
Revista Matemática Complutense
https://doi.org/10.1007/s13163-025-00531-x

Weak operator Daugavet property and weakly open sets in
tensor product spaces

Abraham Rueda Zoca1

Received: 15 October 2024 / Accepted: 22 May 2025
© The Author(s) 2025

Abstract
We obtain new progress about the diameter two property and the Daugavet property
in tensor product spaces. Namely, the main results of the paper are:

• If X∗ has the WODP, then X̂⊗εY has the DD2P for any Banach space Y .
• If X has the WODP, then X̂⊗πY has the DD2P for any Banach space Y .
• If X∗ and Y ∗ have the WODP then X̂⊗εY has the Daugavet property.

The above improve many results in the literature and establish progress on some open
questions.

Keywords Daugavet property · Weak operator Daugavet property · Projective tensor
product · Injective tensor product · Diameter two properties

Mathematics Subject Classification 46B04 · 46B20 · 46B28

1 Introduction

The geometrical and topological properties of slices, weakly open sets and convex
combinations of slices havebeendeeply studiedbecause theyhavedeterminedmultiple
properties of Banach spaces. In connection with the existence of such objects of small
diameterwe can highlight the characterisations of theRadon-Nikodymproperty (RNP),
(convex) point of continuity property ((C)PCP) or the strong regularity. In the opposite
extreme, the study of big slices, weakly open sets and convex combinations of slices
have been analysed in connection with diameter two properties, octahedrality of the
norm and the Daugavet property.

The study of the diameter two properties and the Daugavet properties in tensor
product spaces have attracted the attention of many researchers in this century, leaving
a vast literature on the topic [2, 3, 6–8, 10–12, 18] together with many open questions
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(see e.g [2, 11, 21]). In this line, probably the most long-standing open question is
whether X and Y have the Daugavet property implies that X̂⊗πY and/or X̂⊗εY has
the Daugavet property [21, Section 6, Question (3)]. Moreover, in [2, Section 5, (b)]
it is asked how are diameter two properties in general preserved by tensor products.

Concerning the projective tensor product, the following results concerning the diam-
eter two properties are known:

• If X or Y has the slice-D2P, then X̂⊗πY has the slice-D2P [2, Theorem 2.7].
• If X and Y have the SD2P, then X̂⊗πY has the SD2P [6, Corollary 3.6]. If one
requires the SD2P just on X , then X̂⊗πY may fail the SD2P [12, Corollary 3.9].

• If K is an infinite compact Hausdorff space thenC(K )̂⊗π X has the D2P for every
non trivial Banach space X .

In view of the above results, it is clear that solid results exist for the slice-D2P and
the SD2P in a projective tensor product; however, the study of the D2P seems to
be missing. The main difficulty comes from the big advantage that slices provide in
projective tensor product when compared with working with weakly open sets: since
BX̂⊗πY := co(BX ⊗ BY ), an easy convexity argument implies that every slice of
BX̂⊗πY must contain an elementary tensor of the form x ⊗ y, for some x ∈ BX and
y ∈ BY . This behaviour, no longer true for general non-empty weakly open subsets,
explains the absence of results about the D2P in projective tensor products. Indeed, it
is an open question to determine when X̂⊗πY has the D2P (posed in an equivalent
formulation in [11, Question 4.2]), which is in turn a particular case of the above
mentioned question [2, Section 5, Question (b)].

In the injective tensor product the situation is even worse because, as far as we
know, there is no stability result of the diameter two properties by injective tensor
product except the recent result that X̂⊗εY may fail the SD2P even if X enjoys the
Daugavet property [17, Theorem 3.1]. It is also knwon that X̂⊗εY has the SD2P if X is
an infinite-dimensional L1-predual [4, Corollary 2.9], a result based on the canonical
identification C(K )̂⊗εX = C(K , X) [19, Section 3.2]. This time we can imagine the
difficulty behind this problem when we see the injective tensor product as a space of
bounded operators X̂⊗εY ⊆ L(X∗,Y ). With this point of view it seems clear that
in order to study any diameter two property in the injective tensor product we need
to handle and construct bounded linear operators, which is not an easy task. This
observation, however, gives us the hint for the search of new results.

In [15,Definition 5.2], theweak operatorDaugavet property (WODP) is introduced,
as a weakening of the operator Daugavet property introduced in [18, Definition 4.1],
in order to obtain examples of projective tensor products with the Daugavet property.
TheWODP, which implies the Daugavet property [15, Remark 5.3], is stable by taking
projective tensor products in the sense that if X and Y have the WODP then X̂⊗πY
has the WODP [15, Theorem 5.4].

In this paper we aim to get new results about the diameter two property in both
injective and projective tensor products with the WODP. In Theorem 3.2 we prove
that X̂⊗εY has the DD2P (in particular it has the D2P) if X∗ has the WODP and Y
is any Banach space. This can be applied, for instance, to get that L1(μ)̂⊗εY has the
DD2P for any Banach space Y if μ is an atomless measure (Corollary 3.3). We also
prove in Theorem 3.5 that X̂⊗εY has the Daugavet property if both X∗ and Y ∗ have
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the WODP. This result improves [18, Theorem 1.1], where it is proved the particular
case when X and Y are L1-spaces with the Daugavet property.

In Sect 4 we focus on studying the D2P and the DD2P in projective tensor products.
First of all, we prove that if X is an infinite-dimensional L1-predual then X̂⊗πY has
the D2P for any Banach space Y , which improves [3, Theorem 4.1]. Moreover, the
main theorem in the section is Theorem 4.3, where we prove that X̂⊗πY has the
DD2P whenever X has theWODP and Y is any Banach space. In addition to represent
a progress on the open questions [11, Question 4.2] and [2, Section 5, (b)], the above
result improves [13, Proposition 5.2], where the authors obtained a weaker conclusion
under the same assumptions (see Remark 4.6 for details).

2 Notation and preliminary results

Throughout the paper we will consider only real and non-trivial Banach spaces. BX

and SX stand for the closed unit ball and the unit sphere of the space X respectively.
We will denote by X∗ the topological dual of X . Given A ⊆ X , co(A) and span(A)

stands for the convex hull and the linear hull of the set A in X .
Given two Banach spaces X and Y we will denote by L(X ,Y ) the space of all the

bounded operators from X to Y . We will denote by F(X ,Y ) ⊆ L(X ,Y ) the space of
finite-rank operators. Moreover, we will denote by Fw∗−w(X∗,Y ) the space of those
finite rank operator T : X∗ −→ Y which are weak∗-to-weak continuous.

2.1 Tensor product spaces

The projective tensor product of X and Y , denoted by X̂⊗πY , is the completion of
the algebraic tensor product X ⊗ Y endowed with the norm

‖z‖π := inf

{

k
∑

n=1

‖xn‖‖yn‖ : z =
k

∑

n=1

xn ⊗ yn

}

,

where the infimum is taken over all such representations of z. The reason for taking
completion is that X ⊗ Y endowed with the projective norm is complete if, and only
if, either X or Y is finite dimensional (see [19, P.43, Exercises 2.4 and 2.5]).

It is well known that ‖x ⊗ y‖π = ‖x‖‖y‖ for every x ∈ X , y ∈ Y , and that the
closed unit ball of X̂⊗πY is the closed convex hull of the set BX ⊗ BY = {x ⊗ y :
x ∈ BX , y ∈ BY }. Throughout the paper, we will use both facts without any explicit
reference.

Observe that the action of an operator G : X −→ Y ∗ as a linear functional on
X̂⊗πY is given by

G

(

k
∑

n=1

xn ⊗ yn

)

=
k

∑

n=1

G(xn)(yn),
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for every
∑k

n=1 xn ⊗ yn ∈ X ⊗ Y . This action establishes a linear isometry from
L(X ,Y ∗) onto (X̂⊗πY )∗ (see e.g. [19, Theorem 2.9]). Throughout this paper we will
use the isometric identification (X̂⊗πY )∗ = L(X ,Y ∗) without any explicit mention.

Recall that a Banach space X has themetric approximation property (MAP) if there
exists a net (Sα)α in F(X , X) with ‖Sα‖ � 1 for every α and such that Sα(x) → x
for all x ∈ X .

Recall that given two Banach spaces X and Y , the injective tensor product of X
and Y , denoted by X̂⊗εY , is the completion of X ⊗ Y under the norm given by

‖u‖ε := sup

{

n
∑

i=1

|x∗(xi )y∗(yi )| : x∗ ∈ SX∗ , y∗ ∈ SY ∗

}

,

where u = ∑n
i=1 xi ⊗ yi (see [19, Chapter 3] for background). Every u ∈ X̂⊗εY can

be viewed as an operator Tu : X∗ → Y which is weak∗-to-weakly continuous. Under
this point of view, the norm on the injective tensor product is nothing but the operator
norm and, consequently, X̂⊗εY can be seen as the norm-closure of Fw∗−w(X∗,Y ) =
Fw∗−w(Y ∗, X) in L(X∗,Y ) = L(Y ∗, X). We will make use of this identification
without further reference throughout the paper.

In order to define elements in the injective tensor product fromfinite-rank operators,
the following lemma from [16] will be particularly useful. This result asserts, roughly
speaking, that every finite-rank operator between dual Banach spaces is an adjoint
operator in a local way. We include the formal statement for easy reference since we
will use this result several times in the text.

Theorem 2.1 [16, Theorem 2.5] Let X and Y beBanach spaces, let F ⊆ X∗ be a finite-
dimensional subspace and ε > 0. If T : X∗ −→ Y ∗ is a finite-rank operator then
there exists a finite-rank operator S : Y −→ X satisfying the following assertions:

(1) |‖T ‖ − ‖S‖| < ε,
(2) S∗(X∗) = T (X∗),
(3) S∗(x∗) = T (x∗) holds for every x∗ ∈ F and,
(4) S∗∗(y∗∗) = T ∗(y∗∗) holds for every y∗∗ ∈ Y ∗∗ for which T ∗(Y ∗∗) ∈ X .

Given two bounded operators T : X −→ Z and S : Y −→ W , we can define an
operator T ⊗ S : X̂⊗εY −→ Ẑ⊗εW by the action (T ⊗ S)(x ⊗ y) := T (x) ⊗ S(y)
for x ∈ X and y ∈ Y . It follows that ‖T ⊗ S‖ = ‖T ‖‖S‖. It is known that if T , S are
linear isometries then T ⊗ S is also a linear isometry (c.f. e.g. [19, Proposition 3.2]).
This fact is commonly known as “the injective tensor product respects subspaces”.

It is also known that, given two Banach spaces X and Y , the equality (X̂⊗εY )∗ =
X∗

̂⊗πY ∗ holds if either X∗ or Y ∗ has the Radon-Nikodym Property (RNP) and either
X∗ or Y ∗ has the approximation property (AP) [19, Theorem 5.33].

2.2 Weak operator Daugavet property and related

Here we will introduce the necessary notation from geometry of Banach spaces.
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By a slice of the unit ball we denote a set of the form

S(BX , x∗, α) := {x ∈ BX : x∗(x) > sup(x∗(BX )) − α},

where x∗ ∈ X∗ and α > 0. If X is a dual space (X = Y ∗) and x∗ ∈ Y ⊆ Y ∗∗ = X∗,
the abose set is said to be a w∗-slice.

We also consider a convex combination of slices of BX to be a set of the following
form

n
∑

i=1

λi Si ,

where S1, . . . , Sn are slices of BX and λ1, . . . , λn ∈ [0, 1] satisfy that ∑n
i=1 λi = 1.

Recall that a Banach space X is said to have the Daugavet property if given any
rank-one bounded operator T : X −→ X the equality

‖I + T ‖ = 1 + ‖T ‖

holds, where I stands for the identity operator (see [9]). In [9] it was proved the fol-
lowing useful characterisation in geometric terms: a Banach space X has the Daugavet
property if, and only if, given any x ∈ SX , any ε > 0 and any slice S of BX we can find
y ∈ S such that ‖x + y‖ > 2− ε [9, Lemma 2.1]. Observe that slices can be replaced
with non-empty relatively weakly open subsets (indeed with convex combination of
slices as shown in (the proof of) [20, Lemma 3]). In particular, if X has the Daugavet
property then every convex combination of slices (in particular every non-empty rel-
atively weakly open subset of BX ) has diameter exactly two. This motivates us to
introduce the diameter two properties we will need in this text.

Given a Banach space X , we say that X has the:

• diameter two property (D2P) if every non-empty relatively weakly open subset of
BX has diameter exactly two.

• diametral diameter two property (DD2P) if, given any non-empty weakly open
subset W of BX , any x ∈ W ∩ SX and any ε > 0 there exists y ∈ W with
‖y − x‖ > 2 − ε.

• strong diameter two property (SD2P) if every convex combination of slices of BX

has diameter two.

The introduction of the D2P and the SD2P (together with another which we will
not need) goes back to [2], though the study of big weakly open sets and convex
combinations of slices goes back earlier in the literature. On the other hand, the DD2P
was introduced in [5, Definition 2.1]. The above three properties are known to be
different from each other (see e.g [5]).

Going back to the Daugavet property, a longstanding open question from [21] is
whether X̂⊗πY and/or X̂⊗εY have/has theDaugavet property if both X andY have the
Daugavet property. In order to give a positive answer for the projective tensor product,
in [18] and later in [15] new geometric properties implying the Daugavet property
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were introduced in order to guarantee that X̂⊗πY has the Daugavet property. Let us
fix our attention on the following one from [15, Definition 5.2]: A Banach space X is
said to have the weak operator Daugavet property (WODP) if, given x1, . . . xn ∈ SX ,
ε > 0, a slice S of BX and x ′ ∈ BX , we can find x ∈ S and φ : X −→ X with
‖φ‖ � 1 + ε, ‖φ(xi ) − xi‖ < ε for every i ∈ {1, . . . , n} and ‖φ(x) − x ′‖ < ε.
Examples of Banach spaces with the WODP are L1(μ, X) if μ is an atomless σ -finite
measure, L1-preduals with the Daugavet property or the projective tensor product and
the symmetric projective tensor products of Banach spaces with the WODP (see [15,
Section 5] for details).

Observe that a perturbation argument allows, in the definition of WODP, to assume
‖T ‖ < 1.This evident observationwill allowus to save a lot of homogeneity arguments
in the future. Let us end with the following lemma, which will be employed in the
proof of Theorem 4.3. The proof will follow the lines of [15, Lemmata 5.5 and 5.6]
because, in the end, it is a mix of the ideas behind both results.

Lemma 2.2 Let X be a Banach space with the WODP. Then, for every k ∈ N, it
follows that for every x1, . . . , xn ∈ SX , every non-empty relativelyweakly open subsets
W1, . . . ,Wk of BX , every y1, . . . , yk ∈ BX and every ε > 0 there exists zi ∈ Wi , 1 �
i � k, and a bounded linear operator T : X −→ X satisfying that

(1) ‖T ‖ < 1,
(2) ‖T (x j ) − x j‖ < ε holds for 1 � j � n and,
(3) ‖T (zi ) − yi‖ < ε holds for every 1 � j � k.

Proof The proof will follow the lines of [15, Lemma 5.5] and will be proved by
induction on k.

The case k = 1 follows from [15, Lemma 5.6] together with a normalisation
argument.

Assume that the result holds for k ∈ N and let us prove that it also holds for k + 1.
In order to do so, take W1, . . . ,Wk+1 ⊆ BX non-empty weakly open sets,

x1, . . . , xn ∈ SX , y1, . . . , yk+1 ∈ BX and ε > 0.
By the inductive step we can find zi ∈ Wi for 1 � i � k and a bounded operator

T : X −→ X such that ‖T ‖ < 1 and that

• ‖T (x j ) − x j‖ < ε holds for 1 � j � n and ‖T (yk+1) − yk+1‖ < ε.
• ‖T (zi ) − yi‖ < ε holds for 1 � i � k.

Now by the aforementioned [15, Lemma 5.5] we can define an operator G : X −→
X with ‖G‖ < 1 and satisfying that:

• ‖G(x j )− x j‖ < ε holds for 1 � j � n and ‖G(zi )− zi‖ < ε holds for 1 � i � k
and,

• ‖G(zk+1) − yk+1‖ < ε.

Doing � := T ◦ G : X −→ X we get the desired mapping. It is clear that ‖�‖ �
‖T ‖‖G‖ < 1. On the other hand, using the same estimates as in the proof of [15,
Lemma 5.5] it can be proved that ‖�(x j ) − x j‖ < (2 + ε)ε for every 1 � j � n
and ‖�(zi ) − y′

i‖ � (2 + ε)ε holds for 1 � i � k + 1. The arbitrariness of ε > 0
concludes the proof of the lemma. ��
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3 Injective tensor product

In this sectionwe aim to obtain a result about theDD2P for the injective tensor product.
We will do it in two steps. To begin with, we will prove the result assuming that we
are dealing with finite-dimensional Banach spaces in order to exploit [19, Theorem
5.33], and next we will make use of the fact that the injective tensor product respects
subspaces in order to get the result in complete generality.

Theorem 3.1 Let X be a Banach space such that X∗ has the WODP and let Y be any
finite dimensional Banach space. Then X̂⊗εY has the DD2P.

Proof LetU be a non-empty weakly open subset of BX̂⊗εY and let T ∈ U∩SX̂⊗εY . Let
us prove that, given any ε > 0, there exists G ∈ U such that ‖T −G‖ > 2(1− ε)− ε.
In order to do so we can assume that

U := {

G ∈ BX̂⊗εY : |Bi (G) − Bi (T0)| < ξ, 1 � i � n
}

,

where B1, . . . , Bn ∈ (X̂⊗εY )∗ = X∗
̂⊗πY ∗ [19, Theorem 5.33], ξ > 0 and T0 ∈

BX̂⊗εY . Since T ∈ U we infer |Bi (T ) − Bi (T0)| < ξ holds for 1 � i � n, so we
can find η > 0 small enough to guarantee |Bi (T ) − Bi (T0)| < ξ − η holds for every
1 � i � n.

On the other hand, since Bi ∈ X∗
̂⊗πY ∗ we can assume, up to a density argument,

that Bi = ∑m
j=1 x

∗
i j⊗y∗

i j holds for certainm ∈ N and certain x∗
i j ∈ X∗, y∗

i j ∈ Y ∗. Now
select δ > 0 such that δ < ε and that δ

∑m
j=1 ‖y∗

i j‖ < η holds for every 1 � i � n.
Moreover find x∗

0 ∈ SX∗ and y∗
0 ∈ SY ∗ such that T (x∗

0 )(y
∗
0 ) > 1 − ε.

The assumption that X∗ has the WODP allows us to find x∗ ∈ {z∗ ∈ BX∗ :
T (z∗)(y∗

0 ) > 1 − ε} and a continuous operator φ : X∗ −→ X∗ such that ‖φ‖ < 1,
that ‖φ(x∗

i j ) − x∗
i j‖ < δ and ‖φ(x∗) + x∗

0‖ < δ. Define T ◦ φ, which is a finite-rank
continuous operator with ‖T ◦ φ‖ � ‖T ‖‖φ‖ < 1. An application of Theorem 2.1
allows us to find an operator S : Y ∗ −→ X such that ‖S∗‖ � 1, S∗(x∗

i j ) = T ◦ φ(x∗
i j )

holds for every 1 � i � n, 1 � j � m and S∗(x∗) = T ◦ φ(x∗). Observe that S∗ :
X∗ −→ Y = Y ∗∗ is a finite-rank and w∗ − w∗ continuous operator, so S∗ ∈ X̂⊗εY .

Moreover, it follows that

|Bi (S∗ − T )| =
∣

∣

∣

∣

∣

∣

m
∑

j=1

S∗(x∗
i j )(y

∗
i j ) − T (x∗

i j )(y
∗
i j )

∣

∣

∣

∣

∣

∣

�
m

∑

j=1

|S∗(x∗
i j )(y

∗
i j ) − T (x∗

i j )(y
∗
i j )|

=
m

∑

j=1

|(T ◦ φ)(x∗
i j )(y

∗
i j ) − T (x∗

i j )(y
∗
i j )|

�
m

∑

j=1

‖T ‖‖φ(x∗
i j ) − x∗

i j‖‖y∗
i j‖

123



A. Rueda Zoca

< δ

m
∑

j=1

‖y∗
i j‖ < η.

Since |Bi (T − T0)| < ξ − η we get |Bi (S∗ − T0)| < ξ , and the arbitrariness of i
implies that G := S∗ ∈ U . Let us prove that ‖T − G‖ > 2(1 − ε) − ε. Indeed,

‖T − G‖ � (T − G)(x∗)(y∗
0 )

= T (x∗)(y∗
0 ) − S∗(x∗)(y∗

0 )

= T (x∗)(y∗
0 ) − (T ◦ φ)(x∗)(y∗

0 )

= T (x∗)(y∗
0 ) + T (x∗

0 )(y
∗
0 ) − (T (x∗

0 )(y
∗
0 ) + T (φ(x∗))(y∗

0 ))

> 2(1 − ε) − ‖T ‖‖x∗
0 + φ(x∗)‖‖y∗

0‖
> 2(1 − ε) − ε.

as desired. ��
As stated before, it is time to remove the finite-dimensionality assumption in the

above theorem to obtain the following result.

Theorem 3.2 Let X be a Banach space such that X∗ has the WODP and let Y be any
Banach space. Then X̂⊗εY has the DD2P.

Proof Let U be a non-empty weakly open subset of X̂⊗εY such that U ∩ BX̂⊗εY = ∅
and select any z ∈ U ∩ SX̂⊗εY and ε > 0, and let us prove that there exists z′ ∈
U ∩ BX̂⊗εY such that ‖z − z′‖ > 2− ε. In order to do so, we can assume with no loss
of generality that z ∈ X ⊗ Y , that is, that z = ∑n

i=1 xi ⊗ yi for certain x1, . . . , xn ∈
X , y1, . . . , yn ∈ Y . Set E := span{y1, . . . , yn}, and observe that z ∈ U∩SX̂⊗εE (recall
that the injective tensor product respects subspaces). Since E is finite dimensional and
U ∩ BX̂⊗εE is a non-empty relatively weakly open subset of BX̂⊗εE , Theorem 3.1
implies that there exists z′ ∈ U ∩ BX̂⊗εE such that ‖z − z′‖X̂⊗εE > 2 − ε. The fact
that the injective tensor product respects subspaces implies that z′ ∈ U ∩ BX̂⊗εY and
‖z − z′‖ > 2 − ε, as desired. ��

In the case that X = L1(μ) we have the following characterisation.

Corollary 3.3 Let (�,,μ) a measure space. The following are equivalent:

(1) L1(μ)̂⊗εX has the DD2P for every Banach space X.
(2) L1(μ) has the DD2P.
(3) L1(μ) has the Daugavet property.
(4) μ does not contain any atom.

Proof (1)⇒(2) is immediate, whereas (2)⇔(3)⇔(4) follows since L1(μ) has the Dau-
gavet property if, and only if, μ does not contain any atom, which is in turn equivalent
to the fact that BL1(μ) does not have any denting point (see e.g. [1, Lemma 3.2]).
Finally (4)⇒(1) follows since L1(μ)∗ = L∞(μ) has the WODP by [15, Proposition
5.9] if μ does not contain any atom. ��
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Remark 3.4 Observe that in [17, Theorem 3.1] it is proved that there exists a finite-
dimensional Banach space E such that LC

1 ([0, 1])̂⊗εE fails the SD2P. Consequently,
Theorem 3.2 can not be improved to get the SD2P.

In Theorem 3.2 we have only made assumptions on one of the factors. In the
following theorem we prove, however, that if we require that both X∗ and Y ∗ have the
WODP, we can improve the conclusion to get the Daugavet property in X̂⊗εY . Notice
that we will not be able to make use of the identification of (X̂⊗εY )∗ = X∗

̂⊗πY ∗
since [19, Theorem 5.33] does not apply here by the absence of any Radon-Nikodym
property. However, we will make use of this in a local way.

Theorem 3.5 Let X and Y be two Banach spaces such that X∗ and Y ∗ have theWODP.
Then X̂⊗εY has the Daugavet property.

Proof Let T ∈ SX̂⊗εY , ε, α > 0 and B ∈ (X̂⊗εY )∗ with ‖B‖ = 1. Let us find
G ∈ SX̂⊗εY such that B(G) > 1 − α and ‖T + G‖ > 2(1 − ε).

Let us start by choosing x∗
0 ∈ SX∗ and y∗

0 ∈ SY ∗ such that y∗
0 (T (x∗

0 )) > 1 − ε.
Now select S ∈ SX̂⊗εY satisfying that B(S) > 1 − α and S ∈ X ⊗ Y (up to a density
argument). Since ‖S‖ = 1 we can, once again, find u∗

0 ∈ SX∗ and v∗
0 ∈ SY ∗ such that

v∗
0(S(u∗

0)) > 1 − ε. On the other hand, since B(S) > 1 − α then B(S) > 1 − α + η0
for certain η0 > 0.

By the condition S ∈ X ⊗ Y we get S = ∑n
i=1 xi ⊗ yi for certain n ∈ N,

x1, . . . , xn ∈ X and y1, . . . , yn ∈ Y . Call F := span{y1, . . . , yn} ⊆ Y . Since the
injective tensor product respects subspaces we can see S ∈ X̂⊗εF ⊆ X̂⊗εY . This
allows us to note that

1 − α + η0 < B(S) = B|X̂⊗εF (S).

As B|X̂⊗εF ∈ (X̂⊗εF)∗ = X∗
̂⊗π F∗ [19, Theorem 5.33], we conclude that B|X̂⊗εF ∈

co(BX∗ ⊗ BF∗), consequently we can find suitable p ∈ N, x∗
1 , . . . , x

∗
p ∈ BX∗ \

{0}, y∗
1 , . . . , y

∗
p ∈ BF∗ \{0} and λ1, . . . λp ∈ [0, 1] with ∑p

j=1 λ j = 1 satisfying that

∥

∥

∥

∥

∥

∥

B|X̂⊗εF −
p

∑

j=1

λ j x
∗
j ⊗ y∗

j

∥

∥

∥

∥

∥

∥

<
η0

4
. (3.1)

Consequently,
p

∑

j=1

λ j x
∗
j ⊗ y∗

j (S) > 1 − α + 3η0
4

. (3.2)

Select 0 < δ < min{ η0
2 , v∗

0(S(u∗
0)) − (1 − ε)}.

Since X∗ has the WODP we can find x∗ ∈ {z∗ ∈ BX∗ : y∗
0 (T (z∗)) > 1 − ε}

(which is a w∗-slice of BX∗ since T is w∗ − w continuous) and a bounded operator
φ : X∗ −→ X∗ with ‖φ‖ < 1 and such that

‖φ(x∗
j ) − x∗

j ‖ < δ, 1 � j � m, (3.3)
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and
‖φ(x∗) − u∗

0‖ < δ. (3.4)

Observe that S ◦ φ : X∗ −→ F is a finite-rank operator with ‖S ◦ φ‖ < 1. An
application of Theorem 2.1 yields a finite-rank operator U : F∗ −→ X such that
|‖U‖ − ‖S ◦ φ‖| < 1 − ‖S ◦ φ‖ and U∗(z∗) = S(φ(z∗)) holds for every z∗ ∈
span{x∗

1 , . . . , x
∗
p, x

∗}. Now V = U∗ : X∗ −→ F∗∗ = F is a w∗ − w∗ continuous, so
in particular V ∈ X̂⊗εF ⊆ X̂⊗εY . Moreover ‖V ‖ < 1 so we get that

B(V ) = B|X̂⊗εF (V ) �

⎛

⎝

p
∑

j=1

λ j (x
∗
j ⊗ y∗

j )

⎞

⎠ (V ) −
∥

∥

∥

∥

∥

∥

B|X̂⊗εF −
p

∑

j=1

λ j x
∗
j ⊗ y∗

j

∥

∥

∥

∥

∥

∥

(3.1)
>

p
∑

j=1

λ jU
∗(x∗

j )(y
∗
j ) − η0

4
=

p
∑

j=1

λ j S(φ(x∗
j ))(y

∗
j ) − η0

4

�
p

∑

j=1

λ j S(x∗
j )(y

∗
j ) −

p
∑

j=1

λ j‖φ(x∗
j ) − x∗

j ‖ − η0

4

(3.3)
>

⎛

⎝

p
∑

j=1

λ j x
∗
j ⊗ y∗

j

⎞

⎠ (S) − δ − η0

4

(3.2)
> 1 − α + 3η0

4
− δ − η0

4
> 1 − α.

Moreover

v∗
0(V (x∗)) = v∗

0(S(φ(x∗))) � v∗
0(S(u∗

0)) − ‖φ(x∗) − u∗
0‖

(3.4)
> v∗

0(S(u∗
0)) − δ > 1 − ε.

Consequently we have found V ∈ BX̂⊗εY (indeed in X ⊗ Y , in other words, V :
X∗ −→ Y has finite rank) such that B(V ) > 1 − α and there exists x∗ ∈ SX∗ such
that y∗

0 (T (x∗)) > 1− ε and v∗
0(V (x∗)) > 1− ε. In the rest of the proof we will repeat

the above argument in order to findG ∈ BX̂⊗εY and y∗ ∈ SY ∗ such that B(G) > 1−α

and that y∗(T (x∗)) > 1− ε and y∗(G(x∗)) > 1− ε holds, from where the inequality
‖T + G‖ > 2(1 − ε) will be clear and the proof will be finished.

Since V ∈ X ⊗ Y write V = ∑m
i=1 ai ⊗ bi for certain a1, . . . am ∈ X and

b1, . . . , bm ∈ Y , so we see V ∈ Ê⊗εY where E := span{a1, . . . , am} ⊆ X . As
before, we can find ξ > 0 satisfying 1 − α + ξ < B(V ) = B|Ê⊗εY (V ).

As before observe that B|Ê⊗εY ∈ (Ê⊗εY )∗ = E∗
̂⊗πY ∗ and the fact that ‖B‖ �

1 allows us to find q ∈ N, a∗
1 , . . . , a

∗
q ∈ BE∗ \ {0}, b∗

1, . . . , b
∗
q ∈ BY ∗ \ {0} and

α1, . . . , αq ∈ [0, 1] with ∑q
k=1 αk = 1 such that

∥

∥

∥

∥

∥

B|Ê⊗εY −
q

∑

k=1

αka
∗
k ⊗ b∗

k

∥

∥

∥

∥

∥

<
ξ

4
.
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Now we visualise V : Y ∗ −→ E and note that

q
∑

k=1

αka
∗
k (V (b∗

k )) > 1 − α + 3ξ

4
.

Choose 0 < γ < min{ ξ
2 , v∗

0(S(x∗)) − (1 − ε)}.
Since Y ∗ has the WODP we can find an element y∗ ∈ {w∗ ∈ BY ∗ : w∗(T (x∗)) >

1 − ε} (which is a w∗-slice of BY ∗ since T : Y ∗ −→ X is w∗ − w continuous) and
operator ψ : Y ∗ −→ Y ∗ with ‖ψ‖ < 1 and such that

‖ψ(b∗
k ) − b∗

k‖ < γ, 1 � k � q

and

‖ψ(y∗) − v∗
0‖ < γ.

Moreover since V ◦ ψ : Y ∗ −→ E is a finite-rank operator with ‖V ◦ ψ‖ < 1 we can
find, with a new appeal to Theorem 2.1, a bounded operator W : E∗ −→ Y such that
|‖W‖−‖V ◦ψ‖| < 1−‖V ◦ψ‖ and such thatW ∗(w∗) = V ◦ψ(w∗) holds for every
w∗ ∈ span{b∗

1, . . . , b
∗
q , y

∗}. Our final operator G := W ∗ satisfies B(G) > 1 − α and
x∗(G(y∗)) > 1 − ε by a similar argument to the one previously exposed for V . ��

Now several comments are pertinent.

Remark 3.6 Theorem 3.5 improves [18, Theorem 1.1], where it is proved that
L1(�1, 1, μ1)̂⊗εL1(�2, 2, μ2) has the Daugavet property if μi contains no atom
for i = 1, 2. Indeed, in the above case the space L1(�i , i , μi )

∗ = L∞(�i , i , μi )

has the WODP for i = 1, 2 by [15, Proposition 5.9] since L∞(�i , i , μi ) are L1-
preduals enjoying the Daugavet property [21, p. 78, Examples (b)]. This means that
Theorem 3.5 covers [18, Theorem 1.1].

Remark 3.7 In [15, Theorem 5.4] it is proved that if both X and Y have theWODP then
X̂⊗πY has the WODP, which makes the WODP a potential tool to give an affirmative
answer to the question whether X̂⊗πY has the Daugavet property if both X and Y
have the Daugavet property. Notice that Theorem 3.5 proves that the WODP is also a
potential tool to solve the analogous question for the injective tensor product. Indeed,
observe that a Banach space X has the Daugavet property if, and only if, given any
x∗ ∈ SX∗ , any ε > 0 and any weak-star slice S of BX∗ there exists y∗ ∈ S such that
‖y∗ − x∗‖ > 2−ε (which is a weak-star version of the Daugavet property) [9, Lemma
2.1]. Moreover, observe that in the proof of Theorem 3.5 it is not needed that X∗ has
the WODP, but just a weak-star version of it (since the slices used in the proof are
actually weak-star slices as we have pointed out in the proof).

4 Projective tensor product

In this section we get examples of spaces X and Y such that X̂⊗πY has the D2P, which
can be seen as partial answers to the question of when a projective tensor product has
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the D2P, posed in an equivalent formulation in [11, Question 4.2]. Let us start with the
next result, which is probably a simple observation. In [3, Theorem 4.1] it is proved
that C(K )̂⊗π X has the D2P if K is infinite and X is non trivial. In the next result we
obtain a generalisation replacingC(K )with a general infinite-dimensional L1-predual
space. The proof is based on the fact that the bidual of an L1-predual space is a C(K )

space, the abovementioned [3, Theorem 4.1], andweak-star density argument allowed
by themetric approximation property of anyC(K ) space.We include a complete proof
since, even though this result may be known by experts, we have not found any explicit
reference to it.

Theorem 4.1 Let X be an infinite dimensional L1-predual and let Y be a non-zero any
Banach space. Then X̂⊗πY has the D2P.

Proof Let W be a non-empty weakly open subset of BX̂⊗πY . We can assume with no
loss of generality that

W = {

z ∈ BX̂⊗πY : |Tk(z − z0)| < α0, 1 � k � p
}

,

for suitable Tk ∈ SL(X ,Y ∗), 1 � k � p, z0 ∈ X̂⊗πY and α0 > 0. Since X is an infinite-
dimensional L1-predual then X∗∗ = C(K ) for some infinite compact Hausdorff set
K [14, Theorem 6.1]. Define the weakly open set

U := {

z ∈ BX∗∗
̂⊗πY : |T ∗∗

k (z − z0)| < α0, 1 � k � p
}

,

which is non-empty because W is non-empty and since the canonical embedding
X̂⊗πY ⊆ X∗∗

̂⊗πY is isometric [12, Lemma 2.3]. Since X∗∗ = C(K ) we get that
U has diameter two by [3, Theorem 4.1]. Consequently, there are two elements zi :=
∑ni

j=1 αi j x∗∗
i j ⊗ yi j ∈ U ∩co(BX∗∗ ⊗ BY ), i = 1, 2, such that ‖z1− z2‖ > 2−ε. Since

X∗∗ has the metric approximation property we can find an operator T ∈ SL(X ,Y ∗) such
that

2 − ε < T ∗∗(z1 − z2) =
n1
∑

j=1

α1 j T
∗∗(x∗∗

1 j )(y1 j ) −
n2
∑

j=1

α2 j T
∗∗(x∗∗

2 j )(y2 j ),

(see, e.g. [12, Lemma 2.3]). Since BX is w∗-dense in BX∗∗ then, for every i ∈ {1, 2}
and every j ∈ {1, . . . , ni }, we can find a net {xsi j }s ⊆ BX such that xsi j →w∗

x∗∗
i j .

Now notice that all the operators T ∗∗
j and T ∗∗ are w∗ − w∗-continuous. This implies

that T (xsi j ) → T ∗∗(x∗∗
i j ) in the weak-star topology of Y ∗, and so

T (xsi j )(yi j ) → T ∗∗(x∗∗
i j )(yi j )

holds for every i, j . Similarly, Tk(xsi j )(yi j ) → T ∗∗
k (x∗∗

i j )(yi j ) holds for every i, j and
1 � k � p. Since z1, z2 ∈ U and T ∗∗(z1 − z2) > 2 − ε we can find s large enough
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so that

∣

∣

∣

∣

∣

∣

ni
∑

j=1

αi j Tk(x
s
i j ⊗ yi j ) − Tk(z0)

∣

∣

∣

∣

∣

∣

< α0

holds for every 1 � k � p and i = 1, 2 (in other words,
∑ni

j=1 αi j xsi j ⊗ yi j ∈ W ) and
that

n1
∑

i=1

α1 j T (xs1 j )(y1 j ) −
n2
∑

i=1

α2 j T (xs2 j )(y2 j ) > 2 − ε,

which implies that diam (W ) � 2− ε. Since ε > 0 was arbitrary the result follows. ��
Remark 4.2 Theorem 4.1 improves [3, Theorem 4.1], where it is proved that
C(K )̂⊗π X has the D2P for every Banach space X and every infinite compact Haus-
dorff topological space K . Theorem 4.1 also improves [11, Proposition 2.11], where
it is proved that c0̂⊗π X has the D2P for every Banach space X .

Now it is time to prove that the WODP can be also used in order to get the DD2P
in a projective tensor product. This is obtained in the following theorem.

Theorem 4.3 Let X be a Banach space with the WODP. Then X̂⊗πY has the DD2P
for every Banach space Y .

Proof Let U ⊆ BX̂⊗πY be a non-empty relatively weakly open subset of BX̂⊗πY , set
z ∈ U∩SX̂⊗πY and ε > 0, and let us prove that there existsw ∈ U such that ‖z−w‖ >

2 − ε. In order to do so, we can find n ∈ N, x1, . . . , xn ∈ BX , y1, . . . , yn ∈ BY and
λ1, . . . , λn ∈ (0, 1] such that

∑n
i=1 λi = 1, such that z′ := ∑n

i=1 λi xi ⊗ yi ∈ U and
that

∥

∥

∥

∥

∥

z −
n

∑

i=1

λi xi ⊗ yi

∥

∥

∥

∥

∥

<
ε

4
.

Since U is a non-empty relatively weakly open subset we can write

U := {

w ∈ BX̂⊗πY : ∣

∣Tj (w − w0)
∣

∣ < α0, 1 � j � p
}

for some T1, . . . , Tp ∈ (X̂⊗πY )∗ = L(X ,Y ∗) with ‖Tj‖ = 1 for 1 � j � p and
α0 > 0. Since z′ ∈ U this means that |Tj (z′ − w0)| < α0 holds for every 1 � j � p.
Consequently, we can find η > 0 small enough to guarantee that |Tj (z′−w0)| < α0−η

holds for every 1 � j � p. By the definition of z′ the above means that

∣

∣

∣

∣

∣

n
∑

i=1

λi Tj (xi )(yi ) − Tj (w0)

∣

∣

∣

∣

∣

< α0 − η.

123



A. Rueda Zoca

Given 1 � i � n consider the following weakly open set

Wi :=
{

z ∈ BX : ∣

∣Tj (z)(y j ) − Tj (xi )(yi )
∣

∣ <
η

nλ j
∀1 � j � p

}

,

which is a weakly open subset of BX containing xi for every 1 � i � n. Moreover,
given any zi ∈ Wi we get that

∑n
i=1 λi zi ⊗ yi ∈ U . Indeed, given 1 � i � n and

1 � j � p we have

∣

∣

∣

∣

∣

Tj

(

n
∑

i=1

λi zi ⊗ yi

)

− Tj (w0)

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

∣

n
∑

i=1

λi Tj (xi )(yi ) − Tj (w0)

+
n

∑

i=1

λi Tj (zi − xi )(yi )

∣

∣

∣

∣

∣

� α0 − η +
n

∑

i=1

λi |Tj (zi )(yi ) − Tj (xi )(yi )|

< α0 − η +
n

∑

i=1

λi
η

nλi
= α0,

as desired.
An application of Lemma 2.2 implies the existence of zi ∈ Wi for every 1 � i � n

and a bounded operator T : X −→ X such that ‖T ‖ � 1, that ‖T (xi ) − xi‖ < ε
8 and

that ‖T (zi ) + xi‖ < ε
8 holds for 1 � i � n.

Define w := ∑n
i=1 λi zi ⊗ yi , and let us prove that w satisfies our purposes. On the

one hand, by the above it follows that w ∈ U , so let us estimate ‖z − w‖.
Since ‖z′‖ > 1− ε

4 findG ∈ SL(X ,Y ∗) such thatG(z′) = ∑n
i=1 λi G(xi )(yi ) > 1− ε

4
and take φ := G ◦ T : X −→ Y ∗. It is clear that ‖φ‖ � 1. Now

φ

(

n
∑

i=1

λi xi ⊗ yi −
n

∑

i=1

λi zi ⊗ yi

)

=
n

∑

i=1

λiφ(xi − zi )(yi )

=
n

∑

i=1

λi G(T (xi ) − T (zi ))(yi )

=
n

∑

i=1

λi G(2xi + T (xi ) − xi − (T (zi ) + xi ))(yi )

� 2
n

∑

i=1

λi G(xi )(yi ) −
n

∑

i=1

λi (‖T (xi ) − xi‖

+ ‖T (zi ) + xi‖)
� 2

(

1 − ε

4

)

− 2
ε

8
= 2 − 3ε

4
.
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Consequently ‖z′ − w‖ � φ(z′ − w) � 2− 3ε
4 , and since ‖z − z′‖ < ε

4 we infer that
‖z − w‖ > 2 − ε, as requested. ��

Since L1-predualswith theDaugavet property actually enjoy theWODP [15, Propo-
sition 5.9] we get the following corollary.

Corollary 4.4 Let X be an L1-predual with the Daugavet property. Then X̂⊗πY has
the DD2P for every Banach space Y .

Let us conclude with a couple of remarks.

Remark 4.5 Theorem4.3 can not be improved to get the SD2P. Indeed, in [12, Theorem
3.8] it is proved that L∞([0, 1])̂⊗π�np fails the SD2P if 2 < p < ∞ and n � 3.

Remark 4.6 Note that Theorem 4.3 improves [13, Proposition 5.2] (which was in turn
a strengthening of [18, Remark 5.9]). In order to explain the way inwhich Theorem 4.3
improves [13, Proposition 5.2], let us introduce some notation. A Banach space X is
said to have the diametral local diameter two property DLD2P if, given any slice S
of BX , any x ∈ S ∩ SX and any ε > 0, there exists y ∈ S such that ‖x − y‖ > 2 − ε.

In [13, Proposition 5.2] it is proved that if X has the WODP then X̂⊗πY has the
DLD2P for every non-zero space Y . Our Theorem 4.3 improves the conclusion to get
the DD2P. Let us point out, however, that it is an open question whether the DLD2P
and the DD2P are equivalent [5, Question 4.1].
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