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 A B S T R A C T

The popularity of Artificial Intelligence (AI) has risen sharply in recent years, revolutionizing applications in 
most sectors with unprecedented functionalities. Milestones and achievements like ChatGPT demonstrate not 
only the impressive capabilities of AI, but also how accessible such technologies have become in recent times. 
However, the success of AI applications depends heavily on the underlying information integration processes. 
Among the most important processes are the training of the AI model at the core of the application and 
the collection and pre-processing of training data. In particular, the task of collecting high-quality training 
data can be very costly and resource-intensive, as in many cases large amounts of data have to be annotated 
manually. Human annotators must have extensive expertise for certain tasks in order to provide high-quality 
training data. In this paper, we present a framework to maximize the efficiency of human experts in a Machine 
Learning (ML) scenario, with the aim of optimizing the use of human expertise in active learning. This is done 
by constantly measuring the quality of human experts’ input, as well as by involving human annotators only 
when needed. We showcase the benefits of our proposed framework by applying it to a problem in image 
classification, proving its usefulness to reduce the cost of annotating training data. The source code of the 
framework is publicly available at https://github.com/human-centered-ai-lab/app-HITL-annotator.
Article summary

What is already known to the research community?

1. The importance of high quality training data in machine learning 
processes and the techniques to obtain such data.

2. Well known techniques on how to integrate human expert 
knowledge into ML processes such as active learning.

3. The difficulty of dealing with manual annotation processes, espe-
cially when it comes to handling disagreement between multiple 
experts, as well as finding a consensus and obtaining a ground 
truth.

4. Well-known techniques of explainable AI, especially the idea of 
counterfactuals in the area of image classification.

What this paper contributes to the international research community?

1. A technique that takes into account the individual properties of 
humans that contribute their domain knowledge to a machine 

∗ Correspondence to: University of Natural Resources and Life Sciences Vienna, Peter Jordan Str. 82, A-1190 Wien, Austria.
E-mail address: andreas.holzinger@human-centered.ai (A. Holzinger).

learning process to perform the training of a classifier by making 
use of the idea of active learning.

2. A Python framework that incorporates this technique.
3. A user interface that can be used to gather input of human 
experts for image classification.

4. A mechanism to take into account the differences in the level of 
expertise among multiple human experts within an environment 
of human-in-the-loop machine learning.

5. A mechanism to determine the ideal number of human ex-
perts needed for efficient decision-making within a process of 
human-in-the-loop machine learning.

1. Introduction

Modern industrial systems, which are backed by AI in various fields 
of application, are currently progressing towards three primary objec-
tives: sustainability, resilience, and, most importantly, human-centricity. 
Human-centricity underscores the need for taking humans into account 
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in two distinct manners. When designing complex systems, it is im-
portant to consider multiple factors from a cross-disciplinary perspec-
tive [1,2]. This includes incorporating user-centered techniques [3], 
multidisciplinary system thinking, and most importantly, collaborative 
activities. This notion directly relates to human-centered AI, which 
aims to promote dependable, secure, and trustworthy approaches that 
uphold human values, rights, justice, and dignity [4–6]. The idea of 
steering AI towards a behavior that is in line with human values and 
intentions is referred to as AI alignment. The dangers of misalignment 
in AI include, for instance, untruthful answers of AI applications and 
the loss of control over AI systems [7,8].

AI received an almost unexpected hype in the last few years. Appli-
cations and tools that resort to AI-based systems raised great fascination 
not only in communities of people that are very familiar with topics of 
computer science, but also among manifold industrial environments. 
As a result, the pace at which new tools and models in the field of 
AI are developed and released is nowadays higher than ever, not only 
in consumer-oriented fields and industrial applications, but also in 
scientific environments [9]. New models and technologies outperform 
older ones in almost all possible benchmarks. These new technolo-
gies often reach great popularity among the public. One of the most 
popular applications that utilize methods of AI, ChatGPT, became the 
fastest-growing application for consumers, counting about 100 million 
monthly active users [10]. ChatGPT is a web-based service that aims at 
providing human-like conversation experiences to its users. The ability 
to provide these experiences is powered by AI, more precisely, by a 
large language model. Although this application was able to build up a 
fairly large amount of active users, the service is not without errors. The 
application is vulnerable to so-called hallucinations. Thus, ChatGPT, 
in certain cases, produces answers that seem to fit perfectly into the 
conversation but are actually untrue. This problem makes it impossible 
to use this service for critical applications. Other applications like 
Midjourney, that allow users to create realistic images from textual de-
scriptions, and Google Bard, which also aims at providing conversation 
experiences that feel human-like, became also very popular among the 
public [9], but are also suffering from hallucinations [11].

For all these reasons, it is meanwhile recognized how important it 
is not only to consider humans, but to integrate humans in the design 
of complex digital systems and to incorporate human knowledge in the 
form of a human-in-the-loop [12,13]. Digital tools and simulation tech-
niques can be used to model reality during the conception and design 
phase and to predict system behavior and human–system interaction, 
optimizing the design according to multidisciplinary requirements. A 
good example are digital twins. Although the terms digitalization, 
digital transformation and ‘‘digital twin’’ [14] imply automatism, the 
interaction of an industrial system with humans remains necessary, for 
which suitable user interfaces must be created that differ according to 
the various roles and user groups. A number of methods are used to 
develop such a system: among others, model-based system technology, 
system dynamics and user experience design. An industrial system 
harnesses the extended cognitive capabilities through cloud-managed 
artificial intelligence and semantic technologies such as knowledge 
graphs.

The rise of popular applications that utilize methods of AI would not 
be possible without high-quality training data. Obtaining training data 
that represents the ground truth in a way so that it covers all aspects 
of possible inputs and that it is free of artifacts is very often difficult 
because of the demanding process that is required to create a dataset of 
high quality that can be used for training in a Machine Learning (ML) 
scenario. This problem is referred to as the data bottleneck [15]. The 
samples in this dataset are very often gathered and preprocessed by 
human experts that have the respective domain knowledge to provide 
annotations for samples to be used in ML processes. For many appli-
cations, the role of the human within such processes remains static 
within the data gathering and preprocessing stages. However, the role 
of a human annotator within ML processes can, as it is the case with 
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the role of humans within a Digital Twin, highly influence the costs 
and outcome of the whole operation [14]. Furthermore, taking into 
account the role of humans within processes of digital systems should 
be an integral part of Industry 5.0. This could be beneficial for the 
more efficient and more diverse utilization of human capital as it would 
reflect contemporary economic thinking [16].

The need for training data of high quality is supported by obser-
vations that show that the quality of the output of ML applications, 
especially large language models, significantly decreases with lower 
quality of training data [17]. Especially responsible for the output of 
low quality, for instance, hallucinations, of large language models are 
samples that are used for training from unreliable sources as well as 
biased training data [18].

In addition to that, new trends are emerging in various industries. 
These trends highlight that human-machine collaboration is becoming 
more and more important and promote the use of the workforce 
in a cooperative environment in which both machines and humans 
play a significant role, as numerous important tasks in an industrial 
environment still have to be managed manually [19]. Also, the ten-
dency towards Industry 4.0 causes a shift in industrial engineering 
methods, away from traditional techniques and towards cyber–physical 
systems, which require adaptations made to the management of human 
resources and knowledge [20].

2. Background

The disagreement problem in machine learning, particularly in 
high-stakes domains such as healthcare and autonomous systems, poses 
significant challenges to both model reliability and user trust. This 
paper addresses this issue by examining it within the broader context 
of federated machine learning, human-in-the-loop systems, explainable 
AI in image classification, counterfactual reasoning, and the Rashomon 
effect. These areas provide essential background for understanding how 
model disagreements arise and persist, and how they relate to the 
quality of data used in training and evaluation.

Federated learning offers a decentralized approach where multiple 
models are trained across different data sources, often leading to in-
consistencies in model predictions due to heterogeneous data quality 
and distribution. Human-in-the-loop frameworks aim to incorporate 
human expertise into the decision-making process, but disagreements 
between human inputs and model predictions are a frequent source 
of concern. In image classification, explainability becomes crucial in 
identifying the reasons behind model errors and disagreements, es-
pecially when conflicting interpretations are derived from the same 
input data. Counterfactual reasoning further enhances this by offer-
ing insights into how alternative scenarios or inputs would affect 
model outcomes. The Rashomon effect, which highlights the possibility 
of multiple valid interpretations for the same data, underscores the 
importance of addressing these disagreements.

The following background is necessary for understanding the re-
lationship between model disagreements and data quality, as these 
fields contribute distinct perspectives on how poor or inconsistent 
data can exacerbate disagreements, ultimately affecting the robustness, 
transparency, and fairness of machine learning systems.

2.1. Federated machine learning

Processing data at a central instance has some critical disadvantages 
in terms of data privacy and load balancing, giving rise to the idea of 
a federated ML approach [21]. In contrast to the traditional approach 
where each participant that provides data to the ML process would have 
to submit this data directly to the central instance of the system, the 
idea of a federated ML process suggests that each participant neither 
exposes its data to the other participants of the network, nor to any 
central instance. Instead, participants work collaboratively on a global 
ML model. This technique usually involves the training of a separate 
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model at each participant, and the combination of all local models by 
exchanging model updates to yield a globally learned ML model that 
maintains the privacy of the local data repositories [22].

In some federated ML scenarios, a central instance is used to or-
chestrate the process and to combine the results of the local training 
processes to a global model [23]. This usually works as follows: the 
central instance (server) broadcasts an initial model to all clients that 
participate in the federated ML process. Each client then performs a 
local training process using the model received from the server and 
updating it based on the local training dataset. The resulting changes 
to the model are then transferred back to the server. The server then 
aggregates all changes received by the clients to produce a new global 
model, which is then delivered downstream back to the clients for a 
new local update round [24].

Especially in the domain of medicine and health, AI/ML faces 
obstacles related to data privacy and the technical complexities of 
handling distributed data across multiple institutions. Consequently, 
federated learning resolves these concerns by facilitating the creation of 
ML models without the need for disclosing sensitive data. Nevertheless, 
current tools for federated learning and frameworks frequently lack 
adaptability, necessitate programming expertise, and are not easy to use 
for domain experts. Matschinske et al. (2023) [25] present a platform 
to democratize federated learning by offering a comprehensive solution 
for creating and implementing federated algorithms in the field of 
biomedicine and beyond. This platform streamlines the development 
and execution process for both developers and end users, whilst it 
guarantees data protection and compliance with prevailing legislation, 
including the European General Data Protection Regulation (GDPR).

Thus, to apply ML techniques to this data, it is very important 
to not expose data directly to other participants in a global network 
or to a central instance. Consequently, healthcare applications can 
make use of the idea of federated ML since it allows them to remain 
in control over their data. In this context, Pfeifer et al. (2023) [26] 
describe an approach to deploy federated ensemble-based Graph Neural 
Networks for healthcare applications, and Hausleitner et al. (2024) [27] 
introduce a framework that integrates federated learning with Graph 
Neural Networks to classify diseases, incorporating Human-in-the-Loop 
methodologies, where they use collaborative voting mechanisms on 
subgraphs within a Protein–Protein Interaction network, situated in a 
federated ensemble-based deep learning context.

In addition to that, federation plays a critical role in many industrial 
environments. A rising interest in distributed systems can not only be 
observed when it comes to traditional means of data processing but also 
when it comes to more advanced techniques such as Digital Twins [28].

2.2. The human in the loop concept

Human-in-the-loop refers to a model in which humans aid com-
puters in decision making processes. In the area of ML, this refers 
to the interaction between a human and a ML process. In previous 
years, different techniques have been developed on how a human can 
interact with a ML process and how inputs of humans are used in such 
processes.

Mosqueira-Rey et al. (2023) [12] distinguishes three different ap-
proaches about how a human-in-the-loop can be integrated into a 
ML-system. The first approach is called Active Learning. This technique 
suggests that the ML-system completely remains in control over the 
learning process. The only task of the human-in-the-loop is to label and 
annotate data. They describe the human as an oracle for the ML-system 
which the system can consult to request the labeling and annotation of 
unlabeled data. Interactive ML describes an approach where humans 
interact more closely with the ML-process compared to Active Learning. 
This approach does not define one specific task for the human that 
is interacting with the ML-system. Instead, the idea of interactive ML 
proposes that at any time, human and computer should do whatever 
each of them does best. Ergo, the position of the human within the 
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whole process is not static as it is in Active Learning. For instance, the 
human could go at the end of the ML flow to validate the correctness 
of results and perform adjustments if necessary. The third approach is 
called Machine Teaching. This idea describes the human as a teacher for 
the ML-system, thus, giving much more control over the whole process 
to the human-in-the-loop.

Furthermore, human-in-the-loop methods can be divided by the 
relationship of the human domain expert to the domain expert. Before 
learning describes techniques where the human expert resides before 
the actual training process such as curriculum learning. During learning
describes methods that put the human expert directly in the training 
process. After learning puts the human expert at the end of the training 
process. This technique usually makes use of explainable AI. Beyond 
learning describes methods that go beyond the training process, such 
as useful AI [15].

An integration of a Human-in-the-Loop can bring several bene-
fits to the information integration process. The Human-in-the-Loop 
(HITL) principle involves integrating human expertise directly into the 
decision-making processes of AI systems [29]. When applied in the 
context of explainable artificial intelligence (xAI), this principle allows 
experts to interact with AI models through a user interface (UI) [30]. 
This interaction is not merely passive but actively involves the expert 
in refining and guiding the AI’s outputs. Consequently, experts can 
leverage this interaction to modify datasets in a way that produces 
counterfactual explanations [31]. Counterfactual explanations are hy-
pothetical scenarios that help to understand how changes in the input 
data would lead to different outcomes from the AI model. By adjusting 
the data and observing how these changes impact the AI’s predictions, 
the experts can gain insights into the decision-making process of the 
AI. This process also helps in validating the AI model’s reliability 
and fairness, ensuring that the system’s outputs align with human 
values and expectations. Moreover, this approach empowers experts to 
identify and mitigate potential biases in the AI model by experimenting 
with various data modifications. By providing counterfactual scenarios, 
experts can uncover hidden patterns or dependencies in the model, fa-
cilitating a deeper understanding of its behavior. This iterative process 
of human intervention, supported by explainable AI tools, ultimately 
enhances the transparency, accountability, and trustworthiness of AI 
systems.

The usefulness of such an integration of human expert knowledge in 
ML processes can be illustrated by applying it to real-world problems 
such as the classification of patients suffering from pancreatic cancer in 
terms of whether a chemotherapy treatment should be conducted [32].

Approaches like the integration of a human-in-the-loop are espe-
cially suitable for applications in the medical domain. This is because 
the availability of datasets that can be used for training in ML appli-
cations is reduced in the medical domain. Thus, traditional methods 
of training a classifier are not applicable due to insufficient training 
samples [33].

2.3. Explainable AI

Explainable AI (XAI) refers to methods and techniques in artificial 
intelligence that try to make the decision-making processes of AI sys-
tems re-traceable, hence transparent and consequently comprehensible 
to humans. Unlike traditional ‘‘black-box’’ models [34], where the 
internal workings are opaque and difficult to interpret, XAI aims to 
provide clear explanations of how an AI system arrives at its conclu-
sions, predictions, or decisions [35]. The motivation for using such XAI 
methods is manifold:

1. Trust and Adoption: As AI systems are increasingly integrated 
into critical sectors such as medicine and healthcare, finance, 
and law, stakeholders need to trust these systems. Therefore the 
aim of XAI it to provide insights into the AI’s decision-making 
process, enabling users to verify and validate the outcomes, 
thereby fostering trust and wider adoption.
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2. Accountability and Compliance: Regulatory frameworks, such as 
the GDPR in Europe, require that decisions made by automated 
systems can be explained, especially when they significantly 
impact individuals. XAI helps organizations comply with these 
regulations by providing the necessary transparency.

3. Ethical Considerations: AI systems can sometimes produce bi-
ased or unfair outcomes. XAI enables the identification and mit-
igation of such biases, ensuring that AI systems operate ethically 
and do not perpetuate or exacerbate existing inequalities.

4. Improved Decision-Making: For experts using AI as a tool in their 
decision-making processes, understanding the rationale behind 
an AI’s recommendation is crucial. XAI allows these users to 
critically assess AI outputs and make informed decisions.

5. Safety and Reliability: In applications where AI systems operate 
autonomously, such as self-driving cars or autonomous drones, 
explainability is essential for diagnosing errors, improving sys-
tem design, and ensuring overall safety and reliability.

Various techniques implement the ideas of XAI. Among them, the 
idea of counterfactuals is one of the most popular methods of XAI. 
Counterfactuals, in terms of XAI, describe the altered input vector 
which results from applying changes to the original input vector in 
order to change the output of the model. Moreira et al. conducted inves-
tigations on the generation of counterfactual explanation by performing 
an evaluation on different types of models [36].

2.4. Explainable AI in image classification and counterfactuals

As stated above, one goal of XAI is to provide explanations on how 
different features of the input data are contributing to the output of 
an AI system. In the area of image analysis, the question about which 
attributes contribute to the output basically translates to the question 
asking for the regions of an image that contribute to a certain output. 
Saliency maps try to give answers to exactly this question by giving a 
visualization of the areas of an image that are of special importance for 
the computed output [36,37].

To obtain a saliency map that shows the regions of an image that 
are important for the output of a certain AI tool, it is crucial to think 
about how such regions can be computed from the image. These regions 
can be obtained by changing parts of the image and observing which 
changes in the image lead to changes in the output of the classifier. 
The regions that, when altered, lead to a change in the output, are 
therefore of special interest. The image that results from changing these 
regions in the original image is then called the counterfactual image. The 
resulting class from applying the image classification technique to the
counterfactual image is referred to as the counterfactual class [38].

As stated above, one goal is trust and adoption. A currently very 
topical aspect is that trust can be achieved through counterfactual 
explanations. In this way, people can familiarize themselves with un-
known processes by understanding the hypothetical input conditions 
under which the outcome changes [39]. This allows users to understand 
the logic behind an AI system’s decisions by seeing how alternative 
scenarios could lead to different outcomes. This not only promotes 
understanding, but also strengthens the ability to anticipate the AI’s 
behavior and identify potential sources of error. In practice, this con-
tributes significantly to acceptance of and trust in the technology, 
as the decision-making processes can be made comprehensible and 
transparent.

There are different methods of altering the original image to trick an 
image classifier into outputting the counterfactual class. These methods 
include removing or blurring parts of the original image but also 
adding features that are associated with the desired counterfactual to 
the image [40]. However, the approach of adding concepts to an image 
to trick the classifier into assigning a counterfactual class to the image 
is criticized by Vermeire et al. as this approach would lead to counter-
intuitive explanations that are not useful when trying to understand 
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how and why a certain assignment to a class was made by an image 
classifier. Thus, Vermeire et al. (2022) [38] recommend to avoid the 
addition of evidence to images in order to generate useful counterfactual
images.

Furthermore, Vemeire et al. (2022) propose and summarize differ-
ent techniques to perform a segmentation of the original image into 
regions as well as techniques to remove evidence within a certain 
region from the image, whereas the most suitable choice for segmenta-
tion turned out to be quick-shift [41] and the best choice for evidence 
removal turned out to be blurring certain regions by using Gaussian 
Blur [38].

2.5. The rashomon effect and the disagreement problem in the context of 
XAI

The disagreement problem and the Rashomon effect are distinct 
concepts in the context of explainable AI, but they both relate to 
the multiplicity of explanations or models. The disagreement problem 
arises when multiple models produce different explanations or deci-
sions based on the same data or inputs. This can occur in AI systems 
where different models, possibly trained on the same dataset, reach 
different conclusions due to variations in their architectures, training 
processes, or inherent randomness. The disagreement problem is partic-
ularly relevant in ensemble methods or when comparing models trained 
independently. It raises concerns about the consistency and reliabil-
ity of AI systems, especially in critical applications where different 
models should ideally converge on similar decisions. The Rashomon 
effect refers to the phenomenon where multiple plausible models or 
explanations exist for the same dataset or scenario. In the context of 
XAI, the Rashomon effect highlights the fact that multiple models can 
fit the data well, yet provide different interpretations or explanations 
of the underlying relationships. This effect underscores the idea that 
there is often no single ‘‘correct’’ model, but rather a set of models that 
are equally valid according to the data, leading to challenges in model 
selection and interpretation.

The Rashomon effect specifically refers to the phenomenon where 
different people have varying and contradictory interpretations of 
the same event due to differences in perspective, memory, and per-
sonal biases. This effect is named after Akira Kurosawa’s 1950 film 
‘‘Rashomon’’, which depicts multiple characters providing different 
accounts of the same incident. The key characteristics of this effect are:

• Subjectivity: differences arise from subjective perceptions, mem-
ories, and biases.

• Narrative Variability: Multiple, often conflicting, narratives about 
a single event.

• Contextual Focus: Often discussed in the context of eyewitness 
accounts, storytelling, and historical interpretation.

In the context of AI, the Rashomon effect has been described as 
a phenomenon in which different explanations of ML are obtained 
when different models are used to describe the same data. This seri-
ous and growing problem is an emerging topic in the explainable AI 
community [42].

The disagreement problem, in a more general sense, refers to the 
challenge of resolving differences of opinion or belief between individ-
uals or groups. This problem is widely discussed in philosophy, partic-
ularly in epistemology, ethics, and social theory. Unlike the Rashomon 
effect, the disagreement problem focuses on examining the variations 
across various counterfactual explanation algorithms applied to the 
same event and classifier. Nevertheless, the crux of the issue lies in the 
fact that both the Rashomon effect and the dispute problem present 
identical ethical concerns and moral risks: the question of who has the 
authority to determine which explanation will be adopted [43].

Key characteristics of the disagreement problem are, for instance, 
epistemic differences which arise from differences in knowledge, ev-
idence, or reasoning, as well as the resolution Focus that deals with 
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methods and principles for resolving or understanding disagreements, 
such as the role of evidence, rationality, and dialogue. Moreover, it 
is important to note that the disagreement problem is relevant in 
many areas including scientific debates, moral disagreement [44], legal 
disagreement [45] and medical decision disagreement [46].

Thus, the Rashomon effect originates from subjective perception 
and memory, leading to differing accounts of the same event. In con-
trast, the disagreement problem originates from differences in knowl-
edge, evidence, or reasoning, leading to differing opinions or beliefs. 
While the Rashomon effect is typically discussed in contexts involv-
ing personal narratives and interpretations, the disagreement problem 
is broader, encompassing various forms of intellectual, ethical, and 
practical disagreements. Therefore, the Rashomon effect highlights the 
unreliability of subjective accounts and the complexity of human per-
ception, and the disagreement problem focuses on the challenges of 
achieving consensus or understanding in the face of differing views.

As different post-hoc explanation methods are increasingly used to 
explain complex models in high-risk situations, it becomes increasingly 
important to develop a deeper understanding of if and when the expla-
nations issued by these methods diverge and how such disagreements 
are resolved in practice. Krishna et al. (2022) [47] formalize the notion 
of disagreement between explanations and analyze how often such 
disagreements occur in practice and how practitioners resolve these 
disagreements. ML practitioners often apply ad hoc heuristics.

Recent XAI research has shown that current model-independent 
counterfactual algorithms for explainable AI are not based on a causal 
theoretical formalism and therefore cannot promote causality to a 
human decision maker. Furthermore, new results suggest that the 
explanations derived from common algorithms in the literature pro-
vide spurious correlations rather than cause-and-effect relationships, 
resulting in suboptimal, flawed, or even biased explanations [48].

The XAI disagreement problem concerns the fact that different ex-
plainability methods provide different local/global insights into model 
behavior. Since there is no certain truth in explainability, practitioners 
ask themselves: ‘Which explanation should I believe?’ In a very recent 
paper, Laberge et al. (2024) [49] approached this problem from the 
perspective of functional decomposition. Many XAI techniques do not 
agree because they treat feature interactions differently.

3. Methods

3.1. Performance metrics

To efficiently optimize the amount of needed consultations and be-
cause each human annotator performs differently, a detailed evaluation 
of the annotator’s performance is important during the process. The 
calculated performance metrics are used to ensure that the resulting 
annotation, that is then used to train a machine classifier, is of high 
quality.

Usually, performance metrics of a classifier are calculated after the 
training process is finished. For binary classification, many commonly 
known performance metrics, such as the F-measure, build on the idea 
of the confusion matrix. This matrix displays the amount of true pos-
itives, true negatives, false positives and false negatives of a certain 
classifier. Ergo, to compute these four values, the ground truth has to 
be known [50].

3.1.1. Binary classification
Binary classification is a special form of classification where one 

out of two classes is assigned to each sample. To be precise, binary 
classification tests are usually used to detect the presence of a certain 
condition. The two possible classes of the binary classification task 
then denote either the presence or the absence of such a condition. 
The performance of binary classifiers is measured using a reference 
test, the so called gold standard. This gold standard serves as ground 
truth to determine if predictions of the classifier are correct or not. 
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A prediction can be categorized, in terms of the classifier, into four 
possible outcomes. It is either true positive, false positive, true negative 
or false negative. The performance of the binary classifier is then often 
given as sensitivity and specificity. Sensitivity is defined as 𝑎

𝑎+𝑐  and 
specificity is defined as 𝑑

𝑐+𝑑 , where 𝑎 is the number of true positives, 𝑏
is the number of false positives, 𝑐 is the number of false negatives and 
𝑑 is the number of true negatives [51].

However, the techniques to determine the performance of a binary 
classifier mentioned above require data from the gold standard. Ergo, 
to measure the performance of such a classifier, the ground truth has 
to be known. The precise estimation of specificity and sensitivity of a 
binary classifier can be difficult, as highlighted by Keddie et al. since 
various estimation techniques tend to deliver biased estimations. This 
can be dangerous when it comes to evaluating the usefulness of a 
certain binary classifier. A underestimation of the classifier’s perfor-
mance could lead to the discarding of a per se acceptable classifier 
and a overestimation of the performance could cause relying on a bad 
classifier [52].

The data that serves as the gold standard often originates from 
manual classification of samples. This manual classification task is 
usually done by humans. However, human interaction with data is not 
always desirable, mainly because it is very expensive. To overcome 
this issue, Tripathi et al. proposed a sampling method to estimate the 
performances of multiple classifiers that makes use of overlaps between 
the prediction sets. Using this sampling method, Tripathi et al. were 
able to reduce the amount of needed annotations done by humans 
to form the gold standard to accurately estimate the performance of 
multiple binary classifiers [53].

3.1.2. Multi-class classification
For scenarios that are beyond binary classification, such as classi-

fication processes with three or more possible classes, computing the 
performance metrics mentioned above is possible anyway by break-
ing down the classification problem into binary classification prob-
lems. Furthermore, certain performance metrics can be calculated di-
rectly. These metrics include the overall agreement rate, defined as 
𝑜𝑣𝑒𝑟𝑎𝑙𝑙𝐴𝑅 =

∑

𝑎𝑖
𝑇 , where 𝑎𝑖 denotes the number of agreements for class 

𝑖, ergo the number of correctly classified samples for class 𝑖, and 𝑇
denotes the overall amount of classifications, as well as the overall error 
rate, which is defined as 𝑜𝑣𝑒𝑟𝑎𝑙𝑙𝐸𝑅 = 1 − 𝑜𝑣𝑒𝑟𝑎𝑙𝑙𝐴𝑅 [54].

However, the performance metrics mentioned above, per definition, 
also require the knowledge of the ground truth in order to assess the 
correctness of a classification. Since in many real-life scenarios, this 
ground truth is not known in advance, a different metric to measure 
the performance of a human annotator has to be found. To be precise, 
the definitions of the performance metrics have to be adjusted to make 
use of a value other than the ground truth or a gold standard. Ergo, an 
alternative to the ground truth has to be found.

4. Notations

To efficiently describe the ideas and findings in this work, it is 
crucial to define some important notations. These notations are used 
throughout the remaining parts of this work. A binary classifier is 
defined as a function 𝐶 that assigns a label ∈ {0, 1} to samples from 
a universe 𝛺. The function 𝐶 for a sample 𝑥 is therefore defined as 
𝐶 ∶ 𝑥 ↦ {0, 1} [53,55].

Thus, a classifier that has more than two possible outcomes, ergo is 
beyond binary classification, is then denoted as 𝐶 ∶ 𝑥 ↦ {0… 𝑛}.

For certain aspects of this work, this definition can be extended to 
not only include the output as an assignment of a positive or negative 
label, but also include an output value that we can interpret as a 
score that indicates the probability that the sample belongs to either 
the positive or the negative class. The resulting definition, again for a 
sample 𝑥, can be written as 𝐶 ′ ∶ 𝑥 ↦ 𝑦, where 𝑦 can be an arbitrary 
numerical value. For the outcome of 𝑦, we can define a threshold 𝑡 to 
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Fig. 1. Our proposed approach to train a classifier in a human-in-the-loop environment.
map samples to either the positive or negative class using the values 
of 𝑦, whereas a value 𝑦 < 𝑡 causes the sample to be assigned a positive 
label. Otherwise, the negative label is assigned [55].

It is assumed that always 𝑦 ∈ [0, 1]. For the sake of this work, it 
is assumed that 𝑡 = 0.5. Thus, we assume no imbalance between the 
probabilities of the individual possible classes, to be precise the positive 
and negative class. Ergo, a sample is assigned to the positive class if 
𝑦 < 0.5 and to the negative class if 𝑦 ≥ 0.5.

For non-binary classifiers, the output can, in certain cases, also 
be interpreted as a score that indicates the probability of a sample 
belonging to a certain class. For all possible outcomes, the sample is 
considered a member of the class showing the highest class probability.

Furthermore, we define some additional properties that are impor-
tant for the behavior of our system. We denote 𝑀 as the set that 
contains data to train the classifier. Ergo, the amount of samples that 
are available for the training process is limited. The 𝑖th sample of 𝑀 is 
denoted as 𝑀𝑖. The amount of samples in 𝑀 is denoted as 𝑚. We denote 
the set that contains the ground truth and serves as a gold standard to 
train a reference classifier as 𝐺𝑇 , whereas the 𝑖th item of 𝐺𝑇  is called 
𝐺𝑇𝑖. As 𝐺𝑇  contains the ground truth, to be precise, the correct label 
for all samples in 𝑀 , the correct label for 𝑀𝑖 is 𝐺𝑇𝑖. We also define 
the set 𝑁 that holds the human experts that provide knowledge to the 
system. These humans are modeled, in the case of a binary classification 
problem, as binary classifiers with each of them having its specificity 
and sensitivity. We denote the 𝑖th human expert in 𝑁 as 𝑁𝑖 and the 
amount of human experts in 𝑁 as 𝑛. Each human expert that is modeled 
as binary classifier here, can be seen as, in mathematical terms, a 
function, whereas 𝑁𝑖 ∶ 𝑥 ↦ {0, 1}, 𝑥 ∈ 𝑀 . Again, 0 denotes the positive 
class and 1 denotes the negative class. Furthermore, we denote the true, 
but unknown, specificity and sensitivity of the 𝑖th human expert as 𝑆𝑝𝑖
and 𝑆𝑒 . Since the true sensitivity is not known to the system, we denote 
6

𝑖

the estimated specificity and sensitivity of the 𝑖th human expert as 𝑆𝑝′𝑖
and 𝑆𝑒′𝑖 . Thus, the absolute estimation error for the 𝑖th human expert 
equals |𝑆𝑝𝑖 − 𝑆𝑝′𝑖| and |𝑆𝑒𝑖 − 𝑆𝑒′𝑖|. For a problem that goes beyond 
binary classification, we measure the overall agreement rate 𝑜𝑣𝑒𝑟𝑎𝑙𝑙𝐴𝑅. 
This metric defines the performance of the classifier or human expert. 
The true but unknown performance of the 𝑖th human expert is therefore 
denoted as 𝑝𝑖 and the observed performance is denoted as 𝑝′𝑖 .

5. Procedure

With this work, we aim at developing methods to optimize the 
utilization of human interaction needed in order to efficiently train 
a (binary) classifier by making use of the beneficial properties of a 
human in the loop. To reach this goal, we stick to the idea of active 
learning where the system consults humans to incorporate the expert 
knowledge provided by this human expert into the training process 
of the classifier. Our proposed approach is visualized in Fig.  1. We 
assume that at the beginning of the training process, no annotated data 
is available and the only way for the system to obtain annotated data is 
through consultation of human experts. These human experts provide 
input to the system in the form of annotated samples. Thus, each human 
expert can be modeled as a (binary) classifier, whereas each expert has 
its own specificity and sensitivity in case of binary classification. For 
other cases of classification, the performance is measured by making 
use of the 𝑜𝑣𝑒𝑟𝑎𝑙𝑙𝐴𝑅. It is assumed that the true performance metrics 
are not known to the system. Thus, the performance of each human 
expert has to be evaluated during the training process.

The goal of the system is to output a classifier that was trained 
using a minimal amount of consultations of human experts. To reach 
this goal, the quality of the trained classifier would have to be evalu-
ated against another classifier. This other classifier should serve as a
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gold standard for the purpose of evaluating the output of the system. 
The classifier that serves as the gold standard here is trained using a 
dataset for which all samples are already annotated. To determine the 
differences in quality between the classifier trained by our system and 
the gold standard classifier, both classifiers are tested against a special, 
already annotated, dataset.

5.1. Preliminary observations for binary classification

To efficiently make use of the aspect of including a human-in-the-
loop in the training process of a binary classifier, it is important to 
accurately measure the performance of individual humans taking part 
in the process. This is done to determine the value of an input made by 
a specific human. This value is essential to form a technique to reduce 
the number of human consultations during the training process of a 
binary classifier.

To accurately represent the performance of a human-in-the-loop, it 
is necessary to estimate its performance metrics, such as the sensitivity 
and specificity in the case of binary classification. However, as men-
tioned above, to calculate such metrics, a gold standard, that is used 
a reference to compare the underlying (human) classifier, is needed. 
Ergo, already annotated samples are required in order to compute 
the desired performance metrics. An intuitive way to substitute the 
non-existent gold standard, is to present the same unannotated sample 
to multiple human experts. Then, perform a majority vote on the 
received responses and treat the result, ergo, the consensus among all 
the consulted human experts, as the temporary gold standard.

It is common sense that an estimation, as mentioned above, would 
require a bigger amount of datapoints from the behavior of the individ-
ual consulted human experts to reach a reasonable level of accuracy 
of the estimated performance metrics. To get an idea of the required 
number of consultations of an individual human expert to estimate 
its performance, ergo its specificity and sensitivity, with satisfying 
accuracy, a preliminary experiment was conducted. The goal of this 
preliminary experiment was to get an idea of how accurate an estima-
tion of sensitivity and specificity of a binary classifier can be without 
being dependent on the existence of a gold standard.

For this experiment, random data was generated. A dataset of 
10000 samples was generated that served as the ground truth in this 
experiment whereas data was generated so that 75% of the samples are 
members of the negative class and 25% of the samples are members 
of the positive class. Furthermore, 𝑘 primitive binary classifiers were 
generated, whereas we tested the following configurations for 𝑘: 𝑘 ∈
{2, 3, 4, 5, 6, 7, 8, 9, 10}. Each synthetic classifier was generated with a 
random specificity and sensitivity. The randomly generated sensitiv-
ity was in the range [0.7, 0.9] for every generated classifier and the 
randomly generated specificity was in the range [0.8, 0.98]. In general, 
the results of this experiment show that with an increasing amount 
of participating classifiers per decision, the error of the estimation of 
the sensitivity and the specificity of an individual classifier decreases. 
In other words, the more classifiers are participating in the decision-
making process, the higher gets the accuracy of the estimation of 
sensitivity and specificity of those classifiers.

To illustrate some of the result of this observation, Fig.  2 shows the 
estimated sensitivity and specificity for the first 1000 classifications for 
different numbers of involved classifiers. For the sake of readability, 
not all numbers of involved classifiers are shown in the figure. To be 
precise, the data for 2, 3, 6 and 10 classifiers are shown in combined 
charts in Fig.  2. All other individual charts for this observation can be 
found in the appendix.

These observations give an idea about the reliability of estimations 
of the performances of binary classifiers. They do not only indicate that 
with a rising number of participating classifiers the average error of 
an estimation of the sensitivity and specificity decreases, but also that 
with a rising number of samples seen by the classifiers, the error of the 
estimations also decreases. Furthermore, the error of the estimations is 
very high when the amount of samples seen by the classifiers is very 
low or the amount of participating classifiers is very low.
7

5.2. Principles

Based on the preliminary observations and previous work, we want 
to propose a technique to optimize the utilization of human annotators 
in a classification process to efficiently train a classifier. To define this 
technique, a few important principles and hyperparameters have to be 
defined.

In the beginning of the process, the only input is a dataset of samples 
that have to be classified, where each sample is a member of exactly 
one class. Since at the beginning of the process, no data is classified, a 
specific amount of samples have to be classified by human annotators. 
Since also no data about the performance, ergo, the sensitivity and 
specificity or the overall agreement rate, of human annotators is known 
at the beginning, human annotators can be chosen randomly from the 
pool of available annotators. Furthermore, as mentioned above, the 
error of the estimation of performance metrics is very high at the 
beginning of the process. Thus, the estimated values for sensitivity and 
specificity for each human annotator are unreliable in the initial phase 
of the process.

6. Implementation

Based on the above findings, we propose a framework that can be 
used to optimize the utilization of humans in the loop within a specific 
ML process, more precisely, within a process of Active Learning. The 
goal of this framework is to reduce the number of required human 
interactions while still maintaining a high level of quality of the trained 
classifier.

The framework assumes that no labeled data is available at the be-
ginning of the process. Thus, a certain portion of the dataset containing 
the samples that have to be classified has to be labeled at the beginning. 
This initial labeling is also handled by the framework. It is also assumed 
that multiple human annotators take part in the process and that 
the level of expertise is not the same for all annotators. Thus, it is 
assumed that each human annotator has its individual trustworthiness, 
ergo, its individual performance. This trustworthiness is evaluated and 
adjusted during the process by comparing annotations given by one 
annotator to those given by all other annotators that take part in 
the respective annotation round. The trustworthiness is represented 
in the whole process as the performance of the annotator. However, 
since the trustworthiness of each human annotator is calculated using 
the previously given annotations of the respective annotator compared 
the annotations given by all other annotators, a precise value for the 
trustworthiness cannot be computed at the beginning of the process. 
Thus, for a certain portion of all annotation tasks, the trustworthiness 
cannot be used to determine the quality of an annotation performed by 
a human annotator.

The framework is realized as Python application that orchestrates 
and performs certain tasks within an environment of Active Learning 
for the user. However, some aspects of the process are still in the 
responsibility of the user. An illustration showing the responsibilities 
of the user as well as those of the framework is shown in Fig.  3. At 
the beginning of the workflow, the framework performs an initial con-
sultation of annotators to obtain an initial annotated dataset that can 
be used for the first round of training a classifier. Then, the resulting 
classifier is tested against the whole unannotated dataset to obtain the 
class probabilities for each sample. Depending on the class probabilities 
that are returned by the current classifier, samples are selected for 
the consultation of a human expert. Usually, a sample is presented to 
more than one human expert to obtain multiple annotations for the 
same sample. The resulting annotation is then obtained by performing a 
majority vote. The number of human experts that are consulted for one 
specific sample is determined by the class probability of the respective 
sample. Since a greater class probability means a greater confidence 
of the classification made by the current classifier, less human experts 
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Fig. 2. Chart showing the error of the estimated sensitivity (a) and specificity (b) for the first 1000 classifications using the approach described above with 2, 3, 6 and 10 classifiers 
per decision.
Fig. 3. Responsibilities within the proposed framework.
are consulted if a classification attempt shows a greater class proba-
bility. Samples that show a very high class probability are considered 
annotated without consultation of a human expert. The exact thresholds 
can be set by the user when calling the framework. The performance 
of each annotator is constantly evaluated by measuring the overall 
agreement rate. This is done by comparing the number of consultations 
done and the number of correctly annotated samples by the means of 
the result of each majority voting. For each consultation round, the 
human experts with the highest measured performance are selected 
for consultation. However, since the performance measurement can 
be very imprecise due to the low amount of available datapoints, 
the performance measurements are not considered at the beginning 
of the workflow. Instead, human annotators are chosen randomly. In 
addition to that, the available capacity, ergo, the maximum number of 
8

consultations that one specific human expert can perform, is considered 
when selecting human experts for consultation. After the consultations, 
the returned annotated samples are merged with all other samples 
that are already annotated and the classifier is now trained with the 
expanded dataset. This process repeats until one of various possible 
conditions is met. The process is stopped, and the final classifier is 
returned when either, a certain performance on a test dataset is met, 
a certain number of annotation rounds is met or the is not enough ca-
pacity for human consultations among all human experts. In addition to 
that, the framework features a user interface to simplify gathering the 
input of human experts. This user interface allows human experts the 
examination of images as well as sending their input to the framework. 
The user interface is a web-based interface that was developed using the
Flask framework for Python. Fig.  6 shows the user interface displaying 
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Fig. 4. The signature of the constructor of the HITLAnnotator class.
an image at a resolution of 64 by 64 pixels from the EuroSAT dataset 
with four possible classes that the image could be assigned to.

The framework can be imported via the HITLAnnotator class. This 
class is the main entry point for all interactions with the framework. 
The signature of the constructor is shown in Fig.  4. The argument
call_function is of special importance here because This argument is 
a function that gets called when a consultation of a human expert 
is requested. Furthermore, the framework allows the import of the 
Annotator class. This class represents one single human expert. The 
signature of the constructor is shown in Fig.  5. In ‘‘primitive’’ mode, a 
class is returned randomly based on the parameter’s accuracy_high and
accuracy_low and the resulting accuracy. Ergo, the computed accuracy 
defines if the correct class is returned or an incorrect class. Thus, the 
mode ‘‘primitive’’ can be used for simulation purposes.
9

The source code of the framework is available at https://github.
com/human-centered-ai-lab/app-HITL-annotator.

7. Evaluation and discussion of results

We present a framework to optimize the utilization of human expert 
knowledge within a process of ML. This is done by making use of 
Active Learning and by measuring the performance, ergo, the trust-
worthiness, of human experts during the whole procedure. To measure 
the success of our framework, we conducted a test of the framework 
on the EuroSAT dataset. This dataset consists of 27000 labeled aerial 
images. The images belong to one of 13 classes [56]. To find useful 
parameters for a comparison, we tested various combinations of inputs. 
We compared the number of requested human consultations to the size 

https://github.com/human-centered-ai-lab/app-HITL-annotator
https://github.com/human-centered-ai-lab/app-HITL-annotator
https://github.com/human-centered-ai-lab/app-HITL-annotator
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Fig. 5. The signature of the constructor of the Annotator class.
Fig. 6. The user interface.
of the test dataset, assuming that one human interaction was required 
to annotate one sample in the test dataset. For all of our test, the same 
image classifier from the sklearn Python package was used. To test 
the framework, we assumed an environment where 20 human experts 
are taking part in the process. These experts were modeled using the
Annotator class within the Python framework. To perform a simulation, 
the mode parameter was set to ‘‘primitive’’. Each virtual human expert 
had a randomly generated accuracy. This accuracy lies in the range 
between 0.75 and 0.99. These values were chosen based on the fact that 
we assume human experts to have certain expert knowledge, resulting 
in a higher accuracy when annotating samples requiring exactly this 
expert knowledge. To give an idea of the effectiveness of the proposed 
framework, we measure the number of required human interactions 
in relation to the size of the dataset and compare the accuracy of 
10
the resulting classifier to the accuracy of a classifier that was trained 
using a completely annotated dataset. For this test, we used a subset 
of the EuroSAT dataset. This subset was generated by selecting those 
samples from the dataset that belong to the classes River, SeaLake,
Forest and Residential. The dataset was split into a training set and a 
test set whereas 80% of the samples were randomly assigned to the 
training set and 20% of the samples were assigned to the test set. 
Testing showed that the overall performance is highly dependent on 
the chosen parameters. However, the results show that the number of 
required human interactions could be significantly decreased.

Furthermore, we applied the proposed framework to a different 
dataset, namely CIFAR-10 [57]. This dataset consists of 60000 images 
that belong to exactly one of ten possible classes. We applied the 
proposed framework to a subset of the CIFAR-10 dataset. For this 
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subset, 10000 images were randomly selected. For evaluation of the 
framework using the CIFAR-10 dataset, the same configuration as for 
the evaluation using the EuroSAT dataset was used. In contrast to the 
configuration above, we only changed the portion of samples to be 
classified initially to 0.02 and the threshold for the consultation of a 
human to the range 0.5 to 0.55.

To put the measured performances in relation, we compared the 
results to a classifier that was trained the traditional way. For this 
benchmark scenario, we assumed that the samples that are used for 
the training process are annotated by exactly one human annotator per 
sample. The result of this annotation is then treated as the ground truth
for respective sample. Ergo, the number of required human interactions 
equals the number of samples in the process. Using the framework on 
the EuroSAT dataset with the parameters set to allowing the partici-
pation of 1 to 3 human experts per decision and the fraction of the 
dataset to be annotated initially set to 0.1 as well as the upper limit 
of the class probability to trigger a consultation of a human expert 
to 0.6 and the lower limit to 0.5, resulted in a classifier that showed 
an accuracy of 82% whereas the classifier that was trained using the 
already annotated dataset reached an accuracy of 86%. However, the 
classifier that was trained using the proposed framework, required 
42% less human interactions, assuming that to create the dataset in 
a traditional way, one interaction per sample is necessary. And using 
the framework on the Cifar-10 dataset resulted in a number of required 
human interactions that was 19% lower than for a training process that 
worked the traditional way, while delivering only slightly lower per-
formance. While the proposed techniques may not drastically improve 
the performance of the resulting classifier, we proposed a technique 
to enable HITL machine learning in a scenario where different experts 
bring in their domain knowledge and the goal is to maximize the 
utilization of this highly specialized domain knowledge The proposed 
framework, in theory, allows the experts to be a different locations. 
We were able to show that the better utilization of human domain 
knowledge through our proposed framework results in a lower number 
of required human interaction within a machine learning process.

8. Future work

A framework was proposed to perform the training of a classifier 
within a process of active learning in a user-centric manner. The pro-
posed framework takes into account the individual level of expertise of 
each human expert taking part in the process. This leads to in improved 
utilization of human expert knowledge when it comes to training a 
classifier using manually annotated data. The system is designed to 
allow a great range of customization. For instance, a custom function 
that is passed to the framework and gets called whenever the knowl-
edge of a human expert is needed allows maximum customizability 
when designing the workflow for gathering manually annotated data. 
Furthermore, the proposed framework features a user interface to easily 
collect annotations from human experts that is designed as an add-in for 
the framework. However, as the main purpose of this implementation is 
to show its usefulness and not to run in a production environment, the 
system does not feature any authentication and encryption capabilities 
for the communication between the server and the clients.

Furthermore, the accuracy of the system could be improved by 
introducing methods of explainable AI. Explainable AI could be used 
to provide human experts with suggestions for the correct class as 
well as explanations on how these suggestions were generated. One 
method of generating such explanations are counterfactuals [37]. In 
the case of image classification, such explanations could be generated 
using counterfactual images. On the side of the human expert, these 
explanations could be visualized using saliency maps showing the most 
important regions of an image for a specific suggestion. Saliency maps 
could also be integrated directly into the already existing user interface.

While this work makes use of an image classification problem to 
showcase the usefulness and effectiveness of the proposed framework, 
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the framework can, in theory, be applied to any classification problem. 
However, it is important to point out that the application of this 
framework on other types of classification problems still needs further 
testing and validation. The application of the proposed framework to 
different types of classification problems is intended to be uncompli-
cated as the handling of individual samples within the process falls 
under the responsibility of the user. To be precise, the code to handle an 
individual sample has to be brought in the by the user and gets called 
by the framework when necessary.

9. Conclusion

In times where applications that utilized the capabilities of ML are 
more popular than ever, the need for high quality training data for ML 
processes is also rising. With a great number of datasets that are used 
for ML being still generated using manual annotation, the need for a 
framework that allows to perform these kinds of annotations in a user-
centric manner is of great importance. We propose such a framework 
that tries to optimize the utilization of human experts by making use of 
the fact that the level of expertise and domain knowledge varies among 
the human experts. This is done by constantly measuring the accuracy 
of each human expert and selecting experts for annotation tasks based 
on these measurements. We also show the usefulness of the proposed 
framework by evaluating it on the EuroSAT dataset that features 27000 
aerial images of Europe. Furthermore, we give ideas for the extension 
of the existing frameworks such as the integration of state-of-the art 
techniques of explainable AI to give suggestions to human experts as 
well as explanations for those suggestions. We believe that such a 
framework can contribute to a better utilization of human experts that 
are willing to make their knowledge available to ML processes. This 
can especially be the case for environments where extensive domain 
knowledge is rare and expensive, such as medical applications as well 
as complicated industrial environments. For instance, the classification 
of medical images could benefit from such a framework because of the 
better utilization of the knowledge of domain experts.
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Fig. 7. Error of the estimation of sensitivity and specificity without known ground truth for a different number of involved classifiers.
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Fig. 7. (continued).
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Fig. 7. (continued).
Data availability

all data is available via our GitHub Repository, exclusively devel-
oped for this contribution.
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