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Machine learning (ML) techniques have steadily gained popularity in Neuroscience research, 
particularly when applied to the analysis of neuroimaging data. One of the most discussed topics in 
this field, the neural correlates of conscious (and unconscious) information, has also benefited from 
these approaches. Nevertheless, further research is still necessary to better understand the minimal 
neural mechanisms that are necessary and sufficient for experiencing any conscious percept, and which 
mechanisms are comparable and discernible between conscious and unconscious events. The aim of 
this study was two-fold. First, to explore whether it was possible to decode task-relevant features 
from electroencephalography (EEG) signals, particularly those related to perceptual awareness. 
Secondly, to test whether this decoding could be improved by using time-frequency representations 
instead of voltage. We employed a perceptual task in which participants were presented with near-
threshold Gabor stimuli. They were asked to discriminate the orientation of the grating, and report 
whether they had perceived it or not. Participants’ EEG signal was recorded while performing the 
task and was then analysed by using ML algorithms to decode distinctive task-related parameters. 
Results demonstrated the feasibility of decoding the presence/absence of the stimuli from EEG 
data, as well as participants’ subjective perception, although the model failed to extract relevant 
information related to the orientation of the Gabor. Unconscious processing of unseen stimulation 
was observed both behaviourally and at the neural level. Moreover, contrary to conscious processing, 
unconscious representations were less stable across time, and only observed at early perceptual 
stages (~ 100 ms) and during response preparation. Furthermore, we conducted a comparative analysis 
of the performance of the classifier when employing either raw voltage signals or time-frequency 
representations, finding a substantial improvement when the latter was used to train the model, 
particularly in the theta and alpha bands. These findings underscore the significant potential of ML 
algorithms in decoding perceptual awareness from EEG data in consciousness research tasks.

Perceptual awareness has been studied since the 1970s1to describe the cognitive processing of conscious and 
unconscious information2, as well as the neural correlates of conscious processing3. It has been proposed that 
unconscious stimuli can be either subliminal (stimuli with insufficient bottom-up strength, that cannot reach 
consciousness even if attended) or preconscious (stimuli with sufficient bottom-up strength, that can reach 
consciousness if top-down attentional amplification occurs)2,4,5. At the cognitive level, abundant evidence 
suggests that unconscious information is processed and affects behaviour at different processing stages6. There 
is, for example, evidence showing that unconscious information can be maintained in working memory7–10, can 
undergo semantic processing11,12, and can even be used in certain arithmetic operations13.

Despite our advanced understanding of how perceptual information is represented at various stages in the 
brain, a major unresolved issue in this field revolves around the debate concerning the neural representation 
of conscious and unconscious information. For the last decades, researchers have been trying to shed light 
on this conundrum by employing neuroimaging methods2,14–17as well as studying clinical populations18–20, 
and using neurostimulation approaches21–24. Some authors have argued that the representation of conscious 
and unconscious information is similar during the early stages of processing. A large corpus of literature 
demonstrates that early event-related potentials (ERPs), such as the P1 and the N1, are also evoked by unseen 
stimuli25–28. However, around 300 ms after stimulus onset, only seen stimuli evoke components such as the 
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P3002,28,29. More recently, this proposal has been challenged by some other authors who argue that P300 is related 
to post-perceptual decisional processes28,30–33. In this case, the visual awareness negativity (VAN), which can be 
observed at around 200 ms after stimulus onset, is proposed to be the earliest electrophysiological correlates of 
perceptual awareness28,31,34. It has also been claimed that the processing of unconscious representations peaks 
early after stimulus onset and then decays, as unconscious representations cannot be maintained for prolonged 
periods2,35. However, more recent data have observed that unconscious information can be preserved during 
relatively extended time periods36.

Focusing on the EEG literature, there is a pronounced – and growing – amount of evidence showing how 
brain oscillations can be interpreted as an index of conscious perception37. Specific frequency bands have been 
related to certain processes related to perceptual awareness, mainly alpha, beta, and gamma37. In particular, 
the role of gamma-band activity as a key factor in perceptual awareness remains debated37. Some authors have 
argued that gamma is neither exclusive to nor sufficient for conscious processing37,38, and it has been proposed 
that it reflects post-perceptual processes rather than access consciousness itself (in a similar fashion to the 
P300)32. Nevertheless, there is also an important amount of evidence that links gamma-band activity with 
visual awareness39,40. Oscillations in the gamma band seem to act as a synchronization mechanism, binding 
distributed neural activity implicated in different processes that allow conscious perception37,41. Wyart and 
Tallon-Baudry42explored the relationship between spatial attention and consciousness focussing on gamma 
modulations. They presented participants with near-threshold stimuli preceded by valid and invalid spatial 
cues. Results showed independent effects of consciousness and attention in different gamma bands. While 
consciousness modulated mid-range gamma activity, spatial attention modulated high-frequency gamma 
activity. This relationship between gamma-band activity and conscious perception has also been observed in 
multimodal studies43combining visual with auditory44and tactile45stimuli. When examining the relationship 
between beta-band activity and conscious perception, some studies have observed increased power46or stronger 
synchronization47when stimuli are consciously detected as compared to non-detected48.

The beta-band is known to be involved in the maintenance of synchronous activity across distributed 
brain regions. Fiebelkorn and Kastner recently proposed a rhythmic theory of attention49which proposes the 
existance of two alternating attentional states, one associated with increased target detection and a second one 
associated with decreased detection. The first state is characterized by increased activity in gamma from parietal 
areas and increased activity in beta from the frontal eye fields (FEF)50, supporting the associations of beta-
band activity with feedback connectivity51. Increased beta has also been related to the suppression of attentional 
shifts and/or eye movements50. These findings link activity in the beta-band with a state of enhanced perceptual 
sensitivity, which then leads to an improved detection of the visual targets50. However, other studies have 
observed contradictory results. For example, in a study by Panagiotaropoulos et al.52, the authors investigated 
beta oscillations in the lateral prefrontal cortex (LPFC) of macaques during monocular physical alternation and 
binocular flash suppression. Their findings revealed that beta power was not significantly related to whether 
stimuli were consciously perceived or unconsciously suppressed. Nevertheless, the evidence against the role of 
beta is scarce and the literature seems to support its relationship with conscious perception53,54.

Alpha-band activity, on the other hand, has been associated with key processes for conscious perception 
such as spatial attention, information processing and the inhibition of distractors55–57. Increased alpha power 
is related to lower performance in visual perception tasks58, and pre-stimulus alpha activity can predict target 
detection59,60. The threshold to detect a visual stimulus has also been related to the alpha phase61. Similarly, 
presenting the stimuli at the peak of alpha oscillations makes them more likely to be perceived62. There is also 
growing evidence of the role of alpha-band activity for conscious perception using entrainment approaches, 
such as transcranial alternating current stimulation (tACS) and transcranial magnetic stimulation (TMS)37.

In recent years, the application of machine learning (ML) techniques, particularly in multivariate pattern 
analysis (MVPA), to analyze neuroimaging data has been pivotal in advancing our understanding of how 
information is represented in the brain. Although most prominently used in functional magnetic resonance 
imaging (fMRI) studies, there has been a recent increase in the application of ML techniques to analyze 
magnetoencephalographic and electroencephalographic (M/EEG) data (for a recent review, see63). Using these 
pattern classification techniques, researchers have been able to identify neural patterns related to different 
perceptual states. This promising methodology has, for instance, shown that expectancies induce sensory 
templates before stimuli are actually presented64as well as the differential patterns of activity for sensory and 
decision-making processes in perceptual tasks65. Clinical applications of these methods, especially in epileptic 
populations, have also shown promising results66.

When applied to EEG data, ML models can be trained with either voltage (either raw EEG or pre-processed 
epochs) or time-frequency (TF) representations. Although using voltage to train ML models has been employed 
in numerous studies, this approximation does not consider the role of oscillatory brain activities in cognition, 
which can provide valuable information about how the activity of different frequency bands is related to 
cognitive processes67–72. These TF representations capture both temporal and spectral dynamics simultaneously, 
aiding in the extraction of relevant features for understanding cognitive processes, and probably leading to 
improved performance in tasks like event classification and cognitive state detection. Overall, they enhance 
interpretability, sensitivity, and accuracy in analysing brain function and cognition. Therefore, it is possible that 
decoding performance could increase if the classifier is trained with TF data as compared to raw EEG. For 
instance, Desantis and collaborators73 found that, in a visual cueing task, decoding accuracy was overall higher 
when fitting the model with alpha-band activity as compared to raw EEG signals.

Combining neuroimaging data with ML has yielded valuable insights into the neural representation of 
conscious and unconscious information. In a MEG study36, participants were asked to perform a perceptual 
task which consisted of detecting and shortly maintaining in working memory the orientation of a grating. The 
recorded signals were then fed to a ML classification model and the results showed that both the presence/absence 
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and the orientation (left-right) of the target stimulus could be decoded from brain activity for a prolonged period 
of time, even when participants did not consciously perceive the stimulus. These findings provided remarkable 
insight into the brain representations of visible and invisible stimuli, and how perceptual information is coded 
and maintained in the brain.

Following this approach, in the present study we were interested in exploring how perceptual information 
is represented at the neural level, and how conscious and unconscious information representation differ. 
We designed a perceptual task with visual preconscious stimulation, with the aim of replicating some of the 
findings by King and collaborators36 but using EEG rather than MEG. Time-resolved decoding and temporal 
generalization analyses were employed, as in the MEG study, complemented with other analyses (cross-
classification across blocks, decoding-behaviour correlations) to explore the differential representation of 
conscious and unconscious information. In addition to this, we explored whether classification accuracy would 
be improved when using TF data as compared to voltage, which would not only be a simple way of improving 
decoding scores but also provide evidence about the important role of brain oscillations for cognitive processing. 
Given that TF representations can capture more information about the brain dynamics, we expected that the 
performance of the classifiers would be improved when using this data as compared to using the voltage from the 
signal. When exploring specific frequency bands, based on the study by King et al.36(see time-frequency results 
from Fig. 50) and previous literature37, we expected that decoding performance for the task-relevant features of 
the stimulus (presence of the target, tilt orientation, subjective awareness) would be significantly better for the 
lower frequency bands, such as alpha and theta.

Methods
The study protocol, including hypotheses, sampling plan, and analysis strategy, was pre-registered on the OSF 
and can be accessed at https://osf.io/5e32h. In addition to the analyses stated in the pre-registration, we also 
ran post-hoc Bayesian analyses (see Results - Cross-classification between blocks) and correlations between 
behavioural results and decoding scores (see Results - Post-hoc analyses: Decoding-behaviour correlations).

Participants
Sample size calculation for decoding analysis in neuroimaging is difficult to estimate. In contrast to hypothesis-
testing studies that seek to find a certain p-value of statistical significance, there is no standard tool for determining 
sample size estimates for studies using ML models such as the one presented here74–76. The difference between the 
two types of studies is subtle: while the former aims to find significant differences between different groups, the 
latter aims to obtain estimates of the predictive performance of ML models developed to validate them. For this 
reason, in this study we determined the sample size based on previous studies with similar approaches36,64,65,77,78 
which had between 20 and 25 participants, and we calculated an approximate sample size of 25 participants.

A larger sample was collected in case some participants had to be excluded from the analyses, and the final 
study sample included 33 volunteers (12 males, mean age 22 years, SD = 2 years). Three participants were removed 
from the analyses due to an insufficient number of seen targets (1 participant), at-chance accuracy for the tilt 
discrimination task (1 participant), and to technical issues during data recording (2 participants). Consequently, 
all analyses were run with a final n = 29. To further ensure that our sample size was sufficient for the ML analyses, 
we employed two strategies. First, we did a post-hoc power analysis computing the effect size of the area under 
the curve (AUC) metric for the classification of Target presence in TF data when compared against chance (see 
EEG results - Time-resolved decoding). The estimated Cohen’s d for this case was 9.347, confirming that our 
sample size was adequate to detect significant differences in decoding performance. Then we performed an 
iterative subsampling analysis to evaluate the impact of varying the sample size on the AUC, and how the sample 
size influences the performance and reliability of the classification model. To do this, we ran 100 iterations for 
different sample sizes ranging from 5 to 29 participants, and in each iteration we computed the mean and the SD 
of the AUC values. What we observed was that the average AUC values remained stable at ~ 0.75 AUC even with 
smaller subsamples, and that it converged for samples with n > 20 participants. This approach ensured that the 
effects found were robust and the sample size was adequate for the performed analyses.

All participants were right-handed and had normal or corrected-to-normal vision, normal colour 
perception, and no prior experience with the task. No participant had a history of major medical, neurological, 
or psychiatric disorders. Participants received a monetary compensation of 10€/h for their participation. Signed 
informed consent was collected prior to their inclusion in the study. Participants were informed about their 
right to withdraw from the experiment at any time. The University of Granada’s Ethics Committee approved the 
experiment (code 1862/CEIH/2020), which was carried out in accordance with the Code of Ethics of the World 
Medical Association (Declaration of Helsinki) for experiments involving humans.

Apparatus and stimuli
E-Prime software version 2.079 was used for stimuli presentation and behavioural data collection. Participants 
were seated at an approximate distance of 70 cm from the computer screen (a 24” monitor, BenQ BL2405HT, 
1920 × 1080 pixels, with a refresh rate of 60 Hz).

Trials started with a fixation display, consisting of a plus sign (0.4º x 0.4º) that appeared in the centre of the 
screen. The target was a Gabor stimulus generated using MATLAB 8.1 (http://www.mathworks.com). In total, 
200 Gabor stimuli were created (spatial frequency 4 cycles/deg., 2.4º diameter, 0.1º SD) with a maximum and 
minimum Michelson contrast of 0.92 and 0.02, respectively. The mask consisted of a checkerboard pattern (2.4º 
diameter), presented largely above threshold contrast. In the tilt orientation response screen, two Gabor probes, 
identical to the target stimulus, were presented 0.8º above and below the fixation cross. Finally, in the Gabor 
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presence response screen, the words “Visto” (“Seen”, in Spanish; 0.4º x 2º) and “No visto” (“Unseen”, in Spanish; 
0.4º x 3.5º) were displayed 2º above and below the fixation cross.

Task procedure
The experiment involved three types of blocks, as depicted in Fig. 1. After an initial titration block, conducted 
to adjust Gabor contrast to achieve 50% seen Gabors during the experimental blocks (see description of this 
block below), participants performed 5 localizer blocks and 10 experimental blocks (60 trials each: 40 Gabor 
present and 20 Gabor absent trials), in alternating order, always starting with a localizer block followed by 2 
experimental blocks. In the localizer blocks, the target was presented above threshold (around 100% seen). In 
the experimental blocks, target contrast was individually adjusted to achieve 50% seen trials (see below). In both 
localizer and experimental blocks, the target was not presented on 33.33% of the trials. The total duration of the 
task was approximately 75 min.

Trials in all blocks had a similar design (see Fig. 1). They started with a fixation screen, with a variable duration 
ranging between 1000 ms and 1500 ms. After this initial fixation, the Gabor stimulus was displayed at fixation 
during 50 ms, tilted clockwise or counterclockwise (with equal probability). In 33.33% of the trials, no Gabor 
stimulus was presented. After 300 ms, the mask was presented for 100 ms, followed by an interval of 1950 ms 
(ISI), in which the screen remained empty. Participants were then required to report the orientation of the lines 
composing the Gabor. To do this, they were presented with a clockwise-oriented Gabor, and a counterclockwise 
oriented Gabor, above and below the fixation cross, with the location of these stimuli being randomized across 
trials to avoid response preparation. This screen was presented until response. Participants responded with their 
right hand, pressing either the ‘k’ key associated with the stimulus above the fixation point or the ‘m’ key for the 
one presented below the fixation point (right hand response). Participants were asked to randomly press one 
of the two keys if no Gabor was perceived. Subsequently, participants were required to report the presence or 
absence of the Gabor, with a screen displaying the words “Seen” (“Visto”, in Spanish) and “Unseen” (“No visto”, in 
Spanish) above and below the fixation point, with the location of these words being also randomized across trials 
to avoid response preparation. This screen was displayed until a response was detected. Participants responded 
with their left hand, using the keys ‘d’ for the response above the fixation point and ‘c’ for the one below the 
fixation point. Finally, an inter-trial interval with a duration of between 1500 ms and 2000 ms was presented with 
the fixation cross displayed on the centre of the screen.

During the initial titration block, which was used to adjust the percentage of seen targets individually, 
a suprathreshold Gabor was first shown to the participants, to familiarize them with the procedure and the 
response keys. After this initial block, Gabor contrast was adjusted depending on participants’ performance. 
After every 12 trials (8 target present − 4 target absent, 4 tilted clockwise − 4 counterclockwise), if the percentage 
of seen stimuli exceeded 60%, the contrast was decreased in 0.5 points (in a scale of 200 different contrasts 
levels). Conversely, if the percentage of seen stimuli fell below 40%, the contrast was increased by 0.5 points. 
Once the percentage of seen targets stabilized between 60% and 40% in two consecutive blocks, the titration 
procedure concluded, and this contrast was used for the rest of the experimental blocks.

EEG data acquisition
High-density EEG was acquired using an active 64-channels system mounted on a cap (actiCAP snap), an 
actiCHamp Plus amplifier (Brain Products GmbH, Gilching, Germany) and a computer running the BrainVision 
Recorder software (version 1.25.0201). Impedances were kept below 5 kΩ by applying conductive gel, following 
the recommendations of the amplifiers’ manufacturer, and the signal was digitized at a sampling rate of 1024 Hz. 
EEG activity was referenced online to the Cz electrode. Electrical activity elicited by eye movements was 
monitored by electro-oculogram (EOG), recorded from two electrodes (TP9-TP10) placed above and below the 
left eye of the participants.

EEG analysis
Preprocessing
For the pre-processing and artefact detection pipeline, we selected standard procedures, similar to the ones 
recommended by PREP, a preprocessing pipeline for EEG analyses80, and focused on automatic procedures with 
the aim of applying the same steps in a future neurofeedback study. Data pre-processing was ran using MNE-
Python81, and all the steps were applied on a participant-by-participant basis. First, we employed a regression-
based removal of electrooculogram (EOG) artefacts implemented in MNE82,83. Next, bad channels were detected 
using the automatic implementation of the Random Sample Consensus (RANSAC) technique in the PyPREP 

Fig. 1. Sequence and timing of events in a given trial. After a fixation screen of variable duration, the Gabor 
stimulus could be presented at the centre of the screen (no Gabor was presented in 33.33% of the trials). 
Participants first responded to the tilt orientation of the stimulus (clockwise or counterclockwise), and then 
indicated if the stimulus was seen or unseen. ISI: interstimulus interval; ITI: intertrial interval.
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package84, a Python implementation of PREP80. Once the algorithm detected the bad channels in the data, these 
were later interpolated. Power line noise was corrected by means of a notch filter using the spectrum fit method85 
for the 50 Hz frequency and its two first harmonics (100 Hz and 150 Hz). Finally, the signal was re-referenced 
to the average of all channels.

After artefact detection and correction steps, data were segmented into epochs of −2000 ms to + 2000 ms 
relative to the onset of the Gabor stimulus, applying a baseline correction from − 200 ms to 0. The signal was re-
sampled from the original sampling rate of 1024 Hz to a frequency of 256 Hz to reduce file size and computation 
times. The epoched data for each participant was finally saved as “.fif ” files, separately for the localizer and 
experimental blocks. The averaged total of epochs in the experimental blocks retained after artefact correction 
was 571 (95.16% of the original data, SD = 101.516).

Finally, the epoched and artifact-corrected EEG data were transformed into a time-frequency representation 
by using a DPSS multi-taper approach. This approach applied logarithmically spaced frequencies ranging from 
4 to 50  Hz across the pre-processed epochs. An analysis window spanning 5 cycles of each frequency band 
was used to optimize signal representation. The TF representations of the EEG signals were computed using 
the MNE-Python package, specifically with the ‘tfr_multitaper’ function and the default parameters, except the 
already mentioned frequencies and number of cycles.

Decoding analyses
For the decoding analyses, the Python packages MNE81and Scikit-Learn86were used, as well as in-house 
adaptations of some of the code (following36and87). All the code is available at:  h t t p s :   /  / g i t h u  b . c o  m / r o d r  i g u  e 
z   - p / E E  G C o n s c  i o u s l y  S e e n U n s e e n. In all the analyses, Support Vector Classification (SVC) was used to run the 
decoding analyses. The default parameters provided by the Scikit-Learn library were used for the SVC model, 
except that kernel type was set to ‘linear’ and a class-weight parameter was set to ‘balanced’ to automatically deal 
with the class imbalance of our data.

Time-resolved decoding analyses were run using a search light approach with the Sliding Estimator method 
implemented in MNE. This method fits the SVC model on each time point (or time frame of the TF features) 
and then evaluates the model at the same time instant but in different epochs than those used for training. This 
provides a time course of the decoding accuracy across all the time points of the epochs. To run the analysis, the 
SVC model was trained with either the epoched data (with shape n_epochs, n_channels, n_times) or the TF data 
(n_epochs, n_channels, n_freqs, n_times). Since Scikit-Learn models expect 2D data (n_samples, n_features), 
data was flattened by applying a Vectorizer, implemented in MNE, to obtain a 2D array that can be then passed 
to the classifier. Data was also standardized using a Standard Scaler from Scikit-Learn, which normalizes features 
by removing the mean and scaling to unit variance.

Additionally, a temporal generalization analysis88 was run with the MNE Generalizing Estimator method. 
This approach is similar to the previous decoding over time analysis, but in this case the model is trained at a 
particular time point and then evaluated at all other time points.

Classification scores were computed with an empirical receiver operating curve (ROC) analysis and reported 
as the AUC and then were evaluated by using a stratified 10-fold cross-validation strategy as implemented 
in Scikit-Learn. This evaluation strategy randomly splits the participant data into 10 equal subsets, or folds, 
ensuring that each fold has a similar class distribution (known as stratification). For each iteration, the SVC 
model is trained on 9 folds and validated on the remaining fold. This process is repeated 10 times, rotating 
through all folds, so that each fold serves as the validation set once. By the end, we have 10 accuracy values, one 
from each fold, which can then be averaged to provide a more robust estimate of the model’s performance. This 
approach helps mitigate the effects of random variation in data splits and is especially useful when dealing with 
imbalanced datasets, as stratification ensures consistent class representation across all folds.

Statistical testing
To assess whether the classifier performance deviated from chance (50%) and to compare accuracies between 
voltage and TF power, we conducted Wilcoxon signed-rank tests89on the group mean decoding performance at 
each time point or TF bin. The resulting p-values were then corrected for multiple comparisons by adjusting the 
false discovery rate (FDR)90, obtaining q-values (FDR adjusted p-values). This methodology aligns with previous 
research73,91–93.

Bayesian T-Tests were used to calculate the amount of evidence in favour of the null or the alternative 
hypothesis (evidence about the absence or the presence of an effect, respectively) when decoding Target presence 
of seen and unseen stimuli (see EEG Results - Cross-classification between blocks). For this analysis we used 
the Pingouin Python library94 employing its default parameters, including a Cauchy scale factor of 0.707. We 
conducted a Bayesian T-test for each time point, comparing the results against a chance level of 0.5. The Pingouin 
library’s function computes the scaled Jeffrey-Zellner-Siow (JZS) Bayes Factor, which was used to evaluate the 
statistical evidence.

Results
Behavioural results
During the localizer blocks, participants reported seeing a mean of 97.4% (SD = 3%) of the presented 
suprathreshold Gabors and rarely caused any false alarm (x̄ = 1.9%, SD = 2.4%) (Fig. 2A, left panel). During the 
experimental blocks, in which Gabors were presented at threshold, participants reported seeing 49% of Gabors 
(SD = 13.5%) and committed false alarms on 7.2% (SD = 7.3%) of the Gabor-absent trials (Fig. 2A, right panel). 
This result confirms that the titration procedure was successful, since the stimulus was presented at the conscious 
threshold and the percentage of false alarms was low. Mixed-effects linear models were fitted using the pymer4 
Python package95 to examine the effect of Awareness (seen, unseen) on both accuracy (ACC) and reaction times 
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(RTs), accounting for individual differences through random intercepts for participants. When analysing RTs an 
inverse Gaussian distribution family was assumed, while for ACC the distribution was binomial. Significance 
of fixed effects was assessed using F-tests from the ANOVA table and p-values from the model summary. The 
model equations were the following:

Accuracy ~ Awareness + (1 | Participant).
RT ~ Awareness + (1 | Participant).
For ACC, participants responded more accurately to the tilt orientation task for seen (x ̄ = 0.937) as compared 

to unseen trials (x ̄ = 0.523) (main effect of Awareness, F(1, 28042.93) = 25663.77, p < .001) (Fig. 2B). Accuracy 
for this tilt orientation response was significantly above chance (0.5) for both seen (W = 435, p < .001, rB = 1) 
and unseen responses (W = 282.5, p = .007, rB = 0.610), as reported by a Wilcoxon one sample signed-rank 
test. This indicates that when participants were able to see the stimulus, they reported the Gabor orientation 
almost perfectly, and their responses were slightly above chance when they could not see the Gabor. For RTs, 
participants’ responses were faster for unseen (x ̄ = 646 ms) as compared to seen responses (x ̄ = 922ms) (main 
effect of Awareness, F(1, 28037.62) = 1248.53, p < .001).

EEG results
Time-resolved decoding
To explore brain representations of Target presence (present vs. absent), Awareness (seen vs. unseen) and Gabor 
orientation (left vs. right) across time, we conducted a time-resolved analysis aimed at determining the decoding 
performance of the ML model across the whole epoch. This analysis was run on voltage data (the pre-processed 
epochs; Fig. 3A) and on TF power (Fig. 3B).

In the experimental blocks (in which approximately 50% of the targets were seen), we first compared the 
model’s performance against chance along the entire time window, fitting the model with voltage data to decode 
Target presence, Awareness, and Gabor orientation. Decoding scores for Target presence and Awareness were 
significantly different from chance starting at approximately 200 ms after target presentation until the end of the 
epoch (q < 0.001), as can be observed in Fig. 3. When exploring the effect of Gabor tilt, no significant differences 
were found (q > 0.001). To test if the lack of accurate decoding of the tilt information was due to the weak strength 
of the Gabor stimulus, we ran the same model with data from the localizer blocks, in which the grating was 
presented above-threshold. Similar results were obtained, with no significant differences from chance (q > 0.001; 
see Supplementary material, Figure S1A). In a post-hoc analysis, instead of extracting data from the complete 
set of electrodes, we selected a subset of posterior channels following the procedure of a previous study by Wolff 
et al.96. Again, decoding scores did not reach significance (q > 0.001, Figure S1B). This suggests that, with the 
current task and using EEG data, it is not possible to accurately classify the orientation of the Gabor stimulus.

When using TF power to fit the ML model (Fig. 3B), Target presence and Awareness decoding scores were 
significantly different from chance starting at approximately 100 ms after target presentation until the end of the 
epoch (q < 0.001). In contrast, decoding performance for Gabor tilt was not different from chance at any time 
point (q > 0.001).

Since we were interested in evaluating whether the decoding analyses were improved by using TF 
representations, we conducted direct comparisons for the decoding scores when using voltage against the scores 
for TF power in the three experimental conditions (see Fig. 4). For Target presence, scores for TF power were 
significantly higher than voltage decoding scores. In the case of Awareness, decoding performance for TF power 
was greater than for voltage after target presentation. Again, for Gabor tilt, no significant differences were found, 
as performance for both TF power and voltage oscillating was around chance level (Fig. 4C).

Since better decoding scores were obtained from TF EEG representations, in the rest of this document we 
only used those representations for our analyses.

Time-frequency decoding
To explore the role of specific brain oscillations in brain representations, we used TF decoding (see Fig. 5A). 
This approach is similar to the temporal decoding method, but instead of only examining the temporal course 

Fig. 2. Behavioural results. (A) Proportion of seen stimuli for target present and absent trials, separately 
for localizer and experimental blocks. (B) Comparison of the accuracy for seen and unseen stimuli in the 
experimental blocks, showing a significant effect of Awareness. Asterisks represent significant comparisons.
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of the decoding scores, the data is segregated by TF time frame (see Methods). For both Target presence and 
Awareness, greater than chance AUC scores could be found between 4 Hz and 30 Hz, with the highest values for 
the theta and alpha frequency bands (see Fig. 5B). Again, for Gabor tilt, no comparisons against chance reached 
significance (q > 0.001).

Generalization across time
We also employed a Temporal Generalization method to examine how the patterns of the neural activity in our 
data generalized across different time points. This analysis examines the dynamics of neural representations 
over time, showing how a specific pattern of activity evolves across distinct time points88. The diagonal points 
represent the traditional measure of decoding accuracy where the classifier is trained and tested at the same time 
point (as in the time-resolved analysis of Fig. 3), and the off-diagonal points indicate the generalization of the 

Fig. 4. Temporal decoding performance comparing voltage and time-frequency (TF) power features for (A) 
Target presence, (B) Awareness, and (C) Gabor tilt. The x-axis represents time (in seconds) relative to the 
Gabor presentation (t = 0), and the y-axis shows the area under the curve (AUC) as a measure of decoding 
accuracy. The horizontal dashed line indicates chance-level performance (AUC = 0.5). Colored lines and 
shaded regions represent the mean ± SEM across participants for each condition. Significant differences from 
chance (q < 0.001) are marked by dots along the x-axis. Robust decoding performance was observed for Target 
presence and Awareness in both voltage and TF power domains. For Target presence, the differences appear 
shortly after Gabor presentation and are maintained for a prolonged period, disappearing before the end of the 
epoch. For Awareness, significant differences are found at a later time window in the trial, between ~ 800ms 
and ~ 1600ms. In contrast, decoding performance for Gabor tilt remained at chance level throughout the 
epoch.

 

Fig. 3. Temporal decoding performance for (A) voltage data and (B) time-frequency (TF) power data. The 
x-axis represents time (in seconds) relative to the onset of the Gabor presentation (t = 0), and the y-axis shows 
the area under the curve (AUC) as a measure of decoding accuracy. The horizontal dashed line indicates 
chance-level performance (AUC = 0.5). Colored lines represent decoding accuracy for Target presence (blue), 
Awareness (red), and Gabor tilt (green), with shaded regions showing the mean ± the standard error of the 
mean (SEM) across participants. Significant differences from chance are marked by colored dots along the 
x-axis (q < 0.001), indicating robust decoding for Target presence and Awareness shortly after the Gabor 
presentation and persisting until the end of the epoch. In contrast, decoding accuracy for Gabor tilt remains 
close to chance, suggesting that this feature was not reliably decoded.
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activity patterns across different time points. Significant decoding during prolonged periods is interpreted as 
evidence for sustained cognitive processes.

For both Target presence and Awareness, greater than chance performance was found during the entire 
epoch (q < 0.001). High AUC scores can be observed in the diagonal of the matrix, i.e. where training and testing 
data come from the same time points. When looking at off-diagonal elements, two sustained processes can be 
observed with an early peak around 200 ms and 800 ms after target presentation, and a late process at the end 
of the epoch around 1500 ms and 2000 ms. When analysing Gabor tilt, no significant differences were found 
(q > 0.001) (Fig. 6).

Cross-classification between blocks
To explore how seen and unseen stimuli were differentially represented in the brain, we first trained the ML 
model on the Localizer blocks (in which targets were highly visible) and later evaluated it on the Experimental 
blocks (were only 50% of the targets were consciously seen) separately for seen and unseen trials. The main 
question to be responded to with this analysis was: Can we decode Target presence even if participants did not 
consciously perceive the stimulus during the experimental blocks? Temporal generalization matrices showed 
significant differences for seen (Fig. 7B) but not for unseen (Fig. 7C) trials. For seen stimuli, an earlier sustained 
process can be observed from approximately 200ms to 800ms after target onset, and a later process around 
1700ms.

When analysing decoding accuracies across time (Fig. 7A), for seen trials, decoding scores were significantly 
different from chance (q < 0.001) right after the presentation of the stimuli and until the end of the trial. However, 
for unseen trials, no significant differences were found. To further explore this null result, we ran post-hoc 
analyses using Bayesian analyses for seen and unseen trials, comparing the classifier performance against chance 
(0.5) for each time point. Results demonstrated strong and consistent evidence in favour of the alternative 
hypothesis for the seen trials from Gabor onset until the end of the epoch. For the unseen trials, however, there 
were some time points in which evidence in favour of the alternative hypothesis was found. Decoding scores 
were slightly different from chance in two time windows: an early time window right after target onset (~ 100 

Fig. 5. Model performance for the TF data. (A) Decoding scores segregated by TF bins. Higher decoding 
accuracy was found from Gabor onset (t = 0) between 5 and 30 Hz, for both Target presence (top-left panel) 
and Awareness (top-middle panel), but not for Gabor tilt (top-right panel). Black contour lines indicate TF 
bins where decoding performance was significantly different from chance (q < 0.001). The colorbar on the 
right represents the mean AUC. (B) Violin plots representing the statistical distribution of decoding scores for 
each frequency band. Best overall results are obtained when using the theta band, which has the highest mean 
AUC for both Target presence (bottom-left panel) and Awareness (bottom-right panel). Asterisks represent 
significant comparisons among frequency bands.
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ms) and a later time window (with some significant values starting from ~ 1300 ms until the end of the epoch). 
In most parts of the epoch, Bayesian analysis showed evidence in favour of the null hypothesis, indicating that 
Target presence was not represented consistently for a prolonged period of time. This analysis demonstrates 
evidence of unconscious processing although only in a few, discrete time points at early (perceptual) and late 
(response preparation) stages of processing.

In order to further explore unconscious representations, we run all previous analyses separately for a set of 
posterior electrodes and for a set of anterior electrodes. The results were similar to those found when using all 
the channels. In the frequentist analyses, we found no significant decoding for unseen stimuli in either set of 
electrodes (see Supplementary material, Fig S5). With the Bayesian analyses, we observed evidence in favour 
of the null hypothesis in most of the time window for unseen trials, although there were some time points in 
which we observed evidence in favour of the alternative hypothesis. In the anterior set of channels, the only 
significant evidence in favour of the alternative hypothesis was found at around 900 ms after Gabor onset, and 
then at around 1700 ms, i.e. at the end of the trial (Figure S5A). This roughly corresponds with the late decoding 
peak we found with the complete set of electrodes (Fig. 7A), which could be related to response preparation 
processes. In the posterior electrodes, we observed an early significant time point after Gabor onset, similar to 
the one presented in Fig. 7A, and some other significant time points between ~ 500 ms and 1500 ms (Figure 

Fig. 7. Cross-classification decoding performance for seen and unseen stimuli. (A) Time-resolved analysis: 
The x-axis represents time relative to the Gabor presentation (t = 0), and the y-axis shows decoding accuracy 
(area under the curve, AUC). Significant differences from chance (q < 0.001) for seen trials are indicated by 
thick pink dots above the x-axis, starting shortly after stimulus presentation and persisting until the end 
of the epoch. No significant differences were found for unseen trials using frequentist statistics. Bayesian 
analysis results are shown as thinner dots, with light pink (seen) and grey (unseen) colors indicating BF < 0.33 
(evidence for the null hypothesis) and darker colors indicating BF > 3 (evidence for the alternative hypothesis). 
Shaded regions represent mean ± SEM across participants. (B-C) Temporal generalization matrices for seen 
(B) and unseen (C) trials. Each matrix depicts decoding performance across training (x-axis) and testing 
(y-axis) time points. Significant decoding scores (q < 0.001) for seen trials are outlined with black contour lines, 
demonstrating robust temporal generalization. No significant decoding scores were observed for unseen trials.

 

Fig. 6. Temporal generalization matrices for decoding performance across time for (A) Target presence, (B) 
Awareness, and (C) Gabor tilt. Each matrix shows the decoding scores (area under the curve, AUC) for all 
pairwise combinations of training and testing time points, with the x-axis representing training time and the 
y-axis representing testing time relative to the Gabor presentation (t = 0). Significant decoding scores (q < 0.001) 
are outlined with black contour lines. Robust generalization was observed for Target presence and Awareness, 
with significant decoding extending from the Gabor presentation to the end of the epoch, indicating consistent 
temporal patterns across training and testing windows. In contrast, no significant decoding was observed for 
Gabor tilt, suggesting a lack of discriminative temporal information for this feature.
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S5D). However, note that Bayesian analyses were not planned and were only run a posteriori, so these findings 
should be interpreted carefully.

Post-hoc analyses: Decoding-behaviour correlations.
To explore whether neural representations were related to participants’ performance, we carried out some 

decoding-behaviour correlations. Firstly, we explored whether perceptual representations of Target presence 
improved for those participants with better detection performance (i.e., an increased percentage of seen targets 
in target present trials, or a decreased percentage of false alarms in target absent trials). Figure 8 shows that this is 
the case, as decoding accuracy for Target presence was significantly correlated both with the proportion of seen 
targets (r = .46, p = .012) and false alarms (r = − .59, p = .001).

Then, we analysed if decoding accuracy of target presence was also related with the accuracy of the tilt 
discrimination task, where we also found significant correlations between the decoding performance for Target 
presence and tilt discrimination accuracy (r = .61, p < .001; Fig.  9A). When the correlation was separately 
performed for seen and unseen trials, we found that although not statistically significant, there was a clear trend 
for a correlation between Target presence decoding accuracy and performance in the tilt discrimination task for 
seen trials (r = .36, p = .07), but not for unseen trials (r = − .14, p = .50) (Fig. 9B and C). This is an important result 
in relation to the brain representation of conscious and unconscious stimuli. For consciously perceived stimuli, 
the brain representation of Target presence could be enhanced for those participants with better performance in 
the tilt discrimination task. However, for unseen stimuli, the neural representation of Target presence was not 
different in participants with different accuracies in the tilt response task (which ranged between 45 and 65%).

Fig. 9. Pearson correlation between decoding accuracy for Target presence and the accuracy in the tilt 
discrimination task for the overall ACC (A) and separately for seen (B) and unseen (C) trials. The black line 
represents the best fit of the data and the shaded area represents the 95% CI for the regression estimate.

 

Fig. 8. Pearson correlations between decoding accuracy for Target presence and the proportion of seen targets 
in target present trials (left panel) and the proportion of false alarms in target absent trials (right panel). The 
black line represents the best fit of the data and the shaded area represents the 95% CI for the regression 
estimate.
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We then explored whether the overall decoding accuracy of Awareness was related with the behavioural 
accuracy in the tilt discrimination task. As shown in Fig.  10A, this was the case. When the correlation was 
separately performed for seen and unseen trials, we observed a significant correlation for seen trials (r = .59, p = 
.001, Fig. 10B), but not for unseen trials (r = .16, p = .41, Fig. 10C).

Finally, and given the evidence of unconscious processing observed when decoding Target presence for unseen 
trials (see Fig. 7), we planned some post-hoc analyses to explore the nature of the unconscious representation 
observed. If the decoding of Target presence in early time windows (which was mostly observed in posterior 
channels) was related to perceptual processes, then decoding accuracy during this time window could correlate 
with the behavioural accuracy in the tilt discrimination task. Moreover, if the decoding of Target presence in late 
time window (> 1500 ms, which was mostly observed in anterior channels) was related to response preparation, 
then decoding accuracy during this time window could correlate with the overall RT. To test for this post-
hoc hypotheses, we correlated the decoding scores of Target presence for early and late time windows with 
the overall tilt accuracy, and tilt accuracy for seen and unseen trials, as well as with the overall RT, and RT for 
seen and unseen trials (see Supplementary material, Figures S6 and S7). For the early time window, none of the 
correlations were significant. However, for the late time window, there was a significant correlation between the 
decoding of Target presence and the RT for unseen trials. Higher decoding scores during late time windows were 
related to faster RTs. This result confirms our prediction that the representation of unconscious stimuli during 
late time windows was related to an increased motor response preparation at the end of the trial.

Discussion
The aim of this study was to explore conscious and unconscious information representations at a neural level. We 
used EEG to decode Target presence, Awareness, and tilt orientation, comparing decoding accuracies of raw EEG 
signal and TF data. Participants were required to perform a detection and discrimination task with preconscious 
near-threshold Gabor patches. In a localizer block, Gabors were presented above-threshold (~ 100% seen), while 
in the experimental blocks, target contrast was titrated to achieve ~ 50% seen targets. On 33.33% of the trials, no 
Gabor was presented. We analyzed the registered signal using ML, specifically classification analyses, to observe 
if the decoder would be able to categorize different task features from the EEG data. We found that the classifier 
had significantly higher than chance performance when classifying Target presence and Awareness, but not 
Gabor tilt. Although Gabor tilt has been successfully decoded using magnetoencephalophy (MEG)36,97–99, this 
information seems not to be decodable in any of the analysis carried out in this EEG study.

An important debate in the field of the neuroscience of consciousness is related to the existence of 
unconscious processing of unseen stimuli. In the previously mentioned study by King et al.36, they used ML 
applied to MEG data and found that (1) participants responded above chance in the tilt discrimination task 
when the stimulus was unseen, and (2) target presence could be decoded for seen but also for unseen stimuli. In 
our data, behavioural evidence of unconscious processing was also found, as tilt responses were slightly above 
chance for unseen stimuli. To explore the neural representation of unseen stimuli, we trained a ML classifier 
to decode the Target presence on trials with supra-threshold stimuli (in the localizer blocks) and then tested 
it with near-threshold stimuli (perceived on ~ 50% of the trials, in the experimental block), separately for 
seen and unseen trials. As expected, strong and consistent decoding was observed for Target presence in seen 
trials. For unseen trials, the representation of Target presence did not reach statistical significance when using 
frequentist analysis. However, when using Bayesian statistics to test for the null effect, we observed that although 
in most of the analysed window there was evidence against the null hypothesis (i.e. we had evidence of absence 
of neural representation of Target presence for unseen stimuli), there were some discrete windows in which 
there was evidence in favour of the alternative hypothesis. These two windows roughly corresponded with the 
two sustained processes observed in seen trials in the Temporal Generalization analysis (see Fig.  6). Target 

Fig. 10. Pearson correlation between decoding accuracy for Awareness and the ACC in the tilt discrimination 
task, for the overall ACC (A) and separately for seen (B) and unseen (C) trials. The black line represents the 
best fit of the data, and the shaded area represents the 95% CI for the regression estimate.
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presence could be briefly decoded for unseen stimuli in an early time window (~ 100 ms after Gabor onset) 
and a late one (with some significant results from ~ 1300ms until the end of the trial). Neural representations 
at early time windows for unconscious information have been previously reported2,25–27,36and indicate that the 
initial stages of processing in sensory modules are preserved for unconscious information2,4. This representation 
was not maintained during the trial, as there were numerous moments in which there was evidence in favour 
of the null hypothesis. This is also consistent with the proposal that that unconscious information cannot be 
maintained for long periods2,35(but see also36). In fact, at the end of the trial, where participants could predict 
that the response display will soon be presented, there were some discrete moments in which Target presence 
could again be decoded. This could indicate that, even if the target remained unconscious, there could be some 
information in the system about its presence that allowed participants to prepare themselves for responding. 
Accordingly, for unseen trials, decoding accuracies of Target presence were associated with RTs. This interesting 
result indicates that, even if the target did not reach consciousness, unconscious representations can prepare the 
system to respond faster although not better (as there was no correlation with tilt accuracy). It should be noted 
that Bayesian analyses were run a posteriori and not initially planned, so these findings should be interpreted 
with caution. Further research would benefit from the application of Bayesian statistics in the study of conscious 
perception with EEG data and decoding approaches.

A further aim of the present study was to examine whether decoding accuracy could be improved by using 
TF signal representations instead of raw EEG voltage. Our results showed that decoding scores were significantly 
improved when using TF power as compared to voltage for Target presence and Awareness, but Gabor tilt could 
not be decoded neither with raw voltage nor with TF. This result adds to the literature demonstrating that TF 
data provides rich information about how certain cognitive processes are represented in the brain100–102. It also 
suggests that when using EEG, performance of classifiers can be improved by adding an additional step to the 
analysis pipeline to transform the pre-processed data to obtain TF representations. Traditional approaches 
have used raw EEG or ERPs, but these measures are unable to capture all the information encoded in the EEG 
signal. For example, ERP methods assume temporal consistency of the component across trials, prioritizing 
neural activity that is time-locked to the event of interest and disregarding any non-phase-locked signals103–105. 
Meanwhile, when using TF methods, we can characterize the EEG signal as oscillatory activity and capture 
different aspects of this signal such as its amplitude, frequency and phase104,106,107. Combining these measures 
provides information on how the amplitude and phase of these neural oscillations change over time, and across 
different frequency bands106. Oscillatory activity is a fundamental property of the brain101,108,109, providing 
more direct insights into the neurophysiological mechanisms underlying the cognitive processes captured by 
the EEG data. As such, TF representations are relevant in the study of other biosignals, such as speech, where 
TF representations are used for the recognition of spoken words and phrases in modern automatic speech 
recognition (ASR) systems110,111.

More specifically, when exploring decoding performance across different frequency bands, we found 
significantly higher scores in the lower-frequency bands, particularly in theta (4–7 Hz) and alpha (7–12 Hz), both 
for the classification of Target Presence and Awareness. There exists a vast literature reporting associations between 
the theta and alpha bands with different cognitive processes112,113, including attention and memory56,114–117. 
When looking specifically at the evidence of studies dealing with visual perception and awareness, alpha has 
been commonly related to these processes60–62,118,119and changes in the power and/or amplitude of this band 
have been proposed as one of the neural correlates of consciousness. In a study by Bareither and collaborators120, 
participants were presented with subliminal and supraliminal visual stimuli. They found that alpha activity was 
different for visible and invisible stimuli, with an enhanced alpha decrease for visible than invisible stimuli. 
Modulations of post-stimulus alpha power have also been reported in a number of studies121,122, even in more 
recently developed no-report paradigms123, as well as in neuromodulation studies124. Taken altogether, this 
evidence points to a critical role of alpha-band activity in perceptual awareness. As for the importance of theta-
band activity on our decoding results, one possible explanation could be related to its association with ERPs. 
There is substantial evidence supporting the relationship between theta activity and some ERP components, 
especially with the P3125–128but also others such as the N2 and the error-related negativity127,129. These findings 
suggest that lower frequency bands such as theta and delta represent processes underlying ERPs, being able to 
capture these slower components of the EEG signal that can be misrepresented when doing time-frequency 
analyses.

Decoding performance was also significantly higher than chance for beta, although accuracy of the 
classification was significantly lower than that of theta and alpha. Beta-band activity has been traditionally 
related to sensorimotor processing, although its role in cognitive processes is still a matter of debate and 
study100. In this regard, some studies have found evidence for a role of beta-band activity in the maintenance 
of the current cognitive set100and top-down control in tasks involving, for example, motion perception130. An 
interesting line of research has also observed important modulations on the power of alpha/beta power in 
relation with a number of different cognitive processes including memory and perception131, in the form of task-
dependent power decreases. Finally, although gamma-band activity had the smallest contribution to decoding 
accuracies in our task, in the last years large evidence has emerged demonstrating an important role of these 
oscillations in multiple cognitive processes such as attention, memory, multisensory processing and perceptual 
awareness43,100,132,133.

Conclusions
Our study demonstrates that neural representation of the presence/absence of a visual stimulus and its subjective 
perception can be reliably decoded from EEG signals. Decomposing the signals into the time-frequency 
domain significantly enhances decoding performance, with slow frequency bands –particularly the theta band– 
contributing most prominently to the decoding performance (theta > (alpha = beta) > gamma). Furthermore, 
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our findings reveal that conscious representations are robust and temporarily consistent, whereas unconscious 
representations, though detectable at both early and late stages of processing, are weaker and more inconsistent 
over time. Correlations with behavior suggest that unconscious representations may facilitate faster responses, 
but they do not improve response accuracy. These results provide new insights into the neural dynamics 
underlying conscious and unconscious visual processing and their behavioral implications.

Data availability
Raw EEG data can be found at the following OpenNeuro repository: https://openneuro.org/datasets/ds005273. 
Behavioural data and task files can be accessed at: http://osf.io/rgk8w.
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