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 A B S T R A C T

Nutrition and healthy eating habits are fundamental for the global population. Nowadays, there is an increasing 
tendency to consume less healthy recipes and a low general knowledge of nutrition. In these terms, generative 
AI arises as a potential tool for health-aware food recommendations, especially when improving communication 
with the user. This study presents a pipeline to enrich prompts with fuzzy modelling to increase the quality of 
textual recommendations. We apply our pipeline to generate a personalised frequency of food consumption, 
considering both nutritional and individual profiles. This is an essential task for increasing the health-conscious 
recommendation systems. We conducted extensive experimentation across different roles and prompt strategies. 
We evaluated the quality of the text and the nutritional rigour of the text responses. Our results show that 
enriching prompts with fuzzy modelling of the nutritional information of the foods significantly improves the 
quality of the prompt responses.
1. Introduction

Nowadays, unhealthy diets and inadequate nutrition constitute sig-
nificant risk factors for various diseases worldwide. According to a 
2019 study by The Lancet, one in five deaths globally is linked to 
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poor nutrition, encompassing conditions such as cardiovascular dis-
eases (e.g., heart attacks and strokes), certain cancers, and diabetes.1 
For instance, cardiovascular diseases represent the leading cause of 
death worldwide, accounting for over half of all global mortality, 
claiming approximately 17.9 million lives annually.2 Additionally, the 
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World Health Organisation (WHO) estimates that the global prevalence 
of overweight adults, defined as those with a Body Mass Index (BMI) of 
25 or higher, stands at 38.9%. These statistics underscore the critical 
need to establish rigorous nutrition standards within computational 
systems applied to nutrition, dietary advice, and assessment.

Here arises health-aware food recommendation systems [1] as a 
computational approach to help individuals integrate healthy habits 
into their daily routine. The accessibility and online availability of large 
language models (LLMs) [2,3], such as ChatGPT, has empowered indi-
viduals to use these resources for queries concerning recommendations 
regarding food, cooking, and nutrition [4]. They have also recently at-
tracted considerable attention in recommendation systems, presenting 
a promising tool for enhancing their performance and increasing the 
communication of recommendation systems with the users [5].

Integrating generative AI in food recommendation systems opens 
a new paradigm in personalised recommendation. There is growing 
interest in incorporating LLMs into conversational recommendation 
systems, providing personalised explanations to users, and increasing 
their user-friendly features. However, this communication may lack 
exactness, clarity, engagement, or trustworthiness, opening new scenar-
ios regarding user interaction with the system. Prompting generative 
general language models for nutritional recommendations can lead to 
severe health issues for the population [6]. We highlight the lack of 
nutritional rigour, absence of nutritional vision in training and limited 
context of the individuals [7], and problems derived from gender 
bias [8]. In the case of nutrition, it is especially relevant that person-
alised recommendations are gender-sensitive, as this is a differentiating 
feature in nutritional dietary assessment.

Since LLMs have cold-start capabilities in zero-shot scenarios, pro-
viding reliable responses is challenging. In these terms, knowledge-
enhanced prompt learning arises as an alternative for textual-based 
recommendations, mainly used in conversational recommendation sys-
tems [9], as well as retrieval augmented generation for improving 
the prompt content [10]. In nutritional recommendations, relevant 
data comes from diverse sources: nutrition information, individual 
profiles, expert guidelines, and health standards [11]. Incorporating 
all the necessary information into prompts increases the difficulty of 
achieving high-level performance in the response. Fuzzy modelling 
techniques have been demonstrated to model complex relationships 
and integrate expert knowledge [12]. Motivated by this, this study 
proposes a novel generative AI-based approach that enriches prompts 
based on fuzzy modelling of foods’ nutrition profiles, nutritional advice, 
and healthy standards.3 We specifically apply this approach to generate 
personalised textual recommendations regarding food frequency of 
consumption based on their composition and individual needs. This 
task is significant in healthy-aware recommendation systems since they 
provide educational explanations that help the user understand the 
nutritional profile of foods while enhancing healthy diet adherence and 
long-term healthy habits.

To the best of our knowledge, this is the first attempt at applying 
fuzzy logic to enrich user interaction in recommendation scenarios. The 
contributions of this study are as follows:

1. We present a generative AI-based approach to provide textual 
recommendations regarding the frequency of consumption of 
foods based on health standards and nutritionist advice. It con-
siders the individuals’ profile and the nutritional information of 
foods to provide tailored textual recommendations for adequate 
food consumption.

2. We propose a methodology for integrating fuzzy linguistic vari-
ables into LLM-based food recommendations and dietary assess-
ment pipelines, with the potential for further textual recommen-
dation tasks.

3 The code and materials for this paper will be publicly available on GitHub 
upon acceptance.
2 
3. We conduct an extensive study of textual recommendation con-
sidering prompting roles, text quality, nutritional rigour, and 
robustness of prompting strategies using the LlaMA3 model. 
Our research demonstrates that integrating fuzzy modelling in 
generative AI prompts enhances nutritional rigour and improves 
model behaviour.

2. Related work

The term food computing refers to technological applications related 
to food [13,14]. These sorts of applications range from food recom-
mendation systems and diet management [11,15] to recipes adapta-
tion [16–18].

In [19], the authors analyse the healthiness of Internet-Sourced 
Recipes. They state that only a tiny percentage of the recipes on 
Allrecipes.com can be assumed healthy, considering the standard guide-
lines proposed by WHO and FSA, and even recipes in the healthy recipes
category can be deceptive. This illustrates the level of unhealthy recipes 
that feed data-driven recommendations, as well as the tendencies of 
consumption of the population.

Food recommendation allows suggesting nutritional recommenda-
tions to users at food, recipe and diet levels. They are based on different 
criteria such as user preferences [20], dietary restrictions and nutri-
tional requirements [21], and cultural impact [22]. By leveraging data 
such as user reviews, ingredient lists, cooking methods, and nutritional 
content, recommendation systems aim to provide personalised and 
relevant recipe suggestions that align with the user’s needs [23].

Recently, significant advances have been made in food recommen-
dation systems, aiming to predict users’ preferences and guide their 
choices based on predetermined criteria [24,25]. The studies above fail 
to recommend healthy food as they mainly focus on users’ preferences.

2.1. Health-aware food recommendation systems

We find several approaches in the literature striving to design 
healthy-aware food recommendation systems. That is the case in [23], 
where the authors summarise the state-of-the-art recent approaches 
of healthy-aware food recommendation systems. In the same way, 
the study depicted in [26] provides an overview of recommenda-
tion systems in the healthy food domain, covering both individual 
and group recommendation approaches and discussing research-related 
challenges.

According to [27], a framework (namely NutRec) is presented for 
predicting relevant ingredients and their amounts. The proposal creates 
a healthy pseudo-recipe that searches the dataset for the most similar 
healthy recipes to improve the healthiness of the recommended recipes 
without requiring any pre-computed nutritional information for the 
recipes. In [25], the study explored whether a recommendation sys-
tem that integrates healthy and personalised suggestions can influence 
individuals to choose healthier recipes than they typically would. It 
is achieved by incorporating a healthy bias into the recommendation 
algorithm and displaying a healthy tag on recipe cards.

Another interesting work, [20], introduces a food recommenda-
tion approach to generate personalised daily meal plans tailored to 
users’ nutritional needs and preferences. The approach incorporates 
an AHPSort-based pre-filtering stage for excluding inappropriate foods 
from the recommendations. Finally, the approach generates a menu to 
maximise user preferences while ensuring nutritional requirements. A 
new model named the Healthy and Time-Aware Food Recommendation 
System (HTFRS) is presented in [15]. The HTFRS model outperformed 
other state-of-the-art food recommendation systems by considering 
food ingredients and user ratings and incorporating a novel time-aware 
similarity metric to capture changes in user preferences over time. 
Market2Dish [28] presents a significant initiative for health-aware food 
recommendations. The system aims to map ingredients available in the 
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market to user-preferred dishes, thereby facilitating a recipe retrieval 
task that suggests health-conscious options to users.

In [29], the authors propose an affective computing-based meal 
recommendation and menu planning system that considers a person’s 
emotional state towards different foods, their nutritional value, and the 
individual’s calorie requirements to provide personalised meal recom-
mendations and full-day menu plans. Another interesting work is pre-
sented in [30], proposing a novel framework for personalised healthy-
aware meal planning using generative AI models, paying attention to 
inpatient clinical dietetics. The authors state the fact that nutrition-
ists play a crucial role in observing patient adherence and prefer-
ences, contributing to a continuous learning health system cycle for the 
personalised meal planning system.

Our approach is food-level, focusing on providing users with the 
recommended frequency of consumption for requested ingredients. 
However, the studies detailed above do not focus on the need to model 
the frequency of ingredient consumption despite their importance for 
balanced and long-term habits. Accurately modelling this frequency 
is crucial in food recommendation, as it determines the appropriate 
selection of ingredients in recommended recipes and diet plans. The 
flexibility of our approach allows for its integration into both existing 
and future recipe recommendation systems.

Additionally, these systems still need to be improved: (1) visuali-
sation and explanation of healthy-aware food recommendations have 
only been studied superficially, and (2) overlooking user characteristics 
like weight, age, allergies, etc. Lately, LLMs have been used for solving 
general downstream NLP tasks, demonstrating being a suitable tool 
for recommendation systems [31] in different domains like dialogue 
agents [32], news [33], and nutrition recommendation [34]. Table  1 
includes the most relevant approaches aligned to our proposal reviewed 
in this section, highlighting their pros, cons, and peculiar features.

2.2. Open challenges in health-aware food recommendation

After reviewing the related literature, we observed that although 
health-aware food recommendation systems have made notable
progress, many still rely on rigid nutrient limits that often fail to adjust 
to real-world food variations and the reality of food recommendations. 
These systems may offer impractical suggestions that miss users’ dietary 
goals. We propose a fuzzy modelling approach that treats nutrition 
and health targets as flexible rather than binary, better capturing the 
trade-offs in dietary recommendations. Grounded in official dietary 
guidelines, our model supports realistic, personalised recommendations 
while maintaining compliance with health standards. This adaptive 
framework enhances system credibility and supports transitioning from 
generic food suggestions to health-supportive dietary guidance.

Most existing food recommendation systems — including many 
health-aware variants — generate context-independent outputs. They 
rarely consider dynamic factors such as the user’s current health status 
or evolving dietary needs. This static treatment limits their capacity to 
deliver timely, relevant suggestions in everyday settings. Our approach 
addresses this gap by including LLMs to encode contextual metadata 
into prompt structures. These prompts guide the generation of recipe 
descriptions and explanations that adapt to the user’s current situation. 
This context awareness enhances both the personalisation and practi-
cality of the system outputs, allowing it to respond to individual needs 
more precisely.

A recurring limitation in health-focused recommendation systems 
is the lack of interpretability of the recommendations. Users are often 
left without a clear understanding of why a particular food item was 
suggested, which is especially problematic in domains involving health 
decisions. Without accessible, evidence-based justifications, users may 
be unable to assess whether recommendations suit their specific goals, 
reducing trust and engagement. Our approach provides natural lan-
guage explanations generated through prompting LLMs and explicitly 
3 
grounded in nutritional knowledge. This is intended to support in-
formed food choices and foster user confidence in recommendation 
scenarios.

Table  2 summarises these gaps, as well as how our approach ad-
dresses them and the intended impact of our contributions. Therefore, 
our proposal not only seeks to provide healthy-aware recommenda-
tions considering features like nutrition information, users’ preferences, 
expert guidelines, and health standards but also aims to incorporate 
more healthy-aware nutritional information into prompts for enhancing 
LLMs-based healthy-aware food recommendations. As far as we know, 
this is the first approach using fuzzy logic, prompt engineering, and 
LLMs to increase the performance of LLMs and the quality/understand-
ability of healthy-aware recipe recommendations. In particular, we 
study healthy-aware text recommendations based on food frequency 
of consumption, taking into account prompting roles, text quality, 
nutritional rigour, and the robustness of prompting strategies.

3. Methodology

As stated before, the main objective of our proposal is to develop a 
personalised fuzzy-based healthy-aware text recommendations system 
for requested ingredients based on food frequency of consumption. In 
order to estimate the frequency of food consumption, the system uses 
individual profiles, food nutritional content, and established dietary 
guidelines (e.g., WHO standards). We define the problem as follows: 

Let 𝑈 represent an individual, characterised by their attributes 
𝑈 = {𝑤𝑖, ℎ𝑖, 𝑎𝑖} where 𝑤𝑖 is weight (kg), ℎ𝑖 is height (cm) and 𝑎𝑖
is age (years). Let 𝐹 = {𝑓1, 𝑓2,… , 𝑓𝑛} represent the set of requested 
foods. Each food item 𝑓𝑗 is characterised by a set of four nutrient 
values 𝑓𝑗 = {𝑠𝑢𝑔𝑎𝑟𝑗 , 𝑓𝑎𝑡𝑗 , 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑠𝑗 , 𝑠𝑎𝑙𝑡𝑗} where 𝑠𝑢𝑔𝑎𝑟𝑗 represents 
the quantity of sugar, 𝑓𝑎𝑡𝑗 represents the quantity of fat, 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑠𝑗
represents the quantity of saturates and 𝑠𝑎𝑙𝑡𝑗 represents the quantity 
of salt of 𝑓𝑗 . Firstly, the system computes the Basal Metabolic Rate 
(BMR) for each user using the Harris–Benedict Equation (HBE) (see 
Eqs. (1), (2) and (3)). Secondly, we define four fuzzy sets 𝐹𝑆𝑈

𝑓𝑗
=

{𝐹𝑆𝑠𝑢𝑔𝑎𝑟, 𝐹𝑆𝑓𝑎𝑡, 𝐹𝑆𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑠, 𝐹𝑆𝑠𝑎𝑙𝑡}, one for each nutrient to fuzzify its 
amount, for the food 𝑓𝑗 and the user 𝑈 , using three fuzzy linguistic 
variables as 𝑈

𝑓𝑗
= {low, medium, or high}, based on threshold values 

derived from nutrition experts guidelines. Finally, we define a set of 
fuzzy rules that allow us to compute the fuzzy score of consumption 
𝑆(𝑓𝑗 , 𝑈 ) for a food 𝑓𝑗 and an individual 𝑈 in the inference stage.

Note that the fuzzy linguistic variables 𝐼
𝑓𝑗
 are integrated into a 

prompt, which is used to generate personalised user-friendly textual 
recommendations based on the individual’s profile and food character-
istics that align with WHO nutritional guidelines.

Fig.  1 illustrates the workflow for building the generative AI-based 
recommendations. Our approach parts from three primary resources, 
the individual profile (needed to adjust the food frequency of consump-
tion to the individual), food and nutrition data (typically obtained from 
food datasets), and nutrition standards (such as WHO or nutritionists’ 
advice). We use this information to model the nutritional amounts 
of the foods, taking into account four nutrients (fat, saturated fats, 
sugar, and salt) and three fuzzy linguistic input variables to represent 
the amounts (low, high, and medium). This modelling is not a one-
size-fits-all approach but a personalised solution for tailored individual 
needs and body composition. It allows us to obtain a unique score 
for quantifying food’s recommended frequency of consumption for a 
given individual, ensuring that each individual’s unique requirements 
are met. Then, the fuzzy variables are considered in the prompt for 
generating personalised nutrition information for the food for final 
users.

We enrich the prompt with fuzzy modelling to provide user-friendly 
and personalised textual recommendations on food nutritional profiles. 
These recommendations are based on the computed scores and the 
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Table 1
Most related approaches summarising their pros, cons, and peculiarities.
 Article Pros Cons Peculiarities  
 [20] Toledo et al. (2019) System with a pre-filtering stage to remove 

unsuitable foods and an optimisation stage to 
create meal plans that align with user 
preferences and nutritional needs while 
avoiding recently eaten foods. A case study 
shows its effectiveness, excluding 32 foods for 
overweight and 40 for diabetic users.

It lacks integration of 
long-term food logs to ensure 
balanced intake over time. 
Additionally, the evaluation 
was conducted on synthetic 
data, highlighting the need for 
future validation with real 
users.

General framework for daily 
meal recommendations that 
incorporates the simultaneous 
management of nutritional- 
and preference-aware 
information.

 

 [25] Pecune et al. (2020) It explores how adding a health bias and 
healthy tags to recipe recommendations affects 
user choices. It develops three recommender 
systems (health-focused, preference-based, and 
hybrid) to understand how they influence 
healthier decision-making.

Limited recommendation 
diversity, lacks a 
conversational interface for 
capturing user preferences, 
and no focus on users’ healthy 
eating interests to tailor 
recommendations.

It explores if a healthy bias 
and health tags in recipe 
recommenders influence 
people’s decision-making when 
selecting recipes.

 

 [27] Chen et al. (2020) It outperforms a random baseline in WHO 
scores, highlighting the value of considering 
ingredient amounts, not just types. Training on 
diverse and extensive data proved more 
beneficial than limiting it to healthy recipes.

Potential improvements 
include ensemble ingredient 
models, broader dietary goal 
support, and user rating 
integration for benchmarking.

The system recommends 
healthier recipes by generating 
a healthy pseudo-recipe and 
then retrieving a similar 
healthy recipe to recommend.

 

 [28] Wang et al. (2021) System with robust performance in user health 
profiling, outperforming baseline methods by 
extracting health-related information from 
social media. It also achieves superior results 
compared to existing methods across multiple 
evaluation metrics.

More advanced systems could 
profile users’ health, offer 
food-level recommendations 
prioritising health protection, 
and better integrate healthy 
diet knowledge.

Personalised recommendation 
scheme that maps market food 
products to the healthy dishes 
eaten at home by profiling 
user health and recommending 
healthy recipes.

 

 [24] Gao et al. (2022) System that outperforms state-of-the-art food 
recommendation methods by effectively 
leveraging ingredient–ingredient, 
ingredient–recipe, and recipe–user relationships.

It ignores key factors like 
diversity. It only considers 
internal data among foods, 
recipes, and users.

Using a sum aggregator in the 
ingredient graph yields better 
results than a concatenation 
aggregator.

 

 [29] Islam et al. (2023) It provides meal recommendations and full-day 
menus by incorporating users’ feelings, 
excitement, and preferences, distinguishing it 
from traditional food recommendation systems. 
The hierarchical ensemble model accurately 
predicts affective states

Further exploration of 
collaborative filtering would 
be beneficial. Using sequential 
deep learning models could 
enhance the accuracy of 
detecting food-related 
emotions.

Affective computing-based 
meal recommendation and 
menu planning that considers 
nutritional requirements and 
users’ emotions and feelings 
towards different foods.

 

 [15] Rostami et al. (2023) The system outperforms state-of-the-art food 
recommender systems by combining time-aware 
collaborative filtering with ingredient-based 
rating prediction. The proposal also adds the 
time factor into user similarity calculations, 
which led to an average performance 
improvement of 14.96%.

Main limitations: dataset bias, 
limited cultural diversity in 
evaluation, lack of 
user-specific data (e.g., age, 
medical history), and an 
overfocus on accuracy, risking 
overfitting.

Healthy- and time-aware 
recommender system that 
integrates user preferences, 
ingredients, and nutrition data 
to provide personalised 
recommendations to guide 
users towards healthier eating 
habits.

 

 [30] Kopitar et al. (2024) Advanced personalisation with generative AI; 
menu visualisation; integrated feedback.

Depends on high-quality 
clinical data, complex hospital 
integration, and ethical 
considerations.

Novel application in clinical 
nutrition; emphasis on patient 
participation; multidisciplinary 
approach.

 

 [31] Xu et al. (2024) Framework for using LLMs in recommendation 
tasks. It analyses factors influencing 
recommendation, e.g., model architecture, 
context length, prompting approaches, or user 
interest modelling, among others.

Inefficient inference and 
challenges in formulating 
appropriate prompts enable 
LLMs to fully understand 
recommendation tasks.

Pioneering use of LLMs in 
recommender systems.

 

 [34] Papastratis et al. (2024) It improves the explainability and accuracy of 
diet recommendations by modelling user 
profiles in a descriptive latent space and 
aligning suggestions with nutritional guidelines. 
ChatGPT enriches the database with culturally 
equivalent meals, enhancing variety and 
precision.

It focuses on a specific set of 
cuisines and dietary 
preferences, overlooking a 
broader range of cuisines and 
dietary needs, such as vegan 
or gluten-free options. It lacks 
evaluation with real users.

Diet recommendation system 
that leverages deep generative 
networks and LLMs like 
ChatGPT to provide 
personalised, accurate, and 
nutritious weekly plans that 
align with nutritional 
guidelines.

 

individual’s profile. Starting from the individual’s profile, we calculate 
their daily energy intake based on height, weight, and gender. This 
calculation refers to BMR, the body’s energy needs to maintain vital 
functions at rest, such as breathing, blood circulation, and body temper-
ature regulation [35]. The HBE provides an estimation for calculating 
the BMR of a specific individual. Let 𝑤𝑖 be the weight in kilogrammes 
of the individual 𝑖, ℎ𝑖 their height in centimetres and 𝑎𝑖 their age in 
years. Eqs. (1) and (2) illustrate the calculation used for obtaining BMR 
4 
for male and female individuals based on the Harris–Benedict equa-
tion. To consider inclusivity, we also compute a gender-independent 
version of BMR. This ensures that our nutritional recommendations 
are representative across all genders and can be used in non-specified 
gender use cases. For this, we calculate the individual energy intake 
using the average values of the male and female BMR estimations, as 
shown in Eq. (3). This approach not only caters to a wider audience 
but also reflects our understanding of the diverse nutritional needs of 
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Table 2
Summary of key challenges in health-aware food recommendation.
 Challenge Our approach Impact  
 1. Rigid nutritional
thresholds

Fuzzy modelling of nutrients and 
goals

Enables flexible, realistic 
dietary suggestions

 

 2. Static recommendations Context-enriched LLM prompts Personalises outputs based 
on evolving user context

 

 3. Low interpretability LLM-generated, guideline-based 
explanations

Enhances user trust and 
decision-making clarity

 

Fig. 1. Workflow of the proposed approach.
Fig. 2. Prompt for generating recommendations for the fuzzy strategy. We provide the model with the values of the input fuzzy variables for a given food (anchovies, in this 
case).
individuals. 

BMRmale(𝑖) = 88.362 + (13.397 ×𝑤𝑖) + (4.799 × ℎ𝑖) − (5.677 × 𝑎𝑖) (1)

BMRfemale(𝑖) = 447.593 + (9.247 ×𝑤𝑖) + (3.098 × ℎ𝑖) − (4.330 × 𝑎𝑖) (2)

BMRavg(𝑖) =
BMRmale(𝑖) + BMRfemale(𝑖)

2
(3)

We use BMR to estimate the maximal quantity of a nutrient that 
should be consumed per day. A gram of carbohydrates provides 4 
kilocalories, a gram of protein provides 4 kilocalories, and a gram of 
fat provides 9 kilocalories. Since the OMS provides the recommended 
maximal amounts for each nutrient as specific percentages of total 
energy intake, we can calculate the values for an individual in specific. 
This allows us to personalise the fuzzy modelling to the individual 
profiles and provide accurate textual recommendations. We detail the 
modelling in Section 4.
5 
3.1. Prompt strategy

Fig.  2 shows the prompt used with a specific food. Specifically, 
we illustrate the prompt for ‘‘Anchovies’’, after enriching it with the 
information obtained from the fuzzy linguistic variables. As shown in 
the figure, we include the membership value for each fuzzy variable 
and explain the model and the meaning of the membership values. 
Additionally, we instruct the model on specific requirements to fulfil. 
Specifically, we ask the model to avoid numbers (so it is easy to 
understand individuals) and mention each of the four ingredients using 
low, high or moderate amounts. The latter is included to comply with 
the nutritional rigour that experts expect from the response. Also, we 
expressly indicate that the model cannot include external knowledge 
so that we can control the experiments and the trustworthiness of the 
prompt response.

In this case, we have chosen an ingredient with a low value of sugar 
and fats and a high amount of salt. Regarding the saturated facts, while 
belonging to the low interval, they have a high value. In the rest of the 
paper, we refer to this prompt strategy as the fuzzy prompt.
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Fig. 3. Crisp version of the prompt. We only provide the original nutrient amounts and indicate that the system should consider low, medium, and high amounts.
Fig. 4. Crisp2fuzzy version of the prompt. We provide the nutrient amounts and the intervals to classify them into low, medium, and high quantities and ask the model to infer 
the linguistic variable with the highest membership so that it can be used in the response.
To analyse the efficacy of the fuzzy prompt, we incorporate two ad-
ditional prompts to compare their performance. First, we include a crisp
prompt, in which we provide the crisp nutrition information of the food 
and ask the model to provide a nutrition-based explanation in terms of 
low, medium, and high amounts. Fig.  3 shows an example of the crisp 
prompt for Anchovies. Second, we include a crisp2fuzzy prompt, which 
has a strategy in the middle of the crisp and the fuzzy prompts. Fig.  4 
shows an example of this strategy with the same ingredient, Anchovies. 
In this case, we provide the model with the nutrition details of the 
food and the intervals and ask the model to generate the corresponding 
linguistic variables for each nutrient, i.e., we ask the model to assign 
the membership to the linguistic variables instead of providing it with 
the fuzzification.

As highlighted in Figs.  3 and 4, both examples show poor behaviour 
in comparison to the fuzzy prompt. In Section 5, we test this hypothesis 
by analysing the performance of the three strategies to illustrate the 
large language model behaviour for providing nutrition information 
about foods.

3.2. Role prompting

We have considered four different roles to style the prompt re-
sponses in order to study their performance for providing easy-to-
understand and correct explanations to the user. With this, we aim to 
study nuanced variations in the provided explanations to optimise the 
prompting performance. We hypothesise that the responses provided 
for the different roles may differ in vocabulary, style, or correctness, 
which is important to optimise the prompts. Specifically, we have 
considered four roles to provide context and guide the explanation 
generation, detailed as follows:
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• Chef: ‘‘You are an expert chef with large knowledge of nutrition’’.
• Professor of nutrition: ‘‘You are a professor of nutrition’’.
• A person with no experience in nutrition: ‘‘You are a person 
with no expertise in nutrition’’.

• Nutritionist: ‘‘You are an experienced nutritionist’’.
We indicate the role when prompting the LLM. Fig.  5 shows a more 

detailed workflow for generating the fuzzy enriched textual recommen-
dations.

4. Fuzzy linguistic modelling

A linguistic variable has values expressed in words or sentences in a 
natural or artificial language [36]. This concept offers an approximate 
representation of ideas that can be described using quantitative terms, 
leading to the field known as fuzzy logic. In the dietary field, linguistic 
variables offer us a representation strategy for quantifying healthy 
consumption of food ingredients. We can use them to model a fuzzy 
system that considers the food nutrition composition to quantify the 
recommended consumption.

Multiple health charities and organisations have established stan-
dards for a healthy and balanced diet [37]. In this case, we focus on 
those nutrients that foods must not exceed to be considered healthy 
and nutritious. Specifically, we have used a total of four nutrients 
that, consumed in high amounts, are directly related to diet-related 
diseases: fat, saturated fats, sugar and salt. Table  3 illustrates the 
guidelines proposed by the WHO and European Union associations for 
these nutrients. The first three columns of Table  3 —Low, Medium and 
High — specify the amounts for considering a specific nutrient’s low, 
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Fig. 5. Workflow for enriching the prompts using fuzzy modelling.
Table 3
Guide for choosing healthy foods provided by Heart UK, the UK’s cholesterol charity. It states recommended quantities of 
specific nutrients per each 100 g of food. The last three columns correspond to the daily recommended amounts by the 
WHO for a male, female, or non-binary gender individual of healthy body weight consuming about 1500, 2000 and 2500 
kilocalories per day.
 Per 100 g of food Low Medium High Max per day 

(1500 kcal)
Max per day 
(2000 kcal)

Max per day 
(2500 kcal)

 

 Fat <3 g 3–17.5 g >17.5 g 50 g 66 g 83 g  
 Saturates <1.5 g 1.5–5 g >5 g 16 g 22 g 27 g  
 Sugars <5 g 5–22.5 g >22.5 g 37.5 g 50 g 62.5 g  
 Salt <0.3 g 0.3–1.5 g >1.5 g 5 g 5 g 5 g  
medium, and high presence per 100 g of food. Therefore, we have 12 
linguistic variables as input, three for each one of the four nutrients. 
These quantities depend on the proportion of nutrition amount per 
100 g of food and do not rely on individual body composition or activity 
level.

However, it is insufficient to consider these ranges to understand 
how healthy or unhealthy an ingredient is, especially in the High 
amount interval. The WHO guidelines for a healthy diet also indicate 
the daily amount the population must not overcome for specific nu-
trients.4 They allow us to distinguish those quite unhealthy foods since 
their nutrition composition surpasses the daily recommendations stated 
by health organisations. According to the WHO, the daily amount of 
salt should be less than 5 g daily. The intake of fats should be less than 
30% of total energy intake, and the intake of saturated fats should be 
less than 10%. The daily amount of free sugar should be less than 10% 
of total energy intake. The three latter depend on the individual’s daily 
energy intake, which is calculated by using the age, gender, weight, 
and height using the BMR Equations [38], detailed in Section 3. Thus, 
the fuzzy modelling can be personalised for each individual by taking 
their energy intake.

Therefore, this information must be controlled when recommending 
food based on their nutrition composition and health profile. The last 
three columns of Table  3 show the value of the maximum daily amount 
of these nutrients for individuals whose daily energy intake is 1500, 
2000, and 2500 kcal, respectively (independently of the individual 
gender).

We have used these variables to create three linguistic variables 
that allow us to create a fuzzy system to model a healthiness score for 
foods. We use an additional output linguistic variable called Frequency 
of consumption for this. We have modelled this variable based on the 
recommended frequency of consumption of foods by nutrition and 
healthcare experts (daily, once per day, weekly, and occasional). After 
defuzzification, it represents a score of 0 and 1, from less to more 
frequency of consumption.

4 Healthy Diet: www.who.int/news-room/fact-sheets/detail/healthy-diet
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4.1. Fuzzy linguistic variables

For designing the fuzzy system, we have created three input lin-
guistic variables for each nutrient: low, medium, and high, following 
the guidelines in Table  3. However, the nutrition domain requires 
considering the specific amount inside the intervals. For example, while 
3.1 g and 15 g are both medium amounts for fat, the former is healthier 
since it is very close to low values. Our modelling must be aware of this 
to model a precise healthiness score.

Given a nutrient 𝑛 ∈ {fat, saturates, sugar, salt}, the amount of 
nutrient 𝑥 falls in the interval 𝐼 ∶= [0, 100]. Then, we split 𝐼 into three 
disjoint subintervals denoted as 𝐼low ∶= [0, 𝑐𝑛low], 𝐼medium ∶= [𝑐𝑛low, 𝑐

𝑛
high]

and 𝐼𝑛high ∶= [𝑐𝑛high, 100]. These subintervals represent the low, medium 
and high areas for the healthy amount of each ingredient. We define 
𝑐𝑛medium ∶=

𝑐𝑛low+𝑐
𝑛
high

2 , and 𝑐𝑛max as the maximum quantity of the nutrient 
𝑛 that should be consumed per day. Then, we define the membership 
function for the fuzzy variables for each nutrient 𝑛 (see Fig.  6) as 
follows:

4.1.1. The low-[nutrient] variable
To quantify the amount of a given nutrient in a food item and 

determine its suitability based on dietary recommendations, we use 
fuzzy logic to categorise nutrient quantity as low, medium, or high. 
Specifically, we define a trapezoidal membership function 𝜇𝑛

low(𝑥) to 
represent the degree to which a nutrient amount 𝑥 belongs to the low
label. This function assigns a membership value in the range 𝜇𝑛

low ∶ 𝐼 →

[0, 1] based on predefined threshold values 𝑐𝑛low and 𝑐𝑛high. The function 
is defined as follows: 

𝜇𝑛
low(𝑥; 𝑐

𝑛
low, 𝑐

𝑛
high) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 ; 𝑥 < 𝑐𝑛low

0 ; 𝑥 > 𝑐𝑛high

𝑐𝑛high−𝑥

𝑐𝑛high−𝑐
𝑛
low

; 𝑐𝑛low ≤ 𝑥 ≤ 𝑐𝑛high

(4)

where: 

• For nutrient values below 𝑐𝑛low, the food is fully considered to have 
a low amount of the nutrient.

http://www.who.int/news-room/fact-sheets/detail/healthy-diet
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Fig. 6. Fuzzy variables for fat, saturates, sugar, and salt amounts per 100 g of food. Note that in (d), the 𝑥-axis has been reduced for better visibility in this illustration. In this 
case, the membership function remains stable until value 100 (data domain).
• For values above 𝑐𝑛high, the food is no longer considered to belong 
to low label.

• For values in between 𝑐𝑛low and 𝑐𝑛high, the membership function 
decreases linearly, reflecting a gradual transition of the nutrient 
amount.

4.1.2. The high-[nutrient] variable
For high label, we also use trapezoidal membership function 𝜇𝑛

high(𝑥)
to represent the degree to which a nutrient amount 𝑥 belongs to the high
label. This function assigns a membership value in the range 𝜇𝑛

high ∶ 𝐼 →

[0, 1] based on predefined threshold values 𝑐𝑛low and 𝑐𝑛high. The function 
is defined as follows:

𝜇𝑛
high ∶ 𝐼 → [0, 1] defined as follows: 

𝜇𝑛
high(𝑥; 𝑐

𝑛
low, 𝑐

𝑛
high) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 ; 𝑥 > 𝑐𝑛high

0 ; 𝑥 < 𝑐𝑛low

𝑥−𝑐𝑛low
𝑐𝑛high−𝑐

𝑛
low

; 𝑐𝑛low ≤ 𝑥 ≤ 𝑐𝑛high

(5)

where: 

• For nutrient values above 𝑐𝑛high, the food is fully considered to 
have a high amount of the nutrient.

• For values below 𝑐𝑛low, the food is no longer considered to belong 
to high label.

• For values in between 𝑐𝑛low and 𝑐𝑛high, the membership function 
decreases linearly.
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4.1.3. The medium-[nutrient] variable
We use a triangular membership function 𝜇𝑛

medium ∶ 𝐼 → [0, 1]. The 
main reason is due to the specificities of the nutrition domain. While 
the amount of a specific nutrient can be medium, this value can be 
closer to low or high values. With this function, we have modelled that 
medium values that are very close to both low and high values are not 
considered equals. It is defined as follows: 

𝜇𝑛
medium(𝑥; 𝑐

𝑛
medium, 𝑐

𝑛
max) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 ; 𝑥 ≥ 𝑐𝑛𝑚𝑎𝑥

𝑥
𝑐𝑛medium

; 𝑥 ≤ 𝑐𝑛medium

𝑐𝑛max−𝑥
𝑐𝑛max−𝑐

𝑛
medium

; 𝑐𝑛medium < 𝑥 < 𝑐𝑛max

(6)

This fuzzification allows us to relate to unhealthy foods with sugar, 
salt, fat, and saturates that are higher than the daily maximum rec-
ommended amounts. Additionally, the medium variable allows us to 
measure if it is closer to low or high amounts.

4.1.4. Frequency of consumption
We have utilised an output variable called ‘‘consumption’’ to calcu-

late a numerical score, which helps us determine the ideal frequency 
of consuming a particular food item. Based on the recommendations 
of nutrition experts, we have established four linguistic variables that 
represent this frequency: ‘‘daily’’ (for foods that could be consumed 
multiple times a day), ‘‘once per day’’, ‘‘weekly’’, and ‘‘occasional’’. 
We have used triangular membership functions for modelling weekly 
and once-per-day variables and trapezoidal functions for occasional and 
daily (see Fig.  7).
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Fig. 7. Modelling of the frequency of consumption variable.

4.2. Fuzzy rules based on expert criteria

The four nutrients were correlated to build the rules of the sys-
tem. This allows us to model the frequency of food use based on its 
nutritional composition. These rules were decided following two main 
principles: (1) the higher the amount of these nutrients, the lower 
should be the frequency of intake, and (2) the more nutrients with high 
amounts, the lower should be the frequency of intake.

We have defined a total of 15 fuzzy rules to model the behaviour of 
the Frequency of consumption output variable. First, we have modelled 
the situation with the highest value for the output variable. This is the 
case when the food has low amounts of fat, saturated fats, sugar and 
salt:

{Fat=low, Saturates=low, Sugar=low, Salt=low} → {Frequency of 
Consumption=daily}

We also consider that food can be consumed daily if it has a low 
amount of at least three of the four nutrients and a medium amount 
for the remaining one. One example is as follows:

{Fat=low, Saturates=low, Sugar=low, Salt=medium} → {Frequency 
of Consumption=daily}

We have also modelled scenarios where following expert advice 
should lead to lower consumption. Specifically, we have incorporated 
rules to ensure that foods containing two of these nutrients above low 
ranges are limited to once per day. For example, this is illustrated by 
the following rule:

{Fat=low, Saturates=medium, Sugar=medium, Salt=low} → {Fre-
quency of consumption= once per day}

We force a weekly consumption of those foods in which at least 
three nutrients are in the medium interval, and the fourth is not high. 
For example:

{Fat=medium, Saturates=medium, Sugar=medium, Salt=medium} 
→ Frequency of consumption=weekly}

In addition, the experts indicate that food should be consumed 
occasionally if at least one of the four nutrients is high:

{Fat=high, Saturates=low, Sugar=low, Salt=low} → {Frequency of 
Consumption=occasional}

Finally, the worst scenario is if the four variables have a high 
amount of the four nutrients. In this case, the frequency of consumption 
is also occasional:

{Fat=high, Saturates=high, Sugar=high, Salt=high} → {Frequency 
of Consumption=occasional}

We have modelled the system using the functionalities implemented 
in the skfuzzy library in Python. This library provides tools to create 
and manipulate fuzzy sets and define membership functions. It also 
allows us to construct the fuzzy control system by aggregating fuzzy 
rules to obtain a final crisp value for the recommended frequency of 
food consumption.
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5. Experimentation set-up

Data. We have used two nutritional datasets to ensure diverse and 
representative coverage of foods across different contexts. The first 
one is the CoFID dataset,5 maintained by the Public Health Agency 
(PHE) of the Department of Health and Social Care in England, with 
nutritional information of 2889 food items. This dataset contains many 
raw materials in the food industry, such as agricultural products such 
as grains, fruits, and vegetables, and animal-derived products such as 
milk or meat. Additionally, it contains numerous non-branded pro-
cessed foods that the population often acquires in the supermarket. 
Therefore, this allows us to test our approach with different levels of 
food processing products commonly used by the population for cooking 
activities. The second one is the BEDCA dataset,6 developed by the 
Spanish Agency for Food Safety and Nutrition (AESAN) in collaboration 
with academic and governmental institutions. BEDCA includes a total of 
940 food items commonly consumed in Spain, covering both traditional 
ingredients and processed items typical of the Mediterranean diet. By 
incorporating BEDCA, we aim to complement CoFID with a culturally 
distinct perspective, enabling a broader evaluation of the model in 
terms of regional dietary patterns. For both datasets, we used the food 
description column as textual input for the prompt since it contains 
the name of the food. Preprocessing was applied to this column to 
remove non-alphanumeric characters and symbols and to standardise 
capitalisation. This preprocessing was consistent across all datasets 
used in the experimentation. From CoFID, we have used the Proximates
table to obtain information regarding fats, saturates and sugar. Since 
measurement units in CoFID follow dietary standards, no conversion 
was needed. Additionally, we used the Inorganics table to obtain the 
salt content of the foods. However, CoFID provides sodium information 
instead of salt. As WHO guidelines are stated in terms of salt, and it is a 
more manageable nutrient for the population, we converted sodium to 
salt for our modelling. According to the CoFID database documentation, 
we multiplied these values by 2.5 to obtain the corresponding salt 
amount in grams.

Language model. We have used LLaMA3, an extension of LLaMA2 
large language model [3] to generate the prompts, specifically the 
version with 8 billion parameters.7 The maximum number of tokens 
to generate in the output has been set to 1024 and top_p to default, 
i.e., 0.9. It defines the size of the candidate word set (higher values 
of top_p means that the model considers a more significant number 
of possible words). As shown in Fig.  2, we have firmly delimited 
the output of the prompt, so we use this parameter to allow more 
expressivity. We run all the experiments with temperature values of 0.0, 
0.6 and 0.9. This parameter models the randomness of the response and 
enables us to test our approach’s robustness.

Fuzzy modelling. We have computed the fuzzy modelling for an 
individual of healthy body weight consuming approximately 2000 
kilocalories daily. This average intake is recommended for maintaining 
weight and supporting normal physiological functions.

Prompt configuration. We generate the food textual recommen-
dation for each food detailed in the CoFID and BEDCA databases. For 
this, we run the LLaMA3 model with three prompt strategies (fuzzy, 
crisp, and crisp2fuzzy) for the four roles (nutritionist, professor, chef, 
and non-expert person). In total, we produced 12 prompt experiments 
that we analysed regarding quality, similarity, and nutritional rigour.

5 https://www.gov.uk/government/publications/composition-of-foods-
integrated-dataset-cofid

6 https://www.bedca.net/
7 meta-llama/Meta-Llama-3-8B-Instruct

https://www.gov.uk/government/publications/composition-of-foods-integrated-dataset-cofid
https://www.gov.uk/government/publications/composition-of-foods-integrated-dataset-cofid
https://www.bedca.net/
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
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Fig. 8. A visualisation of the frequency of consumption score for the CoFID dataset.
Fig. 9. A visualisation of the frequency of consumption score for the CoFID dataset.
6. Results and discussion

6.1. Fuzzy score for modelling frequency of consumption

Fig.  8 shows a visualisation of the score for selecting foods from 
the CoFID dataset. It comprises the membership value to each fuzzy 
variable for a food. If one variable does not appear for a food, the 
membership value to this fuzzy variable is zero. As can be appreciated 
in the figure, unprocessed foods have a more significant membership 
to daily and once per day variables, e.g., raw beans are mostly recom-
mended to be eaten several times per day (if wish) because of their 
highly recommended properties. However, the higher the processing 
degree of the foods, the higher the membership value proportionally 
for weekly and occasional variables. For example, ‘‘Beansprouts, mung, 
raw’’ has a better nutritional profile than ‘‘Beansprouts, mung, stir-fried 
in rapeseed oil’’ since the latter contains fried processing, which is less 
recommended for a healthy lifestyle.

Fig.  9 shows another selection of foods, in this case, focused on 
bread and cereals. It shows consistent results; for example, the first 
two foods show disparities in the score because of the processing of the 
foods. In the case of the cereals (in the middle of the figure), their com-
position affects the membership to the variables. For example, those 
enriched with more ingredients show higher membership to occasional 
intake, thus being an indirect advantage of this score modelling.

Due to the fuzzy modelling we have designed, obtaining the fre-
quency of consumption score is transparent. This allows us to sys-
tematically quantify and interpret the varying degrees of frequency in 
consumer behaviour. By assigning linguistic variables such as ‘‘low’’, 
‘‘medium’’, and ‘‘high’’ to specific ranges of data and utilising fuzzy 
logic rules, we can derive a comprehensive frequency score. This ap-
proach enhances the interpretability and accuracy of our consumption 
analysis, ensuring that the scoring process remains clear and justifiable. 
Fig.  10 shows this casuistic for the food ‘‘Pate, Liver’’.

6.2. Generative AI-based recommendations

We have studied the performance of the prompt strategies and 
roles by analysing the similarity among the prompt responses. These 
metrics provide quantitative measures of how well two text responses 
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are aligned. However, they do not fully capture the nuanced quality 
of the text or the specific nature and goals of the prompt responses for 
our domain-specific task. To address this, we have complemented these 
metrics by studying the quality of the prompt responses tailored to our 
task.

Our work analyses free-text outputs from language models in re-
sponse to nutrition-related prompts. In this open-ended generation 
context, the lack of predefined correct answers or ranking criteria 
makes standard evaluation metrics such as precision, recall, or nor-
malised discounted cumulative gain (NDCG) challenging to apply. We 
have followed a threefold approach to evaluate the quality of the 
prompt responses. First, we assessed the quality based on the role 
and prompt strategy, evaluating the AI-generated responses for clarity, 
subjectivity and polarity. Second, we have analysed the nutritional 
accuracy of the prompt responses. With the latter, we aim to capture 
the factual correctness, safety, and appropriateness of model-generated 
dietary recommendations. This metric functions similarly to accuracy, 
as it assesses the validity of the nutritional information provided — 
rated as low, medium, or high — based on comparisons with original 
values tailored to each user. This aligns more closely with halluci-
nation detection and factual consistency verification than traditional 
information retrieval metrics. Third, we have conducted a human-based 
evaluation, where users reviewed a subset of responses to validate 
our automated assessments and provide qualitative insights into the 
perceived usefulness and reliability of the recommendations.

6.2.1. Similarity study among the prompts
We have computed three similarity metrics to compare the re-

sponses based on the prompt strategy and roles. SacreBLEU [39] is 
a version of the BLEU metric widely used in text generation and 
machine translation tasks. It measures the n-gram overlap between 
two texts regarding exactness and fidelity. Precisely, this metric as-
sesses how many n-grams in the generated text match another text, 
typically the reference. ROUGE-L [40] is a metric that measures the 
longest common sub-sequence between two texts. It is focused on recall 
since its goal is to reflect the fluency and coherence of the generated 
text. BertScore [41] utilises pre-trained BERT embeddings to evaluate 
the semantic similarity between the generated and reference texts. 
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Fig. 10. Interpretation of the Frequency of Consumption score. The score (on the left) is constructed using the membership degree assigned to the frequency of consumption 
variables. This degree is determined based on the levels of sugar, fat, saturates, and salt present in the food items (low, medium, and high).
Table 4
Average similarity results for both datasets (CoFID and BEDCA) grouped by role.
 Role A Role B CoFID BEDCA

 BERT
Score

Sacre
BLEU

ROUGE-L BERT
Score

Sacre
BLEU

ROUGE-L 

 chef nutri 76.015 28.733 43.464 74.722 31.864 44.314  
 chef prof 75.647 27.751 43.466 74.585 30.877 43.683  
 nutri prof 75.264 27.766 43.056 76.597 35.059 47.054  
 nutri chef 74.357 24.593 40.772 75.230 34.441 46.391  
 nonexpert nutri 73.612 22.699 39.135 75.500 36.563 48.199  
 chef nonexpert 73.031 22.760 38.825 73.364 31.281 42.438  
 prof nutri 72.304 21.468 36.560 75.597 34.302 47.059  
 nonexpert chef 72.300 20.060 36.967 74.447 33.622 46.248  
 nonexpert prof 72.273 19.666 37.334 74.679 34.085 46.979  
 prof chef 72.020 20.826 36.338 74.595 32.901 45.636  
 nutri nonexpert 70.957 19.266 35.171 74.873 33.535 45.117  
 prof nonexpert 70.409 18.380 33.849 75.148 33.917 47.398  
 

Unlike SacreBLEU and ROUGE-L, which focus on exact word match-
ing, BertScore is designed to capture deeper contextual relationships 
between words, making it a valuable complement to the latter metrics.

We computed similarity metrics for each pair of strategy/role com-
binations, such as fuzzy/chef versus crisp/nutritionist responses. By 
aggregating the similarities grouping by role, we derived the average 
similarity scores presented in Table  4. Each row represents the average 
similarity for each pair of roles. The rows in the table are ordered 
in descending order based on their BERTScore values. Across both 
datasets, the non-expert role tends to produce outputs that are less 
similar to the reference, indicating weaker performance. In CoFID, 
non-experts consistently show lower performance across all metrics, 
with particularly low BERTScore values highlighting poor semantic 
similarity. In Bedca, the difference in BERTScore between roles is 
smaller, but the non-experts still perform worse on lexical metrics like 
BLEU and ROUGE.

To measure the clarity of the prompt responses, we studied the 
text readability, taking into account three scores that consider different 
dimensions of clarity and readability. Let 𝑊  be the total number of 
words in the text and 𝑆 and 𝐿 the total number of sentences and 
syllables in the text, respectively. We have used the Simple Measure 
of Gobbledygook (SMOG) index, as seen in Eq. (7), a well-known read-
ability measure that measures how easily a text is read. It quantifies the 
years of education needed to understand a specific text. This standard 
measure is used in public health to measure the understandability of 
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health-related texts for the general public. Let 𝑃  be the number of 
polysyllabic words. The Smog grade score is defined as follows: 

SMOG index = 1.0430
√

30
(𝑃
𝑆

)

+ 3.1291. (7)

As shown in Eq. (8), we have also included the Dale-Chall read-
ability score, which allows us to measure readability in terms of word 
familiarity, which is a relevant quality in our task since text recom-
mendations have to be easy to understand by the population. This 
metric compares the words in the text to a list of 3000 common words 
understood by 4th-grade students. Let 𝐷𝑊  be the number of complex 
words (not found on the previously mentioned list of familiar words). 
This score is defined as follows: 
Dale-Chall Score = 0.1579

(𝐷𝑊
𝑊

× 100
)

+ 0.0496
(𝑊
𝑆

)

. (8)

The SMOG index and Dale-Chall metrics show higher average val-
ues for the fuzzy strategy, indicating high levels of readability and 
understandability in the text (see Figs.  11 and 12). Regarding role per-
formance for the fuzzy strategy, the non-expert role shows lower per-
formance in both scores, while the texts generated with the professor 
role show higher performance.

Additionally, we analyse the polarity and subjectivity of each prompt
response using the functionalities provided by the Python library 
Textblob. The polarity measure ranges from −1 to 1. Values closer 
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Fig. 11. Comparison of the text quality metrics detailed in Table  5 (CoFID dataset).
Fig. 12. Comparison of the text quality metrics detailed in Table  5 (BEDCA dataset).
 

to −1 refer to negative sentiments, 0 to neutral and 1 to positive. In 
our case, nutritional recommendations should remain neutral because 
maintaining a balanced perspective is crucial for providing reliable and 
unbiased information to users. Likewise, nutritional information should 
be as less subjective as possible since the information that users receive 
must not lead to misunderstandings. As shown in Figs.  11 and 12, using 
the fuzzy strategy achieves greater results for polarity and subjectivity 
for both datasets.

Table  5 shows the quantitative results for the quality check of 
all strategy/role combinations across different temperature values. On 
average, the responses obtained with the fuzzy strategy show better 
behaviour than crisp and crisp2fuzzy. Using a high-temperature value 
allows us to increase the text quality overall. In general, increasing 
the temperature generally helps achieve higher maximum scores across 
both datasets, whereas temperature 0 reaches fewer performance peaks.

6.2.2. Nutritional rigour
One key challenge in large language models is tackling hallucina-

tions, inconsistencies and vague vocabulary in the prompt responses. 
In nutrition applications, experts demand the information these models 
provide to be exact, meticulous and rigorous. Motivated by this, we 
have analysed the model responses for all the possible strategy/role 
combinations. Our analysis involves a comprehensive examination of 
the text to determine if the model has correctly assigned the nutrition 
variable to each nutrient (low, medium, high). With this measure, 
we convey the concept of a strict and precise evaluation or practice 
regarding nutrition, which is essential for providing high-quality food 
recommendations. The results of this analysis, as shown in Table  6, 
reveal the mean accuracy for each nutrient across all the pairs of 
strategy/role combinations for the prompt. From the results, we extract 
five main findings:

1. Fig.  13 shows a visual comparison of nutritional rigour perfor-
mance for the CoFID dataset, considering the standard deviation 
of different temperature values. It illustrates that the perfor-
mance is considerably higher when enriching the prompt with 
fuzzy variable information. Providing the nutrition quantities 
(crisp) or the intervals for the variable membership (crisp2fuzzy).
A similar pattern is observed in BEDCA (Fig.  14), where the fuzzy 
strategy also achieves the highest performance.
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2. The responses with greater nutritional accuracy are provided by 
using the role of a professor of nutrition. Fig.  15 illustrates the 
results obtained for each role in the CoFID dataset, showing the 
standard deviation of the three temperature values. The roles 
of non-experts and nutritionists follow, and in most cases, the 
role of a chef produces the least accurate results. In BEDCA (Fig. 
16), this patterns also repeat, achieving the role of professor 
the better results for the fuzzy strategy (the one with better 
performance). For the other strategies, the performance of the 
professor role remains high, but the differences across roles are 
less pronounced.

3. In crisp and crisp2fuzzy strategies, we provide the nutrition 
information and the low, medium, and high intervals. Even 
though the prompt fails to infer precisely this information in 
more than half of the foods for both datasets.

4. Enriching large language models with crisp nutrition amounts is 
not enough; they need external knowledge to decide the health 
of foods. Thus, using this information solely is inappropriate for 
this task, but it could be greatly improved with fuzzy modelling 
enrichment.

5. After replicating the study with different temperature values, the 
conclusions remained consistent, demonstrating the robustness 
of the results across varying levels of output expressiveness and 
creativity.

6. Overall, combining a fuzzy strategy and a professor role achieves 
higher performance for all the experiments.

6.2.3. Human-based evaluation
We have conducted user-centred evaluations to assess the effective-

ness of the generated explanations in real-world scenarios. To this end, 
we designed an annotation platform where users are presented with 
a variety of food items and their corresponding textual recommenda-
tions. They are then asked a series of questions about them. For each 
explanation, users perform two annotation tasks:

1. Usability study: evaluating how well users understand and 
trust the generated explanations. In this task, users are shown 
several food options accompanied by text recommendations. For 
each explanation, they assess: clarity (is the explanation easy 
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Table 5
A comparison of SMOG, Dale–Chall (D–C), subjectivity (subj.), and polarity (pol.) values across different temperature (T) strategy/role 
configuration prompts.
 T Strategy Role CoFID Bedca

 SMOG D-C Pol. Subj. SMOG D-C Pol. Subj.  
 

0.0

crisp chef 13.576 10.618 0.205 0.569 15.028 12.608 0.082 0.451  
 crisp nonexpert 14.53 10.525 0.112 0.543 13.871 12.427 0.090 0.403  
 crisp nutri 13.617 10.677 0.178 0.542 15.315 12.873 0.085 0.411  
 crisp prof 13.654 10.745 0.149 0.545 14.592 12.558 0.063 0.433  
 fuzzy chef 20.112 13.209 0.087 0.469 17.526 13.887 0.072 0.406  
 fuzzy nonexpert 16.039 10.492 0.065 0.49 14.727 11.705 0.063 0.412  
 fuzzy nutri 17.688 11.942 0.154 0.575 18.117 14.072a 0.048 0.392  
 fuzzy prof 21.3 13.247 0.091 0.485 16.327 13.528 0.083 0.421  
 crisp2fuzzy chef 11.301 9.382 0.166 0.553 15.840 13.099 0.122 0.464  
 crisp2fuzzy nonexpert 13.126 9.649 0.135 0.564 11.537 10.681 0.093 0.459  
 crisp2fuzzy nutri 12.244 10.277 0.173 0.554 16.481 13.222 0.117 0.462  
 crisp2fuzzy prof 11.69 9.712 0.139 0.593 16.854 13.179 0.088 0.455  
 

0.6

crisp chef 13.303 10.583 0.145 0.563 12.626 12.179 0.031 0.416  
 crisp nonexpert 16.98 11.474 0.123 0.537 11.038 11.480 0.046 0.398  
 crisp nutri 11.885 10.113 0.125 0.568 13.316 12.337 0.083 0.399  
 crisp prof 16.116 11.47 0.072 0.524 11.161 11.808 0.077 0.380  
 fuzzy chef 22.89a 13.871 0.156 0.494 17.086 13.739 0.014 0.388  
 fuzzy nonexpert 15.756 10.672 0.109 0.53 15.040 12.762 0.055 0.398  
 fuzzy nutri 20.697 13.056 0.175 0.526 18.334a 13.463 0.054 0.377  
 fuzzy prof 22.213 13.589 0.118 0.506 14.928 12.981 0.067 0.339a 
 crisp2fuzzy chef 18.495 12.092 0.218 0.581 12.815 12.223 0.138 0.432  
 crisp2fuzzy nonexpert 14.217 10.122 0.201 0.561 12.373 11.942 0.054 0.395  
 crisp2fuzzy nutri 13.21 9.926 0.188 0.581 14.500 12.855 0.095 0.430  
 crisp2fuzzy prof 13.619 10.566 0.189 0.567 10.368 11.132 0.165 0.393  
 

0.9

crisp chef 17.559 11.515 0.149 0.522 14.554 12.729 0.094 0.391  
 crisp nonexpert 17.316 11.138 0.06a 0.523 11.186 12.222 0.173 0.442  
 crisp nutri 15.099 11.507 0.133 0.525 13.309 12.296 0.172 0.426  
 crisp prof 19.08 12.164 0.118 0.573 15.106 12.446 0.057 0.428  
 fuzzy chef 21.113 13.296 0.121 0.451a 16.850 13.756 0.028 0.372  
 fuzzy nonexpert 16.408 11.688 0.142 0.518 16.843 13.412 0.036a 0.379  
 fuzzy nutri 22.026 13.84 0.114 0.488 16.702 12.999 0.077 0.410  
 fuzzy prof 22.677 14.236a 0.089 0.491 16.299 13.079 0.078 0.366  
 crisp2fuzzy chef 12.033 10.026 0.122 0.539 9.481 10.661 0.082 0.398  
 crisp2fuzzy nonexpert 12.348 10.51 0.152 0.543 12.561 11.671 0.074 0.402  
 crisp2fuzzy nutri 14.601 10.559 0.148 0.546 14.169 12.422 0.124 0.423  
 crisp2fuzzy prof 12.898 10.004 0.13 0.527 13.397 12.273 0.063 0.383  
a Indicates the maximum value for each nutrient.
Fig. 13. Nutritional rigour for each strategy used in the prompt (CoFID dataset).
Fig. 14. Nutritional rigour for each strategy used in the prompt (BEDCA dataset).
13 
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Fig. 15. Nutritional rigour for each role used in the prompt (CoFID dataset).
Fig. 16. Nutritional rigour for each role used in the prompt (BEDCA dataset).
Table 6
Nutritional rigour of the prompt responses. The highest value for each temperature is indicated in bold.
 T Strategy Role CoFID BEDCA

 Fat Salt Saturates Sugar Fat Salt Saturates Sugar

 

0.0

crisp chef 48.944 74.939 61.405 36.726 48.504 71.230 55.138 43.204
 crisp nonexpert 46.798 74.005 57.009 31.533 45.620 70.374 55.359 36.408
 crisp nutri 49.083 73.763 62.375 36.345 47.009 70.267 55.359 41.262
 crisp prof 48.079 74.939 61.648 34.199 44.124 70.909 52.928 41.262
 crisp2fuzzy chef 50.952 70.786 55.59 42.887 51.068 71.444 55.028 58.252
 crisp2fuzzy nonexpert 50.64 71.305 54.517 32.503 54.594 71.444 55.359 46.117
 crisp2fuzzy nutri 50.156 73.451 55.729 38.56 52.564 71.337 54.807 55.340
 crisp2fuzzy prof 49.117 72.966 56.525 38.56 53.419 71.016 54.365 52.913
 fuzzy chef 74.628 78.089 79.128 87.504 69.979 72.727 76.243 93.204
 fuzzy nonexpert 76.982a 74.87 78.816 80.305 68.483 71.658 75.249 86.408
 fuzzy nutri 75.32 78.712 79.232 88.058 70.085 70.267 75.470 93.689
 fuzzy prof 76.393 79.993a 81.931a 88.75a 75.107a 75.294a 77.901a 94.660a

 

0.6

crisp chef 49.706 72.136 58.671 40.256 50.534 72.620 53.923 43.204
 crisp nonexpert 47.456 72.724 57.909 34.683 47.436 70.374 55.801 42.233
 crisp nutri 49.083 72.62 58.221 39.875 47.009 71.123 56.243 48.544
 crisp prof 48.702 73.451 56.629 38.802 46.154 71.230 55.138 46.602
 crisp2fuzzy chef 51.229 69.436 56.386 42.506 51.175 70.909 58.785 55.825
 crisp2fuzzy nonexpert 51.575 67.774 56.421 33.16 51.816 71.444 57.348 45.631
 crisp2fuzzy nutri 50.848 70.682 56.906 40.879 53.205 71.765 57.348 54.854
 crisp2fuzzy prof 49.637 71.028 55.348 40.118 50.321 71.551 59.116 54.369
 fuzzy chef 72.205 75.32 75.632 85.601 68.269 72.727 72.818 87.864
 fuzzy nonexpert 73.139 75.389 75.32 83.42 66.346 71.337 72.707 87.379
 fuzzy nutri 72.586 76.67 76.22 86.397 69.124 71.016 73.370 90.291
 fuzzy prof 74.801 78.366 79.439 87.574 70.833 72.513 74.586 90.291

 

0.9

crisp chef 52.302 70.855 58.186 40.775 49.252 69.840 57.459 50.485
 crisp nonexpert 48.564 70.855 53.375 32.364 47.115 70.267 55.138 44.175
 crisp nutri 52.198 74.178 58.152 41.606 48.825 70.374 57.790 55.340
 crisp prof 48.771 69.747 53.617 37.245 48.611 69.519 56.464 50.000
 crisp2fuzzy chef 54.067 68.986 58.325 42.575 52.244 70.802 61.215 57.767
 crisp2fuzzy nonexpert 51.194 67.774 54.794 30.876 52.457 71.444 59.669 54.369
 crisp2fuzzy nutri 54.586 70.128 57.944 41.087 53.953 71.551 57.901 56.311
 crisp2fuzzy prof 51.436 69.263 54.863 36.691 51.389 70.695 58.343 51.456
 fuzzy chef 68.778 75.666 76.67 84.666 64.423 70.481 70.829 86.893
 fuzzy nonexpert 70.059 75.666 75.286 82.485 65.705 70.909 71.492 84.951
 fuzzy nutri 69.643 77.085 75.147 84.354 67.949 69.733 74.144 88.350
 fuzzy prof 72.24 78.643 77.812 85.497 70.620 71.979 74.365 87.864

a Refers to the maximal value for each nutrient.
to understand?), usefulness (does it provide relevant dietary 
insights?), and trustworthiness (does it seem reliable and sci-
entifically accurate?). We included an additional question, in 
which annotators have to provide a general rating for the 
whole explanation. Users rate each of these aspects on a scale 
from 1 (poor) to 5 (excellent). This task helps us evaluate the 
14 
usability and perceived quality of the explanations from the 
user’s perspective.

2. Impact study: analysing if the explanations influence user 
choices. In this task, users report how frequently they think a 
given food must be consumed in a healthy diet (several times per 
day, daily, weekly, or occasionally) both before and after reading 
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Fig. 17. Human evaluation scores by strategy and role. It contains the average results of the annotators for usefulness, trustworthiness, clarity, and general rating of the explanations.
the explanation. Then, we measure changes in their responses to 
assess the potential impact of the explanation on their awareness 
of food healthiness.

We randomly selected the food items to annotate, ensuring equal 
representation across all frequency-of-consumption categories. We used 
the recommendations generated with temperature 0, as these showed 
the best performance in our prior evaluations. A total of 15 items were 
chosen from each dataset and tested across all combinations of strategy 
and role, resulting in 330 distinct annotations from users.

15 annotators participated in the study. The age range was 22 to 64, 
and the gender distribution of the annotators was 9 male vs 6 female, 
with 0 identifying as non-binary or preferring not to disclose. In terms 
of expertise, 9 considered themselves beginners, 5 intermediate, and 1 
advanced.

Fig.  17 presents the results from the usability study. Overall, the 
average scores were high, exceeding 4 in all categories: clarity (4.35/5), 
usefulness (4.48/5), trustworthiness (4.1/5), and overall rating (4.2/5). 
These results demonstrate the strong performance of our approach, 
regardless of the strategy and role used to generate the explanations. 
When analysing the human annotation scores by strategy (see Fig. 
17(a)), the fuzzy strategy consistently achieves the highest scores, 
although the differences are relatively small. In contrast, the crisp and 
crisp2fuzzy strategies show smaller variations, especially in the overall 
rating, where the average difference is minimal. Focusing on the role 
dimension (see Fig.  17(b)), the results align with our previous findings: 
the non-expert role received the lowest scores across all dimensions. In 
comparison, the explanations generated by the chef and professor roles 
were rated higher by annotators, although again, the differences were 
slight

To evaluate the impact of the explanations on users’ nutritional 
awareness, we compared their responses about consumption frequency 
before and after reading the explanations. For this analysis, we treated 
the responses as ordinal data with the following ordered categories: 
occasional < weekly < once-a-day < daily. We mapped these categories 
to integers to compute the absolute difference between each user 
response and the reference value (i.e., the label assigned by the fuzzy 
modelling). Then, we checked if the post-reading explanation responses 
were close to the reference values. Results showed an improvement 
of 14.85% in the post-explanation responses. We confirmed with a 
Wilcoxon signed-rank test that this reduction in error was statistically 
significant (W = 1208.0,p = 0.019), supporting the hypothesis that the 
explanations positively influenced users’ dietary decision-making.

6.3. Computational cost and scalability

Running time. Our experiments were run on two NVIDIA RTX 
A5000 GPUs (24 GB VRAM each), with CUDA version 12.6 and driver 
version 560.35.03. During inference, each GPU operated at moderate 
utilisation (23%–32%) and used between 8.4–10.2 GB of memory. 
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In practice, without using batching and computing one instance at 
a time to generate its explanation, we observed a running time of 
approximately 4–5 s per explanation, depending on the final length of 
the generated text.

Scalability of the approach. The computational complexity of 
prompting LLaMA is 𝑂(𝑛2 ⋅𝑑). Since it is transformer-based, its inference 
time is defined by the self-attention mechanism, which scales with 
𝑂(𝑛2 ⋅ 𝑑), where 𝑛 is the sequence length and 𝑑 is the embedding 
dimension (for LLaMA-7B, 𝑑 = 4096). Therefore, the computational 
cost is dominated by 𝑛. In our case, we use a maximum sequence 
length of 𝑛 = 1024, although on average, the number of tokens per 
recommendation does not exceed 140 (see Fig.  18).

6.4. Ablation study

From a general perspective, this section analyses the different vari-
ants we can use with our proposed method. Specifically, the text 
readability and nutritional rigour are assessed on both datasets.

As one of our main contributions is the use of fuzzy linguistic vari-
ables for improving personalised healthy food text recommendations 
utilising generative AI, we have decided to analyse the three prompt 
strategies presented in this work (crisp, crisp2fuzzy and fuzzy), with 
three different values of model temperature and taking into account 
the mean for all supported roles (nutritionist, professor, chef, and 
non-expert person). With this, we aim to study the results when no 
modelling is introduced in the prompt (crisp), when our modelling 
approach is used (fuzzy), and when the crisp value and the intervals 
used in the modelling are provided (crisp2fuzzy, a middle ground 
between the previous strategies). 

Table  7 showcases that the proposed approach, based on fuzzy 
linguistic variables (fuzzy), achieves the best performance for almost 
all the analysed measures. This entails that the fuzzy-based strategy 
improves the proposal from an interpretability and understandability 
perspective. We must highlight that this strategy outperforms the other 
two for all the measures used to assess the nutritional rigour, ensuring 
better health-aware recommendations.

6.5. Explainability, interpretability, and other considerations

Our approach offers textual recommendations guided by experts, 
enhancing large language models with fuzzy nutrition modelling of 
foods. Our goal is to mitigate inaccuracies, which are crucial when 
deploying general artificial intelligence models for specialised appli-
cations, such as those in nutrition. In our case, we have enriched the 
prompt with a personalised fuzzy modelling of the health information 
of the ingredients, showing a superior performance in terms of nutri-
tional accuracy. With our approach, we contribute towards trustworthy 
applications of AI-generated models, which are beneficial for informed 
decision-making.
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Fig. 18. Average token count per strategy and role across temperature values, aggregated over both datasets (CoFID and BEDCA). Note that in the crisp2fuzzy strategy (on the 
right), the roles of the professor and chef overlap.
Table 7
Averaged SMOG, Dale–Chall (D–C), polarity (Pol.), subjectivity (Subj.), and nutritional values grouped by strategy. The highest value per metric 
and temperature is highlighted in bold with an asterisk (*).
 Dataset Measure T = 0.0 T = 0.6 T = 0.9
 crisp crisp2fuzzy fuzzy crisp crisp2fuzzy fuzzy crisp crisp2fuzzy fuzzy  
 

CoFID

SMOG 13.844 12.090 18.785* 14.571 14.885 20.389* 17.763 12.970 20.556* 
 D–C 10.641 9.755 12.222* 10.910 10.676 12.797* 11.581 10.275 13.265* 
 Pol. 0.161* 0.153 0.099 0.116 0.199* 0.139 0.115 0.138* 0.117  
 Subj. 0.550 0.566* 0.505 0.548 0.572* 0.514 0.536 0.539* 0.487  
 Fat 48.226 50.216 75.831* 48.737 50.822 73.183* 50.959 52.821 70.180* 
 Salt 74.412 72.627 77.893* 72.733 69.730 76.436* 71.409 69.038 76.268* 
 Saturates 60.609 55.590 79.277* 57.858 56.765 76.423* 55.833 56.982 76.229* 
 Sugar 34.701 38.628 86.654* 38.404 39.668 85.748* 38.998 37.807 84.250* 
 

BEDCA

SMOG 14.702 15.178 16.674* 12.035 12.514 16.847* 13.539 12.902 16.674* 
 D–C 12.616 12.545 13.298* 11.951 12.038 13.486* 12.423 11.757 13.561* 
 Pol. 0.080 0.105* 0.066 0.059 0.113* 0.048 0.124* 0.086 0.055  
 Subj. 0.424 0.460* 0.408 0.398 0.412* 0.375 0.422* 0.402 0.382  
 Fat 46.819 52.911 70.389* 47.283 51.629 68.143* 48.451 52.511 67.173* 
 Salt 70.620 71.310 72.137* 71.338 71.417 71.648* 69.500 71.123 71.281* 
 Saturates 54.946 54.890 76.716* 55.801 58.649 73.370* 56.713 59.232 72.708* 
 Sugar 40.534 53.156 91.740* 45.146 52.170 88.456* 50.000 55.976 86.515* 
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However, the modelling proposed in this study does not incorporate 
istorical user data. This implies that a daily diet should not consist 
olely of combinations of ingredients meant for occasional consumption 
ut should rather maintain a balance of various available foods. The ap-
roach presented in this paper does not consider prior user information 
o adjust remaining daily or weekly calorie intake when providing text 
ecommendations. These textual recommendations provide the general 
opulation with personalised explanations regarding the frequency of 
ood consumption in their daily lives. Integrating cumulative energy 
ntake with textual recommendations remains a future prospect for our 
pproach in larger dietary assessment systems.
Employing a prompt-based strategy to generate textual recommen-

ations enhances explainability. This approach provides transparency 
nto the model information processing and output generation, as the 
rompt aids in understanding the rationale behind its decisions, thereby 
romoting trust in its outcomes. Additionally, using fuzzy modelling to 
nrich the prompt further enhances transparency and interpretability 
n the procedure, as previously stated in Fig.  10. Additionally, our 
odelling is not dependent on gender data. We adapt the modelling 
o male, female, and non-binary individuals; the latter also includes 
ases in which they prefer not to indicate gender, ensuring privacy and 
ntimacy.
The application detailed in this study is essential in two ways. First, 

t helps to build educational nutritional dialogue tasks which provide 
ccurate and user-friendly information in natural language. In this way, 
sers can access personalised health information that can be incorpo-
ated into healthy cooking activities. Second, due to our approach’s low 
omplexity and generalisation capabilities, it is easy to integrate into 
xisting platforms, unlike knowledge-based methods. This is crucial in 
ood computing due to the added complexity of integrating knowledge 
rom different origins, data structures, and scopes [11].
We can apply our approach to building broader health-aware appli-

ations such as recipe and diet health-aware recommendation systems, 
e
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omain-focused chatbot applications, or fine-grained recipe analysis 
hile considering trustworthiness and interpretability. Note that the 
ethodology we focus on is not dependent on the specific rules used 
or fuzzy reasoning. These rules can be reformulated to address the 
articular constraints of the recommender system and can be dynam-
cally updated to adapt to user needs, considering required intake 
djustments due to dietary updates. Nutritional food databases typically 
hare a standardised structure, encompassing, at a minimum, textual 
escriptions of the foods and their corresponding dietary informa-
ion. Consequently, adapting the database to a different nutritional 
esource becomes effortless, ensuring the proposed model geographic 
nteroperability.
Additionally, the approach detailed in this study applies to other 

ields of application that involve modelling based on expert guidance. 
n particular, fuzzy modelling, context-enriched prompting, and text 
utputs can be extended to domains such as healthcare assistance or 
inancial advice, where recommendations align with established guide-
ines while adapting to individual profiles. For example, in healthcare, 
imilar methods could support personalised treatment suggestions that 
pply clinical thresholds but remain flexible to the patient’s condi-
ions. In financial assessment systems, fuzzy constraints could represent 
arying risk tolerances or investment goals, while natural language 
xplanations enhance user understanding and trust. 
imitations and challenges. While this study proposes a flexible and 
ontext-aware system for health-oriented food recommendation, sev-
ral limitations must be acknowledged. First, the nutritional anal-
sis currently focuses on a core set of macronutrients and critical 
omponents—namely fat, saturated fat, sugar, and salt. This selection 
eflects practical and communicative considerations: these nutrients 
re commonly used in public health labelling schemes, consistently 
vailable across food databases, and easily interpretable by a gen-
ral audience. However, this focus does not encompass other dietary 
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factors such as fibre, vitamins or minerals, which also play essential 
roles in overall dietary quality and health outcomes. One of the chal-
lenges in incorporating these additional elements lies in the limited 
and often inconsistent availability of detailed micronutrient informa-
tion in existing food composition datasets. Nonetheless, our proposed 
framework is designed to be modular and extensible. As nutritional 
databases become more complete and as public literacy around broader 
nutritional components increases, future iterations of the system can 
integrate these additional nutrients without requiring changes to the 
core methodology.

One limitation of this approach is that explanations rely on the 
ingredients available in the database, as it is required for extracting 
nutritional information. In recommendation scenarios, where ingredi-
ent databases with nutritional information are typically used to build 
recommended menus, this is not a major issue. However, in other 
applications, it is important to consider that some ingredients may be 
excluded from the fuzzy modelling process, preventing the generation 
of explanations for them. This limitation also extends to missing values 
in the database, where appropriate data imputation strategies must be 
applied to address the issue.

With our approach, the explanations are personalised in terms of 
content but not in terms of style. Although we have included several 
metrics to ensure the quality of the prompts in terms of understandabil-
ity and appropriateness for users, further refinements could enhance 
the personalisation of the prompt style. Tailoring the style of explana-
tions could make them more engaging and better suited to individual 
user preferences and specific culinary contexts.
Considerations on nutritional data and model reliability. Regarding nu-
tritional advice, we follow the WHO dietary guidelines, which are 
internationally recognised, broadly validated, and designed to support 
healthy eating across diverse populations. For food composition data, 
we rely on two official and well-established sources — CoFID and 
BEDCA. While we acknowledge that such databases may include minor 
inaccuracies due to regional variability, food processing differences, or 
measurement techniques, they are widely used in public health and nu-
trition research and provide a solid foundation for our modelling. While 
the fuzzy modelling in our approach adds flexibility, we are aware it 
may introduce subtle biases through rule design or threshold tuning. 
The most critical risk in this context would be to incorrectly label a food 
item or recommendation as healthy when it is not. To minimise this 
risk, we apply strict criteria for the ‘‘high’’ nutritional rating, aligning 
closely with WHO thresholds to ensure that our recommendations 
remain conservative, thus avoiding overestimating healthiness.

7. Conclusions and future work

The fuzzy linguistic variables enrich the prompt with fuzzy reason-
ing, enhancing the model performance. We demonstrate that incorpo-
rating this reasoning leads to more accurate and reliable results than 
providing the model with explicit values and intervals. Our findings 
indicate promising and reliable outcomes, opening a new avenue for 
including fuzzy modelling of linguistic variables to enrich the input of 
large language models for healthy-aware food recommendations.

We plan to extend this study to consider more nutrients, especially 
health benefits, such as vitamins. Additionally, we plan to integrate 
this approach in a recipe-level recommendation approach to study the 
role of this modelling when computing recommendations to generate 
dietary plans.
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