifying spatial reso-
lution as a critical factor influencing the results. The best performance 
was achieved with a spectral resolution of 3 nm, while the average 
spectral resolution across most studies was approximately 6 nm. Serranti 
et al. [41] proposed an optimal analytical protocol for characterizing 
microplastics. They evaluated three kind of plastic materials that were 
cut into three size ranges and disposed in a black background. Their 
capture device had spatial resolutions or either 150 µm or 30 µm, and the 
spectral ranges studied were 1000–2500 nm or 1000–1700 nm. Finally, 
they concluded that for particles larger than 250 µm, PLS-DA showed 
superior class recognition at a spatial resolution of 150 µm/pixel within 
the 1000–1700 nm range, offering a cost- and time-efficient solution 
with high accuracy and faster processing. For particles smaller than 250 
µm, a spatial resolution of 30 µm combined with nonlinear methods 
yielded better results, especially within the broader 1000–2500 nm 
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spectral range. Similarly, other researchers have also conducted studies 
focused on the detection of microplastics in soil and aquatic matrices, 
primarily utilizing spectral ranges between 1000–2500 nm and 
387–1034 nm, achieving spatial resolutions ranging from 6.45 µm to 21 
µm [42–44].

Note that the previously mentioned studies are focused on pre- 
treated environmental samples or directly on µP sample characterisa-
tion. This restricts their capacity to simplify workflows and leverage the 
advantage of being environmentally friendly.

Solar saltworks act as a natural ’pre-concentrator’ of solid pollutants, 
including µP, presents in the source water to be tested. In both cases, 
water from the sea, natural deposits or from mineral-rich springs, enters 
the saltworks by pumping and it is deposited in crystallisers, which 
constitute the storage ponds. Different sequential precipitation pro-
cesses take place in them. The final one happens in the crystallisation 
tank where the sea salt precipitates and is finally collected. Solid pol-
lutants present in water are in turn deposited on the salt, which is an 
indicator of their presence in the medium [45]. The occurrence of µP in 
salt has attracted significant scientific attention, either as an indicator of 
environmental contamination or as a food product that could pose risks 
to human health.

Despite its relatively low direct consumption compared to other daily 
food, salt is used in a wide variety of products, making it necessary to 
subject salt to quality and safety controls, including assessing its 
contamination. Exposure to µP through salt intake has been shown to be 
significant, with levels reaching (1.4–2.0) × 104 items/kg of salt in re-
gions such as Croatia, which has reported the highest contamination 
levels [46]. Similar studies conducted in Spain have revealed µP con-
centrations in Spanish table salt ranging from 50 to 280 particles/kg. 
The most prevalent plastics identified were polyethylene (PE), poly-
ethylene of terephthalate (PET) and polypropylene (PP), consistent with 
their widespread use in various food industry applications. At these 
levels of contamination, it is estimated that the Spanish population 
could annually ingest between 91 and 500 µP particles only through salt 
consumption [47–50]. Other polymers such as polyvinyl chloride (PVC), 
polyamide-6 (nylon-6), polystyrene (PS) or polyacrylonitrile (PAN) have 
also been detected in analyses of salts from other countries [51,52].

This study aims to address the development of an environmentally 
friendly analytical methodology based on the application of HSI, which 
enables the direct evaluation of µP in natural salt samples jointly with 
machine learning methods, to detect µP presence in environmental sea 
salt samples. For this, raw salt samples from coastal and inland solar 
saltworks were sampled and analysed. Particularly, this study has 
focused on the determination of the five most common kind of µP pre-
sent in sea salt from the Mediterranean Sea: PE, PET, PP, PVC and PS, as 
indicator of µP pollution [53–55]. The novelty of this strategy is its 
ability to perform direct analysis in solid samples, without any sample 
preparation involving water, filters, digestion or solvents to perform any 
separation or pre-concentration of µP from the sample matrix. This is 
significant, because it simplifies the analytical process, reduces analysis 
times and the risk of laboratory contamination, which otherwise may 
compromise the representativeness and reliability of the results when 
detecting these pollutants.

2. Methodology

To design a direct analytical method based on HSI for the detection 
of µP in sea salt samples, key issues of the methodology were carefully 
assessed. These included: (i) plastic standards and salt sample bank; (ii) 
simulated µP-free sea salt; (iii) equalisation of sample particle size and 
sample preparation; (iv) set-up HSI capturing system; and (v) data 
analysis. This section provides a detailed discussion of each one of the 
key issues considered.

2.1. Natural salt samples and µP standards

Three different material types were identified as essential to develop 
the analysis methodology. Firstly, representative µP-free natural salts. 
Secondly, natural salts suspected of being contaminated and, finally, 
representative specimens of the contaminating µP to be tested.

Natural salts were sampled from two types of solar saltworks: (i) 
inland saltworks located in Granada (Spain) and (ii) coastal saltworks 
located in Almería (Spain), both located on the Mediterranean water-
shed. On the one hand, inland salt samples were considered unpolluted 
since these rely on underground brines or evaporation of water from 
mineral-rich springs, which are usually protected from anthropogenic 
debris, being its only source of pollution the environmental and given 
that the salt production period is shorter than that of coastal salt works 
and the latter are exposed not only to the environment but also to plastic 
waste present in the sea, inland salts have been considered in this study 
“blank salt samples”.

A total of 232 natural salt samples were analysed in this study, 212 
from inland saltworks and 36 from coastal saltworks. Note that, in the 
case of natural salt from coastal saltworks, two types of salt were 
sampled, common salt and ’flower of salt’. The later differs from com-
mon salt in the process of evaporation of the water and its subsequent 
collection, which is left in smaller tanks, where a small layer of crystals is 
created and floats on the surface of the water, which are then collected 
daily in a traditional way due to the fragility of the crystals.

Five chemically-pure standards of the most commonly used plastics 
in industry, and whose presence has been previously reported in the 
Mediterranean Sea (PE, PET, PP, PVC and PS) [52,53], were purchased 
from a recognised supplier (Sigma Aldrich, Darmstadt, Germany). The 
relevant information about these samples is shown in Table 1.

In addition, small pieces of the same plastics were manually retrieved 
from everyday objects made of these materials (bottles, caps, cups, etc.). 
Samples of everyday plastic items are representative of common-life 
materials, which together with the polymer incorporate additives 
commonly found in final products. Specimens from both origins (Sigma 

Table 1 
Key properties and structural characteristics of the plastic polymers considered 
in the study.

Polymer Density* (g/ 
cm3)

Chemical structure

Polyethylene (PE) 0.92–0.95

Polyethylene 
terephthalate (PET)

1.39

Polypropylene (PP) 0.87–0.90

Polyvinyl chloride (PVC) 1.40

Polystyrene (PS) 1.05

* Density values extracted from ISO 4484–2 standard[31]
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Aldrich and common objects) were considered as µP standards. Details 
about the preparation of these specimens are given in section 2.3.

Most standard μP samples appeared white after grinding, while 
commercial packaging samples ranged from amber to green, blue, or 
transparent. Although visible color can affect reflectance within the VIS 
range, its influence in the SWIR is minimal. However, additives used to 
generate visible colors may cause slight spectral shifts near the VIS-SWIR 
boundary, though the overall spectral shape remains mostly unchanged.

2.2. µP-free simulated sea salt reference

Given that the composition of blank salt samples is not the same as 
sea salt, and to have a reliable reference that would resemble the 
composition of the salt obtained in the Mediterranean Sea, it was 
decided to prepare a mixture of pure inorganic salts bringing together 
the major components of sea salt. This simulated salt emulating the 
chemical composition of coastal salt was prepared by mixing the 
following solid chemical compounds: NaCl (62.9 g/100 g), MgCl2 (11.4 
g/100 g), CaCl2 (2.1 g/100 g), KCl (2.1 g/100 g), Na2SO4 (17. 7 g/100 
g), MgSO4 (2. 9 g/100 g) and CaSO4 (1.2 g/100 g). The composition of 
the blend was fitted based on the data provided in reference [56].

2.3. Specimen size uniformity

The hypothesis underlying this study suggests that unpolluted nat-
ural salt is a homogeneous solid matrix, consisting largely of small white 
crystals of sodium chloride (>60 %) along with other mineral salts. In 
contrast, when salt contains solid contaminants such as µP these occur as 
dispersed particles throughout the crystalline material, resulting in 
discernible heterogeneity. These exogen particles may be detected 
applying HSI.

As described above, µP range in size from 5 mm to 1 µm and occur in 
forms such as spheres, pellets and fibres. To achieve this size range on 
the material fragments it is necessary to equalise the sample particle 
sizes to ideally achieve a one-particle-per-pixel configuration, whether 
the particle belongs to the salt matrix or to the plastic pollutants. This 
equalisation was carried out by milling the samples in a laboratory 
milling device (IKA A10 basic, Staufen, Germany). Then, a particle size 
study was carried out to examine the relationship between milling time 
and µP particle size, ensuring a uniform particle sizing. This also made 
possible to fine-tune the HSI image capturing settings to align with the 
target particle size. Four milling times were selected for the study: 
0 (original packing size), 5, 10 and 15 s. Samples of PVC and PE, sourced 
from manufacturers, were milled accordingly to evaluate the impact of 
milling time on particle size distribution. A granulometry study was 
performed using a Mastersizer 2000LF (Malvern Panalytical, Malvern, 
UK) particle size analyser.

To ensure the evenness of the particle size of all natural and simu-
lated salt samples, all of them were equalised using the mill described 
above. For this purpose, around 20 g of each of the salts under study 
were milled for each sample. For imaging, test portions of the salt 
samples were placed in colourless glass Petri circular dishes of 60 mm 
diameter and 15 mm depth, which were filled to the brim.

2.4. Study of optimal capture set-up parameters for HSI measurement

The first step for HSI measurement was the identification and se-
lection of the optimal spectral range which depends on the components 
of the material to be measured: both analytes (µP) and the matrix ma-
terial (natural salt). To achieve this, a thorough literature review was 
conducted to identify the chemical structural features of the five selected 
µP (see Table 1) and their characteristic IR spectral fingerprints. Note 
that, density values of each polymer presented in Table 1 were extracted 
from the ISO 4484–2 standard [31] which provide guidelines to perform 
qualitative and quantitative µP analysis in textile industry. This infor-
mation provided the basis for selecting the most relevant spectral range 

for detecting and distinguishing each one of these materials.
Several studies have focused on the µP detection and identification 

by HSI in the visible-short wavelength (400–2500 nm) spectral region 
with great success [40,57,58]. In particular, Vidal & Pasquini [57] 
identified some combinations of bands associated with C–H bones of µP 
structure in the region of 2000–2500 nm. However, the first and the 
second overtone of C–H stretching vibration were observed in 
1600–1800 nm and 110–1220 nm region. For PET, the stretching vi-
bration of C–H aromatic bonds was observed in 2100–2200 nm while, 
ester group in 1800 to 2000 nm and C-O stretching third overtone in 
2082 nm. Methyl groups absorb near to 1195 nm and methylene to 
1210–1220 nm. Phenyl groups, present in polystyrene were observed at 
2170 nm. These characteristics explain why most of the published 
studies on this topic have selected the SWIR (short-wave infrared) 
spectral region, typically ranging from 1000-2500 nm, as the optical 
working spectral range.

Given this, it was decided to focus this study on the SWIR spectral 
range (from 900 to 1700 nm in our case, due to the capture device 
available: Resonon PikaNIR + camera from Resonon Inc, Canada). 
Furthermore, an additional HSI camera (Resonon PikaL) which mea-
sures in visible-near infrared (VNIR, from 400 to 1000 nm) spectral 
region was used to assess whether the primary differences observed in 
this region were only related with characteristics such as colour rather 
than chemical composition of the µP.

Once the working spectral range was selected, a study was performed 
to determine the optimal imaging settings. The key features to consider 
are spatial resolution and capturing time. The spatial resolution is 
directly related to the minimum plastic particle size that can be detected 
within the crystalline salt matrix. Besides, capturing time needs to be 
minimised specially for a long image monitoring campaign with hun-
dreds of measurements yet ensuring enough amount of signal for a 
robust image capture.

A critical imaging setting which significantly influences both spatial 
resolution and capturing time is the imaging distance (i.e., the distance 
between the camera and the material sample being measured). 
Capturing at a closer distance to the sample (i.e. reducing imaging dis-
tance), reduces the linear field of view (FOV or swath), but increases the 
spatial resolution. This happens because the image size and the angular 
field of view are constant while the object area spanned by the image 
gets smaller. Hence, each pixel is imaging a smaller region achieving 
higher spatial resolution (i.e., gaining ability to discriminate smaller 
details in the captured image). If only considering this, one may think 
that then, getting as close as possible to the sample would be the best 
practice. This idea however has some limitations. One of the limitations 
could be thought of as a mechanical and optical restriction. The optical 
components in the imaging equipment have limits regarding the closest 
possible distance to be focused, and object distance also critically in-
fluences depth of focus (i.e. the range of distance that result focused in 
the final image). In addition to this effect, the mechanical components 
including the illumination lamps, the scanning stage device, or the size 
and shape of the samples mechanically limit the closest achievable 
distance too. As it can be seen in Fig. 1, the scanning device has a hor-
izontal linear stage with a vertical column. This column is where both 
the camera and the illumination system are attached, giving the possi-
bility to change the illumination and imaging distances.

The illumination system was placed as close as possible to the object 
yet allowing the scanning of the samples in a safe way, and the cameras 
had some freedom of movement up and down across the vertical col-
umn. The SWIR PikaNIR + camera is bigger than the VNIR PikaL, so that 
its range of movement in terms of object distance went from 40 cm (the 
furthest) to 3.5 cm (the closest), using an optical extension tube to allow 
for very close focusing distances as done in [59]. For the VNIR camera, 
the moving interval went from 8.5 cm to 60 cm.

The second limitation when deciding what imaging distance to be 
used is capturing time. If a horizontal:vertical ratio of 1:1 is to be 
retained for the final images (i.e., images neither stretched nor 
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compressed horizontally), the closer we set the camera to the sample, 
the slower the image capture must be (for a given framerate), since in 
each frame (i.e. each captured image line), a smaller portion of the 
sample image is captured the closer we get. Even if optimizing the im-
aging framerate, exposure time and scanning speed to achieve the fastest 
possible image captures at this distance, using the closest possible po-
sitions in both cameras ended up in very slow capturing speeds which 
took more than a minute of capturing time for a portion of 1 cm of the 
object in the case of the SWIR camera. This capturing time could be 
allowed for imaging a few samples, but it is not practical for measuring 
hundreds of samples in monitoring campaigns continuously receiving 
samples.

On the other extreme, using the furthest positions for both cameras, 
resulted in very fast image captures, but the spatial resolution was un-
derexploited, since the FOV of the cameras allowed imaging the material 
samples closer while framing them completely into the final image. 
Hence, it was decided to place the cameras to obtain for both a linear 
FOV as similar possible, with the additional constraints of being able to 
image most of the sample container area (measuring around 28 cm2). 
The imaging distance was then 21.5 cm for the VNIR camera and 16 cm 
for the SWIR camera. A theoretical spatial resolution can be calculated 
using the FOV covered by each camera and the corresponding sensor 
sizes, by simply dividing the FOV by the sensor size (see Table 2. for the 
exact data used in this estimation). The estimated spatial resolutions 
were 55.5 μm/pixel for the VNIR camera, and 95.3 μm/pixel for the 
SWIR camera. As explained before, this constitutes a theoretical limit for 
the spatial resolution.

However, more factors are to be considered like the fact that the 
spectral signal from a single pixel could be not smooth enough to ach-
ieve a good identification as pointed out in [59]. These are not neces-
sarily the smallest particle sizes detectable by each system, but at least 
we can know that bigger particle sizes should be represented by more 
than a single pixel in the final images.

2.5. Image capturing strategy

Once the optimum conditions for analysis have been selected as 
indicated in the previous section, it should be pointed out that spectral 
reflectance images were used instead of raw images. This is done since 
their image values are only depending on the characteristics of the 
sample and neither the spectral power distribution of the illumination 
nor the spectral sensitivity of the cameras has an impact on them. Hence, 
in order to work in reflectance mode, reference white and dark images 
are captured as well, using the same capturing parameters as for the 
samples, to perform dark noise subtraction and flat-field correction ac-
cording to equation (1). 

ρsample(x, y, λ) =
Isample(x, y, λ) − Idark(x, y, λ)
Iwhite(x, y, λ) − Idark(x, y, λ)

⋅ρwhite(λ) (1) 

In this equation, ρsample (x,y,λ) is the spectral reflectance value of the 
sample at pixel position (x,y) and wavelength λ. Іsample, Іwhite and Іdark 
are the raw spectral images of the sample, the reference white target and 
the dark field (camera lens covered to block light in) respectively. A 90 
% reflectance standard reference white tile was used as the white target 
(model Zenith Lite, by SphereOptics, Herrsching, Germany).

The HSI images were captured over batches of samples. Each batch 
included 2 samples placed in different Petri dishes on a white platform 
for spectral scanning. The first sample of each batch was the same and 
was consistently kept in the same position throughout all captures as a 
quality control.

2.6. Data analysis

2.6.1. Sample data handling
HSI images were stored as a ’band interleaved by line’ file (.bil) and 

converted to MATLAB file format later (.mat). The Matlab version used 
was R2019a version (Mathworks Inc., Natick, MA, USA).

Once the spectral reflectance image was created according to equa-
tion (1), a region of interest (ROI) was selected for each sample using a 
MATLAB graphical user interface (GUI). This GUI automatically detec-
ted the centre of the circular petri dishes and extracted a centred square 

Fig. 1. Benchtop scanning system with the SWIR spectral camera and some salt samples protected from external contamination prior to image capture process. (1) 
Resonon PikaIR + camera; (2) halogen lamps; (3) linear stage with white reference placed on it; (4) salt samples; (5) computer.

Table 2 
Instrumental settings selected for capturing hyperspectral images using each 
spectral camera.

Camera Pika L Pika IR+

Spectral range VNIR (400 nm − 1000 nm) SWIR (900 nm − 1700 nm)
Number of bands 121 161
Wavelength step 5 nm 5 nm
Pixels/line 900 640
Exposure time 1.26 ms/line 9.22 ms/line
Frame rate 249.4 fps 87.18 fps
Capturing time 8.66 s 14.45 s
Imaging distance 21.5 cm 16 cm
Focal length 23 mm 25 mm
Vertical FOV 13.1◦ 21.7◦

Swath 5 cm 6.1 cm
Scanning speed 1.39 cm/s 0.83 cm/s
Number of lines 2250 1350
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area. The ROI was both big enough to have a large number of pixels and 
small enough to avoid edge or background pixels. The imaging condi-
tions were the same for all samples and the size of the petri dishes did not 
change across captures. The ROI size was then fixed at 273 × 273 pixels 
for the SWIR camera and 607 × 607 for the VNIR camera. Each pixel 
captured by the SWIR camera contained a spectrum with 161 spectral 
bands, and for the VNIR camera the number of bands was 121. As a 
result, each ROI consisted of a 3D data structure (ROI data pseudo cube, 
which is indeed a data parallelepiped) of 273 × 273 × 161 elements, 
which is a total of 74,529 spectra per salt sample or µP standard when 
SWIR camera was employed and of 607 × 607 × 121 elements which is a 
total of 368,449 spectra per salt sample or µP standard when VNIR 
camera was used.

For each ROI data pseudo cube, the representative average spectrum 
of each salt sample and µP standard was computed and stored sepa-
rately. Fig. 2 shows a schematic view of this process.

As it is shown in Fig. 2, three spectral bands were selected to create a 
false colour image (false RGB), using them as red, green and blue image 
channels respectively. The purpose of these false colour images was only 
for visually inspecting that both the full images were correctly captured, 
and the ROIs were correctly retrieved containing only sample pixels and 
not edge of background areas. The spectral data used for the classifi-
cation models were retrieved from the spectral images.

Moreover, in order to verify that the imaging conditions remained 
unchanged throughout the capturing process, a similarity analysis was 
performed on the average spectra of the batch-to-batch control samples. 
In this regard, the nearness index (NEAR) was calculated between each 
pair of average spectra [60]. Once the consistency of the quality control 
samples was ensured, the analysis of the data salt samples and micro-
plastic standard was carried out.

2.6.2. Multivariate discrimination models
All multivariate data treatment was carried out using PLS_Toolbox 

(Eigenvector Research Inc. MA, USA, version 8.6.1) working under the 
MATLAB framework. Hierarchical clustering analysis (HCA) was 
employed as exploratory analysis in order to detect natural grouping of 
all the samples.

PLS-DA was selected as discrimination machine learning method in 
order to identify if the natural salt from coastal saltworks was polluted 
with microplastics and thus confirm that such samples can be used as a 
strategy to control the presence of these plastic materials in the Medi-
terranean Sea. To train and validate the PLS-DA model, the data set was 
split into training set (70 %) and validation set (30 %) subsets using the 
CADEX algorithm, i.e., Kennard-Stone’s method [61]. Model outcomes 
are assessed by quality performance metrics for classification including 
sensitivity, specificity and precision [62].

3. Results and discussion

This section describes and discusses the results obtained after car-
rying out the steps explained in section 2.

3.1. Specimen size uniformity study

Fig. 3 displays the particle size distribution from samples took from 
PVC and PE standards before and after 15 s of milling. Although addi-
tional milling times (5 and 10 s) were assessed, their results are not 
included in the figure, as it was found that particle size distribution 
remained unchanged beyond 10 s. Consequently, only relevant data 
points representing the initial and final distribution are shown.

The particle sizes of original PVC were more uniform or homoge-
neous than PE. PVC particles ranged from 70 to 400 µm, with most of the 
population concentrated around a medium size of 170 µm. In contrast, 

Fig. 2. Scheme of the ROI extraction from the hyperspectral reflectance full images and the false colour RGB images generated using bands 1600, 1200 and 1000 nm 
from both the full images and the retrieved ROIs. Petri dishes contain inland saltworks (left) and sea PVC (right). The mean spectra from the two ROIs are shown in 
the bottom.
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PE exhibited a broader particle size range in their original state (280 µm 
medium size), spanning from approximately 10 to 1000 µm. Thus, the 
size range of PE was significantly wider. However, after 15 s of milling, 

the size distribution of both plastics became more similar. This effect 
was less significant in PVC, suggesting that its initial particle size was 
already close to the minimum size achievable with the milling method 
used. Upon completing the milling procedure, the bulk of PVC particles 
were close to 170 µm in size, approximately, whereas the distribution of 
PE particles’ size peaked around 230 µm. Note that these sizes refer to 
diameters, considering that the particles are spherical in shape.

Based on these findings, it can be confirmed that the milling enabled 
the control of particle size across different plastics, irrespective of their 
composition or original size.

3.2. Natural and simulated reference salts and µP standards imaging

Fig. 4 shows the average spectra of all the pixels within the ROI, 
extracted from the five plastic standards and from the three salt samples: 
µP-free simulated sea salt reference samples prepared in the laboratory 
and the salts sampled from inland (blank) and coastal saltworks. Sig-
nificant differences can already be found between the average spectra 
from the µP standards and the salt samples, as well as among the spectra 
of the different types of µP standards. Likewise, there are slight differ-
ences between the spectra of the three types of salt samples, with the 
reference salt having a higher reflectance up to 1500 nm. However, 
within the VNIR range (not shown in Fig. 4) these differences are less 
marked, and the result is that they are not easily discernible to the naked 
eye. This highlights that using the SWIR range is a priori a better option 
for the purpose of separating salt from µP.

3.3. Multivariate analysis: Detection of µP in sea salt

A preliminary exploratory analysis was conducted by building an 
HCA model in order to evaluate the spectral similarities between blank 
salt samples and µP standards. The goal was to determine whether the 
signals acquired by both VNIR and SWIR cameras yielded similar results 
or if one of them showed fewer promising ones and could be excluded 
from subsequent steps.

Fig. 5 displays the results of the HCA model through dendrograms, 

Fig. 3. Size distribution curves resulting from the granulometric study on the 
original standard plastic material and after grinding for 15 s: (A) PVC, and 
(B) PE.

Fig. 4. Example of ROI average spectra of the five µP standards (top), and the three types of salts: µP-free simulated reference, sea coastal and inland (bottom).
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which were generated using the ROI average spectra of blank salt and µP 
reference standards as input data. The spectra captured using the VNIR 
camera did not provide a clear grouping, leading to an unclear separa-
tion between samples. However, the signals obtained using the SWIR 
camera clearly show a split into two clusters corresponding to the 
spectra of salts and plastics, showing a variance-weighted distance be-
tween their centroids of approximately 200 arbitrary units. These pre-
liminary results confirm the observations extracted from the observation 
of the spectra shown in Fig. 5.

The most noticeable differences are observed within the µP standards 
cluster, which is expected given the diverse chemical compositions of 
the different types of plastic materials. The spacing between the µP 
standard first subsets is about twice as large as for the salt samples. This 
can indicate the µP exhibit notable intra-cluster variability due to their 
distinct chemical composition, while the blank salt samples are more 
evenly matched. The findings from this preliminary analysis led to the 
decision to develop the classification models using only the signals 
captured from the SWIR camera as input data.

The development of the multivariate model to detect µP in salt 
samples consisted of the following steps: first, a PLS-DA model aiming to 
discriminate between µP-free salt samples and plastic materials was 

developed. The model was trained and externally validated using two 
sets of samples: blank/simulated reference sea salt and different plastic 
materials from pre-milled commercial product packaging/ µP standards 
(see section 2.1). The model was built with 5 latent variables (LVs) 
which explained a 99.52 % of the variance, using mean-centering as the 
preprocessing method.

Two input classes (2iC) were defined: ’µP-free salts’ (class 1) and 
’microplastics’ (class 2). A crucial aspect of the model development was 
the selection of the spectral signals to be used for each of the two classes. 
For representing Class 1, the average spectra of the ROIs of the blank salt 
samples and the spectra from several randomly selected pixels of the ROI 
of the simulated sea salt were used (see Table 3 for details). Class 2 was 
represented by the spectra of several pixels randomly selected from the 
ROIs of each of the standard and packaging plastic samples (see Table 3). 
Although this model training strategy is slightly unusual, it is never-
theless valid since a spectral reflectance image from a particulate solid 
material is nothing more than a set of independent spectra, one for each 
pixel, which are acquired simultaneously, so that the spectral informa-
tion of each pixel is unique. The use of the average spectrum of the blank 
salt can mitigate the influence of the presence of some pixels that might 
be polluted with µP or other exogenous substances commonly found in 

Fig. 5. Dendrogram of the ROI average spectra from inland salt samples (red shaded), and µP standards samples (green shaded). The measurements correspond to 
VNIR (A) and SWIR spectral ranges (B). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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salt mines, since their effect on the average spectrum is cancelled out by 
the large number of uncontaminated pixels. Thus, the average spectrum 
reliably represents the composition of most of the salt pixels.

The model results are summarized in the score plot showed in 
Fig. 6A. The decision criterion established for the classification of the 
samples was a threshold value of 0.65, i.e. all the spectra with scores 
greater than 0.65 were classified to class 1 and spectra with scores 
lowers than 0.65 were assigned as belonging to class 2. It is noteworthy 
that all spectra in the external validation set were correctly classified; 
this means the model is able to reliably discriminate between µP- 
polluted and µP-free salt samples. The classification performance of the 
PLS-DA model with respect to Class 1 (’µP-free salts’) was evaluated 
through training, cross-validation, and external validation [62]. During 
the training step, the model achieved an RMSEC of 0.18, with sensitivity, 
specificity, precision, F1-score and accuracy all equal to 1.0. Cross- 
validation results yielded an RMSECV of 0.19, keeping all classifica-
tion metrics (sensitivity, specificity, precision and F1-score) equal to 1.0. 
In the external validation step, the model reached an RMSEP of 0.23, 
with sensitivity, specificity, precision, F1-score and accuracy also equal 
to 1.0, confirming the robustness of the model. A confusion matrix 
corresponding to the external validation results is shown in Fig. 6B.

Additionally, a second evaluation was conducted to corroborate the 
initial findings. In this case, the test samples were some of the µP-free 

Table 3 
Spectra employed to build the PLS-DA model.

Class Sample/specimen Number of spectra

Training 
set

Validation 
set

Class 1 
(µP-free salts)

Blank salt 149 63
Simulated sea salt 200 30

Class 2 
(microplastic)

µP standards PE 14 6
PET 14 6
PP 14 6
PVC 84 6
PS 14 6

Plastics from commercial 
packaging

PE 25 5
PET 71 19
PP 63 47
PS 44 16

TOTAL 692 210

Fig. 6. (A) PLS-DA classification plot showing both training and external validation set. Class 1 (’µP-free salts ’) and class 2 (’microplastics’). The red line marks the 
0.65 threshold level. (B) External validation contingency chart of the PLS-DA classification model. Results are classified according to class 1 (µP-free salts) and class 2 
(microplastics), considering class 1 as the target class. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.)
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simulated sea salt reference samples that were previously contaminated 
by sprinkling on the surface around 20 ± 2 mg of standard PVC mi-
croparticles. Then, the spectra of all the pixels making up the ROI, 
totalling 74,529, were classified by the previously developed model. The 
results are showed in Fig. 7. The spectra are distributed above and below 
the classification threshold, differentiating pixels that contain µP (below 
the threshold) from those that do not (above the threshold). Notice that 
previously, when unpolluted salt was tested in this same classification 
model (Fig. 6), all pixels were found to be free of contamination. This 
suggests that the model could identify spectra with a higher contribution 
of µP, classifying them into class 2 (’microplastics’).

Once the model was externally validated as explained above, 36 salt 
samples from the coastal saltworks were analysed individually to assess 
the presence of µP pollution in the Mediterranean Sea. The 74,529 
spectra within each sample’s ROI were classified to evaluate the µP 
presence. 20 samples corresponded to common salt and 16 to flower of 
salt, and significant differences were found between the two salt types.

For common salt samples, the model detected less presence of pixels 
polluted with microplastics, classifying most of them in class 1 (µP-free 
salts). However, for the flower of salt samples, the model detected 
polluted pixels in higher amounts. The classification results on the 16 
samples showed that in 4 samples there were 2–3 % of polluted pixels, in 
2 samples were around 0.4 % while in 6 samples this number was below 
0.1 %. In the remaining 4 samples, no polluted pixels were detected. In 
Fig. 8, three common salt samples are shown as an example: one un-
polluted, one with approximately 3 % of polluted pixels, and the third 
with around 0.4 % of polluted pixels. Moreover, another observation 
that can be formulated from Fig. 8 is that, in some natural salt samples, 
there are pixels identified as polluted whose classification scores lie 
close to the decision threshold. This may be explained since the pixel 
size exceeds that of the microplastics, a pixel with a high contribution 
from plastic and a minimal presence of natural salt is still correctly 
recognised by the model as polluted, but its output probability is pushed 
nearer to the class discrimination threshold.

The differences observed between flower of salt and common salt 
samples might be due to the different collecting and producing methods. 
The flower of salt is produced in the cold of the night and is left floating 
on the surface of the water in the salt ponds. It is collected manually at 
dawn before the water is heated by the sun. In this way, any solid pol-
lutants floating on the water are collected together with the flower of 
salt. On the contrary, common salt is collected from the bottom of the 

ponds once all the water has evaporated. Based on these findings, it 
could be assumed that flower of salt is a good candidate for further 
detailed study linking the presence of µP in salt from coastal solar salt-
works to µP contamination in the sea.

4. Conclusions and future perspectives

The use of hyperspectral imaging together with machine learning 
methods has allowed the development of a sustainable analytical 
methodology to directly detect the presence of µP in solid sea salt 
samples. A multivariate classification method using SWIR range spectra 
was developed and validated using three different sample subsets. This 
methodology is in line with the 12 principles of green analytical 
chemistry (GAC) and its subsequent evolution to detect microplastics in 
solid samples such as salt. Likewise, the proposed analytical methodol-
ogy has demonstrated its potential for the evaluation of the presence of 
pollution from microplastics in marine waters of the Andalusian Medi-
terranean coast, taking as an indicator of pollution the µP content in sea 
salt sampled directly from coastal saltworks in the area under study. To 
our knowledge, this is the first time that such strategy has been applied 
for this purpose.

The next stage of the study will aim to relate the percentage of pixels 
reported as contaminated to the overall µP content present in the salt 
sample. This task is not straightforward, as it is not possible to directly 
relate the concentration of pollutants with the abundance of contami-
nated pixels. Since the salt is partially translucent in the SWIR range, 
using the abundance of polluted pixels found in the surface of the sample 
might lead to overestimating the amount of µP present. Nevertheless, it 
is reasonable to assume that there is a correlation between the abun-
dance of polluted pixels and the concentration of pollutants in the 
sample.

The proposed method involves direct testing of samples collected in 
the saltworks and could prove to be more practical than the previous 
analytic procedures involving collection of water samples and several 
preparation steps, with a view to continued monitorization of the µP 
content in the sea.
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[26] B. Martín Gómez, J.S. Elmore, S. Valverde, A.M. Ares, J. Bernal, Recent 
applications of chromatography for determining microplastics and related 
compounds (bisphenols and phthalate esters) in food, Microchem. J. 197 (2024) 
109903, https://doi.org/10.1016/j.microc.2024.109903.

[27] B. Singh, A. Kumar, Advances in microplastics detection: a comprehensive review 
of methodologies and their effectiveness, Trend. Anal. Chem. 170 (2024) 117440, 
https://doi.org/10.1016/j.trac.2023.117440.

[28] Y.K. Müller, T. Wernicke, M. Pittroff, C.S. Witzig, F.R. Storck, J. Klinger, 
N. Zumbülte, Microplastic analysis – are we measuring the same? results on the 
first global comparative study for microplastic analysis in a water sample, Anal. 
Bioanal. Chem. 412 (2020) 555–560, https://doi.org/10.1007/s00216-019-02311- 
1.

[29] ASTM D8332-20:2020, Standard practice for collection of water samples with high, 
medium, or low suspended solids for identification and quantification of 
microplastic particles and fibers. ASTM International, West Conshohocken, 2020.

[30] ASTM D8333-20:2020, Standard practice for preparation of water samples with 
high, medium, or low suspended solids for identification and quantification of 
microplastic particles and fibers using Raman spectroscopy, IR spectroscopy, or 
pyrolysis-GC/MS. ASTM International, West Conshohocken, 2020.

[31] Iso, Textiles and Textile Products – Microplastics from Textile Sources –part 2: 
Qualitative and Quantitative Analysis of Microplastics 4484–2: (2023) 2023.

[32] Iso, Principles for the Analysis of Microplastics Present in the Environment 24187: 
(2023) 2023.

[33] Iso, dis,, Water Quality – Analysis of Microplastic in Water – Part 2: Vibrational 
Spectroscopy Methods for Waters with Low Content of Suspended Solids including 
Drinking Water 16094–2: (2024) 2024.

[34] Commission delegated decision (EU) No 2024/1441 of 11 March 2024 
supplementing Directive (EU) 2020/2184 of the European Parliament and of the 
Council by laying down a methodology to measure microplastics in water intended 
for human consumption. European Commission, OJ L (2024) 1-7.

[35] C. Bertoldi, L.Z. Lara, A.A. Gomes, A.N. Fernandes, Microplastic abundance 
quantification via a computer-vision-based chemometrics-assisted approach, 
Microchem. J. 160 (2021) 105690, https://doi.org/10.1016/j. 
microc.2020.105690.

[36] C. Fang, Y. Luo, R. Naidu, Microplastics and nanoplastics analysis: options, 
imaging, advancements and challenges, Trend. Anal. Chem. 166 (2023) 117158, 
https://doi.org/10.1016/j.trac.2023.117158.

[37] A. Gebejes, B. Hrovat, D. Semenov, B. Kayathare, T. Itkonen, M. Keinänen, 
A. Koistinen, K.E. Peiponen, M. Roussey, Hyperspectral imaging for identification 
of irregular-shaped microplastics in water, Sci. Total Environ. 944 (2024) 173811, 
https://doi.org/10.1016/j.scitotenv.2024.173811.

[38] R. Goyetche, L. Kortazar, J.M. Amigo, Issues with the detection and classification of 
microplastics in marine sediments with chemical imaging and machine learning, 
Trend. Anal. Chem. 166 (2023) 117221, https://doi.org/10.1016/j. 
trac.2023.117221.

M. Medina–García et al.                                                                                                                                                                                                                      Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 343 (2025) 126528 

12 

http://refhub.elsevier.com/S1386-1425(25)00834-0/h0005
http://refhub.elsevier.com/S1386-1425(25)00834-0/h0005
https://doi.org/10.1016/j.cogsc.2021.100497
https://doi.org/10.1016/j.cogsc.2021.100497
https://doi.org/10.1021/acs.est.5b01090
https://doi.org/10.1007/978-3-030-88342-3
https://doi.org/10.1007/978-3-030-88342-3
https://doi.org/10.1016/j.scitotenv.2022.159834
https://doi.org/10.1016/j.csr.2024.105371
https://doi.org/10.1016/j.trac.2018.12.002
https://doi.org/10.1016/j.trac.2018.12.002
https://doi.org/10.1021/acs.chemrev.1c00178
https://doi.org/10.1016/j.trac.2023.117190
https://doi.org/10.1016/j.trac.2023.117261
https://doi.org/10.1016/j.trac.2023.117261
https://doi.org/10.1007/s00216-024-05319-4
https://doi.org/10.3390/ijerph17186710
https://doi.org/10.3390/ijerph17186710
https://doi.org/10.1016/j.foodchem.2023.135985
https://doi.org/10.1016/j.foodchem.2023.135985
https://doi.org/10.1016/j.greeac.2024.100152
https://doi.org/10.1016/j.greeac.2024.100152
https://doi.org/10.1007/978-3-031-14486-8_8
https://doi.org/10.1007/978-3-031-14486-8_8
https://doi.org/10.3390/molecules28155710
https://doi.org/10.3390/molecules28155710
https://doi.org/10.1007/978-981-97-6461-7_10
https://doi.org/10.1016/j.trac.2024.118056
https://doi.org/10.1016/j.trac.2024.118056
https://doi.org/10.1007/978-981-97-4068-0_1
https://doi.org/10.1016/j.marpolbul.2021.113101
https://doi.org/10.1016/j.trac.2024.118044
https://doi.org/10.1016/j.microc.2024.109903
https://doi.org/10.1016/j.trac.2023.117440
https://doi.org/10.1007/s00216-019-02311-1
https://doi.org/10.1007/s00216-019-02311-1
http://refhub.elsevier.com/S1386-1425(25)00834-0/h0155
http://refhub.elsevier.com/S1386-1425(25)00834-0/h0155
http://refhub.elsevier.com/S1386-1425(25)00834-0/h0160
http://refhub.elsevier.com/S1386-1425(25)00834-0/h0160
http://refhub.elsevier.com/S1386-1425(25)00834-0/h0165
http://refhub.elsevier.com/S1386-1425(25)00834-0/h0165
http://refhub.elsevier.com/S1386-1425(25)00834-0/h0165
https://doi.org/10.1016/j.microc.2020.105690
https://doi.org/10.1016/j.microc.2020.105690
https://doi.org/10.1016/j.trac.2023.117158
https://doi.org/10.1016/j.scitotenv.2024.173811
https://doi.org/10.1016/j.trac.2023.117221
https://doi.org/10.1016/j.trac.2023.117221


[39] H. Huang, J.U. Qureshi, S. Liu, Z. Sun, C. Zhang, H. Wang, Hyperspectral imaging 
as a potential online detection method of microplastics, Bull. Environ. Contam. 
Toxicol. 107 (2021) 754–763, https://doi.org/10.1007/s00128-020-02902-0.

[40] A. Faltynkova, G. Johnsen, M. Wagner, Hyperspectral imaging as an emerging tool 
to analyze microplastics: a systematic review and recommendations for future 
development, Microplast. Nanoplast. 1 (2021) 1–19, https://doi.org/10.1186/ 
s43591-021-00014-y.

[41] S. Serranti, G. Capobianco, P. Cucuzza, G. Bonifazi, Efficient microplastic 
identification by hyperspectral imaging: a comparative study of spatial resolutions, 
spectral ranges and classification models to define an optimal analytical protocol, 
Sci. Total Environ. 954 (2024) 176630, https://doi.org/10.1016/j. 
scitotenv.2024.176630.

[42] S. Piarulli, G. Sciutto, P. Oliveri, C. Malegori, S. Prati, R. Mazzeo, L. Airoldi, Rapid 
and direct detection of small microplastics in aquatic samples by a new near 
infrared hyperspectral imaging (NIR-HSI) method, Chemosphere 260 (2020) 
127655, https://doi.org/10.1016/j.chemosphere.2020.127655.

[43] L. Xu, Y. Chen, A. Feng, X. Shi, Y. Feng, Y. Yang, Y. Wang, Z. Wu, Z. Zou, W. Mai, 
Y. He, N. Yang, J. Feng, Y. Zhao, Study on detection method of microplastics in 
farmland soil based on hyperspectral imaging technology, Environ. Res. 232 
(2023) 116389, https://doi.org/10.1016/j.envres.2023.116389.

[44] S. Piarulli, C. Malegori, F. Grasselli, L. Airoldi, S. Prati, R. Mazzeo, G. Sciutto, 
P. Oliveri, An effective strategy for the monitoring of microplastics in complex 
aquatic matrices: exploiting the potential of near infrared hyperspectral imaging 
(NIR-HSI), Chemosphere 286 (2024) 131861, https://doi.org/10.1016/j. 
chemosphere.2021.131861.

[45] N.A. Korovessis, D. Lekkas, Solar saltworks’ wetland function, Glob. Nest J. 11 
(2009) 49–57, https://doi.org/10.30955/gnj.000575.

[46] Q. Zhang, E.G. Xu, J. Li, Q. Chen, L. Ma, E.Y. Zeng, H. Shi, A review of 
microplastics in table salt, drinking water, and air: direct human exposure, 
Environ. Sci. Technol. 54 (2020) 3740–3751, https://doi.org/10.1021/acs. 
est.9b04535.
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