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Abstract: The essential oil (EO) obtained from the roots of Valeriana rigida Ruiz & Pav.
(Caprifoliaceae), collected in the moorland region of Chimborazo Province, Ecuador, was
analyzed for the first time. The chemical profile was qualitatively and quantitatively
analyzed using GC-MS and GC-FID, respectively. With both detectors, two stationary
phases of different polarities were used. A total of 56 compounds were identified, and the
most abundant components (>3% on at least one column) were a mixture of cyclosativene
and α-ylangene (4.5–4.4%), α-copaene (9.0–8.8%), decanoic acid (16.0–15.6%), β-chamigrene
(3.2–3.1%), δ-cadinene (9.7–9.5%), dodecanoic acid (13.4–12.3%), and 7-epi-α-eudesmol
(5.0–4.9%), on a non-polar and polar stationary phase, respectively. Additionally, the
enantioselective analysis showed (1S,5S)-(+)-α-pinene, (1R,4S)-(–)-camphene, (1S,5S)-(−)-β-
pinene, and (1R,2S,6S,7S,8S)-(–)-α-copaene as enantiomerically pure compounds, whereas
germacrene D exhibited both enantiomeric forms. The anti-inflammatory activity of V.
rigida EO was comparable to that of aspirin, as indicated by the IC50 values, with no
significant differences observed.

Keywords: Valeriana rigida; essential oil; enantiomers; chiral separation; neutrophils;
anti-inflammatory activity

1. Introduction
Human beings have maintained a close relationship with plants for a long time, which

has allowed them to acquire a rich collection of botanical knowledge. The use of plant-
derived bioactive compounds has been essential for the development and application of
pharmaceuticals throughout history. Most research on active molecules has been conducted
in subtropical regions. However, tropical areas exhibit greater biological diversity, as is the
case in Ecuador. This is why our studies focus on regions with high biological diversity,
and the paramos, due to their harsh conditions, may be a valuable source of secondary
metabolites of interest.
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Ecuador is considered a megadiverse country [1], with a wide variety of plant species,
due to a combination of geological, ecological, and evolutionary factors. It hosts approx-
imately 10% of the world’s plant species [2], distributed across four regions, at altitudes
ranging from the sea level to 6300 m. The vegetation varies from xerophilous shrubs to
rainforests and high-altitude moorlands, which has sparked interest in the analysis of
its secondary metabolites [3–5]. As of 2016, 263 molecules were reported, isolated from
58 families, with notable examples including Asteraceae, Solanaceae, Orchidaceae, and
Lamiaceae, among others [6].

Andean moorlands or paramos are humid tropical ecosystems, found in the high-
altitude regions of mountains, ranging from 3000 to 4700 m above sea level. Like the
alpine tundra, it is characterized by herbaceous vegetation and shrubs [7]. They contain
approximately 6.7% of the world’s endemic species [8]. Paramos are capable of supply-
ing water and capturing carbon [9,10], due to the relationship between biodiversity and
ecosystem functioning [11]. Ecuadorian paramos host approximately 628 endemic plant
species, representing 4% of the country’s total flora [12]. They are located along the Andean
corridor [13], covering an area of 1,833,834 hectares, which represents about 5% of the
national territory [14]. It extends from the northern border with Colombia to the southern
border with Peru, spanning about 600 km in length. Due to the harsh conditions in these
areas, plants have developed survival mechanisms [15]. The Chimborazo province has
an area of 649,970 hectares, of which 42% (273,660 hectares) belong to the high-altitude
moorland ecosystem [16].

In 2009, the Angiosperm Phylogeny Group (APG III) classified flowering plants, plac-
ing the family Valerianaceae within Caprifoliaceae [17]. Years later, in 2016, the Angiosperm
Phylogeny Group (APG IV) reaffirmed the classification of Valerianaceae as part of Caprifoli-
aceae [18]. A total of 960 species are currently classified within Caprifoliaceae [19], distributed
worldwide, with the highest diversity found in East Asia and North America. [20].

Among the many Ecuadorian plants for which secondary metabolism is still unstudied,
the highlander species Valeriana rigida Ruiz & Pav. must be mentioned. This taxon is also
registered with the synonym Phyllactis rigida (Ruiz & Pav.) Pers [21], of which the genus
includes the three species P. rigida, P. pulvinata, and P. dorotheae.[22]. The species V. rigida,
commonly known as “Valeriana estrella”, is widely distributed in the high-altitude regions
of Ecuador, ranging from 2500 to 4000 a.s.l., across the provinces of Azuay, Bolívar, Carchi,
Chimborazo, Cotopaxi, Imbabura, Loja, Napo, and Pichincha [23]. The traditional uses of V.
rigida include infusions to treat conditions, such as insomnia, relaxation, nervous disorders,
headaches, and menopause [24,25]. These uses align with the sedative and anxiolytic
properties reported in several species of the same genus [26–28]. The iridoid compounds
responsible for the sedative effect found in Valeriana spp. are known as valepotriates, such as
valtrate, isovaltrate, acevaltrate, and dihydrovaltrate [29]. Previous studies on the essential
oils (EOs) from different species of the genus Valeriana have shown anti-inflammatory
activity, like in the case V. jatamansi [30]. Aqueous leaf extracts of V. wallichii at a dose
of 200 mg/kg have also demonstrated effectiveness in anti-inflammatory activity [31].
Essential oils are oily, volatile substances with a strong and specific odor, obtained through
distillation processes using boiling water, steam, or mechanical processing. They exhibit
various biological activities, including antibacterial, anti-inflammatory, antioxidant, among
others [32].

The objective of the present study is to investigate the EO distilled from the roots of V.
rigida. In addition to the chemical composition of the volatile fraction, this research was
complemented with the study of its anti-inflammatory activity using activated neutrophils.
Finally, an enantioselective analysis of some major chiral components was performed, to
determine their enantiomeric excesses and, according to the literature, their stereoselective
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biological properties. To the best of the authors’ knowledge, this is the first chemical and
enantioselective investigation of an essential oil from V. rigida.

2. Results
2.1. Chemical Composition of the EO

The essential oil was distilled from the roots of V. rigida, with an average yield of 0.03
(w/w), calculated from three repetitions.

A total of 56 compounds were identified via GC-MS and quantified via GC-FID. The
major components of the volatile fraction (>3% on at least one column) were a mixture
of the inseparable cyclosativene and α-ylangene (12 and 13) (4.5–4.4%), α-copaene (14)
(9.0–8.8%), decanoic acid (15) (16.0–15.6%), β-chamigrene (26) (3.2–3.1%), δ-cadinene (40)
(9.7–9.5%), dodecanoic acid (46) (13.4–12.3%), and 7-epi-α-eudesmol (51) (5.0–4.9%), as
shown in Figure 1. All the identified constituents represented 84.0% and 80.5% of the total
EO. A standard deviation of less than 5% was obtained for the percentages of each analyte
in both columns. The complete results are reported in Table 1.
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Table 1. Chemical analysis of V. rigida root essential oil on two stationary phases of different polar-
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 Compounds 
5% phenyl Methyl Polysiloxane Polyethylene Glycol 
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LRI a LRI b % σ LRI a LRI c % σ 

1 α-pinene 929 932 0.1 0.03 1019 1026 Trace - [33] 

2 camphene  943 946 0.1 0.07 1060 1060 0.2 0.05 [34] 

Figure 1. Main compounds identified in the root essential oil of V. rigida: cyclosativene, α-ylangene
(12,13), α-copaene (14), decanoic acid (15), β-chamigrene (26), δ-cadinene (40), dodecanoic acid (46),
and 7-epi-α-eudesmol (51).

Sesquiterpene compounds constituted the highest percentage of the volatile fraction,
accounting for 50.7–48.9% of the total weight, followed by 0.5–0.7% of monoterpene-
type compounds. Finally, other components were present in 32.8–30.9%, highlighting the
presence of acids, unsaturated aliphatic aldehydes, and unidentified compounds. The
chromatographic profiles on the 5% phenyl methyl polysiloxane and polyethylene glycol
stationary phases are shown in Figures 2 and 3, respectively.
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Table 1. Chemical analysis of V. rigida root essential oil on two stationary phases of different polarities.

Compounds
5% Phenyl Methyl Polysiloxane Polyethylene Glycol

Reference
LRI a LRI b % σ LRI a LRI c % σ

1 α-pinene 929 932 0.1 0.03 1019 1026 Trace - [33]
2 camphene 943 946 0.1 0.07 1060 1060 0.2 0.05 [34]
3 valeric acid 946 939 0.1 0.06 1693 - 0.2 0.08 §
4 β-pinene 970 974 Trace - 1106 1105 0.0 0.01 [35]
5 2-methoxy-3-(1-methylpropyl)-pyrazine 1168 1168 0.1 0.05 1505 1509 0.1 0.01 [36]
6 isobornyl acetate 1280 1283 0.3 0.12 1582 1577 0.5 0.10 [37]
7 (2E,4Z)-decadienal 1287 1292 0.1 0.01 1776 1779 0.2 0.02 [38]
8 (E,E)-2,4-decadienal 1309 1315 0.2 0.14 1810 1814 0.2 0.01 [39]
9 unidentified (MW = 196) 1315 - 0.2 0.09 1587 - 0.5 0.12 §

10 8,9-didehydrocycloisolongifolene 1321 1317 0.1 0.07 1436 - 0.1 0.02 §
11 α-cubebene 1345 1348 0.5 0.09 1450 1450 0.3 0.03 [40]
12 cyclosativene 1360 1369

4.5 0.80
1466 1465

4.4 0.70
[41]

13 α-ylangene 1362 1373 1468 1470 [42]
14 α-copaene 1373 1374 9.0 2.44 1481 1483 8.8 2.20 [43]
15 decanoic acid 1378 1382 16.0 0.02 2297 2294 15.6 3.57 [44]
16 β-cubebene 1386 1387 2.9 0.19 1530 1527 2.8 0.16 [42]
17 7-epi-sesquithujene 1390 1390 0.4 0.09 1570 - 0.3 0.06 §
18 cyperene 1394 1398 1.1 0.42 1510 1514 1.1 0.25 [45]
19 β-longipinene 1404 1400 0.4 0.13 1516 - 0.2 0.05 §
20 β-funebrene 1410 1413 0.2 0.07 1532 1618 Trace - [46]
21 (E)-β-caryophyllene 1413 1420 1.1 0.52 1583 1585 1.3 0.29 [47]
22 β-gurjunene 1423 1431 0.1 0.03 1578 1580 0.1 0.01 [48]
23 α-guayen 1444 1437 0.3 0.12 1604 1604 0.3 0.06 [49]
24 α-humulene 1447 1452 0.4 0.06 1656 1656 0.4 0.09 [50]
25 alloaromadendrene 1455 1458 1.1 0.25 1631 1631 0.9 0.20 [51]
26 β-chamigrene 1469 1476 3.2 1.01 1650 - 3.1 0.97 §
27 γ-muurolene 1472 1478 0.1 0.06 1699 1702 0.5 0.13 [52]
28 germacrene D 1475 1480 0.8 0.30 1679 1678 0.9 0.16 [53]
29 widdra-2,4(14)-diene 1478 1481 0.2 0.05 1568 - 0.3 0.07 §
30 unidentified (MW = 204) 1480 - 0.2 0.07 1705 - 0.1 0.07 -
31 unidentified (MW = 204) 1485 - 0.2 0.14 - - Trace - -
32 cis-β-guaiene 1487 1492 0.3 0.03 1678 1671 0.3 0.05 [54]
33 epicubebol 1489 1493 0.4 0.05 1938 1928 0.5 0.09 [55]
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Table 1. Cont.

Compounds
5% Phenyl Methyl Polysiloxane Polyethylene Glycol

Reference
LRI a LRI b % σ LRI a LRI c % σ

34 eciphyllene 1494 1501
2.1 0.80

1705 - 1.1 0.31 §
35 trans-β-guaiene 1495 1639 1474 - 0.8 0.36 §
36 premnaspirodiene 1499 1505 0.4 0.12 1664 - 0.3 0.07 §
37 unidentified (MW = 204) 1502 - 0.1 0.04 1794 - 0.2 0.02 -
38 cubebol 1510 1514 0.3 0.14 1939 1930 0.8 0.13 [56]
39 unidentified (MW = 220) 1512 - 1.7 0.35 2000 - 1.3 0.11 -
40 δ-cadinene 1520 1522 9.7 0.70 1750 1752 9.5 1.25 [57]
41 (E)-iso-γ-bisabolene 1522 1529 0.7 0.20 1760 1762 0.4 0.08 [58]
42 γ-cuprenene 1527 1532 0.2 0.02 2060 - 0.2 0.02 §
43 α-copaen-11-ol 1535 1539 0.9 0.12 2053 - 0.7 0.11 §
44 silphiperfol-5-en-3-one B 1541 1550 0.2 0.03 1944 - 0.3 0.07 §
45 β-calacorene 1557 1564 0.1 0.04 1907 1912 0.1 0.04 [59]
46 dodecanoic acid 1569 1567 13.4 0.95 2485 2487 12.3 1.33 [60]
47 viridiflorol 1597 1592 0.4 0.03 2183 - 0.2 0.02 §
48 silphiperfol-6-en-5-one 1622 1624 0.7 0.13 2080 - 0.5 0.03 §
49 alloaromadendrene oxide 1636 1639 0.8 0.20 2065 - 0.3 0.02 §
50 unidentified (MW = 202) 1666 - 0.2 0.22 2008 - 0.4 0.04 -
51 7-epi-α-eudesmol 1669 1662 5.0 0.87 1740 - 4.9 0.77 §
52 pentadecanal 1710 1716 0.5 0.07 2029 2024 0.2 0.04 [61]
53 unidentified (MW = 200) 1723 - 0.4 0.28 2201 - 0.4 0.04 -
54 unidentified (MW = 204) 1746 - 0.1 0.00 2141 - 0.4 0.02 -
55 hexadecanoic acid 1959 1959 0.5 0.18 2923 2928 0.3 0.12 [62]
56 3-(Z)-cembrene A 1966 1965 0.9 0.11 2242 - 0.7 0.11 §

monoterpene hydrocarbons 0.2 0.2
oxygenated monoterpenes 0.3 0.5

sesquiterpene hydrocarbons 41.5 40.5
oxygenated sesquiterpenes 8.3 7.7
diterpene sesquiterpenes 0.9 0.7

others 32.8 30.9
total 84.0 80.5

a Calculated linear retention index; b linear retention index according to [63]; c linear retention index based on reference (Ref.); trace < 0.1%; MW = molecular weight; § = identification
based on MS only.
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2.2. Enantioselective Analysis

The enantioselective analyses (Table 2) identified four enantiomerically pure com-
pounds in the essential oil of V. rigida: (1S,5S)-(+)-α-pinene, (1R,4S)-(–)-camphene, (1S,5S)-
(−)-β-pinene, and (1R,2S,6S,7S,8S)-(–)-α-copaene. In contrast, germacrene D presented
both enantiomeric forms.

Table 2. Enantiomeric separations with two cyclodextrin-based enantioselective columns.

Chiral Selector Enantiomer LRI Enantiomeric
Distribution % e.e. %

DAC (1S,5S)-(−)-α-pinene 926 -
100DAC (1S,5S)-(+)-α-pinene 929 100

DET (1R,4S)-(+)-camphene 932 -
100DET (1R,4S)-(–)-camphene 922 100

DET (1S,5S)-(−)-β-pinene 961 100
100DET (1S,5S)-(+)-β-pinene 944 -

DET (1R,2S,6S,7S,8S)-(–)-α-copaene 1323 100
100DET (1R,2S,6S,7S,8S)-(+)-α-copaene 1319 -

DET (R)-(+)-germacrene D 1461 22.58
54.83DET (S)-(−)-germacrene D 1467 77.42

DAC = 2,3-diacetyl-6-tert-butyldimethylsilyl-β-cyclodextrin; DET = 2,3-diethyl-6-tert-butyldimethylsilyl-β-
cyclodextrin; LRI = linear retention index; e.e. = enantiomeric excess.

2.3. Anti-Inflammatory Activity

The inhibitory effect of V. rigida essential oil on isolated activated neutrophils (super-
oxide anion production) is summarized at Table 3, using water-soluble tetrazolium salt
(WST-1) for detection.

Table 3. Anti-inflammatory effect of V. rigida essential oil based on an isolated neutrophil model
using water-soluble tetrazolium salt (WST-1).

Concentration (µg/mL) V. rigida
Essential Oil Aspirin

3.1 2.32 ± 0.28 15.12 ± 2.07 **
6.2 6.26 ± 0.97 23.81 ± 3.21 **
12.5 24.46 ± 1.91 31.16 ± 2.97 *
25.0 46.39 ± 1.40 44.75 ± 4.74
50.0 51.42 ± 1.07 55.28 ± 2.30

100.0 61.42 ± 2.13 68.52 ± 5.28
The values represent the mean ± SD, n = 3. Significant values, ** p < 0.01, * p < 0.05, using Student’s t-test; V. rigida
essential oil versus aspirin.

The EO and aspirin (at doses ranging from 3.125 to 100 µg/mL) showed proportional
anti-inflammatory effects on the tested model. The anti-inflammatory activity of the EO
was comparable to that of aspirin at medium to high concentrations. Likewise, when the
IC50 values were compared (38.17 ± 5.59 µg/mL for EO vs. 46.53 ± 3.50 µg/mL for aspirin),
no significant differences were observed.

In addition to the anti-inflammatory activity assay, the EO was submitted to a radical
scavenging, test based on the use of DPPH. Furthermore, no anti-radical activity was
detected, and the DPPH assay will not be discussed further.

3. Discussion
3.1. Chemical Composition and Main Components

The average EO yield from the roots of V. rigida was 0.03 (w/w). It is important to
note that the EO yield depends on various factors, including the plant species and the
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specific part used (buds, flowers, leaves, stems, twigs, seeds, fruits, roots, wood, or bark).
According to the literature, the EO yield from the roots of V. officinalis ranges between
0.28% and 1.16%. Some studies have shown that the chemical profile of the volatile fraction
obtained from V. officinalis roots can vary due to different geographical conditions in which
the species developed, as well as the season in which it was collected [64,65].

For the first time, the chemical profile of the EO obtained from the roots of V. rigida was
reported, with a total of 56 compounds identified. The chemical composition was compared
with that of the EO from V. officinalis and V. jatamansi, as they are the most representative
species of this genus.

Eight common compounds were identified in the EOs obtained from the roots
of V. rigida and V. officinalis. Among them, δ-cadinene and cyclosativene exhibited a
higher percentage in V. rigida (9.7–9.5% and 4.5–4.4% respectively) compared to V. of-
ficinalis (1.51–1.87% and 0.84–0.38%). Other compounds, such as α-humulene and (E)-
β-caryophyllene, were present in both species at similar percentages. The former was
quantified as 0.4% in V. rigida and 0.58–8.46% in V. officinalis, while the latter was present
at 1.1–1.3% in V. rigida and (1.46–1.87%) in V. officinalis [66]. Finally, some compounds
were found in lower percentages in V. rigida. Camphene and α-pinene were respectively
present at 0.1% compared to 4.96–7.19% and 1.82–3.83% in V. officinalis. The chemical
composition of essential oils varies between species and is influenced by factors, such as
the geographical location [67], environmental conditions [68–70], maturity stage [71], and
extraction method [71,72].

Four common compounds were identified in the EOs of V. rigida and V. jatamansi:
α-pinene, camphene, α-humulene, and viridiflorol. The percentage of α-pinene in V. rigida
was 0.1%, while in V. jatamansi, it reached an average amount of 0.59%. Camphene was
present at 0.1–0.2% in V. rigida, being higher in V. jatamansi (0.77%). α-Humulene was
found at 0.4% in V. rigida, significantly lower compared to the value of 2.25% in V. jatamansi.
Finally, viridiflorol was slightly higher in V. jatamansi, with 0.605% compared to (0.4–0.2%
in V. rigida [73]. These results highlighted a chemical relationship between both species,
reflecting similar patterns despite their ecological and taxonomic differences.

It is evident that the chemical profile of these species contained monoterpenes,
sesquiterpenes, and other compounds, with sesquiterpenes predominating and monoter-
penes present in smaller percentages. It is common to find aliphatic carboxylic acids in the
chemical profile of Valeriana spp. EOs [74–76]. Valeric acid is one of the most characteristic
components; with the molecular formula C5H10O2 and a linear structure, it is one of the
key acids, possibly contributing to the relaxing effect of these plants [77]. In V. officinalis,
it can reach 0.2% of the whole oil mass [78]. Another characteristic acid is isovaleric acid,
which is generated as a product of the hydrolysis of valepotriates [79]. The EO obtained
from the roots of V. officinalis contains up to 44.6% of isovaleric acid [78], while the volatile
fraction of V. pilosa has a higher percentage (2.6%) [78]. Finally, long-chain carboxylic acids
are not so common in all Valeriana species; for instance, in V. officinalis they can reach 11.4%,
whereas V. hardwickii EO does not contain these organic acids [80].

Another species where long-chain carboxylic acids were described is V. alliariifolia,
a species from the Venezuelan paramos, in which decanoic acid (0.1%), dodecanoic acid
(0.5%), and hexadecanoic acid (4.3%) have been detected [81]. On the other hand, in V.
rigida EO, decanoic (16.0%) and dodecanoic (13.4%) acids were present in significantly
higher percentages, whereas hexadecanoic acid did not exceed 0.5%. No species within
the Valerianaceae and Caprifoliaceae families have been reported to contain decanoic and
dodecanoic acids above 0.5%. Therefore, V. rigida is the first species to be documented with
such high levels of these acids. Finally, there are species for which the chemical profile
lacks the presence of organic acids [73,82,83].
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3.2. Enantioselective GC-MS Analysis of Enantiomeric Distribution

The enantioselective GC-MS analysis was performed to determine the enantiomeric
composition of five chiral compounds, present in the essential oil of V. rigida. The deter-
mination of the enantiomeric composition is a powerful tool for authenticating essential
oils, as oils derived from different plants can be adulterated through the addition of foreign
components [84,85].

Silva et al. evaluated the antimicrobial properties of α- and β-pinene enantiomers
against C. albicans, Cryptococcus neoformans, Rhizopus oryzae, and methicillin-resistant S. au-
reus (MRSA). Their results revealed that the negative enantiomers showed no antimicrobial
activity up to a concentration of 20 µg/mL, whereas the positive enantiomers exhibited
a potent capacity, eliminating 100% of C. albicans within 60 min [86]. Dhar et al. also
evaluated α-pinene enantiomers against Gram-positive bacteria (Micrococcus luteus and
S. aureus), Gram-negative bacteria (E. coli), and a fungus (C. albicans), demonstrating that
(+)-α-pinene exhibited a modest action against the selected microbes, while (−)-α-pinene
showed no activity [87].

No information has been found in the literature regarding the enantiomeric proper-
ties of camphene, as its enantiomers are not abundant in nature. Biological research has
demonstrated that camphene exhibits various biological activities both in vitro and in vivo,
including antibacterial [88], antifungal [89], antioxidant [88], and anti-inflammatory ef-
fects [90]. It has also been reported that camphene possesses acetylcholinesterase inhibitory
properties [91].

Despite copaene having no studies regarding the biological activity of its enantiomers,
Alfonso et al. analyzed the influence of α-copaene on the susceptibility of Olea europaea L.
towards the olive fly Bactrocera oleae (Rossi). In that study, the authors demonstrated that
fruits with a higher amount of (+)-α-copaene favored the oviposition of B. oleae females,
whereas an increase in (−)-α-copaene did not produce the same effect [92].

Finally, the effects of germacrene D on insect behavior are known [93]. It is also
known that the enantiomers (+)- and (–)-germacrene D have different bioactivities. The
germacrene D receptor neurons in heliothine moths exhibited a 10-fold higher affinity for
(−)-germacrene D compared to (+)-germacrene D. This is due to the greater sensitivity
towards (−)-germacrene D, as this enantiomer predominates in higher plants [94].

3.3. Anti-Inflammatory Activity

The anti-inflammatory activity of V. rigida essential oil was comparable to the gold-
standard aspirin under the tested model conditions. This finding is supported by results
from a series of previously published studies [95–98], which have reported the neuroprotec-
tive effects of various chemical compounds from related species within the Valeriana genus.
Given that neuroinflammation plays a key role in the progression of neurodegenerative
diseases, it is plausible that the observed neuroprotection is, at least in part, mediated by
the anti-inflammatory potential of these compounds [29]. In the present study, aspirin was
used as a positive control since, according to literature, non-steroidal anti-inflammatory
drugs (NSAIDs) inhibit neutrophil functions, through mechanisms independent of their
effects on prostaglandin biosynthesis [98].

Although the anti-inflammatory activity of Valeriana species has been well-documented,
this study represents the first report recognizing the anti-inflammatory properties of V.
rigida essential oil. Among the key compounds identified, cyclosativene has been proposed
as a natural product with antioxidant properties that may help mitigate oxidative damage
in the context of neurodegenerative disorders [99].

While the activity of α-ylangene has not been extensively reported as an isolated
compound, studies have shown that essential oils enriched in this chemical possess antioxi-
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dant, anti-inflammatory, anticancer, and antimicrobial activities [100]. Similarly, α-copaene
and δ-cadinene are common compounds found in the essential oils of various plants
known for their anti-inflammatory, antioxidant, anticancer [101–103], and neuroprotective
properties [104–106].

Studies on β-chamigrene, often derived from the synthesis of this compound, have
shown its correlation with antioxidant, anti-inflammatory, and analgesic effects when found
in extracts from Mango stem bark [107]. Furthermore, its antioxidant and antibacterial
properties have been documented [108], as well as its antimicrobial and cytotoxic effects
on cancer cell lines [109]. Additionally, 7-epi-α-eudesmol, a constituent of essential oils,
has demonstrated antioxidant, anti-inflammatory, and cytotoxic properties [110], as well as
anti-acetylcholinesterase activity [111].

While several isolated compounds from V. rigida essential oil have shown anti-
inflammatory effects, which have been reported to reduce the production of nitric oxide
(NO), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) [112], the observed bi-
ological activity could more precisely be attributed to a phytocomplex with synergistic
effects [113].

4. Materials and Methods
4.1. Plant Material

The roots of V. rigida were collected on January 15, 2024, within a 200 m range around
a reference point with coordinates of 1◦29′2.79′′ S and 78◦45′34.95′′ W, at an altitude of
4200 m above sea level. After collection, the roots were dried at 35 ◦C for 48 h and stored in
a dark, cool place until further use. After identification, a botanical specimen was deposited
at the herbarium of the Escuela Superior Politécnica de Chimborazo (ESPOCH) under
the reference code No. 0.15. CHEP. 2024. This research was conducted with permission
from the Ministry of Environment, Water, and Ecological Transition of Ecuador, under
registration number MAATE-ARSFC-2024-0161.

4.2. Sample Preparation and EO Distillation

An amount of 2.1 kg of dried root was ground and divided into three samples of 700 g
each, which were subjected to a 5 h steam distillation in a modified Dean–Stark apparatus.
At the end of the process, 0.188 g, 0.211 g, and 0.193 g of essential oil were obtained. The oils
were dehydrated with anhydrous sodium sulfate, purchased from Merck (Sigma–Aldrich,
St. Louis, MO, USA), and stored at −15 ◦C for further use. Analytical samples for GC
analysis were prepared following the methods described in the literature, using n-nonane
as an internal standard [114–118].

4.3. Qualitative Chemical Analysis

The qualitative analysis was carried out using a gas chromatography (GC) instrument
model Trace 1310, equipped with a single quadrupole ISQ 7000 mass spectrometry (MS)
detector (Thermo Fisher Scientific, Waltham, MA, USA). In this GC, 1 µL of the analytical
sample was injected in split mode (split ratio 40:1). The injector temperature was set at
250 ◦C, with helium (provided by Indura S.A., Guayaquil, Ecuador) as the carrier gas,
programmed at the constant flow of 1 mL/min. The ionization was conducted based
on electron impact, at an ionization energy of 70 eV. The mass analyzer was operated
in SCAN mode, with a mass range of 40–400 m/z. This analysis was repeated on two
columns with stationary phases of different polarities: the non-polar 5%-phenyl methyl
polysiloxane (TR-5ms) and the polar polyethylene glycol (TR-WAX), both purchased from
Thermo Fisher Scientific (Waltham, MA, USA). The two columns were 30 m long, with an
internal diameter of 0.25 mm and a film thickness of 0.25 µm. The TR-5ms column operated
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under the following thermal conditions: it started at 60 ◦C for 5 min, followed by a first
thermal gradient reaching 100 ◦C at a rate of 2 ◦C/min, a second gradient reaching 150 ◦C
at 3 ◦C/min, and a third gradient reaching 200 ◦C at 5 ◦C/min. Finally, the oven was
maintained at a temperature of 250 ◦C for 15 min after a thermal gradient of 15 ◦C/min.
For the TR-WAX column, the same thermal conditions and oven program were applied,
except for the final temperature, which was set at 230 ◦C. For the identification of the
components present in the EO of V. rigida, each mass spectrum was compared, along with
its linear retention index (LRI), with data from literature. A series of n-alkanes from C9 to
C25 (Sigma–Aldrich, St. Louis, MO, USA) was used to calculate the LRI of each component,
according to Van Den Dool and Kratz [119].

4.4. GC-FID Quantitative Analyses

The quantitative analysis was performed using the same GC instrument as the qualita-
tive one, but with a flame ionization detector (GC-FID). The thermal conditions, columns,
gas flow, and injection parameters were the same as in the qualitative analysis. For quan-
tification, the relative response factor (RRF) of each component was calculated against
isopropyl caproate, based on the combustion enthalpy [120,121]. A six-point calibration
curve was constructed for each column, using isopropyl caproate (synthesized and purified
by the authors with a GC purity of 98.8%) as the calibration standard and n-nonane (Sigma–
Aldrich, St. Louis, MO, USA) as the internal standard, according to the literature [122].
Both curves yielded a correlation coefficient > 0.999.

4.5. Enantioselective Analysis of the EO

For the enantioselective analysis, GC-MS was also used with two enantioselective
columns, of which the stationary phases were based on 2,3-diacetyl-6-tert-butyldimethylsilyl-
β-cyclodextrin and 2,3-diethyl-6-tert-butyldimethylsilyl-β-cyclodextrin (Mega, Milan, Italy).
Both columns were 25 m in length, 250 µm in internal diameter, and 0.25 µm in phase
thickness. The injector temperature, carrier gas flow, and MS parameters were the same
as the ones used in the qualitative analysis, while the injector was operated in split mode
(split ratio 50:1). The following thermal program was applied: an initial temperature of
60 ◦C for 2 min, followed by a temperature gradient of 2 ◦C/min up to 220 ◦C, which
was maintained for 2 min. To determine the LRIs, a mixture of n-alkanes from C9 to C25

(Sigma–Aldrich, St. Louis, MO, USA) was also injected, according to Van den Dool and
Kratz. The enantiomers were identified based on their mass spectra and elution order, after
injecting enantiomerically pure standards.

4.6. Oxidative-Burst Assay (Antiinflammatory)

To screen the anti-inflammatory activity of V. rigida essential oil, the oxidative burst
assay developed by Tan and Berridge [110] was utilized, with slight modifications by
Vinueza et al. [111]. Briefly, after a heparinized fresh venous blood sample was drawn from
a healthy volunteer, the whole blood was diluted at a ratio (1:1) with Hanks’ Balanced
Salt Solution (HBSS). Later, ficoll paque™ PLUS was added at a ratio (3:4) regarding the
diluted blood sample; then, it was centrifuged for 30 min at 1500 rpm. After discarding
the supernatant, red blood cell traces were lysed by mixing with a hypotonic ammonium
chloride solution (0.83% w/v). Finally, the sample was centrifuged again, and the neutrophils
were washed with HBSS pH 7.4 and resuspended at a concentration of 107 cells/mL in an
appropriate volume of HBSS.

Anti-inflammatory activity was determined as a function of the reduction of water-
soluble tetrazolium salt (WST-1) in the presence of activated neutrophils. The assay was
carried out in a total volume of 250 µL of HBSS (pH 7.4) containing 107 neutrophils/mL,
500 µM WST-1, and various concentrations of essential oil (3.125, 6.25, 12.5, 25, 50, and
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100 µg/mL) or aspirin, which was used as the reference compound, both dissolved with
HBSS enrichment with DMSO, such that the final concentration of DMSO in each well was
0.05%. The control contained HBSS, a neutrophil suspension, and WST-1. All compounds
were equilibrated at 37 ◦C and the reaction was initiated by adding opsonized Zymosan
A (15 mg/mL), which was prepared by mixing it with human pooled serum, followed
by centrifugation at 3000 rpm, and the pellet was suspended in HBSS. Absorbance was
measured at 450 nm. DMSO (0.05% v/v) together with the neutrophil suspension and
opsonized Zymosan A aliquot were used as a blank, and the anti-inflammatory activity
was expressed as the produced superoxide anion inhibition percent.
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