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Abstract
Global Fréchet regression is addressed from the observation of a strictly stationary
bivariate curve process, evaluated in a finite-dimensional compact differentiable Rie-
mannian manifold with bounded positive smooth sectional curvature. The involved
univariate curve processes respectively define the functional response and regressor,
having the same Fréchet functional mean. The supports of the marginal probability
measures of the regressor and response processes are assumed to be contained in a
ball, whose radius ensures the injectivity of the exponential map. This map has a time-
varying origin at the common marginal Fréchet functional mean. A weighted Fréchet
mean approach is adopted in the definition of the theoretical loss function. The reg-
ularized Fréchet weights are computed in the time-varying tangent space from the
log-mapped regressors. Under these assumptions, and some Lipschitz regularity sam-
ple path conditions, when a unique minimizer exists, the uniform weak-consistency
of the empirical Fréchet curve predictor is obtained, under mean-square ergodicity
of the log-mapped regressor process in the first two moments. A simulated example
in the sphere illustrates the finite sample size performance of the proposed Fréchet
predictor. Predictions in time of the spherical coordinates of the magnetic field vector
are obtained from the time-varying geocentric latitude and longitude of the satellite
NASA’s MAGSAT spacecraft in the real-data example analyzed.
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1 Introduction

Nonparametric regression techniques have been widely applied in the last few
decades to solve prediction problems from data lying on a Riemannian manifold
[see Bhattacharya and Bhattacharya (2012)]. Special attention has been paid to kernel
estimation, and local polynomial regression exploiting the local character of the expo-
nential map. In the context of manifold-valued response and Euclidean predictors,
external local regression embeds the manifold where the response lies onto a higher
dimensional Euclidean space, obtaining a local regression estimate in that space, and
back to the manifold via a homeomorphism relating the corresponding tangent spaces
[(see, e.g., Lin et al. (2017)]. In the same context of manifold-valued response and
Euclidean regressors, in Zhu et al. (2009), an intrinsic regressionmodel for the analysis
of positive definite matrices is proposed for medical imaging processing. It is well-
known that positive definite matrices do not form a vector space. For these random
elements in Riemannian manifolds, a semiparametric regression model is proposed,
considering a link function to map from the Euclidean space of covariates to the Rie-
mannian manifold of positive definite matrices (see also approaches introduced in
Bhattacharya and Bhattacharya (2012); Di Marzio et al. (2014); Khardani and Yao
(2022); Kim and Park (2013); Patrangenaru and Ellingson (2016); Pelletier (2005,
2006), mainly from a nonparametric statistical framework).

Different versions of Functional Principal Component Analysis on manifolds
have been derived motivated by several fields of applications. An intrinsic princi-
pal component analysis of Riemannian manifold-valued functional data, the so-called
Riemannian Functional Principal Component Analysis (RFPCA), is obtained in Dai
and Müller (2018). We also refer to the nonlinear manifold representation of L2 ran-
dom functions themselves, lying in a low-dimensional but unknownmanifold, or to the
consideration of functional predictors lying on a smooth low-dimensional manifold
(see Chen and Müller (2012); Dimeglio et al. (2014); Lazar and Lin (2017); Lin and
Yao (2017)).

Among other fields of application, the presented Fréchet functional regression
approach in finite-dimensional compact Riemannianmanifolds is of interest, for exam-
ple, in the analysis of bivariate plain trajectory data (see Dai and Müller (2018) where
RFPC is applied); prediction from movement data in a pandemic (see Torres-Signes
et al. (2021) for the Euclidean setting); prediction of wind directions in environmental
risk assessment (see Sect. 9.2 in Di Marzio et al. (2014)); prediction of uniform devi-
ations of comet orbits [see, e.g., Jupp et al. (2003)] [see also Pigoli et al. (2016) on
kriging techniques for manifold-valued random fields]. Another field of application
where the statistical analysis of manifold data, beyond the sphere, plays a crucial role
is brain imaging data. For example, in the detection of brain diseases or disorders, the
statistical analysis of covariates providing information about the brain structural and
morphological characteristics of individuals plays a crucial role in the construction
of RAVENS maps reflecting local volumetric group differences [see, e.g., Zhou et al.
(2013); Zhu et al. (2009)]. In this paper, in the real-data example analyzed in Sect. 6,
we illustrate the performance of the proposed Fréchet functional regression approach,
in the prediction of the time-varying spherical coordinates of the magnetic field vector
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from the geocentric latitude and longitude of the satellite NASA’s MAGSAT space-
craft, extending the purely spatial analysis of Di Marzio et al. (2014).

To the best of our knowledge, no systematic approach or theoretical analysis has
been developed, in the context of global intrinsic regression in manifolds from time
correlated bivariate curve data. This issue has been addressed in the present paper
adopting the theoretical framework of bivariate curve processes with values in a
compact finite-dimensional Riemannian manifold, displaying suitable geometrical
characteristics [see conditions (i)–(ii) in Sect. 3.1 below]. Our proposal is based on
the weighted Fréchet mean approach formulated in Petersen and Müller (2019) for
Euclidean regressors, and response evaluated in ametric space. Specifically, we extend
this formulation to the context of infinite-dimensional response and regressors, cor-
related in time, and evaluated in a finite-dimensional compact Riemannian manifold.
One of the main difficulties arising in addressing this extended formulation is related
to the uniform continuity of the theoretical predictor, as well as of its empirical version
in probability, both characteristics ensuring uniform weak-consistency. In particular,
mean-square first-order and second-order ergodicity of the log-mapped regressor in the
time-varying tangent space is assumed in Sect. 3.1 for proving the weak-consistency
of the empirical loss function. Fréchet weights are computed in a regularized version
of the ambient Hilbert spaceH in the time-varying tangent space, in terms of the semi-
inner product of the Reproducing Kernel Hilbert Space (RKHS) of the log-mapped
regressor process [see, e.g., Galeano et al. (2015); Ruiz-Medina and Álvarez-Liébana
(2019); Kuelbs (1970)]. The involved regularizer matrix operator is defined from the
pure point spectral properties of the matrix autocovariance operator of the log-mapped
regressors in Sect. 3.2.

Among some additional geometrical and sample path Lipschitz regularity con-
ditions, another challenging topic to be addressed in our work is the existence
and uniqueness of the Fréchet functional predictor, that requires some probabilistic
structural restrictions on the underlying bivariate curve process. Specifically, strictly
stationarity of this process is assumed. The inclusion on a closed ball of the support of
the marginal infinite-dimensional probability measures of the response and regressor
processes is also assumed, ensuring injectivity of the exponential maps, with time-
varying origin at the Fréchet functional mean, that minimizes the quadratic mean
geodesic dispersion of the curve values of the regressor and response processes. An
extensive literature exists on the existence and uniqueness of the global L p center of
mass (minimizer of the L p-energy function) of an arbitrary probability measure on
a manifold. This topic has been addressed, in particular, for complete and connected
Riemannian manifolds, under some compactness assumptions on the support of the
underlying probability measure [see, e.g., Theorem 2.1 in Afsari (2011) and Buss and
Fillmore (2001)]. Specifically, if the support of the probability measure is contained
in a ball, whose radius is bounded by a function of p, the injectivity radius of the
manifold, and an upper bound on the manifold sectional curvatures, existence and
uniqueness hold. Convexity is a notion that plays a crucial role in this problem [see,
e.g., the overview presented in Sect. 1.1 in Afsari (2011)]. In Afsari et al. (2013), the
convergence of a constant step-size gradient descent algorithm is also investigated
for solving this problem, in a general manifold context, analyzing the effect of the
curvature and topology of the manifold on the behavior of the algorithm. Beyond the
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above geometrical restrictions on the Riemannian manifold, we refer to the reader to
Theorem 1 in Le and Barden (2014). As commented, in this paper, we pay attention to
the L2 center of mass of a probability measure defining its Fréchet mean. The values
of our Fréchet curve predictor can be identified with the respective L2 centers of mass
of a family of probability measures indexed by the curve arguments of this predictor.

The performance of the proposed Fréchet functional regression methodology is
illustrated through simulations in a numerical example in the sphere inR3. The imple-
mented simulation algorithm is based on the generation of the curve values of the
regressor process by subordination, via the poinwise application of the inverse von
Mises-Fisher distribution transform, to a family of correlated vector diffusion pro-
cesses, whose sample paths are mapped into the unit ball of the three dimensional
Euclidean space. The curve response process is then generated in the time-varying
tangent space, by applying a bounded correlation operator to the log-mapped regres-
sor curve values, and adding a strong Gaussian white noise process, generated from
the Karhunen–Loéve expansion. These simulations show a good finite sample size
performance of our Fréchet functional regression predictor.

In the real-data example analyzed in the context of world magnetic models, 5-
fold cross validation is implemented for testing the quality of our Fréchet functional
predictions of the time-varying spherical coordinates of themagnetic field vector, from
thegeocentric latitude and longitude of the satelliteNASA’sMAGSATspacecraft.Data
have been obtained from NASA’s National Space Science Data Center, in the period
02/11/1979–06/05/1980. They have been recorded every half second, and correspond
to the first satellite NASA’sMAGSAT spacecraft, which orbited the earth every 88min
during seven months at around 400km altitude.

The outline of the paper is the following. Some preliminaries on Riemannian man-
ifolds and Fréchet regression are given in Sect. 2. Section3 introduces the assumed
conditions, and the proposed regression methodology from manifold-valued bivariate
curve data correlated in time.Under suitable conditions, the uniformweak-consistency
of the empirical Fréchet functional regression predictor is derived in Theorem 1 of
Sect. 4. The proof of this result is given in Appendix A. Simulations in Sect. 5 illus-
trate the finite sample size performance of the proposed manifold Fréchet functional
regression predictor. The performance of this predictor is also analyzed from a real
data example in Sect. 6. Appendix B complements the sample information and cross
validation results displayed in Sect. 6. Final comments are summarized in Sect. 7.

2 Preliminaries

Let M be a smooth manifold with topological dimension d in a Euclidean space
R

d0 , d ≤ d0. Denote by {TpM, p ∈ M} the tangent spaces at the points of M. A
Riemannian metric on M is a family of inner products G(p) : TpM × TpM −→ R

that smoothly varies over p ∈ M. Endowed with this Riemannian metric, (M,G) is
a Riemannian manifold. The metric onM induced by G is the geodesic distance dM.

The exponential map expp(v) is defined for v ∈ TpM, and for each p ∈ M,

in terms of a locally length minimizing curve γv = {expp(tv), t ∈ [0, 1]} , called
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geodesic, such that for every v ∈ TpM, expp(v) = γv(1), where v ∈ TpM. That
is, γv is the unique geodesic with initial location γv(0) = p, and velocity γ ′

v(0) = v.

The inverse of the exponential map is called the logarithm map, and is denoted by
logp, p ∈ M. The radius of injectivity injp at a point p of the manifold is the radius
of the largest ball about the origin of the tangent space TpM on which expp is a
diffeomorphism, for each p ∈ M. If (M, dM) is a complete metric space, then expp
is defined on the entire tangent space, and expp is a diffeomorphism at a neighborhood
of the origin of TpM [see, e.g., Chavel (2006)].

We now briefly introduce the basic probabilistic and function elements involved
in the formulation of our approach (see Sect. 3 on the conditions assumed). Denote
by (Λ,A, P) the basic probability space. Consider the space

(
CM(T ), dCM(T )

) =
{x : T → M : x ∈ C(T )} , constituted byM-valued continuous functions on a com-
pact interval T with the supremum geodesic distance

dCM(T )(x(·), y(·)) = sup
t∈T

dM (x(t), y(t)) , ∀x(t), y(t) ∈ (CM(T ), dCM(T )

)
.

Let Z = {Zs, s ∈ Z} be a family of randomelements in
(
CM(T ), dCM(T )

)
indexed

by Z. Specifically, Z : Z × (Λ,A,P) → CM(T ), and
P
(
ω ∈ Λ; Zs(·, ω) ∈ (CM(T ), dCM(T )

)) = 1, for every s ∈ Z.Here, Zs(t) denotes
the pointwise value at t ∈ T of the curve Zs in M, for each s ∈ Z. Consider the
ambient Hilbert space H of square-integrable vector functions given by

H =
{

h(·) = (h1(·), . . . , hd0(·))T : T → R
d0 :
∫

T
h(t)T h(t)dt < ∞

}
. (2.1)

This space is equipped with the inner product 〈h, f 〉H = ∫T h(t)T f (t)dt, and norm

‖h‖H = [〈h, h〉H
]1/2

, for any h, f ∈ H.

For each s ∈ Z, define the functional (curve) Fréchet mean μZs ,M as

μZs ,M(t) = arg minp∈ME
(
[dM (Zs(t), p)]2

)

= arg minp∈M
∫

CM(T )

[dM (zs(t), p)]2d PZs (t)(zs(t)), t ∈ T , (2.2)

where d PZs (t) denotes the probability measure induced by Zs(t), the
t-projection of the infinite-dimensional marginal probability measure d PZs of Zs, for
each s ∈ Z. Thus, μZs ,M is the curve inM providing the best pointwise approxima-
tion of Zs in themean quadratic geodesic distance sense. The sample path continuity of
Zs ∈ (CM(T ), dCM(T )

)
allows the following equivalent definition of the continuous

function μZs ,M(t) :

μZs ,M(·) = arg minz(·)∈CM(T )E

(∫

T
[dM (Zs(t), z(t))]2dt

)

= arg minz(·)∈CM(T )

∫

CM(T )

∫

T
[dM (zs(t), z(t))]2dtd PZs (zs).(2.3)
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The response Y = {Ys, s ∈ Z} and regressor X = {Xs, s ∈ Z} curve processes are
introduced in Sect. 3, under the above scenario, that is, X , and Y satisfy the conditions
of process Z .

2.1 Fréchet regression inmetric spaces with finite-dimensional Euclidean
regressors

This section reviews some material from Petersen and Müller (2019) to motivate the
regression approach presented. Let (Ω, dΩ) be a metric space. Consider a random
vector (X , Y ) ∼ F, where d F(x, y) is the probability measure induced by (X , Y ),

with X and Y respectively taking values in R
p and Ω. The marginal distributions

of X and Y are denoted as FX and FY , respectively. Assume that the mean vector
μX = E(X), and the variance-covariance matrixΣ of the regressors X , as well as the
conditional distributions FX |Y and FY |X exist (see, e.g., Chapter V in Parthasarathy
(1967)).

Definition 1 The Fréchet regression predictor m⊕(x) of Y given the observed value,
X = x ∈ R

p, is defined as follows:

m⊕(x) = arg min
ω∈Ω

M⊕(ω, x) = arg min
ω∈Ω

E(d2
Ω(Y , ω) | X = x)

= arg min
ω∈Ω

∫

Ω

d2
Ω(y, ω)d FY |X (x, y). (2.4)

Let us consider the case of real-valued response, i.e.,Ω = R, and dΩ = dE ,where
dE (y1, y2) = |y1− y2|. It is well-known that the least-squares linear global regression
predictor mL(x) is computed in a parametric framework from the minimizer

(β∗
0 , β∗

1 ) = arg min
β0∈R, β1∈Rp

∫ [∫
y d FY |X (x, y) − (β0 + βT

1 (x − μX ))

]2
d FX (x),

(2.5)

with E[X ] = μX ∈ R
p, where now d FY |X (x, y) denotes the conditional prob-

ability measure on R induced by Y given X p×1 = x p×1 ∈ R
p, and, as before,

d FX (x) denotes the marginal probability measure on R
p induced by X . It is well-

known that the scalar intercept β∗
0 = E[Y ], and the slope vector β∗

1 = Σ−1σ T
Y X ,

where [σY X ]1×p = E[(Y − μY )1×1(X − μX )T
1×p], with μY = E[Y ], and Σp×p =

E
[
(X − μX )p×1(X − μX )T

1×p

]
denoting the matrix of variances and covariances of

the regressor vector X . Hence, for every x ∈ R
p, one can write

mL(x) = β∗
0 + (β∗

1 )T (x − μX ), (2.6)

which can be equivalently expressed as

mL(x) = E(Y ) + σY XΣ−1(x − μX )
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=
∫

R×Rp
y[1 + (z − μX )T Σ−1(x − μX )] d F(z, y)

=
∫

R×Rp
ys(z, x) d F(z, y). (2.7)

Since the weight function s(z, x) = 1 + (z − μX )T Σ−1(x − μX ) satisfies∫
Rp×R

s(z, x)d F(z, y) = 1, restricting our attention to the unit ball of theRKHSof X ,

one can consider the family of bivariate probability measures {Px (dz, dy), x ∈ R
p} ,

given by Px (dz, dy) = s(z, x)d F(z, y), z ∈ R
p, y ∈ R, for each x ∈ R

p. Con-
sider the marginal Px (dy) = ∫

Rp s(z, x)d F(z, y). Equation (2.7) can be symbolically
rewritten as

mL(x) =
∫

R

y Px (dy) = argmin
ω∈R

∫

R

d2
E (y, ω)Px (dy)

= argmin
ω∈R

∫

R

d2
E (y, ω)

∫

Rp
s(z, x)d F(z, y)

= argmin
ω∈R E

[
s(X , x)d2

E (Y , ω)
]
. (2.8)

The weighted Fréchet mean approach proposed in Petersen and Müller (2019), under
independent data, consists of replacing the Euclidean distance dE by the distance dΩ

in an arbitrary metric space (Ω, dΩ), to cover the case where Y is evaluated in such
a metric space (Ω, dΩ). That is,

mL(x) = arg min
ω∈Ω

E
[
s(X , x)d2

Ω(Y , ω)
]

(2.9)

[see Petersen and Müller (2019)]. Our proposal is formulated under dependent
curve data, and corresponds to the case of (Ω, dΩ) = (

CM(T ), dCM(T )

)
, and

X ∈ (CM(T ), dCM(T )

)
, extending the above Euclidean regressor framework to the

M-valued infinite-dimensional case.

3 Fréchet regression under dependent curve data in Riemannian
manifolds

In Sect. 3.1, conditions (i)–(v) are formulated to provide a suitable geometrical and
probabilistic scenario, allowing the definition of our weighted Fréchet mean based
theoretical and empirical loss functions, and ensuring the existence and uniqueness of
Fréchet curve means. Under these conditions, the curve regressor process is mapped
into the time-varying tangent space. Fréchet weights are then computed in a regular-
ized version of the RKHS of the log-mapped regressor process, obtained by applying
a smoother matrix operator satisfying conditions (a)–(b) in Sect. 3.2. Finally, the the-
oretical and empirical loss functions are introduced in Sect. 3.3 under the conditions
established in Sects. 3.1 and 3.2.
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3.1 Model assumptions

The following conditions of geometrical nature will be considered:

(i) M is a d-dimensional compact and connected Riemannian submanifold of a
Euclidean space R

d0 , d ≤ d0, with geodesic distance dM induced by the
Euclidean metric.

(ii) The sectional curvature of manifold M is bounded, positive, and of smooth
variation.

Remark 1 The exponential map is defined on the entire tangent space under (i) [see,
e.g., Dai and Müller (2018)]. Under (ii), the geodesic distance between two points
in the manifold is upper bounded by the Euclidean distance of their corresponding
tangent vectors [see Assumption A2, and Proposition 1 in Dai and Müller (2018)].

Let Y = {Ys, s ∈ Z} and X = {Xs, s ∈ Z} be the response Y and regressor X curve
processes in the Riemannian manifoldM.Denote byYCM(T ) ⊆ (CM(T ), dCM(T )

)
,

andXCM(T ) ⊆ (CM(T ), dCM(T )

)
the respective supports of their marginal probabil-

ity measures (see conditions (iv)–(v) below). The following conditions are assumed
on the bivariate curve process (X , Y ) :
(iii) For every time si ∈ Z, the random Lipschitz constants LY (Ysi ) and

L X (Xsi ) of Ysi and Xsi are almost surely (a.s.) finite. The Lipschitz constants
L(μYsi ,M) and L(μXsi ,M) of the Fréchet means μYsi ,M and μXsi ,M are also

finite. Particularly, assume that E
[(

L X (Xsi )
)2]

< ∞, and E
[(

LY (Ysi )
)2]

< ∞, for any si ∈ Z.Note that, for any curve z(·), L(z) = supt �=s
dM(z(t),z(s))

|t−s| .

(iv) The M-valued bivariate curve process {(Ys, Xs), s ∈ Z} is strictly stationary.
Furthermore, {logμX0,M(t) (Xs(t)) , s ∈ Z} is mean-square ergodic in the first
moment in the norm of H, and in the second-order moments in the norm of the
space S(H) of Hilbert–Schmidt operators on H.

(v) We assume that X = {Xs, s ∈ Z} and Y = {Ys, s ∈ Z} have the same Fréchet
functionalmean. The supports of themarginal probabilitymeasures d PX0(·) and
d PY0(·) respectively induced by X0(·) andY0 are included in the ball of the space(
CM(T ), dCM(T )

)
, centered at the Fréchet functional mean μX0,M = μY0,M

with radius R = inf t∈T injμX0,M(t). Here, injμX0,M(t) denotes the injectivity
radius of the exponential map whose origin is μX0,M(t), for each t ∈ T .

The global regression methodology, based on the weighted Fréchet mean approach,
arising from the linear correlation between the response and regressor in the Euclidean
setting [see Sect. 2.1] has sense, since the log-mapped versions of both curve processes,
X and Y , lie in the same time-varying tangent space, whose origin is the Fréchet
functional mean μX0,M = μY0,M under conditions (iv)–(v).

Remark 2 Condition (v) ensures that, for every t ∈ T , and si ∈ Z, the geodesic
connecting Xsi (t) and μX0,M(t) is unique, ensuring that the tangent vectors do not
switch directions under small perturbations ofμX0,M(t).The same assertion holds for
Ysi (t) and μY0,M(t), t ∈ T , si ∈ Z. This condition is crucial in the implementation
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of the weighted Fréchet mean approach from time correlated bivariate curve data
evaluated inM in a consistent way.

In practice, a curve clustering around the intrinsic Fréchet functional mean
μX0,M = μY0,M is observed under conditions (i)–(v). The same feature holds around
the empirical Fréchet functional mean μ̂X0,M [see, e.g., Figs. 1, 2, 4 in the simulation
study in Sect. 5]. See also Fig. 9 in Sect. 6, where the bivariate curve data (left-hand
side), the empirical Fréchet curve means (center and right-hand side) are displayed.
Note that this curve clustering is observed in most of the real-data problems cited in
the Introduction. That is the case of flight trajectory data set (see, e.g., Sect. 5.2 of
Dai and Müller (2018), where Riemannian functional principal component analysis
(RFPCA) is applied).

3.2 Regularization of infinite-dimensional Fréchet weights

As commented, Fréchet weights are computed from the log-mapped regressor process{
logμ̂X0,M(·)(Xs(·)), s ∈ Z

}
in the time-varying tangent space. Denote by μ(t) =

E
[
logμX0,M(t) (X0(t))

]
, t ∈ T , and by

RX = E

[(
logμX0,M(·) (Xs(·)) − μ(·)

)
⊗
(
logμX0,M(·) (Xs(·)) − μ(·)

)T
]

= E

[(
logμX0,M(·) (X0(·)) − μ(·)

)
⊗
(
logμX0,M(·) (X0(·)) − μ(·)

)T
]

,

(3.10)

thematrix autocovariance operator of
{
logμX0,M(·)(Xs(·)), s ∈ Z

}
. Its inverse, defin-

ing the semi-inner product 〈 f , g〉H̃ =
〈
R−1

X ( f ), g
〉

H

, of the RKHS H̃ = R1/2
X (H) of

{
logμX0,M(·)(Xs(·)), s ∈ Z

}
is not bounded in the ambient Hilbert space H. Fréchet

weights are then computed in a regularized version K(H) ⊂ H̃ of H (see condition
(b) below), obtained from smoother matrix operator K given by

√
K(ψ) =

⎡

⎣

√
K 0 . . . 0
0

√
K . . . 0

. . . . . . . . .
√
K

⎤

⎦

⎡

⎢
⎣

ψ1
...

ψd0

⎤

⎥
⎦

=
[√

K(ψ1), . . . ,
√
K(ψd0)

]T
, ∀ψ = (ψ1, . . . , ψd0)

T ∈ H.

Thus,
√K is a diagonal operator with constant functional entries equal to

√
K, where

K is a trace self-adjoint integral operator on H, satisfying

K(φn)(t) =
∫

T
k(t, s)φn(s)ds = γnφn(t), t ∈ T , γn > 0, n ≥ 1,
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with
∑∞

n=1 γn = 1.Thenorm induced byK can be expressed in terms of the eigenvalue
sequence {γn, n ∈ N0} as

‖ψ‖2K = 〈ψ,ψ〉K =
d0∑

i=1

∑

k≥1

γk |φk(ψi )|2 = ‖ψ‖2
H̃W

, (3.11)

where we have denoted by H̃W the separable Hilbert space of vector functions
with finite ‖ · ‖K-norm induced by the inner product 〈ψ, ϕ〉H̃W

, given by, for
ψ = (ψ1, . . . , ψd0)

T , ϕ = (ϕ1, . . . , ϕd0)
T ∈ H = Hd0 ,

〈ψ, ϕ〉H̃W
=
〈√

K(ψ),
√
K(ϕ)

〉

H

=
∫

T

[√
K(ψ)(t)

]T √
K(ϕ)(t)dt

=
d0∑

i=1

∫

T

∫

T
k(t, s)ψi (t)ϕi (s)dtds

=
d0∑

i=1

∑

k≥1

γkφk(ψi )φk(ϕi ) =
d0∑

i=1

∑

k≥1

γk 〈φk, ψi 〉H 〈φk, ϕi 〉H . (3.12)

Assume that {γn, n ≥ 1} satisfy
(a) For every f ∈ H, ‖ f ‖H ≥ ‖ f ‖H̃W

. Hence, H ⊂ H̃W in a continuous way.

(b) For everyψ ∈ √K(H), ‖√K−1
(ψ)‖H ≥ ‖ψ‖H̃ .Therefore,

(√
K(H), 〈·, ·〉K−1

)

⊂ (H̃ , 〈·, ·〉H̃

)
in a continuous way.

Hence, the following continuous inclusions (embeddings, denoted as ↪→) hold:

(√
K(H), 〈·, ·〉K−1

)
↪→ (H̃ , 〈·, ·〉H̃

)
↪→ (H, 〈·, ·〉H) ↪→

(
H̃W , 〈·, ·〉H̃W

)
, (3.13)

and the following regularized version of Fréchet weights is computed:

s (X0(·), x(·)) =
=
[
1 +
〈
logμX0,M(·) (x(·)) − μ(·),√KR−1

X

(√
K
(
logμX0,M(·) (X0(·)) − μ(·)

))〉

H

]

=
[
1 +
〈√

K
(
logμX0,M(·) (x(·)) − μ(·)

)
,
√
K
(
logμX0,M(·) (X0(·)) − μ(·)

)〉

H̃

]
.

(3.14)

Remark 3 Equation (3.14) restricts the support of the proposed theoretical Fréchet
functional predictor Ŷ (x(·)), in Eq. (3.16), and its empirical version Ŷn(x(·)),
in Eq. (3.21), to expμX0,M(·)

(√K(H)
)

⊂ expμX0,M(·)
(
H̃
) ⊂ XCM(T ) ⊆

(
CM(T ), dCM(T )

)
, allowing their computation in a continuous way. This property is

applied in the proof of Theorem 1 to derive uniform weak-consistency.
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3.3 Formulation of the theoretical and empirical loss functions

Under conditions (i)–(v), let us consider, for every z(·) ∈ YCM(T ) and x(·) ∈ XCM(T ),

the loss function M (z(·), x(·)) given by:

M (z(·), x(·)) = E

[
s (X0(·), x(·))

∫

T
[dM (Y0(t), z(t))]2 dt

]
, (3.15)

where the regularized Fréchet weights s (X0(·), x(·)) have been introduced in Eq.
(3.14). The proposed Fréchet predictor is obtained as the solution to the following
minimization problem:

Ŷ (x(·)) = arg minz(·)∈YCM(T )
M (z(·), x(·)) , x(·) ∈ XCM(T ). (3.16)

Let ((X1(·), Y1(·)), . . . , (Xn(·), Yn(·))) be a bivariate functional sample of size n
of correlated curves in time of theM-valued response and regressor curve processes.
For each x(·) ∈ XCM(T ), and z(·) ∈ YCM(T ), the empirical version of (3.15), based
on ((X1(·), Y1(·)), . . . , (Xn(·), Yn(·))), is defined as

M̂n(z(·), x(·)) = 1

n

n∑

i=1

sn (Xi (·), x(·))
∫

T
[dM (Yi (t), z(t))]2 dt,

∀z(·) ∈ YCM(T ), x(·) ∈ XCM(T ), (3.17)

where

sn (Xi (·), x(·)) =
[
1 +
〈√

K
(
γ x(·),Xn

)
, R̂−1

X

(√
K
(
γ Xi (·),Xn

))〉

H

]
,

∀x(·) ∈ XCM(T ), i = 1, . . . , n, (3.18)

with

R̂X = 1

n

n∑

i=1

[
logμ̂X0,M(·) (Xi (·)) − Xn(·)

]
⊗
[
logμ̂X0,M(·) (Xi (·)) − Xn(·)

]T

γ x(·),Xn
= logμ̂X0,M(·) (x(·)) − Xn(·), x(·) ∈ XCM(T ),

γ Xi (·),Xn
= logμ̂X0,M(·) (Xi (·)) − Xn(·), i = 1, . . . , n, (3.19)

Xn(·) = logμ̂X0,M(·)(X(·)) = 1

n

n∑

i=1

logμ̂X0,M(·)(Xi (·))

μ̂X0,M(·) = arg minx̃(·)∈XCM(T )

1

n

n∑

i=1

∫

T

[
dM
(
Xsi (t), x̃(t)

)]2
dt . (3.20)

Weak-consistency, in the supremum geodesic distance, of μ̂X0,M(·) has been derived
in Proposition 2 in Dai and Müller (2018) under curve independent data evaluated in
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a manifold. Under conditions (i)–(v), this result holds under weak-dependent curve
data evaluated inM.

The empirical predictor is the solution of the following minimization problem:

Ŷn(x(·)) = arg minz(·)∈YCM(T )
M̂n (z(·), x(·)) , x(·) ∈ XCM(T ). (3.21)

Conditions (i)–(v) ensure the existence and uniqueness of the theoretical Ŷ , in
(3.16), and empirical Ŷn, in (3.21), Fréchet functional regression predictors (see, e.g.,
Theorem 2.1 in Afsari (2011)).

4 Weak-consistency of the predictor

Themain result of this paper, Theorem1below, provides the uniformweak-consistency
of the proposed empirical Fréchet functional predictor. Toderive the proof of this result,
the following additional conditions are assumed:

A.1 For each x(·) ∈ XCM(T ), and, for every ε > 0,

inf
supt∈T dM(z(t),Ŷ (x(·))(t))>ε

M (z(·), x(·)) > M
(
Ŷ (x(·)), x(·))

P

(

inf
supt∈T dM(z(t),Ŷn(x(·))(t))>ε

M̂n (z(·), x(·)) − M̂n
(
Ŷn(x(·)), x(·)) ≥ ζ(ε)

)

→ 1,

(4.22)

as n → ∞, for certain ζ(ε) > 0.
B.1 Assume that, for every ε > 0,

inf
x(·)∈XCM(T );

∥∥∥logμX0 ,M(·)(x(·))
∥∥∥
H

≤B

inf
supt∈T dM(z(t),Ŷ (x(·))(t))>ε

M (z(·), x(·))

−M
(
Ŷ (x(·)), x(·)) > 0,

P

⎛

⎝ inf
x(·)∈XCM(T );

∥∥∥logμ̂X0 ,M(·)(x(·))
∥∥∥
H

≤B

inf
supt∈T dM(z(t),Ŷn(x(·))(t))>ε

M̂n (z(·), x(·))

−M̂n
(
Ŷn(x(·)), x(·)) ≥ ζ(ε)

)→ 1,

(4.23)

as n → ∞, for certain ζ(ε) > 0.

Remark 4 Under condition (v), the radius B in Eq. (4.23) can be the radius of the
closed ball in the ambient Hilbert space H containing the log-mapped support of the
probability measure d PX0(·) induced by X0(·).
C.1 The functional moments of the log-mapped bivariate curve process{(

logμ̂X0,M(·)(Xs(·)), logμ̂X0,M(·)(Ys(·))
)

, s ∈ Z

}
satisfy the following
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summability conditions:

∑

u∈Z
E

[∥∥∥logμX0,M(·)(Y0(·)) − logμX0,M(·)(z(·))
∥∥∥
2

H

×
∥∥∥logμX0,M(·)(Yu(·)) − logμX0,M(·)(z(·))

∥∥∥
2

H

]
< ∞.

∑

u∈Z
E

[∥∥∥logμX0,M(·)(Y0(·)) − logμX0,M(·)(z(·))
∥∥∥
2

H

×
∥∥∥logμX0,M(·)(Yu(·)) − logμX0,M(·)(z(·))

∥∥∥
2

H

×
∥∥∥logμX0,M(·)(Xu(·)) − μ

∥∥∥
H

]
< ∞,

∑

u∈Z
E

[∥∥∥logμX0,M(·)(Y0(·)) − logμX0,M(·)(z(·))
∥∥∥
2

H

×
∥∥∥logμX0,M(·)(Yu(·)) − logμX0,M(·)(z(·))

∥∥∥
2

H

×
∥∥∥logμX0,M(·)(X0(·)) − μ

∥∥∥
H

×
∥∥∥logμX0,M(·)(Xu(·)) − μ

∥∥∥
H

]
< ∞.

Remark 5 In the proof of Theorem 1 below, condition C.1 allows proving pointwise
mean-square consistency in the first argument of the empirical loss function, when the
second-order moments of the log-mapped curve regressor process are totally speci-
fied. In the misspecified case, conditions (i)–(v) also allow proving consistency of the
empirical loss function from this result, given the compactness of T andM.Condition
A.1 is required to apply Corollary 3.2.3 in Van der Vaart and Wellner (1996) to obtain
the weak-consistency of the empirical curve predictor in the supremum geodesic dis-
tance. Condition B.1 leads to the uniform weak-consistency of the empirical Fréchet
functional predictor, applying uniform equicontinuity satisfied by the theoretical and
empirical loss functions in the second argument under the assumed conditions in
Sects. 3.1 and 3.2.

The following result provides the conditions ensuring theuniformweak-consistency,
in the supremum geodesic distance, of the global empirical Fréchet curve predictor
Ŷn(x(·)).
Theorem 1 Under conditions (i)–(v) in Sect.3.1, and conditions (a)–(b) in Sect. 3.2,
if assumptions A.1 and C.1 hold, then,

sup
t∈T

dM
(
Ŷ (x(·))(t), Ŷn(x(·))(t)) = oP (1), (4.24)

for each x(·) ∈ XCM(T ).
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Additionally, under assumption B.1,

sup∥∥∥logμX0,M(·)(x(·))
∥∥∥
H

≤B

sup
t∈T

dM
(
Ŷ (x(·))(t), Ŷn(x(·))(t)) = oP (1). (4.25)

As commented in Remark 5, the proof of Theorem 1 (seeAppendixA) follows from
conditions A.1, B.1 and C.1, applying Corollary 3.2.3 in Van der Vaart and Wellner
(1996), under the scenario defined by conditions (i)–(v) in Sect. 3.1, and conditions
(a)–(b) in Sect. 3.2. Specifically, under condition C.1,

M̃n (z(·), x(·)) − M (z(·), x(·)) = oP (1), n → ∞, (4.26)

providing the pointwise weak-consistency in the first argument of the empirical loss
function, when the second-order moments of the log-mapped curve regressor process
are totally specified. Here,

M̃n (z(·), x(·)) = 1

n

n∑

i=1

∫

T
[dM (Yi (t), z(t))]2 dt

×
[
1 +
〈√

K
(
logμX0 ,M(·) (x(·)) − μ(·)

)
,R−1

X

(√
K
(
logμX0 ,M(·) (Xi (·)) − μ(·)

))〉

H

]
.

Conditions (i)–(v) lead to

M̂n (z(·), x(·)) − M̃n (z(·), x(·)) = oP (1), n → ∞. (4.27)

Under conditions (i)–(v) and (a)–(b), keeping in mind the compactness of T and
M, and Remark 4,

sup
dCM(T )(z1(·),z2(·))≤δ

∣∣M̂n(z1(·), x(·)) − M̂n(z2(·), x(·))∣∣ = OP (δ). (4.28)

From Eqs. (4.26)–(4.28), under condition A.1, Corollary 3.2.3 in Van der Vaart and
Wellner (1996) leads to the weak-consistency of the Fréchet functional predictor in
the supremum geodesic distance.

Condition B.1 allows to proving uniform weak-consistency, in the supremum
geodesic distance, of the empirical Fréchet functional predictor applying Theorem
1.5.4 in Van der Vaart and Wellner (1996). Specifically, the proved equicontinuity of
the theoretical loss function in the second argument, uniformly with respect to the first
argument, leads to the uniform continuity of the theoretical predictor by applying first
part of B.1. In addition, the equicontinuity in probability of the empirical loss function
in the second argument, uniformly with respect to the first argument, leads to the uni-
form continuity in probability of the empirical predictor by applying the second part of
B.2. Applying triangle inequality, Theorem 1.5.4 in Van der Vaart and Wellner (1996)
leads to the desired result on uniformweak-consistency of the empirical Fréchet curve
predictor.
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Corollary 1 If there exist positive constants U(Y ) and U(X) such that

P

(

sup
z(·)∈YCM(T )

∥∥∥logμX0,M(·)(Y0(·)) − logμX0,M(·)(z(·))
∥∥∥
H

≤ U(Y )

)

= 1,

P
(∥∥∥logμX0,M(·)(X0(·)) − μ

∥∥∥
H

≤ U(X)
)

= 1, (4.29)

which is the case under conditions (i)–(v), then, condition C.1 in Theorem 1 can be
replaced by

∑

u∈Z
E

[∥∥∥logμX0,M(·)(Yu(·)) − logμX0,M(·)(z(·))
∥∥∥
2

H

]
< ∞, ∀z(·) ∈ YCM(T ).

(4.30)

Remark 6 Note that, considering logμX0,M(·)(z(·)) = E
[
logμX0,M(·)(Y0(·))

]
in Eq.

(4.30), the log-mapped curve response process{
logμX0,M(·)(Ys(·)), s ∈ Z

}
displays Short Range Dependence (SRD) [see, e.g.,

Panaretos and Tavakoli (2013)]. Thus, Theorem 1 provides uniform weak-consistency
of the empirical Fréchet curve predictor Ŷn(·) in the supremum geodesic distance
under weak-dependent curve data evaluated in M.

5 Numerical examples

The finite functional sample size performance of Ŷn(x(·)), x(·) ∈ XCM(T ), is numer-
ically illustrated in this section. We restrict our attention to the sphere S2 in R

3, and
generate, at 1000 temporal nodes, a bivariate curve sample of size n = 100 of time
correlated random spherical curves. We compute the pointwise quadratic geodesic
distances between the original values of the response, and their Fréchet curve predic-
tions. These values are summarized in terms of the empirical mean [see the left-hand
side of Fig. 7], and the corresponding histogram [see the left-hand side of Fig. 8].
The empirical temporal means of the observed values of the quadratic geodesic curve
errors at each sampled time are also computed [see the right-hand side of Fig. 7]. The
corresponding histogram is displayed at the right-hand side of Fig. 8.

We have implemented, inMatLab language, a simulation algorithm based on vector
diffusion process subordination by applying the inverse von Mises-Fisher distribution
transform [see Algorithm 3 in the Supplementary Material of Jammalamadaka and
Terdik (2022)]. We restrict our attention to the family of vector diffusion processes
with linear drift obeying the following stochastic differential equation:

d Xt = μ(t)Xt dt + σ(t, Xt )dWt , (5.31)

where Xt defines the vector process modeling the states of the system, μ(t)Xt repre-
sents the linear drift, and σ(t, Xt ) = D(t, Xt )V (t) defines the diffusion coefficient.
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Thus, the coefficient σ(t, Xt ) is computed from a diagonal matrix D, where each
element along the main diagonal is the corresponding element of the state vector Xt .

The process W is vectorial Brownian motion with correlated components. This model
has been generated with sde(·) MatLab function (see Simulation of Multidimensional
Market Models in Financial Toolbox of MatLab).

A sample of n strictly stationary and ergodic vector diffusion processes corre-
lated in time is generated. This sample is mapped into the unit ball of the Banach
space CX (T ) of continuous vector functions with compact support contained in the
interval T taking values in the bounded set X ⊂ R

3. The inverse von Mises-Fisher
transform is then pointwise applied to obtain a sample of the regressor curve process

Xsi (t) =
(

X (1)
si (t), X (2)

si (t), X (3)
si (t)

)
, t ∈ T , i = 1, . . . , n (see Fig. 1). For each si ,

i = 1, . . . , n, and for every t ∈ T , we compute the logarithm map of the generated
sample values of the spherical curve regressor process as follows: For each t ∈ T ,

logμ̂X0,M(t)(Xsi (t)) = u(t, i)

‖u(t, i)‖dSd

(
μ̂X0,M(t), Xsi (t)

)
,

u(t, i) = Xsi (t) − ([μ̂X0,M(t)]T Xsi (t))μ̂X0,M(t), (5.32)

where μ̂X0,M(·) denotes, as before, the empirical Fréchet functional mean of X0.

Finally, for i = 1, . . . , n, we generate the response curve process as

Ysi (t) = expμ̂X0,M(t)

(
�
(
logμ̂X0,M(·)

(
Xsi (·)

))
(t) + εsi (t)

)
, t ∈ T , (5.33)

where� : H → H is a bounded linear operator,with supremumnorm less thanone, and
ε = {εi (·), i ∈ Z}defines anH-valuedGaussian strong-white noise, uncorrelatedwith
the log-mapped regressors. Process ε has been generated in terms of the Karhunen–
Loéve expansion (see Dai and Müller (2018)).

Given the geometrical characteristics of the sphere, conditions (i)–(ii) hold. Condi-
tion (iii) is ensured by the sample path regularity properties displayed by the generated
vector diffusion processes, and by the regularity properties of the eigenfunctions,
involved in the Karhunen–Loéve expansion of the strong Gaussian white noise pro-
cess ε in the time-varying tangent space in (5.33). The assumedmean-square ergodicity
in condition (iv) follows from the mixing conditions satisfied by the vector diffusion
processes. The generation of the response process in the time-varying tangent space
in (5.33) leads to its strictly stationarity from the strictly stationarity of the vector
diffusion processes, and of ε in this example. Our choice of the concentration param-
eter involved in the implementation of the inverse von Mises–Fisher transform, and
of the correlation structure of the generated vector-valued diffusion process ensures
that condition (v) holds for the corresponding regressor process X . Condition (v) is
also satisfied by the generated response curve process, given the dispersion of the
curve values of ε in the time-varying tangent space is controlled by the truncated trace
of its autocovariance operator, dominating the dispersion of the resulting exponential
mapped curve values of the response process. Note that this trace is computed from the
eigenvalues defining the variance of the random coefficients in the Karhunen–Loéve
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Fig. 1 Spherical curve values of the generated regressor process at times si =
10, 20, 30, 40, 50, 60, 70, 80, 90, 100. Three sampling times are represented on the left and center
plots, and four on the right plot

Fig. 2 Uniform spherical grid with 400 nodes (left-hand side), the empirical curve Fréchet
mean μX̂0,M(·) (center), and the response in the time-varying tangent space at times si =
10, 20, 30, 40, 50, 60, 70, 80, 90, 100 (right-hand side)

Fig. 3 Spherical curve values of the generated spherical curve response process at times si =
10, 20, 30, 40, 50, 60, 70, 80, 90, 100

expansion of ε. Furthermore, the selected eigenfunctions of the Dirichlet negative
Laplace operator on a spatial interval are bounded and smooth.

The empirical Fréchet mean μ̂X0,M(·) in Eq. (3.20) is computed from a uniform
spherical grid of 400 nodes (see Fig. 2). The time-varying Riemannian logarithm map
with origin at μ̂X0,M(·) is applied to the generated spherical curve regressor values.
As commented, these values are transformed via the dynamic functional linear model

�
(
logμ̂X0,M(t)

(
Xsi (·)

))
(t) + εsi (t), t ∈ T , i = 1, . . . , n,

in the time-varying tangent space, leading to the log-mapped curve values of the
response in those tangent spaces (see plot at the right-hand side of Fig. 2). The time-
varying exponential map at the same origin μ̂X0,M(·) is then applied to them (see
Figs. 3, and 4). The empirical Fréchet weights are also calculated as displayed in Fig. 5.
Finally, the empirical weighted Fréchet mean function is obtained. The corresponding
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Fig. 4 Joint representation of spherical curve values of the generated spherical curve response and regressor
processes at times si = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100. Here, red, green, blue, and white colors are
used for regressor spherical curve values, while black, magenta, cyan, and yellow colors are used for
response spherical curve values

Fig. 5 The empirical Fréchet weights are plotted. The dashed lines displayed correspond to their evaluation
from generated log-mapped sample curve regressor values at si , i = 1, . . . , 100, and for 40 log-mapped
M-curve arguments of the predictor

Fig. 6 The Féchet predictor realizations, and the original responses are displayed at times si = 10, 20, 30
(left-hand side), si = 40, 50, 60 (center), and si = 70, 80, 90, 100 (right-hand side)
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Fig. 7 The empiricalmean of the quadratic geodesic curve errors (left-hand side), and the empirical temporal
means of their pointwise values at each sampled time si , i = 1, . . . , 100 (right-hand side)
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Fig. 8 Histogram of the quadratic geodesic curve error empirical mean values at the left-hand side. The
histogram of the empirical temporal mean values is also plotted at the right-hand side

Fig. 9 Spherical bivariate curve data at times t = 1, 11, 21, 31, 41, 51, 61, 71, 81 (left-hand side). Empirical
Fréchet curve mean of regressors (center) and of response (right-hand side)
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Fig. 10 Spherical bivariate curve data at times t = 1, 12, 14, 25, 37, 49, 61, 73, 82 (November, 1979).
NASA’s MAGSAT spacecraft (black curve), and magnetic field vector (red curve) spherical coordinates are
displayed at 6000 temporal nodes for every sampled time

Fig. 11 Target log-mapped regressor curve observations at times t = 1, 2, 4, 6, 8, 10 for iteration one,
at times t = 1, 4, 7, 10, 18, 21 for iteration 2, at times t = 1, 4, 7, 10, 13, 16 for iteration 3, at times
t = 1, 2, 3, 7, 10, 13 for iteration 4, and at times t = 3, 5, 7, 10, 15, 21 for iteration 5
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Fig. 12 Training log-mapped regressor curve observations at times t = 1, 3, 6, 9, 12, 72 for iteration
one, at times t = 1, 3, 6, 9, 12, 61 for iteration 2, at times t = 1, 3, 6, 9, 12, 66 for iteration 3, at times
t = 10, 20, 30, 40, 50, 69 for iteration 4, and at times t = 10, 20, 30, 40, 50, 60 for iteration 5

Fig. 13 Empirical Fréchet curve mean based on 82 spherical curve regressor observations, computed from
a uniform spherical grid with 1000 nodes (top-left-hand-side). The remaining plots provide Fréchet weights
at each one of the five iterations of the five fold cross validation algorithm implemented

Fig. 14 Spherical Fréchet functional predictor (red curve) and response (black curve) at times ti , i = 1, 2, 3
(corresponding to original observed times t = 4, 11, 75) of the target subsample at the first iteration of the
five fold cross validation algorithm
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Fig. 15 Spherical Fréchet functional predictor (red curve) and response (black curve) at times ti , i = 1, 2, 3
(corresponding to original observed times t = 3, 6, 2) of the target subsample at the second iteration of the
five fold cross validation algorithm

Fig. 16 Spherical Fréchet functional predictor (red curve) and response (black curve) at times ti , i = 1, 2, 3
(corresponding to original observed times t = 10, 25, 58) of the target subsample at the third iteration of
the five fold cross validation algorithm

Fig. 17 Spherical Fréchet functional predictor (red curve) and response (black curve) at times ti , i = 1, 2, 3
(corresponding to original observed times t = 1, 28, 61) of the target subsample at the fourth iteration of
the five fold cross validation algorithm

Fig. 18 Spherical Fréchet functional predictor (red curve) and response (black curve) at times ti , i = 1, 2, 3,
(corresponding to original observed times t = 2, 12, 31) of the target subsample at the fifth iteration of the
five fold cross validation algorithm
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Table 1 Temporal pointwise
average of five fold cross
validation functional error

TIMES TPAF5fCVE TIMES TPAF5fCVE

T1 0.0037 T12 0.0027

T2 0.0036 T13 0.0030

T3 0.0034 T14 0.0023

T4 0.0037 T15 0.0022

T5 0.0031 T16 0.0021

T6 0.0039 T17 0.0013

T7 0.0039 T18 0.0016

T8 0.0036 T19 0.0015

T9 0.0040 T20 0.0016

T10 0.0036 T21 0.0014

T11 0.0030 T22 0.0006

Fréchet curve predictor is then computed as showed in Fig. 6. A good performance
is observed when a functional sample of size n = 100 is considered, as displayed in
Figs. 7 and 8, where Fréchet curve prediction errors are summarized.

6 Real-data example

It is well known that Earth’s magnetic field protects Earth from solar wind that
emanates from the sun. The three dimensional structure of this field is inferred from
launched satellite measurements using three-axis magnetometers. World magnetic
models are generated from these remote sensors combined over the last few decades.
In particular, navigation and heading referencing systems can be improved from accu-
rate information ongeomagnetic field.Data fromNASA’sNational SpaceScienceData
Center are available in the period 02/11/1979–06/05/1980, recorded every half second,
and correspond to the first satellite NASA’s MAGSAT spacecraft, which orbited the
earth every 88min during seven months at around 400km altitude. The available mea-
surements during the days 3, 4, 5 of each month in the period 02/11/1979–06/05/1980
allow us to construct seven functional samples of size 82, 84, 83, 84, 85, 72 and 52,
respectively. The elements of these samples are discretely observed at 6000 temporal
nodes.

Thefive fold cross validation technique is implemented from these data sets to assess
the performance of the proposed Fréchet functional regression prediction methodol-
ogy. This section displays the results, based on a functional sample of size 82, reflecting
the geocentric latitude and longitude of the spacecraft at 82 consecutive temporal
intervals, containing 6000 equally spaced temporal nodes, during the days 3, 4, 5 of
November, 1979, and reflecting the time-varying spherical coordinates of the mag-
netic field vector at the same temporal intervals and nodes. Both, the regressor and
response spherical curve observations, share the azimuthal angle, and display different
time-varying polar angles, as given at the top-right-hand-side plot in Fig. 4 of Sect.
9.1 in Di Marzio et al. (2014). Note that, in Di Marzio et al. (2014), a purely spatial
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analysis is carried out ignoring time information. The five fold cross validation results
for the remaining months are displayed in Appendix B.

As in the previous section, conditions (i)-(ii) are satisfied byM = S2 ⊂ R
3. Fig. 9

displays the spherical bivariate curve observations at times t = 1, 11, 21, 31, 41, 51,
61, 71, 81 at the left-hand side (see also Fig. 10, where some bivariate curve obser-
vations are displayed for different times). From these plots, conditions (iii)–(v) seem
to be satisfied (see Remark 2). The empirical intrinsic Fréchet curve means, based
on the regressors and the response curve observations, are respectively shown at the
center, and at the right-hand side of Fig. 9. These plots also agree with the assumption
of a common theoretical Fréchet curve mean for the marginal probability measure of
the response and regressor process, as given in condition (v). The five fold cross val-
idation technique is implemented from the log-mapped training and target spherical
curve regressor subsamples in the time-varying tangent space (see Figs. 11 and 12),
and from the corresponding training and target spherical curve response subsamples in
M.The displayed running of the five fold cross validation algorithm involves the train-
ing samples of sizes 72, 61, 66, 69, 60, and target samples of sizes 10, 21, 16, 13, 22,
respectively.

Fréchet weights are computed from the training and target log-mapped regressor
subsamples (see Fig. 13). Specifically, a discretized version of the empirical matrix
covariance operator of the log-mapped curve regressors is computed from the training
regressor subsample at each iteration of the five fold cross validation. Note that the row
and column input vectors of the block matrix, approximating this empirical operator,
are respectively evaluated in the training and target regressor subsamples. At each one
of the 5 iterations of the five fold cross validation algorithm, the original spherical
curve response values, and the corresponding spherical Fréchet functional predictions
are plotted in Figs. 14, 15, 16, 17, and 18 at the first three target times. Finally, the
average over the 6000 temporal nodes of the five fold cross validation functional error is
displayed in Table 1, for the 22 Fréchet spherical curve predictions at target times t =
2, 8, 12, 15, 22, 24, 26, 29, 31, 33, 40, 43, 45, 47, 53, 55, 56, 65, 67, 71, 76, 77. This
average is denoted as TPAF5fCVE in Table 1.

7 Final comments

This paper deals with global intrinsic Fréchet regression in the framework of CM(T )-
valued bivariate curve processes, adopting the weighted Fréchet mean formulation
introduced in Petersen and Müller (2019). Thus, we extend this formulation to the
case of time correlated bivariate curve data evaluated in a compact Riemannian
manifold. In particular, we extend the Euclidean regressor setting in Petersen and
Müller (2019) to the M-valued curve process framework, considering the metric
space

(
CM(T ), dCM(T )

)
. Local linear Fréchet curve regression will be addressed in

the manifold-valued bivariate curve process framework in a subsequent paper (see
Petersen and Müller (2019), and Di Marzio et al. (2014) in the context of the local
polynomial regression framework).
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Appendices

The proof of the main result, Theorem 1, is provided in Appendix A. Appendix B
shows the five fold cross validation results obtained since December, 1979, to May,
1980.

A Proof of Theorem 1

Proof For a fixed x(·) ∈ XCM(T ), under condition A.1, from Corollary 3.2.3 in Van
der Vaart and Wellner (1996), it is sufficient to prove the convergence to zero in
probability of

sup
z(·)∈YCM(T )

∣∣M̂n (z(·), x(·)) − M (z(·), x(·))∣∣ . (1.34)

Indeed, from Theorem 1.5.4 in Van der Vaart and Wellner (1996), it is sufficient to
prove

(1) For each x ∈ XCM(T ), and for every z(·) ∈ YCM(T ),

M̂n(z(·), x(·)) − M(z(·), x(·)) = oP (1), n → ∞.

(2) For each x ∈ XCM(T ), and z(·) ∈ YCM(T ), M̂n(z(·), x(·)) is asymptotically
equicontinuous in probability, i.e., for all ε > 0 and η, there exists a δ > 0 which
does not depend on z(·) such that

lim sup
n

P

(

sup
dCM(T )(z(·),y(·))≤δ

∣∣M̂n(z(·), x(·)) − M̂n(y(·), x(·))∣∣ > ε

)

< η.

(1.35)

To prove (1), we consider

M̃n (z(·), x(·)) = 1

n

n∑

i=1

∫

T
[dM (Yi (t), z(t))]2 dt

×
[
1 +
〈√

K
(
logμX0 ,M(·) (x(·)) − μ(·)

)
,R−1

X

(√
K
(
logμX0 ,M(·) (Xi (·)) − μ(·)

))〉

H

]
.

Under (iv), applying strictly stationarity, for each x(·) ∈ XCM(T ), and every z(·) ∈
YCM(T ), E

[
M̃n (z(·), x(·))] = M(z(·), x(·)). We also obtain

Var
(
M̃n (z(·), x(·))) = 1

n

∑

u∈{−(n−1),...,n−1}

(
1 − |u|

n

)

×
[
R(g(Y ),g(Y ))

u + R(g(Y ),g(Y )h(X))
u + R(g(Y )h(X),g(Y ))

u + R(g(Y )h(X),g(Y )h(X))
u

]

≤ 1

n

∑

u∈Z

[
R(g(Y ),g(Y ))

u + R(g(Y ),g(Y )h(X))
u + R(g(Y )h(X),g(Y ))

u + R(g(Y )h(X),g(Y )h(X))
u

]
,(1.36)
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where

R(g(Y ),g(Y ))
u = E

[(∫

T
[dM (Y0(t), z(t))]2 dt

)(∫

T
[dM (Yu(t), z(t))]2 dt

)]

R(g(Y ),g(Y )h(X))
u = E

[(∫

T
[dM (Y0(t), z(t))]2 dt

)(∫

T
[dM (Yu(t), z(t))]2 dt

)

×
〈√

K
(
logμX0 ,M(·) (x(·)) − μ(·)

)
,
√
K
(
logμX0 ,M(·) (Xu(·)) − μ(·)

)〉

H̃

]

R(g(Y )h(X),g(Y ))
u = E

[(∫

T
[dM (Y0(t), z(t))]2 dt

)(∫

T
[dM (Yu(t), z(t))]2 dt

)

×
〈√

K
(
logμX0 ,M(·) (x(·)) − μ(·)

)
,
√
K
(
logμX0 ,M(·) (X0(·)) − μ(·)

)〉

H̃

]

R(g(Y )h(X),g(Y )h(X))
u = E

[(∫

T
[dM (Y0(t), z(t))]2 dt

)(∫

T
[dM (Yu(t), z(t))]2 dt

)

×
〈√

K
(
logμX0 ,M(·) (x(·)) − μ(·)

)
,
√
K
(
logμX0 ,M(·) (X0(·)) − μ(·)

)〉

H̃

×
〈√

K
(
logμX0 ,M(·) (x(·)) − μ(·)

)
,
√
K
(
logμX0 ,M(·) (Xu(·)) − μ(·)

)〉

H̃

]
. (1.37)

Under (i)–(v), keeping in mind Remark 1, the following inequalities hold:

R(g(Y ),g(Y ))
u ≤ E

[∥∥∥logμX0,M(·)(Y0(·)) − logμX0,M(·)(z(·))
∥∥∥
2

H

×
∥∥∥logμX0,M(·)(Yu(·)) − logμX0,M(·)(z(·))

∥∥∥
2

H

]
(1.38)

R(g(Y ),g(Y )h(X))
u ≤ ‖√KR−1

X

√
K‖L(H)N (x(·))

×E

[∥∥∥logμX0,M(·)(Y0(·)) − logμX0,M(·)(z(·))
∥∥∥
2

H

×
∥∥∥logμX0,M(·)(Yu(·)) − logμX0,M(·)(z(·))

∥∥∥
2

H

×
∥∥∥logμX0,M(·) (Xu(·)) − μ(·)

∥∥∥
H

]
(1.39)

R(g(Y )h(X),g(Y ))
u ≤ ‖√KR−1

X

√
K‖L(H)N (x(·))

×E

[∥∥∥logμX0,M(·)(Y0(·)) − logμX0,M(·)(z(·))
∥∥∥
2

H

×
∥∥∥logμX0,M(·)(Yu(·)) − logμX0,M(·)(z(·))

∥∥∥
2

H

×
∥∥∥logμX0,M(·) (X0(·)) − μ(·)

∥∥∥
H

]
(1.40)

R(g(Y )h(X),g(Y )h(X))
u ≤

[
‖√KR−1

X

√
K‖L(H)N (x(·))

]2

×E

[∥∥∥logμX0,M(·)(Y0(·)) − logμX0,M(·)(z(·))
∥∥∥
2

H

×
∥∥∥logμX0,M(·)(Yu(·)) − logμX0,M(·)(z(·))

∥∥∥
2

H
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×
∥∥∥logμX0,M(·) (X0(·)) − μ(·)

∥∥∥
H

×
∥∥∥logμX0,M(·) (Xu(·)) − μ(·)

∥∥∥
H

]
, (1.41)

where Cauchy–Schwarz inequality has been applied in the derivation of the upper
bounds (1.39)–(1.41), keeping in mind condition (a)–(b) in Sect. 3.2, ensuring
the bounded operator norm ‖√KR−1

X

√
K‖L(H) on H is finite. Here, N (x(·)) =∥∥∥logμX0,M(·) (x(·)) − μ(·)

∥∥∥
H

. Under C.1, from (1.36), Eqs. (1.38)–(1.41) mean that

M̃n (z(·), x(·)) − M (z(·), x(·)) = oP (1), n → ∞.

Under conditions (i)–(v), conditions (A1) and (B1)–(B4) assumed in Proposition 2
in Dai and Müller (2018) hold. Weak-consistency in the supremum geodesic distance
of the empirical Fréchet functional mean, under weak-dependent M-valued curve
data, can then be derived in a similar way to Proposition 2 in Dai and Müller (2018),
applying the mean-square ergodicity of the log-mapped regressor process in condition
(iv). Furthermore, under conditions (i)-(v),

M̂n (z(·), x(·)) − M̃n (z(·), x(·))

= 1

n

n∑

i=1

[∫

T

[
d2
M (Yi (t), z(t))

]
dt

] [〈√
K
(
γ x(·),Xn (·)

)
, R̂−1

X

(√
K
(
γ Xi (·),Xn (·)

))〉

H

−
〈√

K
(
γ x(·),μ(·)

)
,R−1

X

(√
K
(
γ Xi (·),μ(·)

))〉

H

]

≤ [diam(M)]2|T |
[〈√

K
(
γ x(·),Xn (·)

)
, R̂−1

X

(√
K
(
1

n

n∑

i=1

γ Xi (·),Xn (·)

))〉

H

−
〈√

K
(
γ x(·),μ(·)

)
,R−1

X

(√
K
(
1

n

n∑

i=1

γ Xi (·),μ(·)

))〉

H

]

= oP (1), (1.42)

where |T | = ∫T dt, and

γ x(·),μ(·) = logμX0,M(·) (x(·)) − μ(·), x(·) ∈ XCM(T ),

γ Xi (·),μ(·) = logμX0,M(·) (Xi (·)) − μ(·), i = 1, . . . , n, (1.43)

with γ x(·),Xn(·) and γ Xi (·),Xn(·) being introduced in Eq. (3.19).
Now to prove (2), under conditions (iv)–(v) in Sect. 3.1 and (a)–(b) in Sect. 3.2,

applying, in particular, men-square ergodicity of the log-mapped regressor process X
in condition (iv), for n sufficiently large, and for z1(·), z2(·) ∈ YCM(T ),

∣∣M̂n(z1(·), x(·)) − M̂n(z2(·), x(·))∣∣

≤ 1

n

n∑

i=1

∣∣∣
〈√

K
(
γ x(·),Xn(·)

)
, R̂−1

X

(√
K
(
γ Xi (·),Xn(·)

))〉

H

∣∣∣

×
∣∣∣∣

∫

T

[
d2
M (Yi (t), z1(t)) − d2

M (Yi (t), z2(t))
]

dt

∣∣∣∣
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= 1

n

n∑

i=1

∣∣∣
〈√

K
(
γ x(·),Xn(·)

)
, R̂−1

X

(√
K
(
γ Xi (·),Xn(·)

))〉

H

∣∣∣

×
∣∣∣∣

∫

T
[dM (Yi (t), z1(t)) − dM (Yi (t), z2(t))]

× [dM (Yi (t), z1(t)) + dM (Yi (t), z2(t))] dt |
≤ 2diam(M) sup

t∈T
dM(z1(t), z2(t))|T |

×1

n

n∑

i=1

∣∣∣
〈√

K
(
γ x(·),Xn(·)

)
, R̂−1

X

(√
K
(
γ Xi (·),Xn(·)

))〉

H

∣∣∣

≤ 2diam(M) sup
t∈T

dM(z1(t), z2(t))|T |

× sup
i∈Z

∥∥∥γ Xi (·),Xn(·)
∥∥∥
H

∥∥∥
√
KR̂−1

X

√
K
∥∥∥
L(H)

∥∥∥γ x(·),Xn(·)
∥∥∥
H

= OP

(
sup
t∈T

dM(z1(t), z2(t))

)
. (1.44)

Note that, under condition (v), supi∈Z
∥∥∥γ Xi (·),Xn(·)

∥∥∥
H

< ∞ (see Remark 4). Hence,

sup
dCM(T )(z1(·),z2(·))≤δ

∣∣M̂n(z1(·), x(·)) − M̂n(z2(·), x(·))∣∣ = OP (δ). (1.45)

From Corollary 3.2.3 in Van der Vaart and Wellner (1996), under assumption A.1
Eq. (4.24) holds. In particular, the generalized process

{
Zn(x(·)) = sup

t∈T
dM
(
Ŷ (x(·))(t), Ŷn(x(·))(t)) , x(·) ∈ XCM(T )

}

satisfies Zn(x(·)) = oP (1), for each x(·) ∈ XCM(T ).

To prove (4.25) under assumption B.1, since we are evaluating our predictors on
the exponential map expμX0,M(·) (BH(0, B)) of the ball BH(0, B) with center 0 and
radius B > 0 in H (see also Remark 4), from Theorem 1.5.4 in Van der Vaart and
Wellner (1996), it is sufficient to prove that, for any S > 0 and as δ → 0,

lim sup
n→∞

P

⎛

⎜
⎝ sup∥∥∥logμX0,M(·)(x(·))−logμX0,M(·)(y(·))

∥∥∥
H

≤δ

|Zn(x(·)) − Zn(y(·))| > 2S

⎞

⎟
⎠→ 0.

(1.46)

Hence, since from triangle inequality,

|Zn(x(·)) − Zn(y(·))| ≤ sup
t∈T

dM
(
Ŷ (x(·))(t), Ŷ (y(·))(t))
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+ sup
t∈T

dM
(
Ŷn(x(·))(t), Ŷn(y(·))(t)) , a.s, (1.47)

it is sufficient to prove that Ŷ (x(·)) is uniformly continuousover expμX0,M(·) (BH(0, B)) ,

and that

lim sup
n→∞

P

⎛

⎝ sup
y(·)∈B̃x(·)(δ′), x(·)∈expμX0 ,M(·)(BH(0,B))

sup
t∈T

dM
(
Ŷn(x(·))(t), Ŷn(y(·))(t)) > S

⎞

⎠→ 0,

(1.48)

keeping in mind that under conditions (ii) and (v) in Sect. 3.1, given a δ > 0, there
exists δ′ ≤ δ, such that

expμX0,M(·)
(
BH(logμX0,M(·)(x(·)), δ)

)
= B̃CM(T ),dCM(T )

(
x(·), δ′) = B̃x(·)(δ′)

:=
{

y(·) ∈ XCM(T );
∥∥∥logμX0,M(·)(x(·)) − logμX0,M(·)(y(·))

∥∥∥
H

≤ δ
}

.

(1.49)

Let δ > 0, and consider x(·) ∈ expμX0,M(·) (BH(0, B)) , and y(·) ∈ B̃x(·)(δ′) (see
Eq. (1.49)). Under conditions (i)-(v), and (a) and (b) (see also Eq. (3.13) in Sect. 3.2),
by the form of the loss function M, applying continuity of operator

√
KR−1

X

√
K, as

δ → 0,

sup
z(·)∈YCM(T )

|M (z(·), x(·)) − M (z(·), y(·))|

≤ sup
z(·)∈YCM(T )

E

[(∫

T
d2
M (Y0(t), z(t)) dt

)
‖γ X0(·),μ(·)‖H

] ∥∥∥
√
KR−1

X

√
K
∥∥∥
L(H)

× ∥∥γ x(·),μ(·) − γ y(·),μ(·)
∥∥
H

≤ [diam(M)]2|T |E [‖γ X0(·),μ(·)‖H
]

×
∥∥∥
√
KR−1

X

√
K
∥∥∥
L(H)

∥∥γ x(·),μ(·) − γ y(·),μ(·)
∥∥
H

→ 0, (1.50)

where γ X0(·),μ(·) and γ x(·),μ(·) have been introduced in Eq. (1.43). The first part of
Assumption B.1 then implies that Ŷ is continuous over the ball
expμX0,M(·) (BH(0, B)) in the supremum geodesic distance, hence, uniformly con-
tinuous.
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To prove (1.48), applying conditions (iv)–(v) (see also Remark 4), we first have
to note that if dCM(T )

(
Ŷn(x(·)), Ŷn(y(·))) > ε, under B.1, the following inequality

holds in probability

ζ ≤ sup∥∥∥logμX0 ,M(·)(x(·))−logμX0 ,M(·)(y(·))
∥∥∥<δ

sup
z(·)∈YCM(T )

∣∣M̂n(z(·), x(·)) − M̂n(z(·), y(·))∣∣ ,

(1.51)

for certain ζ > 0. Furthermore, from the expression of M̂n in Eq. (3.17), for x(·), y(·),
such that

∥∥∥logμX0,M(·) (x(·)) − logμX0,M(·) (y(·))
∥∥∥ < δ, for n sufficiently large,

sup
z(·)∈YCM(T )

∣∣M̂n(z(·), x(·)) − M̂n(z(·), y(·))∣∣ ≤ [diam(M)]2|T | sup
i∈Z

∥∥∥γ Xi (·),Xn (·)
∥∥∥
H

×
∥∥∥
√
KR̂−1

X

√
K
∥∥∥
L(H)

∥∥∥γ x(·),Xn (·) − γ y(·),Xn (·)
∥∥∥
H

= OP (δ). (1.52)

Equation (1.48) then follows from Eqs. (1.51) and (1.52), when δ → 0, keeping in
mind Eq. (1.49), and the second part of condition B.1 (see again Corollary 3.2.3 in
Van der Vaart and Wellner (1996)).

��

B Analysis of the remainingmonths December, 1979–May, 1980

Similar cross validation results are obtained for each month in the period December,
1979–May, 1980, considering the data set available at NASA’s National Space Sci-
ence Data Center. Missing data affect the analysis of these months. As commented,
the sample size for each month is different, with May being the most affected month
by missing data, although it has not prevented its inclusion in our analysis. We have
adopted the criterion that all curves should have 6000 consecutive time nodes. For each
month, the starting time of the curves was taken randomly from the excess nodes of
the corresponding multiple of 6000 nodes contained in days 3–5 of the month consid-
ered. This, together with the existence of missing data, means that, a priori, monthly
translations of curve samples likely do not correspond to identical time intervals.
Figures19–20 display spherical bivariate curve data during these remaining months.
Empirical intrinsic Fréchet functional means of regressors are shown in Fig. 21, and
five fold cross validation quadratic angular functional errors are provided in Fig. 22.
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Fig. 19 Spherical bivariate curve data at times t = 1, 15, 29, 43, 57, 71 for December (first two lines),
January (second two lines), and February (last two lines), representing NASA’s MAGSAT spacecraft (black
curve), and magnetic field vector (red curve). The spherical coordinates are displayed at 6000 temporal
nodes for every sampled time

123



73 Page 32 of 35 A. Torres-Signes et al.

Fig. 20 Spherical bivariate curve data at times t = 1, 15, 29, 43, 57, 71 forMarch (first two lines) and April
(second two lines), and at times t = 1, 15, 29, 43, 48, 52 for May (last two lines), representing NASA’s
MAGSAT spacecraft (black curve), and magnetic field vector (red curve). The spherical coordinates are
displayed at 6000 temporal nodes for every sampled time
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Fig. 21 Empirical intrinsic Fréchet curve mean of regressors (December, 1979–February, 1980 at the top,
and March–May, 1980 at the bottom)

Fig. 22 Five fold cross validation quadratic angular functional errors (December, 1979–February, 1980 at
the top, and March–May, 1980, at the bottom)
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