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A B S T R A C T

Hyperspectral imaging is now establishing itself as a transformative analytical technique in the food safety and 
quality domains, offering unique capabilities for non-destructive, real-time, and high-resolution analysis of food 
at different levels of its production. Hyperspectral imaging combines the strengths of computer vision and 
classical spectroscopy. It provides both spatial and spectral information, making it a powerful and green alter
native to the conventional techniques employed in this field.

This critical review explores the advances in hyperspectral imaging applications, highlighting its potential to 
revolutionize food quality and safety assessment, including adulteration, contamination and non-conformity 
detection. Recent breakthroughs in sensor technology, data processing algorithms, and machine learning inte
gration are discussed, emphasizing the most popular data analysis strategies and their role in addressing the 
challenges of complex food matrices and dynamic production environments. This review underlines the data 
analysis approaches applied in each of the collected works, highlighting two trends: studying food samples as a 
whole or analyzing them as a set of pixel-spectra. Machine learning methods such as principal component 
analysis, partial least squares regression, partial least squares discriminant analysis, soft independent modelling 
of class analogy, and support vector machines have been widely applied for the analysis of food samples. These 
techniques are used for both qualitative and quantitative purposes, regardless of the sample’s origin (plant- or 
animal-based) or its complexity. Additionally, this review outlines the limitations of hyperspectral imaging, such 
as high costs, computational demands, and the need for standardized protocols, while identifying opportunities 
for future research and industrial implementation.

1. Introduction

Food quality and safety are two fundamental pillars of the food 
production and processing chain. According to the Food and Agriculture 
Organization (FAO) of the United Nations, food safety aims to ensure 
that foodstuffs are free of possible toxic or hazardous substances that 
could cause harm to human health if consumed [1]. Therefore, 
explaining the concepts of toxicity and hazard is essential to understand 
food safety. Toxicity is defined as the capacity of a substance present in 
food to produce harm or injury in humans under any condition. In 
contrast, hazard is the probability of this substance causing harm or 
injury to humans when it is present in an unsafe form or quantity. 

Hazardous materials can be physical, chemical, biological, or allergenic. 
Physical hazards include physical materials not normally found in food, 
such as stones, bones, and bolts, which cause illness or injury. Chemical 
hazards are substances that could be intentionally or unintentionally 
added to food products and are harmful to health. This is the case with 
pesticides, toxic metals or, for instance, certain additives [2]. On the 
other hand, biological hazards refer to living organisms, including mi
croorganisms, associated with food that can cause diseases (like bacte
ria, viruses, worms, or insects) [3]. Lastly, it is also important to address 
allergens, which are substances that can trigger allergic reactions upon 
contact with the human body [4].

Food quality is defined by the attributes or characteristics of food 
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products that influence their value and, consequently, their accept
ability to consumers. These attributes include nutritional values, 
organoleptic and physicochemical parameters, and functional proper
ties [5]. Therefore, food safety can be considered a key element of food 
quality. Note that food quality and food safety terms can be brought 
together in what is known as food fraud. On the one hand, according to 
some authors, food fraud comprises adulteration, misrepresentation (e. 
g. counterfeiting) as well as theft, tampering, diversion, tax evasion, 
grey market and overrun [6]. On the other hand, the European Union 
legislation does not provide a definition of food fraud, even though 
Commission Regulation (EU) No 2019/1715 provides key elements to 
define food fraud. Thus, food fraud can be defined as non-compliance 
including any suspected intentional action by businesses or individuals 
to deceive purchasers with a view to increase their profits [7]. Food 
fraud not only misleads consumers but can also compromise consumers’ 
health, causing illness or even death. According to the June 2024 
summary of articles on food fraud, published by the European Com
mission, 30 food fraud cases were reported in the world in that month 
alone [8]. Among them, it is worth mentioning the case in India, where 
the adulteration of a spirit with methanol led to 25 deaths and over 60 
hospitalizations. This is just one example that underscores the need to 
establish control measures and mechanisms to combat food fraud and 
protect consumers.

The taxonomy of food fraud usually comprises three main categories: 
adulteration, non-conformity and contamination. The first one encom
passes all intentional alterations of a food product by adding or 
substituting ingredients that modify its intrinsic properties and mislead 
consumers. Generally, this practice reduces costs and increases profits 
using lower quality or non-permitted ingredients. A common example is 
diluting expensive products, such as edible oils or spirits, with cheaper 
substances not originally present in them. On the other hand, non- 
conformity fraud implies that a food product does not comply with 
established regulations or specifications, whether in terms of labelling, 
composition, or production processes. It may occur unintentionally to 
defraud, but it still affects the quality and/or safety of the product. 
Finally, food contamination fraud occurs when harmful or hazardous 
substances are intentionally or accidentally present in food, thereby 
affecting consumer safety and integrity. This practice may have mali
cious intent or result from negligent practices [9,10].

In the fight against food fraud, a wide range of analytical methods 
have been developed to ensure food quality and safety. Some of the 
techniques used are (i) spectroscopic such as nuclear magnetic reso
nance or infrared, (ii) biological such as biosensors and (iii) separation 
such as chromatography or electrophoresis. Among them, methods 
based on chromatographic techniques, such as gas chromatography and 
high-performance liquid chromatography, are the most widely used for 
detection of several types of contaminants and residues [11]. These 
techniques are accurate and highly sensitive, but they have some 
weaknesses, such as being destructive, requiring complex sample pre- 
treatment, skilled professionals, expensive and sophisticated equip
ment, and long analysis times. [12]. To address these shortcomings, 
optical sensing techniques such as hyperspectral imaging (HSI) and 
imaging spectroscopy have emerged as viable alternatives in food 
quality control [13].

HSI integrates imaging and spectroscopy, combining the advantages 
of both technologies into a rapid, non-destructive, and environmentally 
friendly technique. The origins of HSI date back to the 1970s and 1980s, 
when mineral mapping began, and airborne imaging spectrometry (AIS) 
was developed [14]. Since then, its applications have grown beyond 
remote sensing, extending into fields like environmental science, phar
maceutical and medical fields, and the food industry, among others 
[15–17]. HSI involves the acquisition of an image of a material system at 
different spectral bands, simultaneously providing spatial and spectral 
information about the material. It provides information on the physical 
and geometrical characteristics of the material, including size, shape, 
spatial distribution, and appearance. Additionally, spectral data can 

reveal insights into its chemical composition [18].
However, although this dual capability positions HSI as a highly 

versatile analytical tool, it also introduces significant complexity. High- 
dimensional datasets require sophisticated preprocessing, calibration, 
and multivariate analysis techniques, which may hinder usability for 
non-experts or small-scale operations. Furthermore, the effectiveness of 
HSI relies heavily on the proper alignment between the sensor’s spectral 
range and the specific chemical markers (such as absorption bands) of 
interest—an aspect often underreported or assumed in many applica
tions. These factors underscore the importance of methodological 
guidance in selecting suitable hardware and analytical strategies, 
particularly in food-related studies where sample diversity and matrix 
complexity are substantial.

The fundamental principle of HSI is based on the interaction between 
light and matter. When a material system is exposed to electromagnetic 
radiation with specific characteristics, it interacts with the radiation, 
causing changes in the radiation that relate to the physical and chemical 
properties of the material. These changes can be detected, recorded, and 
represented visually as an image. The images are divided into spatial 
units called pixels. In HSI, each pixel contains a “spectral fingerprint” 
that enables the identification and characterization of this spatial point 
in the material system [19]. This pixel-level spectral analysis makes HSI 
a powerful tool for enhancing both the quality control and safety veri
fication of food products, in addition to offering the advantage of 
studying the food without physical contact. These capabilities have been 
showcased in numerous studies for assessing the quality of natural food 
such as fruits, cereals, meats [20–22] and processed foods such as, bread 
and cheese [23,24]. A search in the Scopus database using the keywords 
“Food”, “Quality”, “Safety”, and “Hyperspectral imaging” (see Fig. 1) 
revealed a total of 250 publications over the past 10 years (up to 2024). 
This indicates a growing interest in the application of HSI in the field of 
analytical food chemistry. While this review focuses on recent ad
vancements (over the last 5 years), the trend highlights the increasing 
adoption and exploration of this technique as a transformative tool in 
food quality and food safety control.

The available literature offers a limited number of review articles 
that focus on the evaluation of food products using HSI. Specifically, 
only eight scientific studies devoted to this topic have been found, 
including six systematic reviews [25–30], one book chapter [31], and 
one entire handbook [32]. As a complement to the broader scope re
views on HSI applications in this field, other studies have focused on its 
use in specific food products. For instance, Wang et al. [33] evaluated 
the advancements, limitations, and challenges of HSI to assess wheat 
quality. Furthermore, Peraza-Alemán et al. [34] reviewed its application 
in potatoes, Li et al. [35] in different fruit and vegetable products, Ismail 
et al. [36] in seafood products and Matenda et al. [37] in meat.

However, despite acknowledging the value and potential of HSI 

Fig. 1. Temporal distribution of published studies about food quality and safety 
control using HSI. Information collected from Scopus database.
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combined with machine learning for food evaluation, many studies fall 
short of addressing fundamental aspects that are critical when selecting 
and applying this analytical technique. A recurring weakness is the lack 
of detail regarding the specific signal extraction strategy, i.e., how the 
chemical information of interest is isolated from the hyperspectral data 
cube. This omission is not trivial. The quality and relevance of the 
extracted signal directly influence the performance of multivariate 
models developed using chemometric tools, such as partial least squares 
discriminant analysis (PLS-DA) or support vector machines (SVM), 
among others.

Given that HSI inherently produces high-dimensional datasets, de
cisions around dimensionality reduction methods, signal preprocessing, 
and region of interest (ROI) selection are crucial. Yet, these methodo
logical choices are often underreported or based on convenience rather 
than experimental justification. This lack of transparency can limit 
reproducibility and hinder cross-study comparisons. Moreover, the se
lection of the data analysis strategy should be strongly guided by the 
nature of the food matrix (homogeneous or heterogeneous) [38], and 
the specific analytical objective, such as detection, classification, or 
quantification. Unfortunately, few studies provide a rationale for their 
chosen approach, leading to a disconnect between the technique’s 
theoretical potential and its practical application in real-world 
scenarios.

In this context, the present review aims to fill this gap by providing 
the scientific community and industry experts with a detailed analysis of 
the types of foodstuffs that can be analyzed using HSI. It also identifies 
the most appropriate analytical signal to capture the chemical infor
mation of interest for food evaluation. In this regard, the review is 
structured into four sections following this introductory section on the 
state of the art: (i) Core concepts of HSI. (ii) Strategies for extracting and 
analysing target information. (iii) Overview of studies published in the 
last five years using HSI to assess food quality focusing on what type of 
analytical signal has been used. (iv) Conclusions and challenges to be 
addressed.

2. Core concepts of hyperspectral imaging

HSI can be understood from a global perspective as a set of capture 
and image processing techniques. These techniques allow users to access 

any spectral magnitude that can be captured by a camera (that is, a 
magnitude dependent on the wavelength of radiation). As an imaging 
technique, its primary advantage over area-based spectral information 
devices, such as spectrophotometers or spectroradiometers, is that it can 
capture spectral data on a pixel-by-pixel basis within an image. The 
spatial resolution is typically much higher than that of typical spec
trometers, and it is constrained by the distance to the material, as well as 
the capabilities of the optics and sensor. Therefore, an HSI device yields 
a set of spectral fingerprints within the same measurement area, whereas 
an area-based device yields only one spectrum.

When comparing HSI with a Red, Green, and Blue (RGB) camera, one 
of the main differences is the size of the final image data for the same 
number of pixels in both systems. HSI images are normally referred to as 
a “hyperspectral cubes”, even though they are not true cubes in a geo
metric sense, hence they could be termed a “hyperspectral (pseudo) 
cube”. A more precise definition is a data array with two spatial di
mensions and one spectral dimension. This is because, after post- 
processing, each spectral band becomes a monochrome image (2D 
image in which horizontal and vertical dimensions correspond to the 
spatial content of the captured scene). If this set of images is stacked one 
on top of the other, ordered by increasing wavelength, a three- 
dimensional data structure is formed. This has been illustrated count
less times and is also depicted in Fig. 2, which presents a workflow of the 
key steps involved in capturing a hyperspectral image [39].

An RGB camera can be seen as a specific type of HSI device with only 
three relatively wide spectral bands. RGB images also form 3D struc
tures, where the three-color channels (R, G, and B bands) are stacked 
together. Nevertheless, RGB devices are not typically considered in the 
same category as HSI.

The spectral magnitude that is directly measured by an HIS camera is 
usually the spectral radiance. If this is the case, the device produces 
radiance cubes or simply rad cubes [40]. Radiance can be mathemati
cally transformed into reflectance (reflectance cubes), absorbance, 
transmittance, or interactance [41]. For some systems, it is also possible 
to access the raw sensor response data (raw cubes), interesting for in 
specific application cases generally in controlled environments.

The incoming radiation is split into different spectral bands (either 
by a diffraction-based dispersing device, by an array of filters incorpo
rated into the sensor or other techniques) and then focused onto the 

Fig. 2. Overview of the main data processing steps for generating a hyperspectral image in HSI capture devices.
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sensor [42]. The capture setup varies depending on the magnitude being 
measured; however, there are essential steps common to every spectral 
capture, including calibration, raw data capture, and post-processing to 
obtain the final set of pixel-wise spectra. The calibration step aims to 
gather sufficient information about the spectral distribution and spatial 
inhomogeneity of the light source, as well as the dark current noise, to 
correct for these effects in the captured image data. Therefore, it must be 
performed each time the device setup is altered. It is advisable to cali
brate at least once at the beginning and once at the end of each capture 
session. Besides this setup and noise-dependent calibration, the manu
facturer may perform an additional intrinsic radiometric calibration, 
enabling the device to retrieve radiance data (rad cubes) from the raw 
sensor response data cubes [43]. The raw data are mediated by the 
sensor spectral response and include several sources of noise that 
naturally occur in the HSI. Nevertheless, as mentioned before, they may 
still provide sufficient information to be useful in certain applications.

Spatial resolution is usually one of the key features considered in any 
imaging device. If the limitation by diffraction is not considered, the 
higher the number of pixels in the image, the higher the spatial reso
lution the capture system has for a fixed sensor size. Spatial resolution is 
therefore linked to the pixel size: smaller pixels result in higher spatial 
resolution [44]. However, since the optical elements that form the image 
on the sensor are limited by diffraction, a fine balance must be achieved 
between the diffraction resolution limit and pixel size. If the sensor has a 
very small pixel size but the optics are not adequate to exploit this 
design, optical aberrations and diffraction will limit the image quality. 
Conversely, if the optics are well-designed but the sensor has overly 
large pixels, the effort in designing the optics will be wasted, as the 
system’s resolution will be constrained by the sensor [45].

Another important consideration is the spectral range covered by the 
HSI system. Most spectral capture devices cover the visible and near- 
infrared (Vis-NIR) range, roughly from 380 to 1000 nm. However, 
there are devices with extended ranges in the near-ultraviolet (NUV). 
These start mostly from 315 nm (although some specialized systems go 
as low as 200 nm). In the short-wavelength infrared (SWIR) range, 
systems operate from 900 to 1700 nm or even up to 2500 nm. The 
penetration depth of the radiation within the material depends on the 
radiation-matter interaction processes that take place and the spectral 
range. The NUV and Vis radiation is typically strongly absorbed by 
pigments, chromophores and water, while the SWIR penetrates more, 
although it can also be absorbed to a certain extent by water and other 
organic compounds. This fact turns out useful for spectroscopy 
applications.

Most HSI cameras are designed to capture reflectance, including both 
specular and diffuse components. The exclusion of the specular 
component can be achieved by using additional optical elements, such 
as polarizers, or by optimizing the illumination-observation geometry.

In hyperspectral imaging devices, in addition to spatial resolution 
limitations and spectral range, the spectral resolution must also be 
considered. This refers to the minimum wavelength separation that the 
system can resolve. For most hyperspectral devices, the average spectral 
resolution ranges from 2 to 4 nm. The spectral resolution is limited by 
both the physical components responsible for spectral separation and 
the characteristics of the sensor. For example, if the device includes a 
diffraction grating, the separation between the grooves must be suffi
cient to project the image of two distinct but adjacent wavelengths onto 
different pixels of the sensor. This is commonly the case with push- 
broom line scanners. [42].

Usually, operating the system close to the spectral and spatial reso
lution limits will result in the presence of noise in the image. It is often 
worth sacrificing some spatial or spectral resolution to reduce capture 
noise. This can be done through simple operations, such as averaging 
across pixels or adjacent wavelengths in the spectrum, so that the 
captured signal becomes smoother, and the noise is averaged out. This 
practice is called spatial or spectral “binning”, and it is illustrated in 
Fig. 3 [46].

2.1. HSI device architectures

HSI systems can be classified into five main categories based on the 
principle of their image acquisition design [47,48]: 

1) Push-broom (line-scanning): captures one spectral line per frame 
using a 2D sensor, requiring scene or camera movement. It offers 
high spatial and spectral resolution but is best suited for static scenes.

2) Snapshot (one-shot): uses microlens arrays and filters to capture the 
full spectral cube in one frame. This allows the capture of dynamic 
scenes at the cost of reduced spatial and spectral resolution. It is a 
typical architecture for multispectral capture devices (typically with 
considerably less spectral resolution than hyperspectral devices).

3) Whisk-broom (point-scanning): Captures one or a few pixels at a time 
using a line sensor. Some advantages and drawbacks are shared with 
the push-broom architecture, although whisk-broom devices can 
reach very high spectral and spatial resolutions at the cost of longer 
capture times.

4) Spectral scanning: Acquires the entire scene for one spectral band at 
a time. Filtering can be achieved mechanically (interchangeable 
interference filters), using tunable filters such as liquid crystal 
tunable filters (LCTF) or acousto-optic tunable filters (AOTF); or via 
sequential illumination (also called illumination multiplexing) with 
narrowband light sources (e.g., tuneable light emitting diodes 
(LEDs)). This was one of the earliest HSI architectures [49,50].

5) Coded aperture: Uses a mask at the system’s entrance pupil to encode 
spatial and spectral information into a single image. Computational 
algorithms such as compressed sensing, matrix factorization, 
Bayesian approaches like expectation maximization or deep 
learning-based methods are then required to reconstruct the hyper
spectral cube. These devices are relatively inexpensive and allow 
real-time capture of dynamic scenes but require significant compu
tational resources [51].

2.2. Data processing and storage

Regardless of the acquisition method, common data processing steps 
include calibration (e.g., flat-field correction, white and dark reference 
corrections) and format conversion, depending on the software used. 
Common hyperspectral cube formats include ENVI (.hdr,.img), GeoTIFF 
(.tif), and HDF5, with band interleaved by line (BIL), by pixel (BIP), or 
sequential (BSQ) storage structures [52].

After the cube is stored, some of the data correction steps can still be 
performed if they were not executed by the capturing software. The post- 
processing stage can start once the data is stored in its final form. 

Fig. 3. Illustration of spatial and spectral binning procedures used for noise 
reduction in hyperspectral images.
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Depending on the application, it can involve extracting regions of in
terest (ROIs) either manually or automatically, computing wavelength- 
dependent average spectra or standard deviations across pixels, select
ing spectra for classification or computing color coordinates for further 
analysis.

In summary, capturing spectral data requires careful consideration of 
various factors, including system architecture, storage format, and the 
software used to process the data after capture. These decisions are 
fundamentally ’application-dependent.

3. Target information

As mentioned in the previous sections, HSI can simultaneously 
obtain spatial and spectral information from a material. Spatial infor
mation can provide details about its physical characteristics, such as 
shape, texture, defects or irregularities, while spectral information can 
provide insight into its chemical composition [18]. Both forms of in
formation can be evaluated separately or together, depending on the 
purpose of the study. For this reason, it is important to determine the 
specific scenario under which the analysis is being conducted. In this 
section, various scenarios are outlined according to the target informa
tion and the type of material involved.

3.1. Assessment of work scenarios for applying hyperspectral imaging in 
the field of food quality and safety

One of the most critical steps when considering the application of an 
analytical technique is evaluating the specific working scenario, and this 
is no different for HSI. The type of material and the required information 
must be carefully assessed to determine the best approach. Therefore, 
this section focuses on describing each scenario in detail.

3.1.1. Spatial and spectral information for food analysis
Spatial information is crucial for the real-time detection and locali

zation of defects or irregularities, particularly in fruits and vegetables 
along the food production chain. These quality attributes determine the 
shelf life, maturity, and marketability of the product [53]. Similarly, this 
information can be useful for identifying the location of dispersed 
discernible particles in a food matrix sample or to distinguish elements 
with differing morphologies within it [24]. It is important to emphasize 
that this type of information pertains exclusively to the physical attri
butes of the food and its location, and it does not account for its chemical 
composition. This approach aligns with conventional imaging tech
niques, focusing solely on visual characteristics such as color, lightness, 
texture, shape or contour. In contrast, when aiming to determine the 
chemical composition of a material, spectral information is necessary.

HSI also provides spectral information for each pixel of the image. 
This information, combined with advanced data analysis methods, can 
be used to study the chemical composition of a material as a whole. It 
also allows for the identification of regions or particles with different 
compositions, and the quantification of any or all of its constituents. Its 
role in food quality and safety control stands out in applications such as 
food authentication, detection of adulterations, or contaminant identi
fication, among others. [54].

3.1.2. Types of material and data extraction strategy
At this point, it is important to distinguish between different types of 

materials, as data analysis strategies vary depending on whether the 
material is homogeneous or heterogeneous.

Until recently, HSI has not been considered a suitable tool for eval
uating liquid food [55]. However, studies in the literature have 
demonstrated its effectiveness in analyzing materials in both liquid and 
solid forms, establishing it as a versatile analytical technique in 
numerous food safety and quality control applications [16]. Note that 
both liquid and solid food samples can exhibit homogeneous or het
erogeneous characteristics. Therefore, this characteristic defines the 

strategy for extracting useful information from the image of the 
material.

A homogeneous material can be defined as a system with largely 
uniform surface distribution of components throughout, and its prop
erties remain consistent across it. An example of a homogeneous food 
sample can be olive oil. In contrast, a heterogeneous material exhibits an 
uneven surface distribution of components, resulting in non-uniform 
properties [56]. Examples include ham, pâté or natural juice. Based on 
the type of material, it is necessary to define an appropriate strategy for 
extracting useful information after applying HSI. Two main scenarios 
can be considered.

The first involves homogeneous materials, where relevant informa
tion can be obtained by analyzing the average spectrum of a Region of 
Interest (ROI). In this context, the ROI corresponds to a chemically 
representative area within the material. For example, when detecting 
and quantifying melamine in milk, hyperspectral images of milk samples 
in Petri dishes are acquired. The ROI is defined at the center of the 
sample, excluding edges or background, to focus the analysis on the 
target information.

The second scenario involves heterogeneous materials, where 
analyzing individual pixel spectra within each ROI may be necessary to 
capture spatial variations in composition. Based on these two scenarios, 
the following information extraction strategies can be defined: 

(i) ROI average spectrum. Homogeneous materials exhibit a largely 
uniform composition and properties. Therefore, the average 
spectrum of the pixels within the ROI of the hyperspectral image 
provides representative information for the entire material. This 
approach reduces data volume and simplifies processing and 
analysis. A practical example is the classification of edible oils by 
geographical origin, where the material is homogeneous, and the 
average spectrum is both representative and distinctive. [57]. 
This approach comes with limitations. It inherently assumes 
perfect homogeneity within the ROI, which may not always be 
the case in real-world samples. Subtle local variations can be 
masked by the averaging process, especially when caused by 
impurities, degradation, or processing, potentially leading to the 
loss of relevant information. Moreover, the spatial context is 
entirely lost, which might be critical in applications where dis
tribution patterns or localized anomalies carry significant 
meaning. In such cases, relying solely on the average spectrum 
may oversimplify the material’s complexity. While this strategy is 
computationally efficient—and in some instances may even 
justify the use of traditional spectroscopy instead of HSI—it 
should be applied with caution. The decision to use an average 
spectrum must be supported by a thorough assessment of sample 
homogeneity and a clear understanding of whether spatial in
formation is indeed irrelevant to the analytical objective.

(ii) ROI pixel-spectra. In heterogeneous materials, spatial variability 
in composition and physicochemical properties is often signifi
cant. As a result, a single average spectrum fails to capture the full 
chemical complexity of the sample. To address this, pixel-wise 
analysis is required. This approach enables detailed exploration 
of the spatial structure of the material and its local variations, 
often revealing features that would otherwise be lost in averaged 
data. While pixel-wise analysis offers a much richer understand
ing of the sample, it also introduces considerable challenges. The 
volume of data increases dramatically, making computational 
load and processing time important concerns. Moreover, inter
preting such high-dimensional data often requires advanced 
chemometric tools and expertise, which may not always be 
accessible to practitioners. Noise and variability at the pixel level 
can also complicate interpretation, especially in low-signal re
gions or when working with imperfectly calibrated systems. 
Despite these challenges, this strategy takes full advantage of the 
spatial resolution offered by hyperspectral imaging. In contexts 
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where the spatial distribution of compounds is critical (e.g., 
detecting contaminants, characterizing tissue, or identifying 
material defects), pixel-wise analysis is not only valuable but 
often essential. Nevertheless, its implementation should be 
guided by a clear analytical objective and supported by robust 
preprocessing and validation methods to ensure meaningful 
results.

Additionally, a third strategy applies to a specific type of heteroge
neous material: one that consists of a homogeneous matrix with 
discernible particles dispersed within it. These materials are character
ized by an overall uniform composition, while containing distinct par
ticles that differ in size, shape, or composition. These particles are 
embedded in the matrix without significantly affecting its homogeneity. 
In contrast, truly heterogeneous materials exhibit broader composi
tional or structural variations, resulting in a non-uniform matrix. Dis
tinguishing between these two types requires prior knowledge or clear 
evidence of the material’s nature. A representative example is whole
meal flour. Both white and wholemeal flours share the same homoge
neous matrix—mainly composed of ground endosperm—but wholemeal 
flour contains additional particles from the bran and germ. In this case, 
while the average spectrum can differentiate between white and 
wholemeal flour, it is insufficient to identify the type, quantity, and 
spatial distribution of the dispersed particles [24].

It is important to note that the spatial resolution must be smaller or 
equal to the particle size to detect dispersed particles. This scenario 
presents unique challenges. While averaging may provide a general 
characterization, it risks masking the contribution of minor yet poten
tially important constituents. Pixel-wise analysis can offer deeper 
insight; however, its effectiveness depends on having sufficient spatial 
resolution. Otherwise, the signal from the particles may blend with that 
of the matrix, leading to inaccurate or diluted interpretations. Therefore, 

for materials with dispersed particles, the analytical approach must 
balance spectral simplification with spatial resolution. Techniques such 
as segmentation, object-based analysis, or mixed-pixel modelling can be 
valuable here. Ultimately, recognizing this intermediate material 
structure early on is critical for selecting appropriate data processing 
methods and avoiding misleading conclusions based on oversimplified 
models.

Fig. 4 illustrates the three types of materials discussed earlier. In the 
first case, where the material consists of a homogeneous matrix, all 
pixels contain the same spectral information, so the average spectrum of 
the ROI is representative of the entire sample. In contrast, the other two 
cases involve materials with heterogeneous components: the average 
spectra in these cases incorporate data from pixels with different con
stituents (A, B, and C), each exhibiting distinct spectral characteristics. 
While the average spectrum can reveal differences between material 
samples, it does not provide information about the spatial distribution of 
each constituent.

Advanced data analysis techniques, such as multivariate curve res
olution (MCR), can be used to estimate the contribution of each con
stituent based on the average spectrum. However, for materials with a 
homogeneous matrix containing embedded particles, the QPC (Quanti
fication by Pixel Counting) methodology is more suitable. This approach 
allows for the identification and quantification of individual particles, as 
well as the determination of their composition [24].

3.2. Hyperspectral image data analysis

Once the working scenario is defined—that is, the material type and 
the target analytical feature to be determined—the next step is to extract 
and analyze the relevant information from the hyperspectral image data. 
At this stage, it is important to distinguish between qualitative and 
quantitative information. Qualitative information involves the 

Fig. 4. Comparative representation of material types and their spectral characteristics for homogeneous and heterogeneous materials.
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detection, identification, classification, or categorization of the material 
based on one or more distinctive features. In contrast, quantitative in
formation focuses on determining the amount of the target features 
present in the material. If the objective is to obtain qualitative infor
mation about the entire sample, such as differentiating between various 
types of edible vegetable oils, the average spectrum may provide suffi
cient data. However, if the goal is to analyze specific regions of the 
material, a pixel-by-pixel spectral analysis may be necessary.

Chemometrics, which involves applying machine learning tech
niques to chemistry—including spectroscopy, chromatography, and 
other analytical methods—can be effective for extracting qualitative 
and/or quantitative information from hyperspectral image data. It can 
be categorized into two approaches: unsupervised and supervised 
methods. In the former, the model does not use class labels, and pattern 
recognition is employed to uncover natural groupings among the ob
jects. In the latter, the model is constructed using prior knowledge of the 
class to which each object or sample belongs.

Among the most widely used techniques in hyperspectral imaging 
(HSI) are Principal Component Analysis (PCA) and Hierarchical Cluster 
Analysis (HCA). Additionally, Multivariate Curve Resolution (MCR), 
often used to resolve complex signals, is frequently applied in this 
context to reduce data volume, identify key pixels and variables, and 
analyze the behavior of chemical compounds in the material. Supervised 
methods are crucial for developing both qualitative and quantitative 
analytical techniques. For qualitative analysis, Partial Least Squares 
Discriminant Analysis (PLS-DA), Support Vector Machines (SVM), and 
Artificial Neural Networks (ANN) are commonly used. For quantitative 
analysis, Partial Least Squares Regression (PLSR), Multiple Linear 
Regression (MLR), and SVM/ANN regression models are the most pop
ular [58].

To effectively apply multivariate data analysis methods to hyper
spectral imaging (HSI) data, it is essential to recall how hyperspectral 
images are captured. As discussed in section two, hyperspectral images 
are stored as a 3D data structure, commonly referred to as a ’hyper
spectral cube.’ From this data cube, Regions of Interest (ROIs) can be 
selected. These steps are consistent regardless of the material type being 
analyzed. However, data handling diverges at this point, where the 
previously mentioned working scenarios come into play (see section 
3.1.2). Two data analysis approaches can be adopted then: (i) treating 
the material as a whole, and (ii) treating the material as a collection of 
individual pixel spectra.

(1) Material sample as a whole. Irrespective of the material type, if 
the goal is to obtain general qualitative information to compare a set of 
material, the average spectrum of each sample may be sufficient for the 
analysis. It is because it provides a representative overview of their main 
physicochemical characteristics. In this approach, each material is rep
resented by an average spectrum that identifies and characterizes it. To 
analyze a set of materials, the data are arranged in a M × N matrix using 
the average spectrum of each one. In this matrix M symbolizes the 
number of materials analyzed (number of average spectra) and N cor
responds to the number of variables (wavelengths). Methods such as 
standard normal variation (SNV) or multiplicative scatter correlation 
(MSC) are usually applied to preprocess the spectra contained in the 
matrix. Using the preprocessed matrix as an input data set, unsupervised 
methods will enable us to identify behavioural patterns among materials 
based on spectral similarities and reveal natural groupings or clusters 
within them. This approach provides an initial screening analysis, of
fering insights into the structure and variability across materials without 
prior assumptions. Data analysis methods such as PCA, or HCA are 
usually used to this end.

Supervised methods such as PLS-DA, SVM or ANN, are applied to 
categorize samples according to specific target analytical features. Thus, 
they are also called “classification and discrimination methods”. These 
methods build a classification model. For this purpose, they establish 
relationships between the spectral characteristics of the materials and a 
qualitative (or discrete) variable that signifies a particular class, which is 

defined by one or more specific target analytical features. This model is 
properly trained, validated, and then the outcomes are assessed by 
quality performance metrics for classification including sensitivity, 
specificity, precision and accuracy, among others [59]. After having 
completed these steps, the trained model can be used to predict the class 
of new samples.

Furthermore, supervised methods such as PLSR or SVM/ANN for 
regression are commonly used to estimate the quantity of one or more 
constituents, or to quantify a specific measurable characteristic of the 
material. Unlike classification methods, these techniques establish re
lationships between specific spectral features and a known value of the 
target analytical feature, thereby building a quantification model [55]. 
In the same way as qualitative models, quantification models are trained 
and validated and then, results are evaluated by calculating statistical 
parameters. These parameters may include coefficient of determination 
(R2), root mean square of residuals (RMSE), root mean square error of 
prediction (RMSEP), prediction residual error square sum (PRESS) and 
standard error of prediction (SEP) [60].

(2) Material as a Set of Pixel-Spectra. Pixel-by-pixel analysis is most 
useful when analyzing heterogeneous materials or when the objective is 
to (a) identify the location or (b) determine the spatial distribution of 
specific regions or particles within a sample. As a preliminary step 
before applying any multivariate analysis method, all spectra within a 
sample ROI are arranged into a single P × N matrix. In this matrix, P 
represents the number of pixel spectra from the ROI, and N corresponds 
to the number of variables (wavelengths).

Both unsupervised and supervised methods can be applied as 
described earlier. However, it is important to note that in this case, the 
analysis focuses not on individual materials, but on individual pixel- 
spectrum samples from a single material. Unsupervised methods pro
vide insights into natural groupings of pixel spectra within the material, 
while supervised methods can be used to discriminate between pixels 
with similar spectral characteristics and associate them with the target 
analytical feature. These analyses can also be extended to pixels from 
different materials by vertically concatenating their data matrices.

Additionally, in the case of a material consisting of a homogeneous 
matrix and discernible particles dispersed in it, the QPC methodology 
can be applied [24]. The QPC methodology can be summarized in two 
main steps. The first step involves applying supervised methods to 
develop a classification model. They can discriminate between (i) pixels 
containing spectra associated with the target particles (target class) and 
(ii) pixels with spectra characteristic of the homogeneous matrix 
without the particles (alternative class). The second step focuses on 
quantifying the particles by counting the pixels classified as belonging to 
the target class. This methodology allows for both estimating the content 
of discernible particles and identifying their spatial distribution. For 
further details, see reference [24].

Fig. 5 summarises the key aspects of the approaches to analyse 
hyperspectral image data described above.

4. Mining information from hyperspectral signals

This section examines studies published in the last five years that 
have employed HSI to address food quality and safety, with a particular 
focus on the detection of adulteration, contamination, and non- 
conformities. Additionally, it highlights the diverse applications of HSI 
across various food types, with emphasis on the strategies used for in
formation mining and the machine learning techniques implemented for 
data analysis. To identify relevant literature, a comprehensive search 
was conducted using the Scopus database. The studies reviewed are 
summarized in Table 1. It is organized to distinguish among food cate
gories, analytical objectives, information extraction strategies, applied 
machine learning algorithms, and the specific aspects of food quality or 
safety addressed in each study. It was found that over 80 % of the studies 
relied on the ROI average-spectrum approach for information extrac
tion, typically using conventional methods for multivariate model 
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development with chemometric techniques. Only those studies that 
demonstrate a high degree of innovation in information extraction are 
examined in detail, with a focus on how these innovations contribute to 
improvements in the field.

4.1. Adulteration detection

Within animal-origin food products, beef and pork have been the 
primary focus of research. Both materials are inherently heterogeneous 
due to the presence of various tissues (e.g., muscle, fat) with different 
chemical compositions. As a result, most of these studies followed 
similar data analysis approaches. Initially, unsupervised machine 
learning methods were used to analyze natural groupings of ROI average 
spectra, with PCA being the most commonly applied tool. The material 
was first evaluated as a whole to determine whether the ROI average 
spectrum of adulterated samples could be distinguished from that of 
pure samples. In most studies, PCA was employed to identify the spectral 
regions with the highest variability between adulterated and pure 
samples. Following the unsupervised analysis, the same dataset (ROI 
average spectra) was used to develop classification models to differen
tiate between adulterated and pure materials. The most frequently 
applied chemometric tools were PLS-DA and SIMCA.

For example, Masithoh et al. [63] conducted a study to detect pork 
adulteration in lamb and beef meat. To achieve this, they employed the 
ROI average spectra of the analyzed materials, developing binary 
models aimed at classifying pure meat samples (lamb and beef) versus 
those adulterated with pork at different concentrations. PLSR was 
employed as a chemometric method, yielding promising results for the 

external validation set, with R2 values of 0.7 and RMSE values between 
3 % and 5 %. Additionally, a key innovation of the study was the 
detection of adulterated pixels within each sample by using the beta 
coefficients obtained from PLSR. This approach enabled the use of 
spectral information from pixels within the ROI to identify contami
nated pixels and generate chemical concentration maps. These maps 
were created for each beef and lamb sample to evaluate the effectiveness 
of HSI in visualizing varying concentrations of pork adulteration. Achata 
et al. [65], in a similar way to Masithoh et al. [63], aimed to detect 
adulteration of beef with chicken, turkey, pork, and duck. To achieve 
this, they followed a similar strategy by first developing a classification 
model to distinguish between adulterated and non-adulterated samples, 
this time using PLS-DA, achieving over 90 % correct classification. 
Additionally, PLSR was used to quantify the percentage of adulterant. 
Subsequently, a chemical concentration map was generated to visualize 
the contaminated pixels. A notable aspect of this study is that, in addi
tion to training and externally validating the models, the authors applied 
them in a second experiment. They used a new dataset to evaluate 
performance under real-world conditions, demonstrating their potential 
for routine analysis. In essence, the use of HSI for the detection of meat 
adulteration is recommended due to the heterogeneous nature of this 
material. Unlike point-based analytical techniques, HSI captures both 
spectral and spatial information from the entire sample, providing a 
more comprehensive and representative assessment. This is particularly 
relevant in meat fraud detection, where adulterants may not be homo
geneously distributed within the sample. Furthermore, HSI offers sig
nificant advantages in terms of speed and simplicity compared to 
traditional analytical methods for these materials, such as DNA analysis.

Fig. 5. Illustration of the main strategies for analyzing hyperspectral images: considering the material as a whole vs the material as a set of pixel spectra. PCA: 
principal component analysis; HCA: hierarchical clustering analysis; PLS-DA: partial least square-discriminant analysis; ANN: artificial neuronal networks; SVM: 
support vector machine; PLR: partial least square regression; MLR: multiple linear regression; QPC: quantification based on pixel counting by classification.
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Table 1 
Hyperspectral imaging applications for detecting adulteration, contamination and non-conformity food fraud over the last five years: (A) animal-origin and (B) plant- 
based foodstuffs.

Material Objective Information 
mining

Spectral range 
(nm)

Machine learning Food fraud Ref.

(A) Animal-origin foodstuffs
Alpaca Detect, identify and quantify pork and beef adulteration in 

alpaca
• ROI average 

spectrum
• ROI pixel- 

spectra

900–1700 PCA, SIMCA, PLS Adulteration [61]

Anchovies Authentication of geographical origin and previous freeze 
process

• ROI average 
spectrum

400–1000 
900–1700

PCA, SIMCA, PLS-DA Non- 
conformity

[62]

Beef and lamb Detect and quantify pork adulteration • ROI average 
spectrum

• ROI pixel- 
spectra

895–2504 PCA, PLSR Adulteration [63]

Beef Detect, identify and quantify beef heart, liver or pork 
adulteration

• ROI average 
spectrum

900–1700 PCA, SIMCA, PLS-DA, 
CART, BP-ANN

Adulteration [64]

Detect, identify and quantify chicken, pork, turkey, lamb 
and duck adulteration

• ROI average 
spectrum

400–1000 PCA, PLSR, PLSDA Adulteration [65]

Detect, identify and quantify chicken, pork, and duck 
adulteration

• ROI average 
spectrum

400–1000 PCA, PLS-DA, RF, kNN, 
SVM

Adulteration [66]

Detect and quantify soybean protein powder adulteration • ROI pixel- 
spectra

380–1000 PCA, PLSR Adulteration [67]

Detect chicken adulteration • ROI average 
spectrum

• ROI pixel- 
spectra

380–1000 PCR, PLSR Adulteration [68]

Detect and quantify pork adulteration • ROI average 
spectrum

890–2500 PLSR Adulteration [69]

Cheese Detect and visualise bacterial contamination • ROI average 
spectrum

• ROI pixel- 
spectra

548–1701 PCA, PLS-DA Contamination [22]

Chicken Detect and quantify of carrageenan adulteration • ROI average 
spectrum

400–1000 PCA, PLSR Adulteration [70]

Honey Detect sugar syrup adulteration ROI average 
spectrum

864–1700 SCA, kNN, SVM Adulteration [71]

Lamb Discrimination of pork adulterated lamb • ROI average 
spectrum

1000–2500 CNN, SVM Adulteration [72]

• ROI average 
spectrum

1000–2500 SVM, SVR Adulteration [73]

Mussels Detect microplastics • ROI pixel- 
spectra

1100–2500 N/A Contamination [74]

• ROI pixel- 
spectra

1100–2500 N/A Contamination [75]

Pork Detect and quantify offal adulteration • ROI average 
spectrum

• ROI pixel- 
spectra

400–1000 PCA, PLSR Adulteration [76]

Detect and quantify porcine adulteration • ROI average 
spectrum

400–1000 PCA, PLSR Adulteration [77]

Detect and quantify bacterial contamination • ROI average 
spectrum

400–1000 PLSR Contamination [78]

Salmon Detect and quantify the proportion of Heilongjiang salmon 
used to adulterate Norwegian salmon

• ROI average 
spectrum

397–1003 
935–1720

PCA, PLSR, CNN Adulteration [79]

Sea cucumber Detect and identify sugar and salt adulteration • ROI average 
spectrum

957–1679 SVM Adulteration [80]

(B) Plant-Based Foodstuffs
Almonds Detect bitter almonds presence • ROI average 

spectrum
946–1648 PLS-DA Non- 

conformity
[81]

​ Detect, identify and quantify apricot and peanut 
adulteration

• ROI average 
spectrum

900–2494 PCA, SIMCA, PLSR Adulteration [82]

Black pepper Detect, identify and quantify papaya seeds adulteration • ROI average 
spectrum

• ROI pixel- 
spectra

900–1710 PCA, PLSR, SIMCA Adulteration [83]

Chestnuts Authentication of geographical origin • ROI average 
spectrum

400–1000 PCA, PLS-DA, CNN Non- 
conformity

[84]

Chickpea flour Detect and quantify metanil yellow adulteration in 
chickpea flours

• ROI average 
spectrum

900–2500 PCA, PLSR, CNN Adulteration [20]

Cinnamon Authenticate Cinnamomum verum • ROI average 
spectrum

• ROI pixel- 
spectra

953–1710 PCA, SVM, PLS-DA, 
SIMCA

Non- 
conformity

[85]

(continued on next page)
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Regarding other solid-state food products, studies focused on the 
authentication of flours are particularly noteworthy, as ROI pixel spectra 
are frequently used to develop classification models. Although flour may 
seem homogeneous, it has inherent heterogeneity due to factors such as 
particle size or the blending of flours from different origins or qualities, 
which complicates its precise characterization using conventional point- 
based analytical methods. HSI overcomes these limitations, as 

demonstrated by several studies. For instance, Zhen et al. [105] used 
neural networks to detect wheat flour adulteration with peanut, walnut, 
or benzoyl peroxide, performing variable selection prior to model 
development and achieving accuracy and area under the curve (AUC) 
values above 90 %.

Finally, it is important to consider the analysis of liquid foods, such 
as olive oil. The application of HSI to these samples remains a topic of 

Table 1 (continued )

Material Objective Information 
mining 

Spectral range 
(nm) 

Machine learning Food fraud Ref.

Edible Oils Detect adulterations of extra virgin olive oils with cheaper 
edible oils

• ROI average 
spectrum

900–1700 PCA, PLS-DA, SVM, RF, 
ANN

Adulteration [57]

​ ​ • ROI average 
spectrum

900–1700 PCA, PLS-DA Adulteration [86]

​ ​ • ROI average 
spectrum

400–1000 SVM, LR, LDA, RF, DT, 
kNN, Naïve Bayes

Adulteration [87]

Maize grain Quantify mycotoxins levels • ROI pixel- 
spectra

893–1730 PLSR Contamination [88]

​ ​ • ROI pixel- 
spectra

327–1093 SVR, CART, kNN Contamination [89]

​ Detect, identify and quantify mycotoxins levels • ROI pixel- 
spectra

400–1000 PCA, PLS-DA, PLSR Contamination [90]

Maize flower Detect toxins contamination • ROI pixel- 
spectra

900–1700 PLS-DA Contamination [91]

Mulberry Detect and quantify fungicide contamination • ROI average 
spectrum

270–850 PCA, PLSR Contamination [92]

Oregano Detect, identify and quantify oregano adulteration with 
myrtle, olive and strawberry leaves.

• ROI average 
spectrum

980–1660 PCA, PLS-DA, SIMCA Adulteration [93]

Peanut Detect mold contamination • ROI average 
spectrum

930–2500 SVM Contamination [94]

Pomegranate 
molasses

Detect date syrup adulteration • ROI average 
spectrum

700–1000 PCA, ABC Adulteration [95]

Pine nuts Authentication of geographical origin • ROI average 
spectrum

• ROI pixel- 
spectra

940–1625 PCA, MCR, SIMCA Non- 
conformity

[96]

Red chilli Detect and identify wheat bran, rice bran, and saw dust 
adulteration

• ROI pixel- 
spectra

400–1000 PCA, SVM Adulteration [23]

Rice Authentication of grain variety • ROI average 
spectrum

400–1000 KNN, RF Adulteration [97]

​ Detect fungal contamination • ROI average 
spectrum

400–1000 PCA SVM Contamination [98]

​ Detect paraffin contamination • ROI average 
spectrum

250–2500 CNN, PLS-DA, SVM Contamination [99]

Saffron Detect and quantify Crocus sativus style adulteration • ROI average 
spectrum

• ROI pixel- 
spectra

400–950 PCA, PLS-DA, SVM Adulteration [100]

​ Detect, identify and quantify Crocus sativus style, safflower, 
madder, calendula and turmeric adulteration

• ROI average 
spectrum

• ROI pixel- 
spectra

900–1710 PCA, HCA, PLS-DA, 
SIMCA

Adulteration [101]

Spinach leaves Detect fecal contamination • ROI pixel- 
spectra

464–800 
459–950

PLS-DA Contamination [102]

Sorghum Detect adulterations with three varieties of sorghum • ROI pixel- 
spectra

900–1700 PCA, PLS-DA Adulteration [103]

Tea Detect adulterations with different teas • ROI pixel- 
spectra

950–1760 PCA, SVM Adulteration [104]

Wheat grain Detect and identify FHB-damaged • ROI pixel- 
spectra

866–1701 CNN Adulteration [21]

Wheat flour Detect, identify and quantify peanut, walnut and benzoyl 
peroxide adulteration

• ROI average 
spectrum

380–1030 SACNN Adulteration [105]

Wholemeal flour Quantify wholemeal flour in bread • ROI average 
spectrum

• QPC

400–1000 PCA, SVM, PLS-DA Non- 
conformity

[24]

Wolfberry Detect sulphur particles adulteration • ROI average 
spectrum

900–1700 LDA, KNN, PLSR, SVM Adulteration [106]

Yam Authentication of geographical origin • ROI average 
spectrum

400–1000 PLS-DA, SVM, RF Non- 
conformity

[107]

ABC: artificial beer colony; BP-ANN: back propagation-artificial neuronal networks; CART: classification and regression tree; CNN: convolutional neuronal networks; 
DT: Decision tree; EDM: Euclidean distance measure; kNN: K-Nearest neighbours; LR: Logistic regression; SAM: spectral angel measure; SCM: spectral correlation 
measure; PCA: principal component analysis; PLS: partial least square; PLS-DA: partial least square discriminant analysis; PLSR: partial least square regression; QPC: 
quantification based on pixel counting by classification; SACNN: symmetric all convolutional neuronal networks; SDA: stepwise discriminant analysis; SVM: support 
vector machine; SIMCA: soft independent modelling of class analogies; SPA-LDA: Successive projections coupled with linear discriminant analysis; SVR: support vector 
regression; N/A: Not applicable.
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debate. This happens because the inherent homogeneity of liquid 
matrices, which lack spatial heterogeneity, often makes more cost- 
effective techniques—such as FTIR, NIR, or Raman spec
troscopy—sufficient, potentially rendering HSI unnecessary. In this 
context, Malavi et al. [57] conducted a comparative study employing 
various analytical techniques, including FTIR, GC–MS, UV–Vis, and HSI, 
to detect the adulteration of olive oil with other edible vegetable oils. 
Their results showed that these techniques produced similar outcomes, 
indicating that HSI has potential for such applications. However, the 
complexity of data processing associated with HSI is considerably higher 
compared to techniques like UV–Vis or FTIR, suggesting that HSI may 
not be the most suitable choice. Similarly, Aqeel et al. [86] applied HSI 
for the same purpose as Malavi et al. and concluded that HSI, in com
bination with machine learning methods, yielded good results in 
detecting adulteration with other vegetable oils, such as soybean or 
sesame oil. Their models were constructed using ROI average spectrum 
in the NIR range, which is consistent with the extensive literature sup
porting the use of NIR spectroscopy for olive oil authentication. There
fore, the added value of HSI in this context may be limited, like some 
authors have demonstrated (see Tazilli et al. [38]). These authors argue 
that, although HSI provides more extensive spatial information, which 
should theoretically offer an advantage, there are situations where it is 
not essential. In such cases, NIR spectrophotometer probes, for instance, 
can effectively address the issue.

4.2. Contamination detection

In the context of contamination detection, the most widely used 
approach for model construction is the ROI pixel spectra. It is appro
priate because contamination detection requires pixel-by-pixel analysis 
to accurately locate and characterize the contaminant. For example, 
several studies have used ROI pixel-spectra to detect mycotoxin 
contamination in grains. Borrás-Vallverdú et al. [88] used NIR-HSI 
combined with PLS to detect and quantify various mycotoxins (DON, 
FB1, FB2) in maize kernels. Additionally, the authors proposed a clas
sification based on mycotoxin concentration levels, which yielded better 
results than direct quantification, achieving sensitivity, specificity, and 
accuracy values ranging from 70 % to 90 %. Wang et al. [89] conducted 
a similar study, focusing exclusively on the detection and quantification 
of aflatoxin B1 using fluorescence HSI. These authors further reported 
that nonlinear learning methods are more suitable for such studies, as 
classification models tend to outperform linear approaches. They 
concluded that applying a boosting-stacking method can significantly 
enhance regression performance.

Other studies have focused on detecting microplastic contamination. 
In this regard, Piarulli et al. [74,75] published two studies aimed at 
detecting different plastics in mussels (low-density polyethylene (LDPE) 
in one study, and polypropylene (PP), polystyrene (PS), and polyamide 
(PA) in the other). In both studies, NIR-HSI was applied, first separating 
the soft tissue from the shell and conducting pre-treatment of the sample 
before analysis. Once the image was captured, a chemical map based on 
the ROI pixel spectra was generated using a normalized difference image 
(NDI). To reduce the data and simplify the interpretation of the results, 
each pixel’s NDI value was represented by a color scale ranging from red 
(highest value) to blue (lowest value). This created an RGB chemical 
map indicating the presence of microplastics. Specifically, pixels corre
sponding to microplastic particles exhibited the highest NDI ratio, 
appearing red on the map. Using this information extraction approach, 
the authors developed a new analytical methodology for detecting these 
target microplastics. They concluded that, although the spatial resolu
tion of the NIR-HSI system is lower than that of other microscale spec
troscopic techniques—which can detect microplastics as small as 11 
μm—it still presents clear advantages. The rapid and highly automatable 
analytical workflow of NIR-HSI offers an efficient and cost-effective 
method for examining large numbers of environmental samples. They 
can include complex, heterogeneous matrices, directly on filters and 

without the need for extensive sample preparation.

4.3. Non-compliance detection

In studies focused on detecting food non-conformities, 90 % of 
studies use ROI average spectrum information to build multivariate 
models, predominantly aimed at authenticating the geographic origin. 
Esplandiú et al. [62], Li et al. [84], and Zhang et al. [107] developed 
models aiming to authenticate the geographical origin of anchovies, 
chestnuts, and yam. In the anchovy study, the authors employed PLS- 
DA, and the results revealed that models based on the VIS-NIR spec
tral range outperformed those using only the NIR region. In the chestnut 
study, PLS-DA and deep learning methods such as one-dimensional 
convolutional neural network (1D-CNN) were tested. PLS-DA and 1D- 
CNN models achieved prediction accuracies above 95 %, and both 
sensitivities and specificities for PLS-DA and 1D-CNN models exceeded 
90 % for the samples from each geographical origin. Therefore, from 
these results and considering the complexity involved in developing 
neural network-based models, PLS-DA stands out as a suitable method 
for addressing this type of problem. In the yam study, PLS-DA, SVM and 
Random Forest (RF) were selected as machine learning methods to build 
the different origin authentication models. For this purpose, not only 
was the ROI average spectrum used, but models were also developed by 
selecting specific wavelengths of interest using the successive pro
jections algorithm (SPA). Accuracy values of 100 % were achieved for 
the training set, and 98.40 % for the external validation set.

Other studies have combined both approaches (ROI average spec
trum and ROI pixel spectra) to examine non-conformities. For example, 
Medina et al. [24] developed models aimed at classifying the type of 
flour used in bread production, distinguishing between whole wheat and 
white flour, and quantifying the proportion of whole wheat flour pre
sent. Notably, this study introduced an innovative combination of ROI 
average spectrum and ROI pixel spectra with machine learning methods 
such as SVM, achieving precision values over 80 %. Ríos-Reina et al. 
[96] studied the feasibility of the HSI application to authenticate the 
geographical origin of pine nuts. For this, PCA and MCR were applied to 
the ROI average spectrum of each material. Subsequently, ROI pixel 
spectra were used to develop a classification model capable of dis
tinguishing materials from different geographical origins.

5. Challenges and limitations of HSI in the food industry

Translating the potential of NIR-HSI into robust, routine use in in
dustrial or regulatory contexts presents several challenges. Under
standing the specific limitations of HSI within the food domain is critical 
to developing practical, scalable, and scientifically sound solutions. 
Some factors that need to be considered are: 

(i) High data dimensionality vs. real-time requirements. HSI gener
ates massive datasets with hundreds of spectral bands and up to 
thousands or millions of pixels. In food industry settings, where 
fast decision-making and high-throughput inspection are essen
tial (e.g., conveyor belt sorting, online quality control), this be
comes a significant bottleneck. Although data reduction 
techniques, such as variable selection, PCA, or band selection can 
help, achieving real-time or near-real-time performance remains 
a technological and computational challenge.

(ii) Variability in food matrices. Food products are inherently vari
able and often complex in composition and structure. This in
cludes moisture gradients, non-uniform textures, irregular 
shapes, and inhomogeneities, all of which can influence the 
spectral signal. Unlike well-controlled lab samples, real-world 
food items often introduce spectral variability which compli
cates calibration and interpretation. Accounting for this natural 
variability is critical for building reliable models that can 
generalize across batches, seasons, or processing lines.
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(iii) Influence of surface properties and geometry. The quality of HSI 
data can be significantly influenced by surface conditions, such as 
glossiness, roughness, or irregular contours, which affect light 
scattering and reflectance. In solid or semi-solid foods (e.g., 
cheese, bakery products, meats), surface geometry can cause 
shadowing or variable illumination, introducing artifacts into the 
spectra. This becomes especially problematic when using 
reflectance-mode imaging in industrial environments, where 
maintaining consistent lighting can be challenging.

(iv) Spatial resolution vs. particle size. When targeting specific fea
tures such as contaminants, bruises, fungal growth, or foreign 
particles, the spatial resolution of the system must match or 
exceed the size of these features. Otherwise, mixed pixels may 
obscure their detection. This constraint is particularly relevant in 
the production of flour, spices, cereals, and powders, where small 
particles or defects must be accurately detected and resolved for 
safety and quality control purposes.

(v) Calibration and ground truth building challenges. Supervised 
analysis in food HSI requires reliable reference values for both 
qualitative and quantitative tasks. Acquiring these reference 
values is often labour-intensive and destructive, which limits the 
number of labelled samples and complicates model development. 
Inconsistent or poorly aligned ground truth data is one of the 
major obstacles to robust model training and validation in food 
applications.

(vi) Limited transferability and standardization. Models developed on 
a specific HSI system or under tightly controlled lab conditions 
often struggle when transferred to different instruments, pro
cessing lines, or lighting setups. This lack of standardization in 
both the hardware and analysis protocols hampers scalability and 
adoption in industrial environments. In the absence of universal 
calibration procedures or spectral libraries, each application 
often requires its custom-built model.

(vii) Regulatory and practical barriers. Even when HSI is scientifically 
validated, deploying it at scale in the food industry faces practical 
constraints, including high system costs, integration with existing 
production lines, the need for technical expertise, and the regu
latory approval of HSI-based methods. Furthermore, for critical 
safety or quality decisions, food companies and regulatory 
agencies often favour methods that are interpretable, traceable, 
and well-validated.

6. Conclusions and outlook

Hyperspectral imaging has emerged as a transformative analytical 
tool for assessing food quality, safety, and authenticity. Its unique 
combination of spatial and spectral resolution allows for non- 
destructive, rapid, and environmentally friendly analysis of diverse 
food matrices, whether solid or liquid, homogeneous or heterogeneous. 
Over the past decade, advances in sensor design, combined with de
velopments in both classical chemometric modelling and modern ma
chine learning techniques, have significantly expanded the scope of HSI 
applications across the food sector.

HSI has demonstrated its value in addressing critical food industry 
concerns, including adulteration, contamination, and non-conformity 
fraud. Its ability to extract both qualitative and quantitative informa
tion, ranging from compositional analysis to spatial distribution and 
physical attributes, positions it as a comprehensive platform for quality 
assurance and fraud detection. However, despite its analytical strengths, 
several practical and technical challenges continue to limit its broader 
industrial implementation.

Key limitations include high capture system costs, substantial 
computational demands, and the lack of standardized acquisition pro
tocols and data processing workflows. These factors hinder reproduc
ibility, model transferability, and inter-laboratory comparability. 
Establishing industry-wide standards for spectral data formats, 

preprocessing routines, and validation procedures is essential to enable 
scalable deployment and regulatory acceptance.

Machine learning and deep learning algorithms offer promising 
pathways to automate spectral interpretation and enhance classification 
accuracy. However, their adoption must be balanced with concerns over 
model transparency and interpretability, especially in regulated envi
ronments where decision traceability is paramount. The role of classical 
chemometrics remains highly relevant in this context, offering more 
interpretable models that align well with industrial and regulatory 
expectations.

Further progress in sensor miniaturization and the development of 
cost-effective materials are expected to facilitate the production of 
portable and affordable HSI devices. These innovations will help inte
grate HSI into routine inspection settings, including in-field, at-line, and 
online environments. At the same time, advances in understanding the 
interaction of radiation with complex food matrices will improve the 
analysis of internal features, making the technique even more powerful 
for non-invasive characterization.

Finally, HSI holds untapped potential in supporting sustainability 
goals, such as reducing food waste through freshness assessment and 
spoilage prediction. To fully realize this potential, continued interdis
ciplinary collaboration among researchers, engineers, food scientists, 
and industry stakeholders is essential. By addressing its current limita
tions and advancing both technology and methodology, HSI is poised to 
become not only a research innovation but also a standard tool for 
ensuring food quality and safety across global supply chains.
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[34] C.M. Peraza-Alemán, A. López-Maestresalas, C. Jarén, N. Rubio-Padilla, S. 
A. Arazuri, Systematized review on the applications of hyperspectral imaging for 
quality control of potatoes, Potato Res. 67 (2024) 1539–1561, https://doi.org/ 
10.1007/s11540-024-09702-7.

[35] L. Li, X. Jia, K. Fan, Recent advance in nondestructive imaging technology for 
detecting quality of fruits and vegetables: A review, Crit Rev Food Sci Nutr. 
(2024), https://doi.org/10.1080/10408398.2024.2404639.

[36] A. Ismail, D.G. Yim, G. Kim, C. Jo, Hyperspectral imaging coupled with 
multivariate analyses for efficient prediction of chemical, biological and physical 
properties of seafood products, Food Eng Rev. 15 (2023) 41–55, https://doi.org/ 
10.1007/s12393-022-09327-x.

[37] R.T. Matenda, D. Rip, J. Marais, P.J. Williams, Exploring the potential of 
hyperspectral imaging for microbial assessment of meat: A review, Spectrochim 
Acta A Mol Biomol Spectrosc. 315 (2024) 124261, https://doi.org/10.1016/j. 
saa.2024.124261.

[38] D. Tazilli, M. Cocchi, J.M. Amigo, A. D’Alessandro, L. Strani, Does hyperspectral 
always matter? A critical assessment of near infrared versus hyperspectral near 
infrared in the study of heterogeneous samples, Curr Res Food Sci. 9 (2024) 
100813, https://doi.org/10.1016/j.crfs.2024.100813.

[39] Vane G. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS): A description 
of the sensor, ground data processing facility, laboratory calibration, and first 
results. NASA Technical Reports Server. 1987. https://ntrs.nasa.gov/citations/ 
19880004943. Accessed 11 Jan 2025.

[40] G. Kortüm, Reflectance spectroscopy: principles, methods, applications, 1st ed., 
Springer, Berlin, 1969.

[41] P. Hemrattrakun, K. Nakano, D. Boonyakiat, S. Ohashi, P. Maniwara, 
P. Theanjumpol, P. Seehanam, Comparison of reflectance and interactance modes 
of visible and near-infrared spectroscopy for predicting persimmon fruit quality. 
Food Anal, Methods 14 (2021) 117–126, https://doi.org/10.1007/s12161-020- 
01853-w.

[42] H.W. Siesler, Y. Ozaki, S. Kawata, H.M. Heise, Instrumentation for near-infrared 
spectroscopy, in: H.W. Siesler, Y. Ozaki, S. Kawata, H.M. Heise (Eds.), Near 
Infrared Spectroscopy, Principles, Instruments, Applications, Wiley, Weinheim, 
2008, pp. 43–74, https://doi.org/10.1002/9783527612666.ch03.

[43] L.W. Sun, X. Ye, W. Fang, Z.L. He, X.L. Yi, Y.P. Wang, Radiometric calibration of 
hyper-spectral imaging spectrometer based on optimizing multi-spectral band 
selection, Optoelectron Lett. 13 (2017) 405–408, https://doi.org/10.1007/ 
s11801-017-7174-7.

[44] S. Chatti, L. Laperrière, G. Reinhart, T. Tolio, CIRP: The International academy for 
production engineering. Encyclopedia of production engineering, 2nd ed., 
Springer, Berlin, 2019.

[45] S.T. McHugh, Understanding Photography: Master Your Digital Camera and 
Capture That Perfect Photo, 1st ed., No Starch Press, San Francisco, 2018.

[46] S.C. Yoon, B. Park, Hyperspectral image processing methods, in: P. Bosoon, 
L. Renfu (Eds.), Hyperspectral Imaging Technology in Food and Agriculture, 
Springer, London, 2015, pp. 81–101, https://doi.org/10.1007/978-1-4939-2836- 
1.

[47] A. Bhargava, A. Sachdeva, K. Sharma, M.H. Alsharif, P. Uthansakul, 
M. Uthansakul, Hyperspectral Imaging and its applications: A Review, Heliyon. 
10 (2024) e33208, https://doi.org/10.1016/j.heliyon.2024.e33208.

[48] N. Hagen, M.W. Kudenov, Review of snapshot spectral imaging technologies, Opt 
Eng. 52 (2013) 090901, https://doi.org/10.1117/1.OE.52.9.090901.

[49] M.A. Martínez-Domingo, E.M. Valero, J. Hernández-Andrés, S. Tominaga, 
T. Horiuchi, K. Hirai, Image processing pipeline for segmentation and material 
classification based on multispectral high dynamic range polarimetric images, 
Opt Express. 25 (2017) 30073–30090, https://doi.org/10.1364/OE.25.030073.

[50] E.M. Valero, M.A. Martínez, E. Kirchner, I. van der Lans, M. García-Fernández, 
T. Eckhard, R. Huertas, Framework proposal for high-resolution spectral image 
acquisition of effect-coatings, Measurement 145 (2019) 379–390, https://doi. 
org/10.1016/j.measurement.2019.05.024.

M. Medina–García et al.                                                                                                                                                                                                                      Microchemical Journal 214 (2025) 113994 

13 

https://doi.org/10.2478/ceej-2024-0006
https://doi.org/10.15215/aupress/9781927356111.01
https://doi.org/10.15215/aupress/9781927356111.01
https://doi.org/10.1016/j.tifs.2017.06.017
https://doi.org/10.1016/j.tifs.2017.06.017
https://doi.org/10.1016/j.tifs.2021.06.010
https://doi.org/10.1016/j.tifs.2021.06.010
https://doi.org/10.1155/2021/9924667
https://doi.org/10.1016/j.tifs.2019.01.017
https://doi.org/10.1016/j.tifs.2019.01.017
https://doi.org/10.1007/s11947-020-02433-w
https://doi.org/10.1007/s11947-020-02433-w
https://doi.org/10.1126/science.228.4704.1147
https://doi.org/10.1126/science.228.4704.1147
https://doi.org/10.1016/j.vph.2024.107380
https://doi.org/10.1016/j.vph.2024.107380
https://doi.org/10.3390/photochem1020008
http://refhub.elsevier.com/S0026-265X(25)01348-7/h0085
https://doi.org/10.1146/annurev-food-032818-121155
https://doi.org/10.1146/annurev-food-032818-121155
http://refhub.elsevier.com/S0026-265X(25)01348-7/h0095
http://refhub.elsevier.com/S0026-265X(25)01348-7/h0095
http://refhub.elsevier.com/S0026-265X(25)01348-7/h0095
https://doi.org/10.1016/j.jfca.2023.105290
https://doi.org/10.1016/j.jfca.2023.105290
https://doi.org/10.1111/jfs.13133
https://doi.org/10.1111/jfs.13133
https://doi.org/10.1016/j.foodres.2023.112866
https://doi.org/10.1007/s00521-021-06094-4
https://doi.org/10.1007/s00521-021-06094-4
https://doi.org/10.1016/j.foodcont.2024.110715
https://doi.org/10.1007/s10462-021-10018-y
https://doi.org/10.15586/qas.v16i1.1392
https://doi.org/10.1016/j.foohum.2024.100365
https://doi.org/10.1016/j.foohum.2024.100365
https://doi.org/10.3390/app14219821
https://doi.org/10.3390/app14219821
https://doi.org/10.1016/j.crfs.2021.01.002
https://doi.org/10.1007/s12393-022-09322-2
https://doi.org/10.1016/j.fochx.2024.101235
https://doi.org/10.1016/j.fochx.2024.101235
https://doi.org/10.1007/s11540-024-09702-7
https://doi.org/10.1007/s11540-024-09702-7
https://doi.org/10.1080/10408398.2024.2404639
https://doi.org/10.1007/s12393-022-09327-x
https://doi.org/10.1007/s12393-022-09327-x
https://doi.org/10.1016/j.saa.2024.124261
https://doi.org/10.1016/j.saa.2024.124261
https://doi.org/10.1016/j.crfs.2024.100813
http://refhub.elsevier.com/S0026-265X(25)01348-7/h0200
http://refhub.elsevier.com/S0026-265X(25)01348-7/h0200
https://doi.org/10.1007/s12161-020-01853-w
https://doi.org/10.1007/s12161-020-01853-w
https://doi.org/10.1002/9783527612666.ch03
https://doi.org/10.1007/s11801-017-7174-7
https://doi.org/10.1007/s11801-017-7174-7
http://refhub.elsevier.com/S0026-265X(25)01348-7/h0220
http://refhub.elsevier.com/S0026-265X(25)01348-7/h0220
http://refhub.elsevier.com/S0026-265X(25)01348-7/h0220
http://refhub.elsevier.com/S0026-265X(25)01348-7/h0225
http://refhub.elsevier.com/S0026-265X(25)01348-7/h0225
https://doi.org/10.1007/978-1-4939-2836-1
https://doi.org/10.1007/978-1-4939-2836-1
https://doi.org/10.1016/j.heliyon.2024.e33208
https://doi.org/10.1117/1.OE.52.9.090901
https://doi.org/10.1364/OE.25.030073
https://doi.org/10.1016/j.measurement.2019.05.024
https://doi.org/10.1016/j.measurement.2019.05.024


[51] C.M. Sun, Y. Yuan, Q.B. Lv, Spectral image reconstruction of coded aperture 
spectral imaging system based on compressed sensing, AOPC. 12558 (2023) 
131–136, https://doi.org/10.1117/12.2652057.

[52] K.A. Sneha, Hyperspectral imaging and target detection algorithms: a review, 
Multimed Tools Appl. 81 (2022) 44141–44206, https://doi.org/10.1007/s11042- 
022-13235-x.

[53] J. Wieme, K. Mollazade, I. Malounas, M. Zude-Sasse, M. Zhao, A. Gowen, J. Van 
Beek, Application of hyperspectral imaging systems and artificial intelligence for 
quality assessment of fruit, vegetables and mushrooms: A review, Biosyst Eng. 
222 (2022) 156–176, https://doi.org/10.1016/j.biosystemseng.2022.07.013.

[54] Y. Xu, J. Zhang, Y. Wang, Recent trends of multi-source and non-destructive 
information for quality authentication of herbs and spices, Food Chem. 398 
(2023) 133939, https://doi.org/10.1016/j.foodchem.2022.133939.

[55] D. Patel, S. Bhise, S.S. Kapdi, T. Bhatt, Non-destructive hyperspectral imaging 
technology to assess the quality and safety of food: a review, Food Prod Process 
Nu. 6 (2024) 69, https://doi.org/10.1186/s43014-024-00246-4.

[56] K.W. Whitten, General Chemistry, 7th ed., Brooks/Cole Publishing Company, 
Pacific Grove, 2004.

[57] D. Malavi, A. Nikkhah, K. Raes, S. Van Haute, Hyperspectral imaging and 
chemometrics for authentication of extra virgin olive oil: A comparative approach 
with FTIR, UV-VIS, Raman, and GC-MS, Foods. 12 (2023) 429, https://doi.org/ 
10.3390/foods12030429.

[58] J.M. Amigo, I. Martí, A. Gowen, Hyperspectral imaging and chemometrics: a 
perfect combination for the analysis of food structure, composition and quality. 
Data handling in science and technology, Elsevier (2013) 343–370, https://doi. 
org/10.1016/B978-0-444-59528-7.00009-0.
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