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Abstract: This study systematically reviews the optimization techniques (OTs) and soft-
ware tools (STs) in hybrid microgrid systems (HMGSs) to enhance the efficiency, cost-
effectiveness, and energy reliability. An advanced Scopus search was conducted using
core keywords related to microgrids, renewable energy systems, and various OTs and
STs, which identified 4134 relevant documents on OTs. These were classified into classical
(16.87%), metaheuristic (47.12%), and artificial intelligence (AI)-based methods (36.01%),
highlighting the dominance of metaheuristics and the growing role of AI-driven approaches
in handling uncertainties and real-time decision-making. Additionally, 2667 documents
on STs were analyzed, identifying MATLAB/Simulink (65.34%) and HOMER (22.08%)
as the most widely used tools for simulation, modeling, and techno-economic analysis.
This study identifies key research trends, highlights gaps in the optimization strategies,
and emphasizes the need for AI integration, broader adoption of open-source tools, and
scalable optimization frameworks. By mapping the evolution and effectiveness of OTs and
STs, it provides valuable insights for researchers, policymakers, and industry professionals,
supporting the development of sustainable and intelligent HMGS solutions.

Keywords: renewable energy systems; hybrid microgrid systems; optimization techniques;
artificial intelligence (AI); metaheuristic algorithms; software tools

1. Introduction
Energy is a pivotal element reflecting the social and economic growth of nations and

the quality of life of their citizens. As societies grapple with changes in climate patterns
and the rising costs of traditional fuels like gas and oil, the challenge of diversifying energy
sources and reducing dependence on fossil fuels intensifies. Renewable energy sources
(RESs) have emerged as a sought-after solution for electrical energy production due to
their environmentally friendly nature compared to conventional methods. This transition
toward renewables is further highlighted by reports from the International Energy Agency
(IEA), which show a significant uptick in electricity generation using sustainable energy
means. According to an IEA report, their central forecast suggests that between 2022 and
2027, the worldwide capacity of RESs will increase by approximately 2400 GW, which is an
increase of almost 75%. Two key factors drive this surge in the adoption of RESs. Firstly,
the global energy crisis has resulted in the increased costs of fossil fuels and electricity.
Secondly, the incursion into Ukraine by Russia has made fossil fuel importers, especially
those in Europe, recognize and value the benefits of RESs in enhancing energy security.

In response to the energy crisis, China, the European Union (EU), the United States,
and India are rapidly implementing existing policies and introducing regulatory and
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market changes, as well as rolling out new measures faster than previously expected. This
has been a significant factor in the growth trajectory shown in Figure 1. In this figure, the
red bar represents the updated global forecast, while the light blue bars correspond to
individual regional forecasts.
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Since the previous report, RES usage in the EU has seen a 30% increase, with Germany
and Spain at the forefront, experiencing boosts of 50% and 60%, respectively [1]. As the
need to diversify energy sources and reduce reliance on fossil fuels grows, the significance
of RESs continues to increase. However, despite their sustainability, the intermittent nature
of RESs such as wind and solar limits their ability to be used independently. To address
this challenge, hybrid energy systems (HESs) combine multiple RESs, often integrating
energy storage or conventional sources like diesel generators, to provide a more reliable
and stable energy supply [2,3]. Microgrids (MGs), which can operate both connected
to the grid and in isolation, are at the forefront of this innovation, offering flexibility in
energy management [4]. The development of hybrid microgrid systems (HMGSs) further
enhances this integration by optimizing the balance between renewable and conventional
energy sources, achieving cost reductions, increased grid independence, and reduced
environmental impact [5–8].

Within this context, HMGSs provide an advanced solution for energy management
by integrating renewable and conventional power sources to reduce costs, enhance grid
independence, and minimize environmental impacts. Due to the inherent complexity of
HMGSs, advanced optimization techniques (OTs) are essential for achieving high efficiency,
cost reduction, and system reliability. Recent advancements in artificial intelligence (AI)
and metaheuristics have led to the development of powerful optimization algorithms that
effectively address these challenges. Furthermore, specialized software tools (STs) such as
HOMER and MATLAB/Simulink provide accurate modeling, simulation, and optimization
capabilities, enhancing the practicality and feasibility of HMGSs for various applications.

Area of Study

Despite the rapid development of OTs and specialized STs, existing studies often
focus on specific methods or tools without providing a holistic view of their integration in
HMGSs. This review aims to fill this gap by analyzing and comparing the effectiveness
and trends of various OTs and STs used in HMGSs, using Scopus records to assess their
prevalence over time.

By reviewing the advancements and adoption trends, and identifying promising ap-
proaches, this study provides a comprehensive analysis of OTs and STs, offering actionable
insights to improve the efficiency, reliability, and sustainability of HMGSs. Building on
suggestions from our earlier investigation [9], the document is organized as illustrated in
Figure 2, which outlines this study’s workflow and key phases.
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Figure 2. Workflow of this study.

The first section presents a systematic review of the OTs and tools, providing an
in-depth analysis of various methods and tools employed in HMGSs. This section achieves
our goal of delivering a comprehensive review, highlighting the latest advancements and
identifying critical optimization approaches. The second section, Evolution of Techniques
and Tools (Scopus analysis), examines the trends in the adoption of these techniques
over time, providing a broader perspective on their evolution and impact. Finally, The
Conclusion and Insights Section synthesizes the findings and presents valuable outcomes
for researchers and practitioners.

2. Systematic Review of OTs and STs
Through the optimization process, the optimal value or solution can be identified.

Optimization problems may involve one or more objectives, aiming to maximize, minimize,
or address both in the case of multi-objective optimization. These problems are prevalent
in diverse fields, such as mathematics, engineering, social studies, economics, agriculture,
aviation, and RES, among many others [10–19]. To ensure the most efficient deployment of
HMGSs, an optimization procedure is essential. Figure 3 highlights the critical OTs and STs
utilized to solve problems and evaluate the effectiveness of HMGSs.
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Figure 3. Key OTs and STs for HMGSs.

The OTs in HMGS studies are generally classified into the classical, metaheuristic, and
AI-based approaches based on the methodologies used in the reviewed studies. These
categories are defined as follows:

• Classical techniques: This category includes linear programming (LP), nonlinear pro-
gramming (NLP) (with convex optimization as a subset), dynamic programming (DP),
iterative methods, and graphical techniques. These methods rely on deterministic opti-
mization models and predefined mathematical formulations to find optimal solutions.

• Metaheuristic techniques: These methods use stochastic, population-based, or evo-
lutionary algorithms to explore large solution spaces efficiently. Genetic algorithms
(GAs), particle swarm optimization (PSO), and ant colony optimization (ACO) are
among the commonly used techniques in this category.
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• AI-based techniques: This category includes optimization approaches that incorporate
machine learning and neural networks to enhance decision-making and adaptation.
Examples include artificial neural networks (ANNs), reinforcement learning (RL),
deep learning (DL), and fuzzy logic (FL).

As a distinct subcategory within modern techniques, AI/enhanced metaheuristics
(AI/MH) refers to cases where machine learning or AI components are integrated with
metaheuristic algorithms to improve performance. Unlike pure metaheuristics, AI/MH
techniques use AI-driven learning mechanisms to adapt the search strategies dynamically,
increasing the convergence speed and solution quality.

This hybrid category differs from standalone AI-based techniques, which operate
purely on data-driven learning models, and from traditional metaheuristics, which lack
AI-driven adaptation.

The following sections provide an in-depth analysis of the OTs and STs most commonly
used in HMGSs.

2.1. Optimization Techniques

The stochastic nature of natural resources, nonlinear variation in output power from
solar photovoltaic (SPV) and wind turbine (WT), selection of component type and orienta-
tions, and economic modeling of energy generation costs in HMGSs all contribute to the
complexity of the HMGS optimization problem [20]. This complexity has driven researchers
to develop various methods and techniques for optimizing HMGSs, as detailed below.

2.1.1. Classical Techniques

Various OTs are employed to optimize the use of HESs integrated with MGs. This section
reviews the research utilizing traditional OT methods, including iterative, graphical, linear,
nonlinear, and dynamic programming, to address the optimization challenges in HMGSs.
Table 1 provides a description of these techniques, along with the literature reviewed.

Table 1. Classical OTs applied in HMGS studies.

1. Iterative methods

In optimization processes, computer-driven simulations iteratively refine estimations by evaluating various factor combinations, retaining the most
effective solutions while reducing the focus on less favorable ones. These methods play a crucial role in HMGSs, particularly in fine-tuning dispatch
strategies and optimizing power flows in hybrid energy storage systems [21]. Their adaptability makes them effective for handling nonlinearity in
real-time MG operations, especially in optimizing battery energy storage placement and unbalanced AC/DC power flow modeling [22]. However,
iterative approaches can be computationally intensive, requiring proper calibration to prevent slow convergence or local optima trapping. Despite
these challenges, they remain widely used due to their flexibility and reliability in solving complex MGs energy management problems.

Ref. SPV WT Energy storage DG Other sources Optimization
Focus Key Findings

[23] ✓ ✓ ✓ ✓ ✗ LCOE, LCOH

Investigated the sizing and economic
evaluation of an HMGS SPV-WT-DG-battery
system in islanded mode. Results
demonstrated reduced life-cycle cost with
low LPSP, outperforming HOMER in
cost-effectiveness.

[24] ✓ ✓ ✓ ✗ ✗
Economic,
reliability

Developed a multi-objective dispatching
model using the MSIIO technique,
optimizing energy storage utilization.
Achieved 4.18% higher economic gains and
82.83% capacity utilization, outperforming
PSO and differential evolution.
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Table 1. Cont.

2. Nonlinear programming (NLP)

Nonlinear programming (NLP) involves optimizing an objective function subject to nonlinear equality and inequality constraints, making it
essential for solving real-world HMGS optimization problems with complex, nonlinear variable dependencies [25]. Unlike linear programming (LP),
NLP provides greater flexibility, enabling the modeling of the dynamic energy dispatch, demand response programs (DRPs), and RESs integration
in HMGSs. However, its challenges include the high computational complexity, sensitivity to initial conditions, and risk of converging to local
optima rather than the global best solution [26]. NLP has been applied to optimize cost-efficiency, enhance demand-side management, and improve
RES utilization in MG operations [27]. Similarly, stochastic MINLP methods have been used to effectively coordinate fuel-cell-based energy
generation and energy storage under RES uncertainty, ensuring reliable MG operation even in the presence of fluctuating energy sources [28].

[26] ✓ ✓ ✗ ✓ ✗
Revenue
maximization, cost
reduction

Applied a risk-aware mixed-integer
nonlinear optimization approach to manage
stochastic energy sources. Optimized DG,
SPV, and WT operations under market price
uncertainties, achieving cost minimization
through fuel savings and energy sales.
Enhanced energy dispatch and
load-generation balance with robust
scheduling techniques, including cubic
spline interpolation.

To address the NLP limitations, convex optimization is widely used to reformulate complex nonlinear problems, ensuring global optimality and
computational efficiency. It plays a crucial role in real-time MG energy management, decentralized optimization, and economic dispatch models,
guaranteeing scalable and adaptive decision-making [29,30]. For instance, ref. [31] applies convex optimization in decentralized real-time energy
management, optimizing economic dispatch under demand and RES uncertainties. Using Lagrangian dual decomposition, it minimizes the
system-wide power costs in both grid-connected and islanded MGs. Similarly, ref. [32] addresses non-convex challenges in hybrid AC/DC MGs,
transforming bidirectional converter models into convex formulations to improve the computational efficiency and solution time.
Despite its advantages, convex optimization applies only to problems that can be mathematically transformed into convex structures. While
researchers work to reformulate real-world problems for better computational efficiency, highly nonlinear or mixed-integer problems remain
challenging to solve [30].

3. Linear programming

Linear programming is a mathematical optimization technique used to determine the optimal solution within defined linear constraints. It is widely
applied in MG energy management, economic dispatch, and resource allocation due to its structured approach, computational efficiency, and ability
to handle large datasets [33,34]. In MG applications, LP is frequently utilized for optimal scheduling of HESs [35], energy storage planning [36], and
demand response integration [34]. Its key advantages include reliability, scalability, and guaranteed global optimality for problems with linear
relationships. However, LP has limitations—it strictly adheres to a linear framework, which often fails to capture real-world complexities.
Additionally, even small modifications can significantly impact the results, and solving large-scale problems can be computationally
demanding [37].

[33] ✓ ✓ ✓ ✗ ✗
Cost reduction,
efficiency
improvement

Modeled and optimized MG components
using MILP, integrating demand response
programming for standalone systems.
Results demonstrated reduced mismatches,
cost savings, and lower battery
requirements via load scheduling.
Validation performed with HOMER and
GAMS using the CPLEX solver.

4. Dynamic programming

Dynamic programming (DP) is an optimization technique that breaks down complex problems into smaller subproblems, solves each one only once,
and stores the solutions for future use. This method is particularly effective for sequential decision-making and is widely applied in MG energy
scheduling, storage management, and power flow optimization [38,39]. DP-based approaches have been successfully used to optimize real-time
energy storage management in microgrids, addressing uncertainties in renewable generation while minimizing energy costs [38]. Additionally,
adaptive DP methods have been implemented in dynamic energy management systems (DEMSs) for grid-connected and islanded MGs, ensuring
efficient dispatch of RESs and storage resources [39]. In the residential sector, DP has been applied for solar energy scheduling, improving cost
savings and enhancing electricity efficiency [40]. However, DP requires high computational resources, as it stores intermediate solutions, making it
memory-intensive. Additionally, its application is best suited to problems that can be structured into interdependent subproblems, limiting its use
in highly dynamic or large-scale real-time decision-making scenarios [41].

[42] ✓ ✓ ✓ ✓ MT, FC Cost and emission
minimization

Optimized standalone MG energy
scheduling using advanced dynamic
programming, achieving enhanced
efficiency, reduced fuel costs, and decreased
emissions. Implemented an optimal energy
management system with a constrained
single-objective model, minimizing
operational and emission costs. Inclusion of
battery storage significantly lowered the
total costs and emissions, demonstrating
system feasibility through simulation.
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Table 1. Cont.

5. Graphical techniques

Graphical optimization is an approach where objective functions and constraints are represented graphically to facilitate optimal decision-making.
Graph-based methods are particularly useful for distribution network reconfiguration, energy storage scheduling, and resource allocation in MGs
[43]. For instance, graph theory has been successfully applied to optimize MG topologies and distributed generation placement, ensuring radiality
constraints and minimizing active power losses [44]. Additionally, graph-based P-Graph has been utilized for multi-period hybrid energy storage
planning in MGs, enabling efficient energy dispatch and cost-effective hydrogen battery storage integration [45]. Graph theory is increasingly
applied in MG power flow modeling and control, representing voltage/current relationships, energy transfer, and system connectivity. Its
expansion has enabled alternative power flow methods and improved control strategies. However, graph-based optimization is most effective for
structured graph problems. In highly dynamic microgrid scenarios with nonlinear, multi-objective, and stochastic constraints, advanced hybrid
techniques may be required [43].

[46]

Renewable electricity: Produced from localized
HRES.
-Non-renewable electricity: Generated from
fossil fuels

Biogas,
hydrogen
generation,
potential
energy carriers
(ammonia,
urea)

LCOE, CO2
reduction

Proposed a method for converting surplus
renewable electricity, CO2, and biogas into
sustainable hydrogen using a P-Graph
graphical optimization approach. Scenarios
with 20%, 30%, and 40% demand increments
showed annual cost increases of 32%, 27%,
and 35%, respectively. Transition to
non-renewable electricity began at 20%
hydrogen demand, with natural gas usage
starting at 40%. Sustainability was enhanced
through Pareto frontier and TOPSIS
analyses, optimizing the balance between
environmental and economic factors.

Abbreviations: SPV = solar photovoltaic, WT = wind turbine, DG = diesel generator, MG = microgrid,
HMG = hybrid microgrid, HRES = hybrid renewable energy system, LCOE = levelized cost of electricity,
LCOH = levelized cost of hydrogen, MILP = mixed-integer linear programming, CPLEX = commercial op-
timizer by IBM, HOMER = hybrid optimization model for multiple energy resources, GAMS = general algebraic
modeling system, MT = micro-gas turbine, FC = fuel cell.

The table above provides a comparative analysis of the optimization strategies for
HMGSs, examining various computational methods, such as iterative processes, NLP, linear
programming, and dynamic programming. Each method offers distinct advantages in en-
hancing the economic, reliability, and environmental outcomes. Iterative methods are often
more cost-efficient than traditional models. Meanwhile, NLP addresses stochastic chal-
lenges, offering robust solutions in volatile markets. Linear optimization ensures structured
problem-solving but may have limitations in handling complexity. In contrast, dynamic
programming excels in decomposing complex issues, albeit at a higher computational cost.
Overall, these studies highlight the importance of selecting optimization approaches that
align with the specific characteristics, goals, and objectives of HMGSs.

2.1.2. Modern Optimization

Modern OTs in the context of HMGSs include metaheuristic and AI approaches that
enhance energy system performance, efficiency, and sustainability by addressing complex
challenges in real time or near real time.

Metaheuristics are high-level algorithms used to find good solutions for complex
problems, especially when exact methods are impractical. Examples include genetic al-
gorithms (GAs), particle swarm optimization (PSO), and ant colony optimization (ACO).
These techniques mimic natural processes to explore and exploit solution spaces efficiently.

Artificial intelligence (AI) techniques, such as machine learning, reinforcement learn-
ing, and deep learning, learn from data to optimize energy systems. AI is adaptive and can
improve system performance by predicting behaviors and making real-time decisions.

Metaheuristics and AI can be combined to leverage their strengths, creating AI-
enhanced metaheuristics that improve the search efficiency and provide more effective
solutions for HMGS optimization.
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a. AI in HMGS optimization

In the context of HMGSs, AI OTs play a pivotal role in managing fluctuating energy
sources and demands. These techniques enable dynamic, adaptive control strategies that en-
hance the stability, efficiency, and resilience of the grid. The key AI techniques used in HMGS
optimization include artificial neural networks, reinforcement learning, and deep learning.

• Reinforcement learning

Dynamically adjusts control strategies to optimize the energy flow within HMGSs.
Agents learn by performing actions, observing the outcomes, and adjusting their behavior
to maximize a predefined reward. This adaptability makes it powerful for creating control
policies that can adjust to varying conditions in real time [27]. The merits include its adapt-
ability and proficiency in handling sequential decision-making. However, this approach
often requires extensive data for training and presents challenges in designing an appro-
priate reward system. Unlike other AI techniques that rely solely on data, reinforcement
learning learns directly from interactions within its environment, making it uniquely suited
for complex, dynamic systems like HMGSs.

• Fuzzy logic

Fuzzy logic is a method of reasoning that handles approximate rather than fixed
and exact conclusions, making it well suited for dealing with uncertainties and imprecise
information in HMGSs. It is advantageous in HMG optimization due to its simplicity,
transparency, and effectiveness in handling nonlinear systems under various conditions.
Its main merits include the ease of understanding and implementation, as it relies on expert
knowledge rather than extensive data for model training. However, a key challenge lies
in defining precise membership functions and rules. Compared to data-driven methods
like deep learning and artificial neural networks, fuzzy logic is easier to interpret and
implement but may lack the depth and adaptability of those techniques.

• Deep learning

Deep learning, a subset of machine learning, leverages artificial neural networks with
multiple layers to effectively recognize patterns and extract features from vast datasets. In
HMGS optimization, it excels at forecasting energy consumption and generation, capturing
complex nonlinear relationships [28]. Its primary merits include high accuracy in pattern
recognition and the ability to handle unstructured data. However, this method requires
substantial computational resources and large datasets, and it is often considered a “black box”
due to its lack of interpretability. Compared to reinforcement learning and fuzzy logic, deep
learning is more data-intensive and is particularly effective for modeling complex patterns.

• Artificial neural networks

Artificial neural networks are computational systems inspired by the biological neural
networks in animal brains. They are highly effective at modeling nonlinear relationships,
which is essential for predicting and optimizing energy flows in HMGSs [29,30]. A major
advantage of these networks is their ability to learn from large datasets and generalize
across various scenarios, enabling accurate forecasting and optimization in complex sys-
tems. However, a notable drawback is their “black box” nature, which can make the
decision-making process challenging to interpret. Compared to fuzzy logic, artificial neural
networks require more data for training but can model more intricate relationships than
fuzzy logic or traditional AI/metaheuristic approaches.

• AI-enhanced metaheuristic (AI/MH)

AI-enhanced metaheuristic (AI/MH) methods integrate AI techniques, such as learn-
ing and adaptation, with metaheuristic algorithms to tackle optimization challenges. In
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HMGSs, this approach facilitates more effective search strategies for energy management
solutions. The key advantages include a balanced exploration and exploitation of the search
space, along with faster convergence to high-quality solutions. However, integrating AI
techniques with metaheuristic algorithms can be complex and may increase the risk of
overfitting. While AI/MH can often achieve solutions more efficiently than traditional
metaheuristics, it requires a more sophisticated design compared to standalone AI methods
like deep learning or reinforcement learning.

Studies that utilize these techniques are detailed in Table 2, highlighting the ap-
plications, objectives, and findings associated with each AI approach in the context of
HMGS optimization.

The collection of research spanning references [31–35] underscores the crucial role of
AI-enhanced metaheuristic methods in HMGS optimization. Reinforcement learning and
DRNN-LSTM models are notable for their capacity to perform demand-side management
and predictive scheduling, leading to improved grid stability and reduced operational costs.
The newly developed BWO algorithm exemplifies the efficacy of nature-inspired techniques
in the strategic distribution of energy. These studies showcase how intelligent algorithms
can adeptly navigate the complexities of energy management, yielding enhanced technical
and economic outcomes.

While AI techniques offer advanced capabilities for managing complex, real-time deci-
sions in HMGS optimization, metaheuristic approaches bring a complementary strength
through their adaptive, nature-inspired algorithms. These techniques excel in solving
multi-objective optimization problems within HMGSs due to their flexibility and robust
capacity to navigate vast solution spaces. The following section explores the application of
metaheuristic methods in HMGS optimization.

Table 2. Comparative analysis of AI algorithm utilization in autonomous MG optimization studies.

Ref. SPV WT Energy
Storage DG Other Sources Optimization

Method
Optimization
Focus Key Findings

[47] ✗ ✓ ✓ ✗ ✗
Reinforcement
learning

Optimize battery
scheduling,
maximize battery
and wind
utilization,
reduce grid
dependence

Applied a 2-step-ahead
reinforcement learning algorithm
for optimized battery scheduling,
addressing wind power
uncertainties and mechanical
failures to reduce grid reliance.
Demonstrated a refined strategy for
improved decision-making in MG
energy management.

[48] ✓ ✓ ✓ ✓
H2 production,
desalination,
heating/cooling

Fuzzy logic,
gray prediction
algorithms

Intelligent
demand side
management

Utilized a multi-agent system with
gray prediction for demand
management in polygeneration
MGs, maintaining effective
operation even when demand
exceeded design specifications.
Optimized within capital
constraints, ensuring adaptability
for future conditions.

[49] ✓ ✗ ✓ ✗ EVs

DRNN-LSTM
for forecasting,
PSO for load
dispatch

Optimal load
dispatch with
forecasting
integration

Applied the DRNN-LSTM model,
outperforming MLP and SVM in
forecasting the SPV output and
residential load. PSO optimized the
load dispatch, achieving an 8.97%
daily cost reduction through peak
load shifting. Coordinated EV
charging contributed to cost savings
and stability.
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Table 2. Cont.

Ref. SPV WT Energy
Storage DG Other Sources Optimization

Method
Optimization
Focus Key Findings

[50] ✗ ✓ ✗ ✗ ✗
ANN-based
fuzzy
controller

Voltage stability
in wind-fed
isolated MG

The ANN-based fuzzy controller
effectively maintained voltage
stability in variable wind
conditions, achieving stable system
performance with acceptable THD
levels. It successfully managed
power distribution between critical
and non-critical loads, ensuring
near-nominal voltage throughout
the system.

[51] ✓ ✓ ✓ ✓ ✗ BWO

Optimal MG
energy
management
with DRPs

The stochastic day-ahead EMS,
using price-driven DRPs, optimized
the cost and energy coordination by
incorporating a flexible price
elasticity model for realistic
customer responses. The BWO
algorithm determined optimal
resource scheduling in a 3-feeder
MG system, effectively addressing
renewable intermittency through
stochastic scenario generation.

Abbreviation: SPV: photovoltaic solar, WT: wind turbine, DG: diesel generator, MG: microgrid, HMG: hybrid
microgrid, HRES: hybrid renewable energy system, DRNN-LSTM: deep recurrent neural network with long
short-term memory, PSO: particle swarm optimization, EVs: electric vehicles, ES: electric spring, AFC: artifi-
cial fuzzy controller, ES-AFC: electric spring–artificial fuzzy controller, ANN: artificial neural network, THD:
total harmonic distortion, BWO: black widow optimization, DRPs: demand response programs, EMS: energy
management system.

b. Metaheuristic techniques in HMGS optimization

Metaheuristic techniques are algorithmic strategies inspired by natural occurrences
and animal behavior that are intended to tackle complicated optimization issues. They
use a population-based method, repeatedly improving a collection of options to efficiently
identify optimum or near-optimal solutions. These strategies are adaptable, able to solve a
broad variety of situations when traditional methods may fail owing to the problem’s size
or complexity [36]. Here is an overview of the three well-known metaheuristic algorithms,
particularly in the context of optimizing an HMGS:

• Particle swarm optimization (PSO): PSO is a metaheuristic that seeks solutions by op-
timizing particle placements based on natural social behavior. PSO is commonly used
to assess HMGSs, as indicated by its inclusion in several research studies. For example,
Ref. [37] identifies optimum system topologies and component sizes while considering
dependability, cost, and environmental effect, and for enhancing energy manage-
ment systems in MGs with optimized artificial networks for improved performance
and renewable integration, as illustrated in reference [38]. Furthermore, Ref. [39]
emphasizes PSO’s application in designing and optimizing a smart DC MG’s multi-
objective function for an HMGS of SPV, WT, and biogas-based IC engine generators,
with the goal of maximizing power availability while lowering costs, demonstrating
PSO’s superior performance in cost reduction and high availability when compared to
other algorithms.

• Genetic algorithm (GA): A GA is a metaheuristic inspired by natural selection that
use selection, crossover, and mutation to develop solutions toward optimality, which
has been widely utilized in various studies to evolve candidate solutions toward
optimality. For example, in Ref. [40], the GA improves HMGSs in order to reduce en-
ergy production costs while increasing dependability and environmental advantages.
Ref. [41] demonstrates GA’s use in designing energy management systems for MGs,
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with an emphasis on maximizing the profit from energy exchanges and minimizing
system complexity for improved smart grid integration. Another application of a
GA, as detailed in Ref. [42], is optimizing a hybrid SPV/WT, addressing the loss of
load probability (LLP) and system cost by selecting the optimal capacities for the SPV
array, wind turbine, and battery, optimizing the SPV array tilt angle, and determin-
ing the ideal inverter size, demonstrating the GA’s versatility in addressing complex
optimization challenges in HMGSs.

• Ant colony optimization (ACO): ACO is a metaheuristic inspired by ant foraging
behavior that efficiently solves discrete optimization problems such as routing and
scheduling. ACO shows adaptability in HMGS optimization across several studies.
Ref. [43] investigates the use of ACO for supervisory control in alternative energy
distributed generation MGs, aiming to improve dispatch management while taking
environmental and economic factors into account. Ref. [44] uses ACO for maximum
power point tracking (MPPT) to enhance power quality in islanded MGs by optimizing
HRESs units. Lastly, Ref. [45] applies ACO to an energy management system (EMS) in
MGs, concentrating on cost-efficient scheduling and demonstrating significant cost
savings over standard EMS and PSO approaches, demonstrating ACO’s efficiency in
complicated, multi-objective optimization tasks inside HMGSs.

In summary, metaheuristic techniques bring a flexible, adaptive approach to optimiz-
ing HMGS by drawing on nature-inspired algorithms to tackle complex, multi-objective
challenges. While AI and metaheuristics both play critical roles in HMGS optimization,
the need for dedicated STs becomes evident in scaling, simulating, and operationalizing
these advanced techniques. The next section explores the STs commonly employed in
HMGS optimization, detailing how they assist in system design, simulation, and analysis
to achieve cost-effective, reliable, and sustainable energy management solutions.

2.2. STs for HMGS Optimization

The classification of STs for HMGS optimization is based on their primary roles in
the design and optimization process [52]. These tools can be categorized into feasibility
assessment tools, design and sizing tools, simulation and modeling tools, optimization
tools, and comprehensive tools, as illustrated in Figure 4.
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• Feasibility assessment tools: Used in the initial stages to assess the viability and
potential of HMGS designs.

• Design and sizing tools: Aid in configuring and sizing system components to ensure
they meet design requirements.
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• Simulation and modeling tools: Analyze system performance under various conditions
and predict behavior during operation.

• Optimization tools: Focus on improving the system’s performance by finding the most
cost-effective and energy-efficient operational strategies.

• Comprehensive tools: Integrate multiple functions, offering a holistic approach to
designing, simulating, and optimizing HMGSs.

Each category serves a distinct purpose in guiding the development and optimization
of HMGSs, ensuring that the designs are both technically sound and economically viable.

These tools have been applied in various studies, each emphasizing key economic
performance metrics:

• Levelized cost of energy (LCOE): Represents the average cost per unit of electricity
generated over the system’s lifetime, serving as a critical metric for assessing long-term
economic viability.

• Net present cost (NPC): Evaluates the total lifetime costs, including installation, main-
tenance, and operational expenses, providing a comprehensive assessment of the
overall costs.

• Net present value (NPV): Assesses the profitability of a system by comparing the present
values of the costs and revenues, helping to determine the project’s economic feasibility.

These metrics are essential for designing cost-effective and technically sound HMGSs,
particularly in isolated or grid-connected systems. Table 2 provides a summary of the research
studies that utilize these STs, detailing each tool’s functionality and primary findings.

Table 3 presents a diverse range of research studies that have utilized various STs to
optimize HMGSs. These studies demonstrate how tools like HOMER, RETScreen, and
NREL SAM have been employed for feasibility assessments, system design, and cost
optimization. A common theme is the frequent integration of SPV with other energy
sources such as WT, biomass, and DGs. Many of the studies prioritize reducing costs,
particularly through the optimization of the LCOE, which has become a central performance
metric. HOMER stands out as a widely used tool for its comprehensive ability to model,
simulate, and optimize HMGSs, particularly in balancing technical performance with
economic feasibility. As the table illustrates, the choice of software is crucial, depending
on the system’s complexity and the desired outcome, whether it is for off-grid or grid-
connected configurations.

Building on these findings, the next section delves into the evolution of OTs and tools
in HMGSs, highlighting the role of advanced AI and metaheuristic methods in achieving
efficiency and reliability. This analysis also examines how STs have adapted to support
increasingly complex technical and economic objectives in HMGSs, facilitating a balance
between performance and cost-effectiveness.
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Table 3. Research studies on HMGS optimization using different software programs.

Ref. SPV WT Energy
Storage DG Other Sources Optimization

Focus Key Findings Software Tool Software Description

[53] ✓ ✓ ✓ ✓ ✗ LCOE, LCOH

Assessed HMG for green hydrogen
production on a remote island.
Scenario analysis revealed 80% RES as
most cost-effective.

HOMER Hybrid optimization of multiple energy resources
(HOMER) was developed in 1993 by the National
Renewable Energy Laboratory (NREL) [54]. It is
designed to model and simulate various RESs,
and it excels in cost analysis and sensitivity
analysis, with integration capabilities for typical
meteorological year (TMY2) data for weather and
solar radiation, or user-provided data [55].
HOMER employs a proprietary simulation-based
approach for optimization, using sensitivity
analysis and a search algorithm to identify the
lowest-cost system configurations across various
input variables. It is widely used for the economic
and technical assessment of large-scale HESs.
Strength: Excellent for optimizing component
sizing and conducting thorough cost analyses,
with advanced sensitivity analysis capabilities.
Weakness: May not capture all the dynamics of
complex system behavior without precise,
customized input data.

[56] ✓ ✓ ✓ ✗ Biomass Size, LCOE

Proposed SPV-WT-biomass storage
system to meet remote area needs. ABC
algorithm shortened simulation time
vs. HOMER and PSO.

HOMER
ABC
PSO

[57] ✓ ✓ ✗ ✗ Biomass Size, LCOE

HMGS for a 50 MW power plant in
Pakistan; profitable with national grid
integration, ideal for regions with
frequent power outages.

HOMER

[58] ✓ ✓ ✓ ✗ ✗ LCOE

Techno-economic assessment for
off-grid HMGSs in the USA, Canada,
and Australia; evaluated
SPV-WT-battery with hydrogen storage.
Minimum COE achieved with
integrated SPV-WT battery, electrolyzer,
and hydrogen tank, reducing costs to
0.50 USD/kWh compared to
non-battery configurations at
0.78 USD/kWh.

HOMER

[59] ✓ ✓ ✓ ✓ ✗ Cost, size
Assessed thermal energy storage in an
islanded HMGS; DG contributed to
higher COE.

IHOGA

IHOGA, developed by researchers at the
University of Zaragoza, Spain, is designed for
simulating and optimizing RES-based electric
power systems. It has two versions: IHGO for
systems up to 5 MW and MHOGA for larger
systems without capacity limits. IHOGA’s library
includes diverse components like the SPV, WT,
batteries, hydropower turbines, and various
generators. It calculates the NPC, LCOE, NPV,
IRR, and battery lifespan, using genetic
algorithms to improve system efficiency and
reduce costs over successive iterations [60].
Strength: Effective genetic algorithm for
optimizing cost and sizing in HES. Weakness:
Computationally intensive; may require
fine-tuning for complex systems.
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Table 3. Cont.

Ref. SPV WT Energy
Storage DG Other Sources Optimization

Focus Key Findings Software Tool Software Description

[61] ✓ ✓ ✓ ✓ Biomass Cost, feasibility

Evaluated HMGSs for tourist regions in
Europe, achieving 99% user demand
coverage with RES in Gdansk, Poland,
and 43% surplus in Agkistro, Greece.

TRNSYS

TRNSYS, developed in 1975 by France, Germany,
and the United States, is a transient systems
simulation tool used across various energy
applications, including biomass, cogeneration,
hydrogen fuel cells, wind and SPV systems,
high-temperature solar, and geothermal heat
pumps. It requires minimal data and
computational resources, making it suitable for
preliminary assessments [62,63].
Strength: High-fidelity transient simulation ideal
for detailed technical system analysis.
Weakness: Economic optimization is not the
primary focus and may need additional modules
for financial assessment.

[64] ✓ ✓ ✓ ✗
Biomass
hydropower CO2 reduction

Decarbonization study for Sichuan
Province: Scenarios showed energy
storage significantly reduced
operational costs while requiring high
investment, demonstrating feasibility
for hydropower-rich regions.

EnergyPLAN

EnergyPLAN, developed by Aalborg University’s
Sustainable Energy Planning Research Group in
Denmark in 2000, is a deterministic simulation
tool for modeling national energy systems,
including power, heating, cooling, industry, and
transportation [65].
Strength: Effective for strategic policy scenario
analysis. Weakness: Primarily a simulation tool,
requiring additional software for detailed
optimization.

[66] ✓ ✗ ✗ ✗ ✗
Modeling and
simulation

Demonstrated RAPSim for optimal DG
placement in an MG, considering SPV
output variability influenced by solar
radiation and time-dependent factors.
Showcased the software’s capabilities
in data output, scenario management,
and temporal/weather simulation.

RAPSim

Developed at Alpen Adria University Klagenfurt,
RAPSim is an open-source tool for RES simulation
in grid-connected and off-grid MGs. It prioritizes
power production estimation for each source
before conducting power flow analysis [67].
Strength: Detailed simulation for RES with
scenario management.
Weakness: Lacks built-in economic and sensitivity
analysis; may require additional tools for
comprehensive assessments.
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Table 3. Cont.

Ref. SPV WT Energy
Storage DG Other Sources Optimization

Focus Key Findings Software Tool Software Description

[68] ✓ ✗ ✗ ✗ ✗
Techno-economic,
feasibility

Assessed the viability of a 500 kW SPV
MG across 12 sites in Nigeria, including
a techno-economic analysis. Findings
showed economic feasibility at all sites,
with payback periods ranging from 6.3
to 7.4 years based on NPC, internal rate
of return, and payback period metrics.

RETScreen

Developed by Canada’s Ministry of Natural
Resources, RETScreen is a publicly available tool
for assessing the costs and benefits of RE
technologies worldwide. Released in 1998,
RETScreen is particularly useful for on-grid
feasibility analysis [69].
Strength: Comprehensive feasibility analysis,
covering financial viability and risk assessment.
Weakness: Limited in optimization capabilities;
primarily focused on project feasibility rather
than detailed system design.

[70] ✓ ✗ ✓ ✗ ✗ LCOE, feasibility

Evaluated a grid-connected MG with
SPV and energy storage, comparing
lead-acid (LA) and lithium-ion (LI)
batteries. Findings showed that LI
batteries are more feasible, with an
LCOE of 6.75, compared to 10.6 for LA.

NREL SAM

The system advisor model (SAM), developed by
NREL and Sandia National Laboratories,
provides a robust platform for techno-economic
analysis across various RESs, including CST, SPV,
WT, fuel cells, biomass, and geothermal. It offers
insights into CST technologies and RESs globally,
available as a free, versatile tool for technical and
financial assessments [71,72].
Strength: Highly versatile for techno-economic
analysis and performance modeling across
diverse RESs.
Weakness: Broad capabilities may lack the
specificity found in dedicated optimization tools.

[73] ✓ ✓ ✗ ✓ ✗

MG protection
using
communication-
assisted digital
relays

Proposed a protection scheme using
digital relays with communication
networks. Demonstrated detection of
high-impedance faults in a
high-penetration HMGS. Simulated in
MATLAB/Simulink’s
SimPowerSystems toolbox.

MATLAB/
Simulink

MATLAB/Simulink, developed by MathWorks, is
a high-performance environment for technical
computing and simulation, extensively used for
modeling, simulating, and analyzing dynamic
systems, including MGs [74]. It enables
integration with toolboxes like SimPowerSystems
for RE applications, grid modeling, and fault
detection in MGs [73].
Strength: Flexible and highly customizable, with
extensive libraries for RES modeling and
advanced fault analysis.
Weakness: Requires expertise for custom
implementation; computationally intensive for
large-scale simulations.

Abbreviations: SPV: solar photovoltaic, WT: wind turbine, DG: diesel generator, HMGs: hybrid microgrid systems, LCOE: levelized cost of energy, LCOH: levelized cost of hydrogen,
HOMER: hybrid optimization of multiple energy resources, CO2: carbon dioxide, NPC: net present cost, ABC: artificial bee colony, PSO: particle swarm optimization, IHOGA: improved
hybrid optimization by genetic algorithms, NPV: net present value, IRR: internal rate of return, NPC: net present cost, TRNSYS: transient system simulation, RAPSim: renewable
alternative power systems simulation, SAM: system advisor model, CST: concentrating solar thermal, FC: fuel cell, LA: lead-acid battery, LI: lithium-ion battery.
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3. Evolution of Techniques and Tools (Scopus Analysis)
The exploration of the scientific literature over time enables researchers to track the

development and emerging trends within a specific field. This section investigates the
evolution of OTs and STs for HMGSs, utilizing Scopus as the primary database. This analy-
sis sheds light on the increasing complexity and advancements in the field, pinpointing
key areas where OTs have gained significant traction and addressing insights noted in
previous work.

Following the established best practices for systematic reviews, as shown in Figure 5,
this study followed these steps:

1. Problem Planning and Formulation

• Defined research questions and objectives.
• Established criteria for selecting relevant literature.
• Outlined potential conclusions based on the findings.

2. Database, Keywords, and Search String Determination

• Selected Scopus as the primary database.
• Identified relevant keywords to ensure a comprehensive search.
• Developed a focused search string aligned with this study’s objectives.

3. Literature Selection

• Applied the PRISMA methodology to screen and select relevant articles.
• Excluded unrelated studies, books, and non-English publications.

4. Analysis of Results

• Extracted insights from the selected studies.
• Analyzed trends, gaps, and emerging areas of focus in the field.
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Figure 5 outlines the systematic review process for tracing the evolution of OTs
and tools in the HMGS research. With this structured approach, we have gathered a
comprehensive dataset of studies that reflect the trajectory and advancements in the field.
The following sections present the results of our bibliometric and Scopus analyses, offering
insights into the publication trends, leading journals, and geographic contributions in the
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domain of HMGS OTs and tools. These data reveal patterns and emerging areas of focus
that highlight the growing role of AI and metaheuristic methods within HMGS research.

4. Systematic Review Framework and Results
This section presents the findings from the systematic review of OTs and STs in HMGSs,

following the methodology outlined in Figure 5. It encompasses the structured review
process (PRISMA) and the results derived from the analysis.

4.1. Problem Formulation

This study aims to map the current knowledge landscape surrounding OTs and STs
in HMGSs through a systematic, category-specific analysis. By carefully selecting and
applying relevant keywords in an advanced Scopus search, this study establishes a focused
foundation for analyzing advancements in both techniques and tools, setting the stage for
in-depth exploration and evaluation.

4.2. Database and Search String Determination

To ensure a comprehensive and targeted search, the keyword selection was based on
three key criteria:

1. Relevance to HMGS optimization: Keywords were chosen to cover a broad range of
OTs and STs commonly applied in HMGSs.

2. Coverage of classical and modern methods: The selection includes both classical
approaches and widely adopted modern AI-enhanced metaheuristics to reflect proven
advancements in optimization.

3. Scientific and practical significance: Keywords were derived from highly cited studies
and standard industry practices, ensuring alignment with widely recognized methods
in HMGS research.

Scopus was chosen for its vast collection of important scientific publications, ensuring
thorough and reliable data collection. The search strategy focused on selecting relevant
studies based on clear inclusion criteria while maintaining accuracy in identifying impact-
ful research.

4.2.1. OTs

For this study, the Scopus database was selected due to its extensive repository of glob-
ally significant scientific publications across a wide range of fields. The review focused on
core topics in relation to HMGSs, including MGs, renewable energy systems, and various
OTs spanning both classical and modern approaches (as illustrated in Figure 3). To capture
relevant studies, an advanced Scopus search was performed using the following search
string: TITLE-ABS-KEY ((“microgrid” OR “micro grid” OR “micro-grid” OR “microgrids”
OR “hybrid microgrid systems” OR “hybrid microgrid system” OR “rural microgrid”
OR “urban microgrid”) AND (“renewable energy” OR “renewable energy sources” OR
“renewable energy systems” OR “hybrid energy” OR “distributed energy resources” OR
“hybrid energy systems” OR “hybrid energy sources” OR “hybrid power system”) AND
(“optimization techniques” OR “metaheuristics” OR “genetic algorithm” OR “GA” OR
“particle swarm optimization” OR “PSO” OR “ Ant Colony Optimization” OR “ACO” OR
“evolutionary algorithms” OR “swarm intelligence” OR “Genetic programming” OR “Dif-
ferential evolution” OR “Simulated annealing” OR “Tabu search” OR “Harmony search”
OR “artificial intelligence” OR “Deep reinforcement learning” OR “fuzzy logic” OR “deep
learning” OR “Deep reinforcement learning” OR “Support vector machine” OR “reinforce-
ment learning” OR “machine learning” OR “artificial neural networks” OR “AI-enhanced
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metaheuristic” OR “linear programming” OR “non linear programming” OR “graphical
technique” OR “iterative technique” OR “dynamic programming”)).

4.2.2. STs

Similarly, the Scopus database served as the primary source for the literature on
STs used in HMGS optimization. This segment of the review targeted topics related to
microgrids, renewable energy systems, and specialized STs (as illustrated in Figure 3).
The advanced Scopus search string applied to capture relevant software-focused studies
was as follows: TITLE-ABS-KEY ((“microgrid” OR “micro grid” OR “micro-grid” OR
“microgrids” OR “hybrid microgrid systems” OR “rural microgrid” OR “urban microgrid”
OR “hybrid microgrid system”) AND (“renewable energy” OR “renewable energy sources”
OR “renewable energy systems” OR “hybrid energy” OR “distributed energy resources” OR
“hybrid energy systems” OR “hybrid energy sources” OR “hybrid power system”) AND
(“HOMER” OR “HOGA” OR “TRNSYS” OR “HYGROGEMS” OR “INSEL” OR “ARES”
OR “RAPSIM” OR “SOMES” OR “SOLSIM” OR “MATLAB/Simulink” OR “OpenDSS”
OR “System Advisor Model” OR “SAM” OR “REopt” OR “PVSYST” OR “Helioscope” OR
“DIgSILENT PowerFactory” OR “PSCAD”)).

4.3. Literature Selection (PRISMA Analysis)

The PRISMA flowchart methodology was rigorously followed, as illustrated in
Figures 6 and 7, to systematically refine and select relevant articles for both OTs and STs.
This process ensured that the final dataset included only the most relevant studies aligned
with the objectives of this research.
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The selection process included four key stages:

• Identification—A total of 4696 OT-related and 2950 ST-related records were retrieved
from Scopus.

• Screening—Duplicate entries, books, and retracted papers were removed. Additionally,
only studies classified as “Final” publications were retained, reducing the count to
4492 OT-related and 2858 ST-related studies.

• Eligibility—Further refinement excluded book series for both OTs and STs. Addi-
tionally, trade journal papers were removed only for OTs, while no trade journal
exclusions were applied to STs in this step. Finally, English-only publications were
retained, resulting in 4134 OT-related and 2667 ST-related studies.

• Inclusion—The final dataset consisted of 4134 OT-related and 2667 ST-related studies
used for the qualitative synthesis and analysis.

Note: The document count for the year 2024 includes publications retrieved up to
November. Documents published beyond this date were excluded due to the review timeline.

To ensure a rigorous selection process, we applied the following inclusion and exclu-
sion criteria:

Inclusion Criteria:

• Studies published in peer-reviewed journals and conference proceedings.
• Research that focuses on OTs and STs applied to HMGSs.
• Articles that include quantitative analysis, simulations, or case studies demonstrating

the application of OTs and STs.
• Papers published in English to maintain consistency and accessibility.

Exclusion Criteria:

• Duplicate and irrelevant records removal

Initial filtering removed duplicate entries and irrelevant records, ensuring only unique
and relevant studies were considered.
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• Exclusion based on document type

Books, book chapters, retracted papers, and undefined document types were excluded.

• Exclusion based on publication stage

Only studies classified as “Final” publications were retained, removing preliminary or
non-peer-reviewed works.

• Eligibility assessment and further refinement

Book series were excluded as they do not contribute original, peer-reviewed research.
Non-English publications were removed to maintain consistency and avoid translation

inaccuracies.
The following subsections detail the application of PRISMA for each category.

4.3.1. Optimization Techniques

The selection process for OTs was conducted following the PRISMA flowchart guide-
lines, as depicted in Figure 6.

Initially, 4696 records were retrieved from the Scopus database. Screening excluded
publications from 2025, books, book chapters, and retracted documents, narrowing the
count to 4562. Limiting the results to “Final” publications further reduced this to 4492.
In the eligibility phase, additional exclusions, including book series and trade journals,
brought the total to 4308. Finally, limiting the results to English-only publications resulted
in 4134 relevant papers for analysis.

4.3.2. STs

Following the PRISMA guidelines (Figure 7), the selection began with 2945 records
from Scopus.

Initially, 2950 records were retrieved from Scopus. Screening excluded 2025 publi-
cations, books, chapters, retracted documents, and undefined documents, narrowing the
count to 2891. Limiting the publication stage to “Final” reduced this to 2858. Further
refinement in the eligibility phase excluded book series, bringing the count to 2751. Fi-
nally, limiting the results to English-language publications resulted in 2667 relevant papers
for analysis.

5. Results
This section presents the findings from the systematic literature review, organized into

key subsections reflecting the outcomes derived from the analysis. The results include the
yearly publication trends, contributions from top journals, countries, authors, and insights
into highly cited documents. These analyses provide an overarching view of the evolution
and focus areas within the field of OTs and STs for HMGSs.

5.1. Yearly Distribution of Documents

The distribution of documents over the years highlights the growing interest in OTs
and STs for HMGSs.

5.1.1. OTs

Figure 8 illustrates the yearly distribution of documents related to OTs in HMGSs.
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A noticeable surge in the number of publications is observed, particularly after 2018,
reflecting the growing academic and industrial interest in this field. This trend empha-
sizes the expanding research focus on optimizing HMGSs and the increasing adoption of
advanced optimization methods.

To gain deeper insights into this collection of documents, our analysis quantified the
percentage participation of each category of OT. The participation ratio of each category
(Pc) was determined using the following equation:

Pc =

(
Nc

Nt

)
× 100%. (1)

where:
Pc = Relative research weight (%) of a specific optimization technique category.
Nc = Number of documents in a specific category.
Nt = Total number of documents analyzed.
This measure provides a normalized representation of the research trends, allowing

for comparative analysis across different optimization paradigms.
The results from our analysis indicate the following distribution:

• Classical techniques: Pc = 16.87% (Nc = 697, Nt = 4134)
• Artificial-intelligence-based techniques: Pc = 36.01% (Nc = 1489, Nt = 4134)
• Metaheuristic techniques: Pc = 47.12% (Nc = 1848, Nt = 4134)

The dominance of metaheuristic methods underscores their adaptability and effective-
ness in addressing the complexities inherent in HMGS optimization, such as nonlinearity,
uncertainty, and multi-objective constraints. This prevalence highlights a growing reliance
on advanced algorithms capable of providing robust and efficient solutions for real-world
energy systems.

5.1.2. STs

Figure 9 illustrates the yearly distribution of documents related to STs in HMGSs,
highlighting a notable rise in publications, particularly after 2015.



Energies 2025, 18, 1770 21 of 32

Energies 2025, 18, x FOR PEER REVIEW 23 of 35 
 

 

A noticeable surge in the number of publications is observed, particularly after 2018, 
reflecting the growing academic and industrial interest in this field. This trend emphasizes 
the expanding research focus on optimizing HMGSs and the increasing adoption of 
advanced optimization methods. 

To gain deeper insights into this collection of documents, our analysis quantified the 
percentage participation of each category of OT. The participation ratio of each category 
(𝑃௖) was determined using the following equation: 𝑃௖ ൌ  ቀே೎ ே೟ ቁ ൈ 100%. (1)

where: 𝑃௖ = Relative research weight (%) of a specific optimization technique category. 𝑁௖ = Number of documents in a specific category. 𝑁௧ = Total number of documents analyzed. 
This measure provides a normalized representation of the research trends, allowing 

for comparative analysis across different optimization paradigms. 
The results from our analysis indicate the following distribution: 

• Classical techniques: 𝑃௖ = 16.87% (𝑁௖ = 697, 𝑁௧ = 4134) 
• Artificial-intelligence-based techniques: 𝑃௖ = 36.01% (𝑁௖ = 1489, 𝑁௧ = 4134) 
• Metaheuristic techniques: 𝑃௖ = 47.12% (𝑁௖ = 1848, 𝑁௧ = 4134) 

The dominance of metaheuristic methods underscores their adaptability and 
effectiveness in addressing the complexities inherent in HMGS optimization, such as 
nonlinearity, uncertainty, and multi-objective constraints. This prevalence highlights a 
growing reliance on advanced algorithms capable of providing robust and efficient 
solutions for real-world energy systems. 

5.1.2. STs 

Figure 9 illustrates the yearly distribution of documents related to STs in HMGSs, 
highlighting a notable rise in publications, particularly after 2015. 

 

Figure 9. Yearly distribution of documents related to STs in HMGSs (2005–2024). 

Among the 2667 documents analyzed, the distribution of ST utilization was assessed 
based on the relative research weight. MATLAB/Simulink exhibited the highest 
prevalence, appearing in 1743 documents (65.34%), while HOMER followed with 589 
occurrences (22.08%). The participation ratios were derived using Equation (1), providing 
a comparative measure of the research focus across different STs. The dominance of 
MATLAB/Simulink and HOMER reflects the strong industry and academic preference for 
commercial tools in HMGS research. As discussed in Table 3, commercial software 
provides validated models, extensive libraries, and industry-standard simulation 

Figure 9. Yearly distribution of documents related to STs in HMGSs (2005–2024).

Among the 2667 documents analyzed, the distribution of ST utilization was assessed
based on the relative research weight. MATLAB/Simulink exhibited the highest prevalence,
appearing in 1743 documents (65.34%), while HOMER followed with 589 occurrences
(22.08%). The participation ratios were derived using Equation (1), providing a comparative
measure of the research focus across different STs. The dominance of MATLAB/Simulink
and HOMER reflects the strong industry and academic preference for commercial tools in
HMGS research. As discussed in Table 3, commercial software provides validated models,
extensive libraries, and industry-standard simulation capabilities, making them reliable
choices for HMGS analysis. However, licensing costs can limit accessibility, particularly for
researchers in developing regions.

In contrast, open-source tools such as OpenDSS and RAPSim remain underrepresented
in the dataset despite their potential advantages, including cost efficiency, transparency,
and adaptability for specific MG applications. The lower adoption rate of these tools is
often attributed to the limited technical support, fewer built-in optimization features, and
steeper learning curve compared to commercial alternatives.

While MATLAB/Simulink continues to dominate, the increasing demand for cost-
effective and customizable MG solutions may drive greater adoption of open-source tools
in future research.

5.2. Top Contributing Countries

Figure 10a,b illustrate the top 10 contributing countries for OTs and STs, respectively.
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India leads in both categories, followed by China and the United States. Other signifi-
cant contributors include Iran, Saudi Arabia, and Egypt, along with notable participation
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from developed countries such as the United Kingdom and Canada. These results empha-
size the global interest and collaborative efforts in advancing HMGS research.

5.3. Top Cited Documents
5.3.1. Top Cited Documents for OTs

The top 10 cited documents listed in Table 4 illustrate the diverse methodologies and
advanced OTs applied in HMGSs.

Table 4. Top 10 highly cited documents for OTs in HMGSs.

Ref. Authors Journal Year Citations

[75] Chaouachi, A., Kamel, R.M., Andoulsi, R.,
Nagasaka, K.

IEEE Transactions on Industrial
Electronics 2013 575

[76] Moghaddam, A.A., Seifi, A., Niknam, T.,
Alizadeh Pahlavani, M.R. Energy 2011 540

[77] Bevrani, H., Habibi, F., Babahajyani, P.,
Watanabe, M., Mitani, Y. IEEE Transactions on Smart Grid 2012 519

[78] Ahmad, T., Zhang, D., Huang, C., Song, Y.,
Chen, H. Journal of Cleaner Production 2021 483

[79] Morais, H., Kádár, P., Faria, P., Vale, Z.A.,
Khodr, H.M. Renewable Energy 2010 476

[80] Suganthi, L., Iniyan, S., Samuel, A.A. Renewable and Sustainable Energy
Reviews 2015 435

[81] Long, C., Wu, J., Zhou, Y., Jenkins, N. Applied Energy 2018 422

[79] Ramli, M.A.M., Bouchekara, H.R.E.H.,
Alghamdi, A.S. Renewable Energy 2018 421

[34] Chakraborty, S., Weiss, M.D., Simões, M.G. IEEE Transactions on Industrial
Electronics 2007 403

[82]
Borhanazad, H., Mekhilef, S., Gounder

Ganapathy, V., Modiri-Delshad, M.,
Mirtaheri, A.

Renewable Energy 2014 393

The most cited studies on HMGS optimization demonstrate significant advancements
in optimization methodologies, including AI-based approaches, metaheuristics, and mathe-
matical programming techniques. Chaouachi et al. [75] pioneered the integration of AI with
linear programming and fuzzy logic for MG energy management, enhancing forecasting
accuracy and battery scheduling to minimize operational costs and emissions. Moghaddam
et al. (2011) [76] introduced the adaptive modified particle swarm optimization (AMPSO)
algorithm, incorporating chaotic local search (CLS) and fuzzy self-adaptive (FSA) structures
to improve the cost and emission minimization in MGs, outperforming traditional evolu-
tionary algorithms. Bevrani et al. (2012) [77] developed an intelligent frequency control
approach combining fuzzy logic with PSO, demonstrating superior adaptability in main-
taining grid stability under uncertain renewable generation. Ahmad et al. [78] highlighted
AI’s transformative role in the energy sector, emphasizing its applications in smart grid op-
timization, predictive maintenance, cyberattack prevention, and real-time decision-making,
positioning AI as a key enabler of the future digital energy market. Morais et al. (2010) [79]
applied MILP for the optimal scheduling of generation units in an isolated DC-MG, proving
its effectiveness in economic dispatch and real-time load balancing with rapid convergence.
Collectively, these studies illustrate the evolution of advanced OTs, reinforcing their critical
role in improving MG efficiency, reliability, and economic performance.
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5.3.2. Top Cited Documents for STs

STs are indispensable for optimizing HMGSs, offering advanced capabilities in design,
modeling, and management. Table 5 lists the top 10 highly cited articles in this domain,
highlighting diverse applications of STs.

Table 5. Top 10 highly cited documents for STs in HMGSs.

Ref. Authors Journal Year Citations

[73] Sortomme, E., et al. IEEE Transactions on Power Delivery 2010 513

[83] Hafez, O., Bhattacharya, K. Renewable Energy 2012 489

[56] Singh, S., et al. Energy Conversion and Management 2016 383

[33] Amrollahi, M.H., Bathaee, S.M.T. Applied Energy 2017 340

[84] Badal, F.R., et al. Protection and Control of Modern Power Systems 2019 332

[57] Ahmad, J., et al. Energy 2018 282

[58] Abdin, Z., Mérida, W. Energy Conversion and Management 2019 268

[85] Ou, T.-C., Hong, C.-M. Energy 2014 221

[86] Yu, X., et al. IEEE Transactions on Smart Grid 2014 206

[87] Li, J., et al. Applied Energy 2017 202

One notable study introduced a communication-assisted digital relay protection
scheme using MATLAB/Simulink, ensuring reliable fault detection in MGs with high
DG penetration [73]. Another study utilized HOMER to minimize the life-cycle costs
and assess the environmental impacts across various MG configurations, showcasing its
versatility in HES analysis [83]. HOMER and GAMS software were combined to imple-
ment demand response programming, achieving substantial reductions in the battery and
inverter requirements and total net present costs [33]. These studies collectively underscore
the vital role of STs in enhancing the efficiency and reliability of HMGSs through robust
optimization methodologies.

5.4. Top Contributing Journals

Figure 11a,b highlight the top contributing journals in the fields of OTs and STs for
HMGSs, respectively. Both figures underscore the dominance of Energies and IEEE Access in
terms of the document contributions. Energies leads the field with 218 documents for OTs
and 120 documents for STs, reflecting its significant role in advancing HMGS research. Other
key contributors include Applied Energy, Journal of Energy Storage, and International Journal
of Electrical Power and Energy Systems, which consistently publish high-impact research.
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The top ten highly cited documents in Table 6 showcase cutting-edge OTs driving
advancements in HMGSs.

Table 6. Top 10 contributing journals for OTs in HMGSs.

Rank Journal Name Number of Documents Highly Cited Article Citation Count

1 Energies 218 [88] 186

2 IEEE Access 138 [89] 172

3 Applied Energy 109 [81] 422

4 Journal of Energy Storage 92 [90] 244

5 Energy 90 [76] 540

6 International Journal of Electrical
Power and Energy Systems 81 [91] 179

7 Sustainability Switzerland 66 [92] 127

8 IEEE Transactions on Smart Grid 58 [77] 519

9 Renewable Energy 57 [79] 476

10 Energy Reports 44 [93] 100

A novel energy management approach using DRL modeled as a Markov decision
process (MDP) effectively addresses the challenges of uncertainty in the load demand,
RESs variability, and electricity price fluctuations, achieving significant operational cost
reductions [88]. To tackle the frequency stability in low-inertia MGs with high renewable
penetration, self-adaptive virtual inertia control based on fuzzy logic dynamically adjusts
the inertia constants in real-time, delivering an enhanced transient response and robust
system stability [89]. Furthermore, a two-stage aggregated control framework for peer-
to-peer (P2P) energy sharing within community MGs leverages constrained nonlinear
programming (CNLP) optimization. This method achieves up to 30% cost savings for the
community and notable economic benefits for individual prosumers [81]. These studies
emphasize the essential role of advanced OTs in addressing critical challenges in HMGS
design and operation.

The highly cited documents listed in Table 7 illustrate the critical role of advanced STs
in modeling, simulating, and optimizing HMGSs. MATLAB/Simulink has been effectively
used for load frequency control (LFC) in isolated MGs, leveraging multivariable generalized
predictive control to stabilize the frequency amidst fluctuating RESs and continuous load
disturbances [93]. HOMER Pro has been instrumental in conducting techno-economic feasi-
bility analyses, identifying optimal configurations for HESs by evaluating parameters such
as the NPC, COE, and greenhouse gas emissions across various sensitivity scenarios [94].

Table 7. Top 10 contributing journals for STs in HMGSs.

Rank Journal Name Number of Documents Highly Cited Article Citation Count

1 Energies 120 [93] 148

2 IEEE Access 78 [94] 125

3 Sustainability Switzerland 39 [95] 154

4 International Journal of Electrical
Power and Energy Systems 31 [96] 130

5 Electric Power Systems Research 29 [97] 81

6 Journal of Energy Storage 27 [98] 59
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Table 7. Cont.

Rank Journal Name Number of Documents Highly Cited Article Citation Count

7 IEEE Transactions on Smart Grid 27 [86] 206

8 Energy 25 [57] 282

9 IEEE Transactions on Industry
Applications 22 [99] 142

10 IEEE Power and Energy Society
General Meeting 22 [100] 48

Additionally, HOMER Pro was employed to assess the viability of hydrogen as a robust
energy storage medium in a 100% renewable stand-alone MG, demonstrating its potential to
electrify remote communities cost-effectively while reducing carbon footprints [97]. These
studies underscore the indispensable role of tools like MATLAB/Simulink and HOMER
Pro in advancing HMGS research and achieving sustainable energy solutions.

5.5. Top Contributing Authors

This section highlights the most prolific contributors to the HMGS research, catego-
rized into two areas: OTs and STs. Tables 8 and 9 summarize the rankings based on the
number of publications and key focus areas for each author.

Table 8. Top contributing authors in terms of OTs.

Rank Author No. of Publications Key Focus Areas

1 Guerrero, J.M. 35 Distributed control, HMGS optimization, and intelligent
energy management.

2 Gharehpetian, G.B. 19 Robust control, fault management, and resilient
microgrid operation.

3 Dey, B. 18 Multi-objective optimization, renewable integration,
and cost minimization in MGs.

4 Ustun, T.S 15 Cybersecurity, distributed control, and load frequency
stability in MGs.

5 Marzband, M. 15 Stochastic optimization, demand response, and energy
management in smart MGs.

Table 9. Top contributing authors in terms of STs.

Rank Author No. of Publications Key Focus Areas

1 Guerrero, J.M. 24 Application of HOMER and MATLAB for hybrid
systems, renewable integration, and grid stability.

2 Baghaee, H.R. 21 Fault-tolerant distributed control and resilience in
islanded MGs.

3 Shahnia, F. 19 Stability analysis, system coupling, and optimization in
sustainable MGs.

4 Gharehpetian, G.B. 18 Fault management, robust distributed systems, and
islanded MG controls.

5 Ghosh, A. 14 Cooperative energy storage control, harmonic
mitigation, and voltage regulation in MGs.

Table 8 identifies the leading authors contributing to the development and application
of OTs in HMGSs.
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These researchers have significantly advanced the field by introducing innovative
methodologies to enhance system reliability, efficiency, and cost-effectiveness. Guerrero,
J.M., leading the list with 35 publications, has been a pioneer in distributed control and
HMGS optimization. Other prominent contributors, such as Gharehpetian, G.B., and Dey,
B., focus on fault management and multi-objective optimization, respectively.

Table 9 showcases the authors most active in leveraging STs to design and analyze
HMGSs. Their work has facilitated the integration of RESs and improved MG performance.

Guerrero, J.M., again ranks first, with 24 publications emphasizing the use of tools
like HOMER and MATLAB for HESs. Baghaee, H.R., and Shahnia, F., follow closely,
contributing to fault-tolerant systems and sustainable MG configurations.

6. Conclusions and Insights
6.1. Overview of Key Findings

This study provides a comprehensive evaluation of OTs and STs in the context
of HMGSs.

• OTs: Advanced methodologies, such as AI-driven approaches, metaheuristics, and MILP,
play a pivotal role in improving energy efficiency, reliability, and sustainability by ad-
dressing challenges like resource intermittency, load management, and cost optimization.

• STs: Tools like HOMER, MATLAB, and SAM are indispensable for designing, optimiz-
ing, and evaluating HMGS configurations, enabling researchers to analyze complex
systems under diverse conditions.

6.2. Trends and Implications

The steady rise in research outputs, particularly after 2018, reflects the growing global
emphasis on decarbonization and energy resilience, driven by key policy initiatives such as
the Paris Agreement (2015) and the United Nations Sustainable Development Goals (SDGs),
which have accelerated the adoption of RESs [101]. Additionally, the US Department of
Energy (DOE) Smart Grid R&D Program has played a crucial role in advancing optimiza-
tion strategies [102]. On the technological front, the declining costs of SPV and WT [103],
along with the increasing role of OTs and STs, have further fueled research growth. Notably,
DOE-led efforts, including the development of specific design tools and a solutions library
by 2020, have enhanced the optimization capabilities. The high adoption of metaheuristic
techniques, coupled with the integration of AI-based approaches, reflects a paradigm shift
toward intelligent energy systems capable of adapting to dynamic conditions and uncer-
tainties. These trends emphasize the critical role of advanced algorithms and modeling
platforms in accelerating the transition to cleaner and more efficient energy systems.

6.3. Gaps and Opportunities

Despite significant advancements, several critical gaps remain in the optimization
of HMGSs:

• Computational complexity and scalability: Many existing OTs struggle with scala-
bility when applied to large-scale MGs. Future research should focus on developing
lightweight AI models and hybrid AI–mathematical approaches to enhance real-
time performance.

• Hybrid AI and traditional methods: The integration of AI with classical optimization
techniques lacks standardization, making benchmarking and validation difficult. De-
veloping benchmark datasets and hybrid frameworks is essential for improving model
robustness and adoption.
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• Regional disparities: Research has primarily focused on developed regions, with
limited studies addressing cost-optimization strategies for low-resource settings and
grid stability in high-penetration renewable systems.

• Emerging technologies: The role of blockchain, quantum computing, and the IoT
in MG optimization remains largely unexplored. These technologies could enhance
decentralized energy trading, security, and predictive maintenance.

• Cybersecurity and data privacy: As AI-driven energy management systems become
more prevalent, addressing data privacy, security vulnerabilities, and resilience against
cyber threats is crucial.

Future research should prioritize hybrid optimization frameworks, enhanced AI inter-
pretability, and scalable real-time decision-making models. By fostering interdisciplinary
collaboration, the HMGS community can develop more adaptive, secure, and efficient
solutions for next-generation energy systems.

6.4. Final Takeaways

This work synthesizes critical insights into the HMGS research, providing an invalu-
able resource for academics, policymakers, and practitioners. It highlights the following:

• The transformative potential of combining advanced OTs with versatile STs.
• The contributions of leading researchers and journals in pushing the boundaries of

HMGS innovation.
• The need for continued research into emerging technologies and their integration into

energy systems.

By fostering innovation and collaboration, the HMGS community is well positioned
to drive a sustainable energy future. This study serves as a roadmap, bridging knowledge
gaps and paving the way for impactful advancements in energy systems optimization and
management. By leveraging these insights, stakeholders can accelerate the adoption of resilient
and sustainable MG solutions, contributing meaningfully to global energy objectives.

7. Conclusions
This comprehensive review provided a systematic analysis of the OTs and tools

employed in hybrid microgrid systems (HMGSs), offering an in-depth evaluation of the
methods and tools used in the field. This study analyzed 4134 documents for OTs and
2667 for STs. An advanced Scopus search was performed using core keywords for both
OTs and STs, including microgrids, renewable energy systems, and the relevant tools and
techniques from Figure 3, aimed at HMGS design and optimization.

The OTs were categorized into classical (16.9%), metaheuristic (48.3%), and AI-based
methods (34.8%), demonstrating the dominance of metaheuristics while highlighting the
transformative potential of AI-based approaches, particularly in predictive analytics and
managing uncertainties. STs like MATLAB and HOMER have established themselves as
critical enablers of HMGS design and optimization, facilitating detailed techno-economic
assessments and offering scalable solutions for various configurations and geographic
conditions. These findings underscore their indispensability in microgrid (MG) planning.

The results indicate a significant surge in research activity post-2018, driven by the
global transition to renewable energy sources (RESs) and an increasing focus on energy
resilience. Analysis of the top-contributing journals, authors, and countries highlights grow-
ing collaboration in this field. However, gaps remain in addressing cybersecurity, regional
data limitations, and the integration of emerging technologies such as blockchain and
the IoT. Future research should focus on addressing these gaps through interdisciplinary
approaches and enhancing regional applicability.
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This study serves as a guiding resource for advancing HMGS innovation. By lever-
aging the strengths of metaheuristic optimization and robust STs, stakeholders can drive
sustainable energy solutions, address global energy challenges, and enhance energy re-
silience. By fostering innovation and collaboration, HMGS research can accelerate the
global shift toward RESs, paving the way for significant advancements in energy systems
optimization, resilience, and sustainable management.
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