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ABSTRACT
Burkitt lymphoma (BL) is an aggressive germinal center B-cell-derived malignancy. Historically, sporadic, endemic, and 
immunodeficiency-associated variants were distinguished, which differ in the frequency of Epstein–Barr virus (EBV) positiv-
ity. Aiming to identify subgroups based on DNA methylation patterns, we here profiled 96 BL cases, 17 BL cell lines, and six 
EBV-transformed lymphoblastoid cell lines using Illumina BeadChip arrays. DNA methylation analyses clustered the cases into 
four subgroups: two containing mostly EBV-positive cases (BL-mC1, BL-mC2) and two containing mostly EBV-negative cases 
(BL-mC3, BL-mC4). The subgroups BL-mC1/2, enriched for EBV-positive cases, showed increased DNA methylation, epigenetic 
age, and, in part, proliferation history compared to BL-mC3/4. CpGs hypermethylated in EBV-positive BLs were enriched for 
polycomb repressive complex 2 marks, while the CpGs hypomethylated in EBV-negative BLs were linked to, for example, B-
cell receptor signaling. EBV-associated hypermethylation affected regulatory regions of genes frequently mutated in BL (e.g., 
CCND3, TP53) and impacted superenhancers. This finding suggests that hypermethylation may compensate for the lower mu-
tational burden of pathogenic drivers in EBV-positive BLs. Though minor, significant differences were also observed between 
EBV-positive endemic and sporadic cases (e.g., at the SOX11 and RUNX1 loci). Our findings suggest that EBV status, rather than 
epidemiological variants, drives the DNA methylation-based subgrouping of BL.

1   |   Introduction

Burkitt lymphoma (BL) is an aggressive B-cell lymphoma 
characterized by a germinal center B-cell (gcBC) phenotype 

and a high proliferation rate (Ki-67 > 95%) [1]. The genetic 
hallmark of BL is the translocation of the MYC oncogene 
into the vicinity of an immunoglobulin locus enhancer, 
which leads to its constitutive expression. BL exhibits a stable 
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karyotype with few chromosomal imbalances [2, 3]. The mu-
tational landscape is characterized by alterations in genes 
involved in B-cell receptor (e.g., ID3, TCF3) and sphingosine-
1-phosphate (e.g., RHOA, GNA13, PDGFRB, S1PR1) signaling, 
SWI–SNF chromatin remodeling (e.g., SMARCA4, ARID1A), 
and cell survival and proliferation (e.g., CCND3, TP53, USP7, 
RFX7) [4–6].

Historically, BL has been grouped into three epidemi-
ological variants: endemic (eBL), sporadic (sBL), and 
immunodeficiency-associated BL (iBL) [7]. While these vari-
ants share hallmark features like phenotype and presence of 
IG::MYC translocation, they differ in geographical distribu-
tion, Epstein–Barr virus (EBV) association, age, and anatomi-
cal presentation. With eBL being predominantly EBV-positive, 
less than 30% of sporadic cases show EBV positivity [7]. Recent 
data suggest that differences in the molecular architecture of 
the IG::MYC fusion and the mutational landscape of BL are 
more correlated to the EBV status of the tumor than the geo-
graphic origin or age at diagnosis of the patient [5, 8–11]. A 
study based on integrating data from BL and diffuse large B-
cell lymphoma suggested the existence of three genetic sub-
groups within BLs: DGG (DDX3X, GNA13, GNAI2), IC (ID3, 
CCND3), and Q53 (quiet TP53)-BL, indicating hitherto un-
characterized molecular diversity of BL [6].

Genome-wide DNA methylation (DNAme) studies in BL are yet 
limited. Kretzmer et  al. analyzed the DNA methylome of sBL 
and showed that DNAme and somatic mutations cooperatively 
deregulate key B-cell pathways [12]. Studies on eBL generally 
report high DNAme levels at CpG islands and promoters, po-
tentially silencing tumor suppressor genes [13]. Nevertheless, 
those studies are mostly limited by targeted gene analyses, a low 
number of samples, or reliance on BL-derived cell lines, which 
may not recapitulate findings in primary biopsies. Therefore, 
we aimed to identify epigenetically distinct subgroups of BL via 
joint analysis of genome-wide DNAme data from primary biop-
sies obtained from all three BL epidemiological variants.

2   |   Materials and Methods

2.1   |   Patient Material

The sBL samples (n = 80) were collected within the studies of the 
“Molecular Mechanisms in Malignant Lymphoma (MMML)” 
network as the MMML-, MMML-MYC-SYS, and ICGC MMML-
Seq projects, which have been approved by the ethics commit-
tees of the coordinating and required recruiting centers (e.g., 
D474/14, D447/10, 403/05, A150/10 Ethics Committee Medical 
Faculty of the University of Kiel; 349/11 Ulm University). Cases 
submitted as sBL to the MMML-projects were reviewed by an 
expert hematopathology panel, selected for high-tumor cell con-
tent (> 60%), and presence of an IG::MYC translocation by fluo-
rescence in situ hybridization or by whole genome sequencing, 
and absence of break targeting BCL2 and BCL6. Available clini-
cal data on the sBL cases do not allow to rule out an underlying 
immunodeficiency in all cases. Each case turned out post hoc to 
be human immunodeficiency virus (HIV) positive and to have 
an inborn error of immunity [4].

The eBLs (n = 29) entering the study were recruited in the frame-
work of the National Cancer Institute's Ghana Burkitt Tumor 
Project between 1975 and 1992 and stored long-term under liq-
uid nitrogen vapor at the Frederick National Cancer Laboratory 
in Frederick, MD [14, 15]. The samples were obtained from ab-
dominal masses (ovaries, kidney, or spleen) before treatment 
and were diagnosed based on local cytology or histology. Most 
samples were collected before the onset of the HIV pandemic, 
so most are presumed HIV negative. These samples were pre-
viously investigated for chromosomal translocations and other 
abnormalities [16]. The NIH Office of Human Subject Research 
Protection gave ethical approval to use the Ghana samples as 
nonhuman subject research because they were not linked to 
any personal identifiers (Exempt #: 4055). BL cases in Ghana 
are considered endemic and etiologically related to Plasmodium 
falciparum infection based on geographical co-clustering. 
Children are exposed to P. falciparum infection from birth and 
typically suffer hundreds of infections per year [17], thus, all 
children are assumed to have been exposed before diagnosis. 
The presence of P. falciparum infection at the time of diagnosis 
was not consistently recorded. As controls, we included splenic 
samples from splenomegalies (n = 5) due to chronic malaria in-
fection in African individuals.

A total of seven iBLs were contributed by the Hospital Germans 
Trias I Pujol/Josep Carreras Leukemia Research Institute 
(Badalona, Spain) and were all derived from HIV-positive indi-
viduals. They were classified as iBLs based on the criteria out-
lined by the WHO classification 2016 [7].

2.2   |   Normal B- and T-Cell Populations

Publicly available data from various cell populations covering 
B- and T-lineage differentiation, as well as macrophages and 
monocytes, were mined [12, 18–26].

2.3   |   Cell Lines

DNAme profiles of 23 human cell lines, consisting of six lympho-
blastoid cell lines (LCLs) and 17 BL-derived cell lines (Table S1) 
were generated as part of this study. The identity of the cell lines 
was verified using STR profiling.

2.4   |   Determination of EBV Status

The EBV status of the primary tumor samples was analyzed 
by different methods, including immunohistochemistry for 
EBNA1, in  situ hybridization for EBER, PCR and/or Sanger 
sequencing for EBV genomic sequences, and/or bioinformatic 
detection of viral genes from RNA sequencing and/or whole ge-
nome sequencing data.

2.5   |   DNA Methylation Analyses

DNA was extracted from fresh/frozen samples in 103 cases and 
from the used cell lines or formalin-fixed paraffin-embedded 
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(FFPE) material in 13 cases. DNAme profiling was performed 
using Infinium HumanMethylation450 and MethylationEPIC 
BeadChips (Illumina Inc., San Diego, CA, USA), and the re-
sulting data were processed using the minfi package (v1.44.0) 
with Illumina-like normalization in R (against intrinsic con-
trols, without background correction) [27]. A subset of the 
data has been included in previous studies [3, 4, 12, 15]. Beta 
values, which represent the percentage of methylation, were 
calculated. We excluded rs loci, gonosomal loci, and loci with 
a detection p > 0.01. We integrated datasets from the Infinium 
HumanMethylation450 and MethylationEPIC BeadChips, 
resulting in a unified dataset containing 441 870 CpG sites. 
In addition, loci associated with geographic differences 
(5648 CpGs; for details, see Supporting Information) were 
excluded. Further, due to a comparatively poorer quality in 
iBLs compared to the other samples, we excluded CpGs with 
a detection p > 0.01 in iBLs (127 144 CpGs). Finally, 309 078 
CpGs were retained for downstream analyses. Additionally, 
a DNAme-based purity classifier taking into account the 
tumor cell content and poised promoter methylation was de-
veloped and applied to assess sample purity (Figure S1) [28]. 
Based on this classifier, 10 sBL, nine eBL, and one iBL samples 
were excluded due to low tumor cell content. For details, see 
Supporting Information.

2.6   |   Sequencing Data

RNA-sequencing data from five gcBCs and 21 solid sBLs were 
obtained from the ICGC MMML-Seq project and processed as 
described in López et al. [4].

2.7   |   Statistical Analyses

All statistical analyses were performed in R (version 4.3.0), 
unless otherwise specified. The proliferation history was 
analyzed using the epiCMIT tool in R [29]. The epigenetic 
age was determined through the Horvath clock utilizing the 
methylclock package (version 1.6.0) [30]. To derive various pu-
rity scores from DNAme data, we employed the following R 
packages: InfiniumPurify (version 2.0) [31], RFPurify (version 
0.1.2) [32], Flow.Sorted.Blood.450k (version 1.38.0) [33], and 
FlowSorted.BloodExtended.EPIC (version 1.1.2). Consensus 
partitioning was conducted using the cola package (version 
2.6.0) [34]. Differentially methylated CpGs were identified 
with the limma package (version 3.58.1) [35]. For visualiza-
tion purposes, we utilized the ComplexHeatmap package 
(version 2.16.0) [36]. Enrichment analysis was performed via 
the EnrichR web tool, using genes from the array as the back-
ground list.

The Wilcoxon rank sum test was used for pairwise comparisons 
between independent groups described by continuous variables. 
For categorical variables, Fisher's exact test was used to calcu-
late odds ratios (OR) and p values. As a background set, either the 
309 078 CpGs or all samples were used. The Bonferroni method 
was used to adjust p values for multiple tests. Differences with 
an adjusted p < 0.05 (if not otherwise specified) were considered 
to be statistically significant.

3   |   Results

3.1   |   Study Cohort

Aiming to identify subgroups within BL through DNAme 
patterns, data from 96 BL cases entered the analysis. Cases 
were selected for high-tumor cell content and predominantly 
studied on cryopreserved materials using Illumina BeadChip 
arrays. The DNAme-based tumor cell purity scores were 
similar across the three BL epidemiological variants despite 
slightly lower B-cell composition in iBL cases (Figure S2). The 
median age at diagnosis was 9 years (range: 2–57) in the 70 
sBL cases, 8 years (range: 3–13) in 20 eBL cases, and 45 years 
(range: 39–57) in six iBL cases. EBV positivity in tested cases 
was 95% (19/20) in eBL, 50% (3/6) in iBL, and 15% (6/39) in 
sBL (Table S2).

3.2   |   DNAme-Based Clustering Is Driven by 
EBV Status

After excluding CpGs with low quality or associated with 
geographic differences, unsupervised analysis of the re-
maining 309 078 CpGs revealed two major clusters that pre-
dominantly differed by EBV status (Figure  1A). Next, we 
employed consensus partitioning methods with different CpG 
selection strategies [34]. Among the 20 tested combinations, 
the optimal numbers of clusters identified were two or four 
(Figure S3, Table S3). Limiting the analysis to 9313 CpGs with 
a standard deviation (SD) > 0.25 (across all BLs), visualization 
in a UMAP plot (Figure  1B) revealed two groups that fully 
agree with the two-cluster solution from consensus partition-
ing using SD filtering and k-means clustering (Figure S4). The 
four DNAme clusters determined by the cola package (SD k-
means; BL-mC1-4) comprise two clusters containing, with re-
gard to EBV-tested cases, predominantly cases known to be 
EBV-positive (BL-mC1: 17/17 [100.0%], BL-mC2: 9/9 [100.0%]) 
and two clusters mainly consisting of cases known to be EBV-
negative (BL-mC3: 12/12 [100.0%]; BL-mC4: 25/27 [92.6%]) 
(Figure  1C,D, Table  S4). Interestingly, BL-mC1 is primarily 
composed of EBV-positive eBL cases (OR: 36.2, p < 0.001), 
while BL-mC2 contains the majority of EBV-positive sBL 
cases (OR: 19.6, p = 0.0024).

EBV-positive BL-associated clusters BL-mC1 and -mC2 showed 
higher median DNAme levels for the total 309 078 CpGs than 
EBV-negative BL-associated clusters (BL-mC1-2: 0.56 [range: 
0.46–0.76] vs. BL-mC3-4: 0.44 [range: 0.28–0.59], adj. p < 0.001) 
(Figure 1E). BL-mC1 and -mC2 showed a higher epigenetic age 
(Horvath clock). For BL-mC1-2, we determined a median of 99 
(range: 45–186) years vs. BL-mC3-4 with 54 (range: 11–112) years 
(adj. p < 0.001). Further, the two EBV-negative BL-associated sub-
groups differed in age at diagnosis (BL-mC3: 12.5 [range: 5–43] 
years vs. BL-mC4: 7 [range: 2–44] years, adj. p = 0.007) and also in 
the proliferation history (epiCMIT) (BL-mC3: 0.75 vs. BL-mC4: 
0.66, adj. p < 0.001). Differences in proliferation history were 
also observed for the two EBV-positive BL-associated subgroups 
(BL-mC1: 0.79 vs. BL-mC2: 0.64, adj. p = 0.002) (Figure 1E) [29]. 
We conclude that DNAme profiles identify two clusters of BL 
mainly associated with EBV status and that each of these clusters 
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FIGURE 1    |     Legend on next page.
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contains two subclusters with cases showing different biological 
properties.

3.3   |   Properties of CpG Modules Underlying 
DNAme-Based Clustering of Burkitt Lymphomas

To uncover potential biological properties underlying the 
DNAme driving the identified subgroups described above, k-
means clustering of the 9313 selected CpGs (Table S5) was per-
formed and revealed three CpG modules: BL-M1 (4080 CpGs), 
BL-M2 (3014 CpGs), and BL-M3 (2219 CpGs) (Figure 1C). CpGs 
within BL-M1 and BL-M2 are predominantly located within 
CpG islands (BL-M1: OR = 3.2, adj. p < 0.001; BL-M2: OR = 2.2, 
adj. p < 0.001) that are defined as poised promoter regions within 
gcBCs (BL-M1: OR = 3.2, adj. p < 0.001; BL-M2: OR = 2.5, adj. 
p < 0.001) (Figure  S5A). Furthermore, genes associated with 
these CpGs show significant enrichment for binding sites of 
SUZ12 (BL-M1: OR = 6.5; BL-M2: OR = 10.1; adj. p < 0.001) and 
EZH2 (BL-M1: OR = 8.3; BL-M2: OR = 9.6; adj. p < 0.001), two 
key components of the polycomb repressive complex 2 (PRC2) 
(Figure S5B, Table S6). Genes associated with CpGs in BL-M3 
are enriched for binding sites of e.g., ZBTB7A (OR = 2.3; adj. 
p < 0.001) and GATA1 (OR = 2.8; adj. p < 0.001) as well as path-
ways, for example, related to FOXO (OR = 3.0, p = 0.004) and 
B- and T-cell receptor signaling (OR = 3.7, p = 0.004; OR = 3.2, 
p = 0.004) (Figure S5B).

3.4   |   Analysis of the CpG Modules Underlying 
DNAme-Based Clustering of Burkitt Lymphomas in 
the Normal B-Cell Differentiation

To contextualize the DNAme patterns observed in the BL 
samples, we analyzed the DNAme levels of the 9313 CpGs in 
various benign (pre-)B-cell subpopulations (Figure S6). CpGs 
within modules BL-M1 and BL-M2 exhibited low DNAme 
levels in benign (pre-)B-cell subpopulations. At the same 
time, those in BL-M3 were predominantly highly methyl-
ated in benign (pre-)B-cell subpopulations. We infer that the 
CpG module BL-M3 is characterized by a loss of DNAme in 
the observed two EBV-negative BL-associated clusters BL-
mC3-4. A subset of CpGs in all three modules displayed B-cell 

differentiation-dependent DNAme changes in benign B-cell 
populations. This agrees with the fact that the modules were 
enriched for CpGs identified by Kulis et  al. as dynamically 
changing during B-cell differentiation (3848/9313 CpGs, 
OR = 3.0, p < 0.001) (Figure S6) [19].

3.5   |   DNA Methylation Profiling of Burkitt 
Lymphoma-Derived Cell Lines and Lymphoblastoid 
Cell Lines

Next, we interrogated DNAme data of 17 BL-derived cell lines 
and six EBV-transformed LCLs. Independent of their EBV sta-
tus, BL-derived cell lines showed high DNAme levels across 
all three CpG modules (BL-M1-3) (Figure  S7A). This finding 
was accompanied by a high epigenetic age (median [range]: 
158 years [106–194]) and proliferation history (median [range]: 
0.92 [0.85–0.93]) of the BL-derived cell lines, likely due to the 
high number of cell cycles they have experienced in cell culture 
(Figure S7B). Globally, the BL-derived cell lines predominantly 
clustered according to the epidemiological variants they derive 
from (Figure S7C). However, when reduced to the 9313 CpGs, 
the BL-derived cell lines formed a separate cluster, probably 
due to high median DNAme levels (0.61 [range: 0.46–0.79]) 
(Figure  S7D). In contrast, LCLs exhibited lower DNAme lev-
els for BL-M1 and BL-M2, forming a separate cluster within 
a UMAP.

3.6   |   Differential DNAme Analysis Reveals a 
Hypermethylated Epiphenotype in EBV-Associated 
Burkitt Lymphoma

To further explore correlations between EBV status, DNAme 
levels, and associated epigenetic predictors, we focused our com-
parisons on confirmed EBV-positive (n = 28) and EBV-negative 
(n = 37) BLs. Overall, EBV-positive cases exhibited higher global 
DNAme levels (median [range]: 0.57 [0.37–0.76] in positive 
cases vs. 0.44 [0.28–0.55] in negative cases, p < 0.001) and an 
increased epigenetic age (median [range]: 99 [32–186] years in 
positive cases vs. 53 [26–112] years in negative cases, p < 0.001) 
(Figure 2A). The proliferation history exhibited substantial vari-
ability among samples in both groups, in line with the concept 

FIGURE 1    |    DNA methylation-based subgrouping of Burkitt lymphoma (BL) cases. (A) UMAP visualization (25 neighbors) of 96 BL cases based 
on the 309 078 CpGs representing the global DNA methylation landscape. (B) UMAP visualization (15 neighbors) of 9313 CpGs (standard deviation 
(SD) > 0.25) colored and shaped according to the number of clusters (k = 2, k = 4) determined by the combination of CpGs filtering using SD and k-
means clustering. (C) Heatmap depicting DNA methylation levels of the 9313 CpGs across the 96 BL samples. Columns represent individual samples 
grouped into four optimal clusters as determined by SD and k-means clustering. Rows represent CpGs, further categorized into three modules (BL-
M1-3) using k-means clustering. Sample features are annotated at the top of the heatmap, including the four clusters (SD, k-means), epidemiological 
variants, EBV status, age at diagnosis, epigenetic age based on Horvath clock, proliferation history determined with epiCMIT, B-cell fraction calcu-
lated from DNA methylation data, purity score received from the InfiniumPurify package. CpGs are annotated using chromatin states defined in ger-
minal center B cells (gcBCs) and the Kulis modules, which are grouped according to the patterns (I–IV) in the paper [17] (for details see Supporting 
Information). (D) Bar plot showing the distribution of epidemiological variants (sporadic, endemic, and immunodeficiency-associated BL) and EBV 
status across the four identified clusters. (E) Box plots illustrating key biological and epigenetic features of the clusters, including biological age (age at 
diagnosis), epigenetic age calculated using the Horvath clock, proliferation history determined using the epiCMIT package, and median DNA meth-
ylation levels based on 309 078 CpGs and 9313 CpGs. n/a: not applicable. Statistical comparisons are summarized in Tables S10 and S11.
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FIGURE 2    |     Legend on next page.
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that it represents a main distinguishing factor between the two 
subclusters of the EBV-positive and negative cases, respectively 
(Figures 1E and 2A).

Differential DNAme analysis of the 309 078 CpGs revealed 
11 839 (Table  S7) significantly differentially methylated CpGs 
(DMCs) between EBV-positive and EBV-negative BLs (adj. 
p < 0.01, |Δβ| > 0.3), with all but seven of these CpGs being hy-
permethylated in the EBV-positive cases (Figure 2B). Analysis 
of 4829 genes linked to the DMCs showed again a notable abun-
dance of binding sites for SUZ12 and EZH2 (Figure 2C). This 
finding aligns with the observation that 50.1% of the DMCs are 
located within poised promoter regions in gcBCs (Figure  2D), 
potentially reflecting epigenetic footprints of cell divisions oc-
curring within the GC.

To look further into the potential GC-passage-driven effects 
and to elucidate pathways linked more directly to EBV in-
fection, we differentiated the 11 839 DMCs into 7423 linked 
to 2046 genes associated with SUZ12 and EZH2 binding 
sites and/or within poised promoter regions (called poised-
promoter/PRC2 = PP2 signature) and those 4416 DMCs not 
containing these features. These latter 4416 DMCs associ-
ated with 2783 genes were mainly hypomethylated in EBV-
negative BLs compared to nonmalignant B cells (non-PP2 
signature) (Figure  S8). Functional annotation of the genes 
in this non-PP2 signature revealed enrichment of binding 
sites for ZBTB7A (OR = 2.6; p < 0.001) and RUNX1 (OR = 2.4; 
p < 0.001) and genes associated with B-cell receptor signaling 
(OR = 4.4; p < 0.001) (Figure 2E). An analogous but indepen-
dent comparison using only the dataset of the BL-derived cell 
lines yielded 738 DMCs between EBV-positive and -negative 
lines showing similar enrichments, for example, for ZBTB7A 
(OR = 3.4; p < 0.001) and RUNX1 (OR = 2.4; p = 0.004) tar-
get genes and B-cell receptor signaling pathways (OR = 5.8; 
p = 0.006).

The separate supervised comparisons of the primary BL 
samples and BL-derived cell lines regarding the EBV status 
showed an overlap of 481 CpGs representing 65.2% of the 
DMCs identified in the cell lines (Figure S9, Table S8). This 
overlapping set of DMCs included multiple hits for genes in-
volved in lymphomagenesis, like CD79B or TERT, including 

several genes linked to superenhancers recently identified in 
gcBC lymphomas [37].

3.7   |   Differential DNA Methylation at 
Superenhancers Between EBV-Positive 
and -Negative Burkitt Lymphoma

The latter finding prompted us to more systematically explore 
the DNAme levels of 3755 superenhancers (SEs) recently de-
scribed by Bal et al. in gcBC lymphomas [37]. These SEs are 
associated with 34 126 CpGs (average coverage per SE: 15 
CpGs) in our dataset. Differential DNAme analysis of these 
34 126 SE-associated CpGs between primary EBV-positive 
(n = 28) and EBV-negative (n = 37) BLs revealed 2407 CpGs 
(adj. p < 0.01, |Δβ| > 0.3) involving 1648 SEs (average coverage 
per SE: 2.4 CpGs) with 22 SEs affected by at least 10 CpGs. 
While the 22 SEs are highly methylated in EBV-positive BLs, 
some SEs exhibit a loss of DNAme in EBV-negative BLs com-
pared to gcBCs, potentially associated with an activation of 
the SE (Figure S10).

3.8   |   Differential DNA Methylation According 
to Geographic Origin Within EBV-Positive Burkitt 
Lymphoma and Potential Influence of Malaria 
Infection

The geographic origin of the tumor is the simplest way to 
define sBL versus eBL. Based on population genetics differ-
ences, we had a priori excluded 5648 CpGs from the anal-
ysis to exclude confounding of our results by comparison of 
samples from Europe and Africa. Nevertheless, we observed 
differences in the frequency of eBL and sBL in BL-mC1 ver-
sus -mC2, enriched for EBV-positive cases. This finding 
prompted us to conduct a differential DNAme analysis com-
paring EBV-positive sBLs (n = 5) and eBLs (n = 17). We iden-
tified 520 DMCs (adj. p < 0.01, |Δβ| > 0.2) of those, 497 CpGs 
show a DNA hypermethylation in eBLs (Figure S11, Table S9). 
Notably, these included CpGs in regulatory regions of genes 
like SOX11 and RUNX1 [38, 39]. Overall, the CpGs affected by 
differential DNAme were again enriched for SUZ12 binding 
sites (OR = 5.4; p < 0.001).

FIGURE 2    |    Comparative DNA methylation profiling of EBV-negative and EBV-positive Burkitt lymphoma (BL). (A) Box plots comparing EBV-
negative and EBV-positive BL for biological age (age at diagnosis), epigenetic age calculated using the Horvath clock, proliferation history (epiCMIT), 
and median DNA methylation levels across 309 078 CpGs. (B) Heatmap depicting DNA methylation levels of 11 839 CpGs found significantly dif-
ferentially methylated between EBV-negative and EBV-positive BL cases (adjusted p < 0.01, |Δβ| > 0.3, corrected for fixation technique and array). 
Sample features are annotated at the top of the heatmap, including the four clusters (SD, k-means), epidemiological variants, EBV status, age at di-
agnosis, epigenetic age based on Horvath clock, proliferation history determined with epiCMIT, B-cell fraction calculated from DNA methylation 
data, purity score received from the InfiniumPurify package. Columns represent samples, rows depict CpGs. CpGs are annotated using chromatin 
states defined in germinal center B cells (gcBCs) and the Kulis modules, which are grouped according to the patterns (I–IV) in the paper [17]. (C) 
Transcription factor enrichment analysis (based on ENCDOE and ChEA) on the genes associated with the 11 839 DMCs. (D) Bar plot displaying the 
distribution of the 11 839 DMCs within chromatin states defined in gcBCs. (E) Enrichment analysis of genes using a subset (4416 CpGs) of the 11 839 
CpGs (non-PP2 signature), not associated with binding sites of SUZ12/EZH2 and not located within poised-promoter regions. Enrichment analysis 
was performed for ENCODE and ChEA transcription factors, as well as Wiki pathways. The y-axis displays the top 10 most significant gene ontology 
terms. n/a: not applicable; PP2: poised promoter and polycomb repressive complex 2.
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The geographic origin strongly correlates with the likelihood 
of prior exposure to P. falciparum infection. It can be reason-
ably assumed that all individuals with eBL had a history of se-
rious P. falciparum infection malaria disease [17]. Therefore, 
in order to analyze whether the differential DNAme patterns 
observed in the EBV and geographic groups do not merely rep-
resent malaria history, we profiled FFPE samples of malaria-
driven splenomegaly from the eBL region. Comparative DNAme 
profiling for the 9313 CpGs of the modules, the 11 839 DMCs 
between EBV-positive and -negative BL, and the 520 DMCs 
between EBV-positive sBL and eBL revealed DNAme levels of 
the malaria-splenomegaly samples similar to those observed in 

benign B cells and clearly different from EBV-positive BL, re-
gardless of origin (Figure S12).

3.9   |   Frequent DNA Hypermethylation 
of Recurrently Mutated Genes in EBV-Positive 
Burkitt Lymphoma

To further explore the potential biological significance of the 
extensive DNA hypermethylation, we filtered for DMCs (adj. 
p < 0.01, |Δβ| > 0.2; 34 361 CpGs) within regulatory regions 
(promoters, enhancers) for genes known to be recurrently 

FIGURE 3    |    Heatmap of DNA methylation levels in regulatory regions of genes recurrently mutated in Burkitt lymphoma (BL). Heatmap display-
ing significant differentially methylated CpGs of EBV-positive BL compared to EBV-negative BL (adjusted p < 0.01, |Δβ| > 0.2) within regulatory re-
gions (promoter, enhancer) for recurrently mutated genes in BL. Median DNA methylation for the groups EBV-positive sBL (n = 6) and eBL (n = 19), as 
well as EBV-negative sBL (n = 33), were calculated. In addition, median gene expression for germinal center B cells (gcBCs, n = 5) and EBV-negative 
sBLs (n = 21) are included as annotation bars on the right side, showing that four genes (CACNA1G, CSMD3, GPC5, and SYT14) were not expressed 
in either gcBCs or sBLs. Genes are ordered according to the mutational frequency in BLs based on the findings by López et al. [4], with the gene with 
the highest frequency placed at the top. Gene annotations reflect multiple mutational frequency parameters: Higher frequencies based on EBV status 
and geographic origin [8, 9] and patient age. Additional annotations indicate replication timing in the GM12878 cell line (ENCODE Repli-seq data), 
chromatin states defined in gcBCs, and superenhancers the selected CpGs are located in [36].
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mutated in BLs [4]. Moreover, we assessed the expression levels 
of these genes in gcBCs and EBV-negative sBLs (Figure 3). We 
observed that EBV-positive BLs exhibited for most of the genes 
(e.g., CCND3, GNA13, TP53, and USP7) higher DNAme levels 
compared to EBV-negative BLs. This holds particularly true 
for driver genes in which a lower frequency of mutations has 
been previously described in EBV-positive versus EBV-negative 
BLs [8, 9]. Further, we observed differences in DNAme levels 
between EBV-positive sBLs and eBLs in several genes, includ-
ing BCL6, BTG2, CARD11, and GPC5. In line with previous re-
search, the increased DNAme could potentially compensate for 
the lower frequency of mutations in driver genes previously ob-
served in EBV-positive BLs [8, 9].

4   |   Discussion

In the present study, we provide insights into the epigenetic land-
scape of BL from different geographic origins and with different 
infection burdens. By profiling 96 BL cases, we demonstrate that 
DNAme-based clustering of BL is primarily driven by EBV sta-
tus, leading to the identification of distinct epigenetic subgroups 
within BL associated with particular epidemiological and bio-
logical features. Moreover, a detailed analysis of CpGs showed 
differential DNAme between subgroups, which uncovered po-
tential pathways and genes linked to BL pathogenesis. Finally, 
we provide further evidence that DNAme might compensate for 
the lower mutation frequency of driver genes in EBV-positive as 
compared to EBV-negative BL.

Our findings show that BL cases segregate into two major 
DNAme clusters, predominantly differing by EBV status, which 
is consistent with other EBV-associated cancers, such as gastric 
and nasopharyngeal carcinomas [40]. Furthermore, the EBV-
positive cases formed two hypermethylated subclusters (BL-mC1 
and BL-mC2). In comparison, EBV-negative cases also formed 
two hypomethylated subclusters (BL-mC3 and BL-mC4). This 
extensive DNA hypermethylation in EBV-positive BLs accom-
panies increased epigenetic age and proliferation history, likely 
reflecting the GC reaction history of tumor precursors.

Interestingly, two EBV-positive cases clustered with EBV-
negative cases (BL-mC4), raising the possibility that EBV may 
act as a bystander rather than a driver event in these cases. 
Moreover, we show that EBV-transformed lymphoblastoid B-cell 
lines (LCLs) exhibit lower DNAme levels for BL-M1 and BL-M2 
and form a separate cluster from BL within a UMAP. Differences 
in EBV latency phases between LCL and EBV-positive BL might 
explain these differences in DNAme [41]. Nevertheless, consid-
ering the described properties of the CpGs in the modules BL-
M1 and BL-M2, the differences between EBV-positive LCLs and 
BL could also reflect epigenetic traces of B-cell differentiation, 
proliferation, and, presumably, the number of passages through 
the GC. These observations underscore the need for further in-
vestigation into the functional consequences of EBV infection 
on DNAme in benign and malignant B cells.

We identified two subclusters of EBV-positive BL (BL-mC1 and 
BL-mC2). Therefore, despite EBV positivity representing the 
main factor segregating the DNAme subgroups within the BL, 
some additional heterogeneity exists in the DNAme patterns. 

Remarkably, BL-mC1 predominantly comprises eBL cases, and 
BL-mC2 is enriched for sBL cases. This segregation according 
to geographic origin suggests that the epidemiologic subtyping 
continues to hold some biologic information. In line with this, 
supervised analysis of EBV-positive sBL versus eBL identified a 
small set of 520 DMCs. Notably, these included CpGs in a poised-
promoter region linked to the SOX11 gene and a superenhancer 
region at the RUNX1 locus, that is, two genes previously linked to 
EBV infection in BL and B cells, respectively [38, 39]. We cannot 
rule out that technical differences in sampling, population differ-
ences, or other genetic, environmental, or viral confounders cause 
these differences, though we have thoroughly controlled for that. 
Also, these differences might again be linked to GC passage as 
the differentially methylated CpGs are enriched for SUZ12 bind-
ing sites. In contrast, our study is not able to confirm or exclude 
previous exposure to malaria as a putative cause of the DNAme 
differences observed in the BL from Africa. At least in splenomeg-
aly samples associated with malaria, the DNA pattern resembled 
that of normal lymphocyte populations rather than that of BL. 
Nevertheless, children with BL are exposed to hundreds of P. fal-
ciparum infections prior to developing BL [17]. P. falciparum in-
fection may directly affect the DNA methylation states of certain 
immune cells in children exposed to malaria [42] or indirectly by 
increasing the lytic reactivation of EBV infection [43], making it 
difficult to disentangle the effects of EBV and P. falciparum from 
each other in BL cases arising from malaria endemic areas.

The sets of CpGs identified in the unsupervised and supervised 
analyses of both primary BL samples and BL-derived cell lines 
provide insights into the epigenomic processes and regulatory 
pathways associated with EBV status. The CpGs mainly hyper-
methylated in EBV-positive BLs are predominantly localized 
in CpG islands and poised promoter regions and are enriched 
for SUZ12 and EZH2 binding sites. This implicates a role of the 
epigenetic modifier PRC2, as it typically occurs during the GC 
reaction [44]. Conversely, the hypomethylated CpGs in EBV-
negative BLs reflect potential epigenetic deregulation of genes 
involved in B-cell receptor signaling and FOXO pathways, both 
well known to be involved in BL lymphomagenesis [45, 46].

The extensive DNA hypermethylation in EBV-positive BLs com-
pared to EBV-negative cases covered regulatory regions of genes 
frequently mutated in BL [4], such as CCND3, GNA13, TP53, and 
USP7, as well as many SEs [37]. This observation aligns with the 
hypothesis that DNA hypermethylation may compensate for the 
lower mutational burden in EBV-positive BLs, potentially silenc-
ing tumor suppressor genes or modulating oncogenic pathways 
[8, 13].

In conclusion, our findings on DNAme patterns in BL under-
line previous molecular studies that suggest that the EBV status, 
rather than the geographic origin or immunological status of 
cases, is the main distinctive feature of BL subtypes [8–10, 47–
49]. The strong “hypermethylator phenotype” of EBV-positive 
BL shows features similar to (repetitive) GC-passaging. This is in 
line with the striking genome-wide increase in aberrant somatic 
hypermutation in EBV-positive as compared to EBV-negative BL 
reported by Grande et  al. using genomic sequencing [8]. This 
finding is also in agreement with the observation that a substan-
tial fraction of the IG::MYC fusions occurs by aberrant somatic 
hypermutation in EBV-positive BL. Somatic hypermutation is a 
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process assigned to the GC dark zone cells through which the 
tumor cell (precursor) must have traveled during the GC pas-
sage. In contrast, in EBV-negative BL the pathogenesis of the 
IG::MYC fusion is based mostly on illegitimate class switch 
recombination, a process assigned to pre-GC or GC light zone 
cells in line with a probable (pre-)centroblast as the cell of origin 
[4, 6, 47, 50]. Overall, our findings underscore the critical role of 
EBV in shaping the DNAme landscape of BL.
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