
Academic Editors: Shangsong Liang

and Zaiqiao Meng

Received: 13 March 2025

Revised: 15 April 2025

Accepted: 16 April 2025

Published: 21 April 2025

Citation: Guzman-Monteza, Y.;

Fernandez-Luna, J.M.; Ribadas-Pena,

F.J. IV-Nlp: A Methodology to

Understand the Behavior of DL

Models and Its Application from a

Causal Approach. Electronics 2025, 14,

1676. https://doi.org/10.3390/

electronics14081676

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

IV-Nlp: A Methodology to Understand the Behavior of DL
Models and Its Application from a Causal Approach
Yudi Guzman-Monteza 1,* , Juan M. Fernandez-Luna 2 and Francisco J. Ribadas-Pena 3

1 Departamento Académico de Ciencias de la Computación, Facultad de Ingeniería de Sistemas e Informática,
Universidad Nacional Mayor de San Marcos, Cercado de Lima 15081, Peru

2 Departamento de Ciencias de la Computación e Inteligencia Artificial, Escuela Técnica Superior de
Ingenierías Informática y de Telecomunicación, Universidad de Granada, 18014 Granada, Spain

3 Departamento de Informática, E.S. Enxeñaría Informática, Edificio Politécnico, Universidade de Vigo,
32004 Ourense, Spain; ribadas@uvigo.gal

* Correspondence: yudi.guzman@unmsm.edu.pe

Abstract: Integrating causal inference and estimation methods, especially in Natural
Language Processsing (NLP), is essential to improve interpretability and robustness in
deep learning (DL) models. The objectives are to present the IV-NLP methodology and
its application. IV-NLP integrates two approaches. The first defines the process of the
inference and estimation of the causal effect in original, predicted, and synthetic data. The
second one includes a validation method of the results obtained by the selected Large-
Language Model (LLM). IV-NLP proposes to use synthetic data in predictive tasks only if
the causal effect pattern of the synthetic data is aligned with the causal effect pattern of
the original data. DL models, the Instrumental Variable (IV) method, statistical methods,
and GPT-3.5-turbo-0125 were used for its application, including an intervention method
using a variation of the Retrieval-Augmented Generation (RAG) technique. Our findings
reveal notable discrepancies between the original and synthetic data, highlighting that the
synthetic data do not fully capture the underlying causal effect patterns of the original
data, evidencing homogeneity and low diversity in the synthetic data. Interestingly, when
evaluating the causal effect in the predictions made by our three best DL models, it was
verified that the model with the lowest accuracy (84.50%) was fully aligned with the overall
causal effect pattern. These results demonstrate the potential of integrating DL and LLM
models with causal inference methods.

Keywords: natural language processing (NLP); synthetic data generation; causal inference;
instrumental variable (IV) method; DL models

1. Introduction
Over the past five years, research has gradually increased on mitigating the limitations

in interpreting and explaining the results of AI models using a causal approach. Within
this framework, ref. [1] argue that to interpret the results of most machine learning (ML)
algorithms, it is necessary to go beyond the famous black box nature of most ML models.
Likewise, the models based on deep learning (DL) have proven to be highly effective in
predictive tasks in areas such as Natural Language Processing (NLP) and computer vision;
however, their dependence on correlations observed in the data makes them susceptible
to generating spurious associations, compromising their generalization and explainabil-
ity [2]. In this sense, the correlations found by most AI models are insufficient to explain
causal relationships (Indirect interactions between variables may be considered. Multiple
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variables may influence a target variable. Possible biases in the synthetic data are also
included. In any case, incorrect correlations could be generated between variables, mak-
ing their interpretation difficult). This literature review is organized into the following
thematic subsections:

1.1. Causal Inference in NLP

In this regard, ref. [3] emphasizes that causal relationships are not always evident in the
observed data because causality cannot be directly inferred from the observed correlations.
The models used for NLP are not immune to this reality, making it necessary to explain
the results of a model based on DL. This is a complex task requiring the application of
causal inference methods. Yang, J., Han and S.C., Poon, J. [4] state that extracting causal
relationships in texts is challenging because causality can be expressed explicitly, implicitly,
or inter-sententially (Explicit causality is observed when text markers define the cause–
effect relationship. The expression is implicit when the cause–effect relationship can be
inferred through knowledge of the context of the study. Inter-sentence causality is when
the causal relationship is attributed in several sentences of the text). This leads to causal
inference techniques being used to identify underlying causal structures in the data. In
this regard, ref. [5] mentions that a particular advantage of causal methodology is that it
forces professionals to explain their assumptions, and analyzing their data using causal
reasoning will allow them to improve the scientific level of the NLP community. This
could improve our understanding of the language and the models we build to process it.
Furthermore, ref. [6] claims that DL models ignore intrinsic causal relationships, reducing
the precision and robustness of the model’s discernment and preventing its generalization
across different domains. We consider that it is necessary to conduct further research on
the fusion of the DL models with causal inference techniques to not only ensure precision
and robustness but also to obtain the explainability power of the models. For ref. [2], the
issues machine learning faces, such as ignoring interventions in the data, domain changes,
and the temporal structure of data, must be addressed within a causal framework. The
causal approach allows us to understand the cause–effect relationships that go beyond
the observed correlations in more depth, thus increasing the robustness of the model. The
causal approach favors the generalization of the models; that is, their adaptation to new and
different domains. Research has also been conducted on how causal inference techniques
can help with the domain shift problem. In this line, ref. [7] compared the performance of
domain adaptation methods using structural causal models (SCM), emphasizing how the
causal framework can improve cross-domain adaptation.

1.2. Instrumental Variable Method

There are several methods and techniques of causal inference. One of them is the
Instrumental Variable (IV) method, which is used to obtain consistent estimates of the effect
of an explanatory variable on a dependent variable; that is, it is applicable when there is
endogeneity in the explanatory variable. Along these lines, ref. [8] argued that the F statistic
and the partial R2 at the first stage are essential indicators to validate the quality of the
instrument. Likewise, it is required that the instrument used meets the criteria of relevance
and exogeneity. Angrist, J. and Imbens, G [9] argued that combining a valid instrument and
a condition regarding its relationship with the explanatory variable is sufficient to identify
the causal effect. Molak, A. and Jaokar, A. C. [10] state that the IV method is a family of
techniques that mitigate the bias between variables. Along these lines, we could say that
they help reduce the risk of generating erroneous associations between variables.
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1.3. Synthetic Data Generation

Social networks facilitate user discussions regarding sociopolitical phenomena in their
country. However, the current security and privacy policies restrict access to this type of
information. Considering this, Generative Artificial Intelligence (GAI) models represent a
potential alternative to increase the amount of data. Lu et al. [11] argue that when faced with
the scarcity of quality data and difficulties in accessing data due to privacy and regulatory
issues, synthetic data generation can facilitate access to data that the real world cannot offer.
Large Language Model (LLM) models have transformed multiple areas of NLP, from text
generation to assistance in specialized tasks within this field. Studies have been conducted
to integrate new information into LLMs using techniques such as Retrieval-Augmented
Generation (RAG). RAG combines generative models with external information retrieval to
improve the accuracy of the generated responses. Lewis, P. [12] introduced this approach to
tackle knowledge-intensive tasks, showing that the combination of generation and retrieval
can mitigate some inherent limitations, such as the possible generation of false synthetics.
On the other hand, authors such as [13] disagree with the concept of “hallucinations”,
suggesting that models such as GPT incorrectly perceive reality because they are not
designed to represent the truth but to generate text that sounds coherent and plausible,
regardless of its relationship to reality. The OpenAI white paper on GPT-4 [14] documents
the capabilities and limitations of these models, noting that while they can generate highly
coherent text, they still face issues related to the veracity of their responses. This supports
the idea that LLMs are not designed to present guaranteed facts but to generate plausible
text based on the patterns identified during their training.

Considering these issues, this research questions the common approach of selecting
models based solely on their performance on unseen data. It seeks to answer the following
research question: Why is it important to determine the pattern of causal effects in the
predicted data to determine which model best fits reality? Furthermore, our research
demonstrates that validating the results provided by an LLM is necessary. Likewise, we
demonstrates that synthetic data are not ideal for capturing causal patterns. Therefore,
we aim to answer the following question: Why is it necessary to include causal inference
techniques to evaluate the behavior of data generated by an LLM from a causal perspective?
To answer these questions, this paper proposes the IV-NLP methodology and develops
an application of the proposed methodology. The IV-NLP methodology defines a flexible
action path to apply inference and causal effect estimation methods to original, synthetic,
and predicted data. IV-NLP includes a validation method for the data the selected LLM
generates. Two approaches are integrated to address these challenges. A method is
introduced to implement causal inference using the IV method on original, synthetic, and
predicted data, and a validation method is proposed for generating text using an LLM.

For its application, the DL models used in binary classification problems in the field of
NLP, the Instrumental Variable (IV) method, and statistical methods were used to determine
and calculate causal inference and estimation. To determine the pattern of the causal effect
in the original data set, the synthetic data, and the predicted data, a method to implement
causal inference through the use of the IV method was designed and implemented to
analyze, understand, question, and explain the predictions that the DL models provided
regarding the detection of argumentative texts in Spanish to explain and interpret the
results that the models provided from a causal approach. In this regard, unlike approaches
where the validity of the IVs is justified only with narrative arguments, in this research,
a rigorous identification was carried out, since its relevance and compliance with the
exclusion restriction were demonstrated through regression and statistical models. To
verify and evaluate the results of an LLM, a validation method for text generation was
designed and implemented using the GPT-3.5-turbo-0125 model. This method used the
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original data set and the recovery of textual files, regarding the study domain as a variation
of the RAG technique. This was carried out to mitigate possible incidents regarding the
generation of “synthetic fakes” and validate the quality of the generated synthetic data.
Regarding the predictive tasks, various DL models were implemented, and the three best
models (CNN, CNN-LSTM-MLP, and CNN-LSTM-MLP, with automatic saving during
training) were selected based on their performance on unseen data. Three predicted data
sets were obtained. Finally, the evaluation and explanation of the results provided by the
three best DL models was carried out using a causal approach. The most important findings
were as follows: the best model (85.82% performance on new data) significantly deviated
from the estimated overall causal effect; the third-best DL model (84.50% performance on
new data) was completely aligned with the overall causal effect estimated with the original
data; although the intervention method for generating texts using GPT-3.5-turbo-0125
significantly mitigated the generation of false synthetics, low quality was evident in the
synthetic data generated by GPT-3.5-turbo-0125 due to the homogeneity of the generated
words and its limitations in the context of specific domains, which made its interpretation
and analysis difficult.

This research seeks to improve the ability to understand DL models using a causal
approach and expose the need to validate the results provided by an LLM and evaluate
them from a causal perspective. The convergence between the causal-focused methods,
DL and LLM, represents an expanding line of research with direct implications for the
robustness and interpretability of AI models in NLP applications. In summary, our findings
highlight the potential of integrating causal inference and estimation methods into DL
models in the field of NLP and the need to apply methods that include the verification
and validation of data generated by LLMs regardless of the study domain in which they
are applied.

2. Related Work
2.1. Causal Inference

In this context, approaches incorporating causal inference have emerged to improve
the robustness of these models. Wu et al. [15] argue that causal inference uses assumptions,
study designs, and estimation strategies to determine the causal relationships between
variables based on data to understand better how complex systems work and support
decision-making. Along these lines, several studies have explored the integration of
causal inference in DL models, allowing for the identification of the underlying causal
relationships in the data and improving the stability of the models [16]. Sui et al. [17]
introduce the concept of Causal Attention, a method that improves the interpretability
of graph classification models by eliminating the effects of confounding variables. This
approach allows models to learn optimal representations and be more explainable and
generalizable in structured classification tasks. Similarly, ref. [18] explores the use of
causal representation learning from multimodal data in biology, demonstrating how causal
inference can identify spurious correlations through causal techniques, allowing models
to learn representations that are more faithful to the underlying relationships in the data.
Addiitonally, ref. [5] argues that one of the techniques that can be used to implement a
causal method regarding the results provided by DL models is causal formalisms based
on the generation of “Counterfactual” component. These represent statements that would
be true under different circumstances. Counterfactuals can be considered hypothetical or
simulated interventions that assume a particular situation, for example, “I would have
arrived at the office on time if I had taken the train instead of the car” [10]. Ref. [19]
analyzed the work that has been carried out, categorizing it into two groups: a group of
studies using evidence-based data seeking statistical causal inference, and a second group



Electronics 2025, 14, 1676 5 of 39

of studies without causality objectives that prioritize prediction. Much of this research
has not emphasized the need to enhance the explanatory and interpretive capacity of
DL models but instead prioritized mitigating the presence of spurious correlations and
improving performance metrics and model robustness. Our research questions the notion
that the best model can be selected based primarily on its predictive capacity. Our work
seeks to balance model performance and its explanatory and interpretive capacity from a
causal perspective in NLP.

2.2. Instrumental Variable Method

Pearl, J. [20] defined three types of causal methods, one of them being the IV, which
cannot be identified either directly or from its constituents (it has none), but can be de-
termined from the effect that Z (the variable that plays the role of the instrument) has
on Y (the independent variable) and Z on X (the dependent variable). The IV method
significantly mitigates the endogeneity of the variables [21]. Martens et al. [22] defined
three requirements for the validity of an IV: relevance, exclusion, and independence of error.
Authors such as those of refs. [23–25] grouped the last two requirements under the concept
of exogeneity. Likewise, ref. [15] present a comprehensive framework for identifying and
estimating causal effects through IVs, addressing both traditional approaches and recent
methods based on ML. According to ref. [26], the IV method facilitates the distribution of
treatment through a procedure where, in the first stage, the treatment is applied, and in the
second stage, counterfactual predictions are made. On the other hand, in low-dimensional
contexts, the data sets often do not explicitly include a clearly defined treatment variable.
However, an in-depth understanding of the domain under study allows us to infer which
variable can serve as an instrument. The IV method addresses this challenge by identifying
the causal relationships, provided the selected instrument meets the fundamental criteria of
relevance and validity. Our approach has proven very useful when treatment assignments
are not directly observed but can be inferred through an appropriate instrument. This study
used the IV method to apply the causal approach to pre-trained DL models, highlighting
its usefulness in data settings with a limited structure.

2.3. Synthetic Data Generation in NLP

He et al. [27] proposed the use of the GAL method to generate synthetic data using the
GPT-2.0 model, annotate those data with pseudo-labels generated by classifiers, and learn
through combining real data with synthetic data to mitigate the sparsity of specific data
points and improve the performance of the models. Yang et al. [28] proposed G-DAUG, a
data generation method using the GPT-2.0 model to improve common-sense reasoning in
the field of NLP by applying a two-stage training selection process to promote the diversity
of the data added to the training and consequently improve the quality of the data. Ref. [29]
analyzed the effectiveness of the GPT-3.5-turbo model for data generation. In this regard,
the performance of the models trained with this synthetic data (where, using the few-shot
approach, real data are used as a guide in generating data) for text classification tasks was
close to that of the models trained with real data. LLMs acquire their knowledge during
the training stage. However, they are challenging to interpret because they cannot yet
emulate the structured reasoning of a traditional knowledge base [30]. This translates into
the need to analyze and evaluate the results of an LLM using a causal approach to verify
whether the data generated are aligned with the reality of the context or simply generate
coherent, understandable ideas or biases without necessarily being aligned with the real
context. In this regard, recent findings by ref. [31] warn that incorporating new knowledge
through fine-tuning in large language models (LLMs) can increase the model’s propensity
to generate incorrect or “hallucinated” answers, especially when dealing with information
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that is not part of its pre-trained knowledge. In contrast to this approach, the present work
adopted a strategy based on a variation of the standard RAG by incorporating text files
containing domain-specific knowledge. While this technique does not modify the model’s
parameters, it also faces limitations since its ability to generate expected results depends on
adequate context structuring and the input window limits. This methodological difference
highlights a common challenge: the difficulty of integrating new knowledge that has not
been pre-trained into the LLMs. Therefore, our findings reinforce what ref. [31] established
because we expose the current limitations in LLMs when adapted to a specific domain.

3. Methodology
The IV-NLP methodology is proposed in Figure 1. IV-NLP represents a general-level

methodology, ignoring technical details such as methods, techniques, AI models, statistical
models, and specific technological tools for its implementation. IV-NLP proposes two
approaches for its application:

Figure 1. IV-NLP methodology.

3.1. First Approach

This approach defines the inference and estimation of the causal effect on original data,
predicted data, and optionally, synthetic data. Yao L. et al. [16] argue that causal inference
is the process of concluding a causal connection based on an analysis of the response of
the effect variable when the cause changes. Along these lines, we can state that causal
inference validates whether a causal relationship exists between variables and provides
statistical evidence of that relationship. Causal estimation quantifies the statistical evidence
of the causal effect of the treatment variable on the outcome. Likewise, this approach
addresses the claim by ref. [6] that DL models ignore intrinsic causal relationships, thereby
diminishing the accuracy and robustness of the model. IV-NLP exposes the intrinsic causal
relationships of DL models to identify the cause–effect pattern of the results obtained
with DL models. Likewise, in line with ref. [32], the IV-NLP methodology requires an
explanation of the results and analyzes the data using a causal approach, which will
allow for the scientific level of the NLP community to be improved. IV-NLP analyzes
and evaluates the overall causal effect pattern of the data set. Subsequently, it trains AI
models to obtain the best models based on their performance metrics on unseen data and
generates the predicted data sets. Next, it estimates the causal effect on the predicted data
and compares the overall causal effect pattern with the causal effect pattern on predicted
data to interpret and explain these results using a causal approach.
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3.2. Second Approach

IV-NLP includes the generation of synthetic data as an alternative to augmented data
but includes a method of validating the results obtained by the selected LLM. Note that
IV-NLP proposes that, regardless of the LLM used, a method of validating the results
obtained (automated and/or manual) must be included to mitigate the problem of biases,
false synthetics, or inconsistencies in the responses. However, this does not solve the
problem. Zhou et al. [33] argue that there is a need for a fundamental change in the design
and development of general-purpose artificial intelligence, particularly in high-risk areas
for which a predictable distribution of errors is essential. Likewise, IV-NLP proposes using
a synthetic data set for predictive tasks only if the pattern of the causal effect of the synthetic
data aligns with the pattern of the causal effect of the original data. This could evaluate
whether the pattern of causal effects in the synthetic data aligns with the real-life context
of the original data. This is extremely important because before using synthetic data in
predictive tasks, their consistency with reality must be assessed. In the Application section,
each process diagrammed in Figure 1 is presented in detail.

4. Application
The application of the IV-NLP methodology is presented below. The classification of

argumentative and non-argumentative texts in Spanish on the sociopolitical events in Peru
between 2020 and 2021 was taken as a case study.

4.1. Data Preparation

The data preparation stage is crucial to generating quality results in line with the
context of the reality from which they were obtained (Twitter, now X). Engineering tasks
were carried out to prepare and process the original data, synthetic data, and recovered
data, the latter with the purpose of providing greater context to the data set and enhancing
its use during the analysis and evaluation stage of the causal effect pattern in the data.

4.1.1. Original Data

The data set was generated from a corpus of 4000 records used to propose and evaluate
an annotation method for argumentative and non-argumentative texts in Spanish [34]. The
previously published corpus for the detection of argumentation in Spanish, corresponding
to the first annotation task, is available in Mendeley Data (Mendeley Data Repository: https:
//data.mendeley.com/datasets/xh7vvty9zt/3 (accessed on 6 June 2023)) and contains
2875 texts annotated as Argument or Non_Argument (1 and 0, respectively). Subsequently,
a review of 1125 labeled records was carried out to guarantee the reliability of the data.
The 4000 records were extracted from the social network Twitter (2021), covering the
period 2020 and 2021 during the general elections in Peru. Next, 15 records extracted
from the Portal of the Constituent Process at the Service of the Peoples of Peru [35] were
added. In total, 4015 records labeled in Spanish were obtained (Mendeley Data Repository:
https://data.mendeley.com/datasets/rcn3swj868/2 (accessed on 7 April 2025)). Finally,
the original data were distributed (training, testing, and validation). Likewise, a sub-subset of
argumentative and non-argumentative texts was distributed for each data subset to preserve
the class balance during the data preparation stage.

The data set was divided into training, testing, and validation sets. This was achieved
using a special function to automatically distribute the data to ensure a balanced distribu-
tion of the argument and non-argument classes. No data were subtracted for validation
from the training set, although this is frequently done. The data set was distributed refer-
encing the work of [36], in which the training, testing, and validation sets represent 78%,
17%, and 5% of the total records in the data set. Likewise, the distribution kept the data

https://data.mendeley.com/datasets/xh7vvty9zt/3
https://data.mendeley.com/datasets/xh7vvty9zt/3
https://data.mendeley.com/datasets/rcn3swj868/2
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balanced (Table 1). The training and validation sets were used to train and adjust the ML
models, respectively, while the testing set was used to evaluate the final performance of the
ML models with the untrained data to ensure an unbiased evaluation of the ML models
was achieved.

Table 1. Data distribution.

Sub Data Set Argument (A) Non-Argument (NA) Total

Training data set 1527 1604 3131
Testing data set 333 351 684

Validation data set 98 102 200

4.1.2. Synthetic Data

For the case study used in the application of IV-NLP, it was necessary to generate
synthetic data from the real data due to the limitations in accessing Spanish text in the
context of the study’s subject and to make modifications to the original text in order to
carry out the intervention on the [20] ladder and subsequently verify how this influences
the target variable. Because this research work began in 2023, different GPT 3.5 models
were experimented with, as follows.

The “gpt-3.5-turbo-0125” model handles a limit of 250,000 tokens per minute (TPM),
which is why better results were obtained; that is, the results were acceptable for the
objectives pursued in this research. Some adaptations and resources were implemented
in the configuration of the “chat.completions.create” library of the “gpt-3.5-turbo-0125
model”, such as the design and implementation of a file of discourse markers in Spanish,
a file containing a list of authorities, the size of the generated text, the configuration of
the text generation stop, and the level of creativity and coherence, among others. The file
containing the list of authorities represents an ‘Authority,’ so in the political context of a
State, a statement, report, or report issued by the competent authority can be considered
an argumentative text. For example, a presidential candidate is not an authority, but the
PNP (National Police of Peru) is an institution that represents authority in the country.
Regarding the text stop configuration, a modification was made to the max_tokens=250
parameters and the stop=[“.”] parameter was not used; instead, the task of the “content”
variable of the “system” role of the gpt-3.5-turbo-0125 model was modified, emphasizing
that the generated sentences should be terminated with a period to offer the model freedom
during the text generation process. To carry out the validation method proposed in IV-NLP
(Figure 1) for the output of an LLM, the following phases were designed and implemented
(Figure 2):

• Input—Original texts: Six (06) data subsets were generated, including argumentative
and non-argumentative texts for each training, test, and validation data set. A small
sample of each data subset was selected to ensure that the results generated by the
GPT-3.5-turbo-0125 model responded to the research needs.

• Intervention Method: An iterative process of adjustments, modifications, and improve-
ments to the model was carried out to achieve results that were acceptable regarding
the study’s objectives. These adjustments included parameter adjustment, the elabora-
tion of specific inputs with precise examples to provide context to the model, rules
to specify the end of the generated sentence, and the specific configuration of the
parameters temperature, max_tokens, and stop. A variation of the standard RAG
(Retrieval-Augmented Generation) technique was implemented. Text documents were
created as discourse markers, providing a list of authorities to introduce new informa-
tion and mitigate the generation of false synthetics that the model could eventually
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generate. This process was repeated as often as necessary until acceptable results
were achieved.

• Output—texts generated by the model: The results generated by the model were saved.
• Validation of texts generated by the model: Each time errors were identified during the

validation of the results produced by the model for each of the six (06) data sets, the
records in the data set were relocated (if the text generated by the model was incorrect,
meaning the model generated a non-argumentative text when it should have generated
an argumentative text and vice versa) and/or eliminated (if the text generated by
the model was intelligible, contained up to five tokens, or was a synthetic false text,
then it was eliminated to avoid manipulating the data and avoid possible biases).
This method was chosen not only to rationally and efficiently use all the records in
the data sets but also to calculate the expected value of the counterfactual for the
intervention that was carried out. Finally, the argumentative and non-argumentative
records correctly generated by the model for each of the six (06) data sets were totaled.

Figure 2. Validation method for text generation using the “GPT-3.5-turbo-0125” model.

The first result after implementing the GPT-3.5-turbo-0125 model for each of the six
(06) data sets in the OUTPUT stage—TEXTS GENERATED BY GPT-3.5-turbo-0125 of the
Intervention Method (Figure 2):

The generated records were the synthetic texts generated by the model without any
validation (intervention method’s output stage), while the correctly generated records were
the synthetic texts correctly identified as argumentative and non-argumentative texts. The
first results obtained are displayed in Table 2:

Table 2. First results generated during the OUTPUT stage—TEXTS GENERATED BY GPT-3.5-turbo-
0125 of the proposed intervention method (Figure 2).

Texts Training Set Testing Set Validation Set
A NA A NA A NA

Original texts 1527 1604 333 351 98 102
Generated texts 1529 1604 333 351 98 102
Texts successfully generated 1503 1537 313 335 91 98

The second result after having concluded the validation stage of the results generated
by the intervention method (Figure 2) using the GPT-35-turbo-0125 model:

The correctly generated records were the synthetic texts that were reassigned or
relocated to the category of argumentative or non-argumentative texts, as appropriate, at
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the end of the intervention method’s validation stage. The results obtained are displayed
in Table 3.

Table 3. The second result was generated at the end of the VALIDATION OF GENERATED TEXTS
stage, which was proposed by the intervention method using GPT-3.5-turbo-0125 (Figure 2).

Texts Training Set Testing Set Validation Set
A NA A NA A NA

Original texts 1527 1604 333 351 98 102
Total texts correctly generated 1530 1562 327 351 95 104
Total 3057 3166 660 702 193 206

4.1.3. Recovering Features from Original and Synthetic Data Sets

It was necessary to recover characteristics from the data set (described in the data
in item a. Original Data of Section 4.1, Data Preparation) that allow for the design and
implementation of a method and/or technique that responds to the inference or causal
formalisms that will enable the interpretation and explanation of the results obtained. Due
to the effort and cost of increasing the characteristics in the original and synthetic data set
that ensure the robustness and consistency of the data, Appendix A provides more granular
information about this process.

The results of this process are presented in Table 4. Finally, a synthetic data set
was obtained, with 3966 generated and validated records. (Mendeley Data Repository:
https://data.mendeley.com/datasets/rcn3swj868/2 (accessed on 7 April 2025)). Its features
are Id (automatic sequential from 0 to 3965), Tweet_Checked (Text), Original_Id (Id that
corresponds to the original data), Date, and Class_Argument.

Table 4. The results are detailed at the end of Step 3, and the second result is shown in Table 3.

Data Sets Training Set Testing Set Validation Set
A NA A NA A NA

Records with retrieved
features—Automatically

1500 1537 313 335 91 98

Records with retrieved
features—Manually

27 25 14 16 4 6

Total records with features re-
covered

1527 1562 327 351 95 104

4.2. Deep Learning (DL) Models

To apply the IV-NLP methodology (Figure 1), during the training phase of the DL
models, it was exceptionally necessary to retrain the three best models because, during
training, the predicted data sets that are necessary for their subsequent evaluation concern-
ing the global causal effect pattern were not generated. Therefore, it is recommended that,
to apply IV-NLP in another case study, the predicted data sets of the best DL models be
generated at the end of training.

4.2.1. Training DL Models with Original Data

The data sets were distributed according to Table 1 to ensure the model adequately
generalizes the data not used during the training stage (test set). The objective of this
phase is to evaluate the performance of the results obtained using the classification models
based on the estimation of the global causal effect. It will be possible to evaluate whether
the model can classify the texts according to a pattern reflecting the estimated causal
relationships, thereby verifying whether the DL models align or deviate from the estimated
causal effect structure.

https://data.mendeley.com/datasets/rcn3swj868/2
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Models based on conventional neural networks were chosen due to their lower archi-
tectural complexity and greater ability to explain and interpret causal analysis. Following
ref. [16], machine learning and causal inference can enhance each other. Therefore, more
controllable neural network architectures were chosen to explain this mutual support.
During this phase, the following DL models were first trained: LSTM, CuDNNLSTM,
Bidirectional CuDNNLSTM, CNN, CNN-LSTM, and CNN-LSTM-MLP. For the LSTM and
CuDNNLSTM models, the following hyperparameters were employed: batch_size = 256,
callbacks using EarlyStopping, epochs = 30, and Adam optimizer. The same hyperparame-
ters were used for the Bidirectional CuDNNLSTM model, but with an epoch of 25.

Since the data are Spanish texts, the Glove embeddings of SBWC (Spanish Billion
Word Corpus) were used, for which the pre-trained vectors in Spanish were downloaded
and loaded with the following configuration: 2B tweets, 27B tokens, 1.2M vocab, uncased,
200d vectors, and 1.42 GB for the models to semantically learn the textual content. The
results of the DL models CNN, CNN-LSTM, and CNN-LSTM-MLP, using the testing set,
are presented below (Table 5). A batch_size of 256 was considered, an EarlyStoppping with
Patience = 5 trained in 25 epochs, and Glove SBWC with dimension vectors 200 for the
Embedding layer. Furthermore, the SBWC Glove embeddings yielded 1761 words as part
of the OOV, out of a total of 60,000, representing approximately 2.9% of the total, which
is acceptable for most NLP works. Also, the CNN, CNN-LSTM, and CNN-LSTM-MLP
models usually adequately improve OOV terms due to their generalization ability.

Table 5. DL models with the first results.

Classifier
F1: NA F1: A Test Accuracy

F1: 0 F1: 1 Decimal Percentage

LSTM 0.84 0.83 0.84 83.63%
CuDNNLSTM 0.76 0.84 0.781 84.36%
Bidirectional CuDNNLSTM 0.85 0.85 0.85 84.65%
CNN 0.86 0.86 0.86 85.96%
CNN-LSTM 0.86 0.86 0.86 85.82%
CNN-LSTM-MLP 0.85 0.86 0.86 85.53%

4.2.2. Generating Predicted Data Set to Assess the Causal Effect

To ensure consistency and, above all, reproducibility in the retraining process for the
selected models, the random seed was set to 42 in the following libraries: random.seed(42),
np.random.seed(42), and tf.random.set_set(42). This made it easier to keep the initialization
of weights consistent so that any internal operation involving randomness in TensorFlow
(version 2.17.1)/Keras (version 3.5.0) remained relatively controlled. It should be noted
that the original data sets with recovered features (item c. of Section 4.1.3, Recovering Features
from Original and Synthetic Data Sets) were used in order not only to add context to the
results of the DL models that were not previously considered in the training stage but to
apply and estimate the causal effect through the IV method.

For the CNN and CNN-LSTM models, the same training configuration was maintained
because better results were obtained from the experiments performed. Regarding the hybrid
CNN-LSTM-MLP model, the “Cyclical Learning Rate” method was implemented through
the “LearningRateScheduler” library of the Keras framework. The retraining process was
documented in a Github repository (https://github.com/YudiGuzman/Retraining_IV-NLP
(accessed on 3 April 2025)) An additional callback was implemented to save the best model
obtained during training. Likewise, the predicted sets were generated using the models
with the best performance in terms of test_accuracy. Additionally, for the best model
(CNN-LSTM-MLP), predicted sets were generated for the model with which the retraining
stage ended and for the best model obtained during the retraining stage. After completing

https://github.com/YudiGuzman/Retraining_IV-NLP


Electronics 2025, 14, 1676 12 of 39

the retraining process, the three best models obtained were the following: CNN, CNN-
LSTM-MLP (using the CLR method), and CNN-LSTM-MLP (using the CLR method with
automatic saving). The architecture of the best model is described in detail in Section 5.2.1.
of Section 5, Behaivor and Performance of the Best Model.

Finally, the three corresponding predicted data sets were generated once the three best
models were selected through the DL model’s retraining. This allowed us to evaluate how
the quality of the model affects the estimation of the causal effect, since the best model
will not necessarily produce more precise causal estimates as this will depend on how its
predictions interact with the original data.

4.3. Causal Inference Pipeline Using the IV Method

Figure 3 graphically represents the application of the first approach of the IV-NLP
methodology (Figure 1). In this regard, the IV method was applied to the original data and
synthetic data to evaluate the behavior of the causal effect in the synthetic data generated
by GPT-3.5-turbo-0125 for the original data. Likewise, the IV method was applied to the
predicted data generated by the three best DL models to verify whether the best model
from the perspective of performance metrics was better and more naturally aligned with
the pattern of the global causal effect.

Figure 3. Causal Inference Pipeline using the IV Method in Original and Synthetic Data and Predicted Data.

4.3.1. Phase 1: Design and Implement the IV Method with the Original Data

Once the process of increasing and/or recovering the characteristics in both the original
and synthetic data sets was successfully completed, the instrumented variable method
(Instrumental Variable—IV) was implemented to calculate the causal effect of the results
achieved. The method that was designed and implemented consists of the following steps:

• Step 1: Selecting the attribute that will fulfil the role of “Instrument”
This method will provide an estimate of the causal effect of “Text” on the “Target Class”
using the attribute “Date” in this research. This step establishes the publication date’s
relevance (pertinence) and exogeneity as an instrumental variable. To demonstrate
that the choice of the attribute “Date” as an instrument was correct, it was verified that
“Date” as an instrumental variable (Z = Date) meets the following criteria: relevance
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concerning its correlation with X (X = Text)—that is, Z must have some relation to the
content of variable X; and exogeneity, meaning Z must not be correlated with variable Y
(Y = Target Class) and that Z must not have a direct effect on Y or be correlated with
unobserved factors that influence Y.

– Step 1.a: Data preparation with temporality and topics
Topics were assigned to the texts by time period (every 02 months) based
on the publication date. The LDA (Latent Dirichlet Allocation) model was
implemented to identify the topics or themes present in the text throughout
the study period (2020–2022). Due to the number of records in the data set
(4015 instances), 05 topics were defined for evaluation. The topics generated by
the model were the following (the first six generated tokens are included):

* Topic 0: elections vote Castillo Keiko second round;

* Topic 1: constituent assembly elections president congress new constitution;

* Topic 2: elections electoral vote onpe security local;

* Topic 3: elections presidential party candidate congress peru;

* Topic 4: elections electoral jne new constitution constituent assembly.

– Step 1.b: Checking the relevance of the publication date
This section demonstrates that the feature ‘Date’ correlates with the feature
’Tweet_Checked’ (original text). That is, the influence of “Date” on the con-
tent of the “original text” is evaluated and verified. A correlation analysis was
performed to demonstrate the relevance of “Date” in relation to the content of the
topics for which the regression models were implemented where the proportions
of the topics were defined as dependent variables and the date (in numerical
format) was defined as an independent variable. The regression model used to
analyze the impact of “Date” was the OLS (Ordinary Linear Regression) of the
“statsmodels” API. The “seaborn” library was used to better visualize the results.
Figure 4 shows the results obtained for each topic.
The values shown in Table 6 show that all p-values are less than 0.005, so date
has a statistically significant influence on each of the topics; therefore, it was
inferred that date is a relevant (pertinent) factor for predicting textual content in
terms of the generated topics. Likewise, the coefficient values are small, which
could be due to the scale of the date variable. However, the “p” values shown
by the F-Statistic parameter indicate that this relationship is robust and reliable.
Finally, the R-squared for each topic is low, which indicates that although the
Date is significant, it only explains a small fraction of the variability in each topic.
This is common in textual analysis, where multiple factors influence the content.
In conclusion, it was demonstrated that there are clear differences between the
variables studied regarding the variability of each topic analyzed between the
years 2020 and 2022, demonstrating the influence of ‘Date’ on ‘Text’.
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(a) (b)

(c)

(d) (e)

Figure 4. Variation in topics between the period 2020 and 2022: (a) variation in Topic 0; (b) variation
in Topic 1; (c) variation in Topic 2; (d) variation in Topic 3; (e) variation in Topic 4.

Table 6. Results obtained to establish the relevance of ‘Date’ as IV.

Id_Topic Topic Name R-Squared Prob (F-Statistic) Level of Significance

0 elections vote Castillo Keiko second round 0.002 0.00334 Significant

1 constituent assembly elections president congress new
constitution 0.083 9.93 × 10−78 Very significant

2 elections electoral vote onpe security local 0.046 5.21 × 10−43 Very significant
3 elections presidential party candidate congress peru 0.014 6.96 × 10−14 Very significant

4 elections electoral jne new constitution constituent
assembly 0.003 0.00118 Significant
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– Step 1.c: Verify that the publication date has no direct influence on the class
This step shows no correlation between date and class, reinforcing the validity of
‘date’ as an IV. The linear regression of class against date was performed using
the OLS model. Table 7 shows the results. The correlation value between ‘date’
and ‘class’ is 0.0833 (Figure 5).

Table 7. Results obtained to establish the exogenity of ‘date’ as IV.

Constant F-Statistic R-Square
(p-Value)

Prob
(F-Statistic) Durbin-Watson

−7.5862 28.02 0.007 1.22 × 10−7 1.792

The values shown in Table 7 show that the R-squared value indicates that only
7% of the variability in the class variable is explained by the date, which is a
very low value and shows that date has no significant relationship with class.
On the other hand, F-Statistic has a value of 28.08 with a p-value of 1.22 × 10−7,
which indicates that, in general terms, the model is significant, but does not imply
that date is a good variable to explain class because the R-Squared is too low.
The value of the constant is −7.5862, which indicates that when date is 0, the
class value is negative, reinforcing the idea that date has neither a positive nor
a negative impact on class. Finally, the Durbin–Watson value is 1.792 (close to
2), showing no residual autocorrelation in the model. In conclusion, the date
explains virtually none of the variability in the class, as demonstrated by the
R-Squared result, so date has no significant effect on class.

Figure 5. Class distribution for date.

• Step 2: Estimating the causal effect using ‘date’ as an instrumental variable (IV)
The instrumental regression was performed in the following two (02) steps:

– Step 2.a: Regression of X (topic) on Z (date)
This first stage of the regression allows us to estimate the part of X determined
by Z. The predictions of this regression are stored in a data frame and are the
“instrumented” versions of X; that is, they are free of endogeneity (Table 8).
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Table 8. Results obtained to establish the endogeneity of X over Z using an OLS regression model.

Id_Topic F-Statistic R-Square Prob (F-Statistic)
(p-Value) Durbin–Watson

Topic 0 8.624 0.002 3.34 × 10−7 1.441
Topic 1 363.9 0.083 9.93 × 10−7 1.783
Topic 2 193.6 0.046 5.21 × 10−7 1.684
Topic 3 56.48 0.014 6.96 × 10−7 1.673
Topic 4 10.54 0.003 1.18 × 10−7 1.873

– Step 2.b: Regression of Y (class) on instrumented X
The saved predictions (instrumented versions of X) were used to predict Y in a
second regression. This provided an unbiased estimate of the causal effect of X
on Y. The results are shown in Table 9.

Table 9. Results of the causal effect of Z on Y using ‘Date’ as IV.

Predicted_Topic Coef std-Error t P > |t| 0.025 0.975

Intercept 0.4227 0.007 57.868 0.000 0.408 0.437
Predicted_Topic_0 0.1490 0.010 14.647 0.000 0.129 0.169
Predicted_Topic_1 0.3362 0.049 6.881 0.000 0.240 0.432
Predicted_Topic_2 −0.1478 0.042 −3.544 0.000 −0.229 −0.066
Predicted_Topic_3 −0.0358 0.024 −1.516 0.130 −0.082 0.010
Predicted_Topic_4 0.1210 0.010 12.509 0.000 0.102 0.140

• Step 3: The analysis and interpretation of the results in Table 9 is developed in
Section 5.1.1, Original Data.

4.3.2. Phase 2: Design and Implement the IV Method with the Synthetic Data

This stage aims to evaluate whether the texts generated by the GPT-35-turbo0125
model maintain the instrumental relationship verified in the original data set to validate
the robustness of the causal effect. The topics generated from the synthetic data were
as follows:

• Topic 0: constitution constituent assembly new elections fundamental;
• Topic 1: elections fundamental onpe voting guarantee process;
• Topic 2: elections proposals party candidates congress candidate;
• Topic 3: elections peru according to important presidential castle;
• Topic 4: peru elections constituent fundamental important castle.

The steps were the same as those applied to the original data. In Step 1, it was verified
that the attribute ’Date’ met the requirements of relevance and exogeneity for the role of
the instrument. It is worth mentioning that verifying the exogeneity with the synthetic data
generated greater effort because, although the results were significant for the p-value of
the coefficients obtained in the model, the Durbin–Watson (DW) value was very close to
zero (0) (Table 10) due to the model, so the Logistic Regression (LR) model with HC3 for
the robust error type was implemented (Table 11). It should be noted that even though
the DW in synthetic data was very low, this does not change the fact that the variable
“Date” has no significant influence on “class”. As a result of implementing the LR model, a
Pseudo R-squared of 0.005 was obtained. This pseudo R-squared was quite low, indicating
that the model does not explain much of the variability of the dependent variable (0 or
1). Although a low pseudo R in logistic models is not unusual, it could be inferred that
Date_Numeric_log does not strongly influence class. Therefore, the fact that low R-squared
values were obtained in both the linear and logistic regression, and the low impact of
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date as a predictor variable of class, confirm that date has no significant influence on class
(Figure 6); therefore, the variability of class is not explained by the date.

Table 10. Results obtained to establish the exogeneity of ‘date’ as IV using a linear regression model.

Date_Numeric_log F-Statistic R-Square
(p-Value)

Prob
(F-Statistic) DW

8.0995 27.65 0.007 1.53 × 10−7 0.019

Table 11. Results obtained to establish the influence of ‘date’ on ‘cass’.

Coef std-
Error z P >|z|* 0.025 0.975

const −692.1805 133.629 −5.180 0.000 0.408 −430.272
Fecha_Numerico_log 326.413 6.302 5.180 0.000 20.290 44.993

* It represents the p-value.

Figure 6. Class distribution with respect to date.

In Step 2, for the estimation of the causal effect, the first regression of X (synthetic
topics) on Z (date) was used; the results were as follows (Table 12).

Table 12. Results obtained to establish the endogeneity of X over Z using a linear regression model.

Id_Topic F-Statistic R-Square Prob (F-Statistic) * Durbin–
Watson

Topic 0 473.7 0.107 2.70 × 10−99 1.992
Topic 1 331.8 0.077 2.93 × 10−71 1.904
Topic 2 43.45 0.011 4.91 × 10−11 1.976
Topic 3 0.7598 0 0.383 1.951
Topic 4 66.99 0.017 3.65 × 10−16 2.036

* Represents the p-value.

Table 12 shows that the R-squared values are low, which indicates that up to 10.7%
of the data explain the variability of X and, thus, the influence of “X” on “Z”. Although
the results are very significant for the p-value of the coefficients obtained in the model
(except for Topic 3), the DW value is very close to two (2), which indicates that there is
no autocorrelation in the errors generated by the model, which shows that the model
is optimal.
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During the second regression of Y (class) on instrumented X, difficulties were experi-
enced due to the limitations of the GT-35-turbo-0125 model in generating quality data. It
was quite difficult to determine the best model, which could obtain results that not only
converge but also explain the causal effect of the same. At this stage, the following models
were implemented:

• The OLS model yielded a very low value (0.019), which indicates a high autocorrelation
in the model’s residuals. This represented a potential problem for the validity of the
results, i.e., the model could bias the inferences, so it was necessary to experiment
with other more robust models to mitigate the problem of autocorrelation of the
model’s errors.

• The Logistic Regression (LR) model generated 35 iterations. By exceeding the number
of iterations, the model failed to converge towards stable results, so this model did
not obtain the expected results either.

• Finally, a robust regression model (RLM) was implemented using the HuberT standard
to manage the sensitivity of outliers, which are associated with the quality of the data
generated by the GPT-35-turbo-0125 model (Table 13). This choice was based on the
model’s ability to balance sensitivity and robustness, its resistance to outliers, the
lower complexity in its application in exploratory analyses, and its low computational
resource requirements. This technique was originally proposed in 1964 and was
reissued in 1992 [37].

Table 13. Results of the LMR robust regression model.

Predicted_Topic Coef std-Error z P > |z|* 0.025 0.975

const 0.4149 0.007 59.735 0.000 0.401 0.428
Predicted_Topic_0 0.3043 0.037 8.223 0.000 0.232 0.377
Predicted_Topic_1 −0.0683 0.034 −2.026 0.043 −0.134 −0.002
Predicted_Topic_2 0.0096 0.009 1.045 0.296 −0.008 0.028
Predicted_Topic_3 0.0800 0.002 48.112 0.000 0.077 0.083
Predicted_Topic_4 0.0892 0.009 9.561 0.000 0.071 0.107

* Represents the p-value.

The analysis and interpretation of the results (Step 3) in Table 13 are presented in
Section 5.1.2, With Synthetic Data.

4.3.3. Phase 3: Design and Implement of the IV Method for the Predicted Data Set (Testing)

This method allowed us to objectively validate the performance of the three best DL
models in estimating the overall causal effect. The design and implementation of this
process consisted of four (04) steps, which were executed for each of the three best models:

• Step 1: Calculate the proportion of topics related to each record.
This step was repeated in each of the three best models. The proportion of each topic
present in each record of the predicted data set (testing) was calculated. The keywords
for each of the five (05) topics determined when estimating the global causal effect
were assigned and counted (Section 4.3.1). The proportions were separated by column,
and the count of the keywords for each topic was divided by the total number of
relevant words for each record. We calculated the causal effect of each topic on the
predicted data set and compare this with the results obtained in the analysis of the
global causal effect.

• Step 2: Regression of X (proportion of each topic) on Z (date in numerical format).
This first stage of the regression (Ordinary Least Squares (OLS) regression) allows us to
estimate the part of X that is determined by Z. These predictions from this regression
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are stored in a data frame, which are the “instrumented” versions of X; that is, they
are free of endogeneity.

• Step 3: Regression of Y (class) on instrumented X.
The saved predictions (instrumented versions of X) were used to predict Y in a second
regression (the Robust Linear Regression (RLM) model was implemented with the
Hubert norm). This provided an unbiased estimate of the causal effect of X on Y. The
results are shown in the following tables: Tables 14–16 for the best, second-best, and
third-best models, respectively.
The results after estimating the causal effect on the predicted data set of the Best
Model (CNN-LSTM-MLP using the Cyclic Learning Rate method with automatic
saving during the training process) are as follows (Table 14).

Table 14. Results of the estimation of the causal effect in the testing set (best model).

Predicted_Topic Coef std-
Error z P > |z|* 0.025 0.975

const 0.4155 0.019 21.502 0.000 0.378 0.453
Predicted_Topic_0_Proportion 0.0829 0.008 9.867 0.000 0.066 0.099
Predicted_Topic_1_Proportion 0.3311 0.093 3.570 0.000 0.149 0.513
Predicted_Topic_2_Proportion −0.1328 0.071 −1.869 0.062 −0.272 0.006
Predicted_Topic_3_Proportion −0.0889 0.062 −1.434 0.152 −0.210 0.033
Predicted_Topic_4_Proportion 0.3251 0.082 3.961 0.000 0.164 0.486

* represents the p-value.

The results of estimating the causal effect on the predicted data set of the second-best
model (CNN) are as follows (Table 15).

Table 15. Results of the estimation of the causal effect in the testing set (second-best model).

Predicted_Topic Coef std-
Error z P > |z|* 0.025 0.975

const 0.3940 0.019 20.382 0.000 0.356 0.432
Predicted_Topic_0_Proportion 0.0786 0.008 9.363 0.000 0.062 0.095
Predicted_Topic_1_Proportion 0.3147 0.093 3.393 0.001 0.133 0.496
Predicted_Topic_2_Proportion −0.1265 0.071 -1.780 0.075 −0.266 0.013
Predicted_Topic_3_Proportion −0.0847 0.062 −1.367 0.172 −0.206 0.037
Predicted_Topic_4_Proportion 0.3089 0.082 3.763 0.000 0.148 0.470

* represents the p-value.

The results when estimating the causal effect on the predicted data set of the third-best
model (CNN-LSTM-MLP using the cyclic learning rate method) are as follows (Table 16).

Table 16. Results of the estimation of the causal effect in the testing set (third-best model).

Predicted_Topic coef std-
Error z P > |z|* 0.025 0.975

const 0.4153 0.019 21.505 0.000 0.377 0.453
Predicted_Topic_0_Proportion 0.0843 0.008 10.046 0.000 0.068 0.101
Predicted_Topic_1_Proportion 0.3457 0.093 3.731 0.000 0.164 0.527
Predicted_Topic_2_Proportion −0.1437 0.071 −2.024 0.043 −0.283 −0.005
Predicted_Topic_3_Proportion −0.0982 0.062 −1.587 0.113 −0.220 0.023
Predicted_Topic_4_Proportion 0.3382 0.082 4.123 0.000 0.177 0.499

* represents the p-value.
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• Step 4: Analysis and interpretation of the results.
Sections 5.3.1 and 5.3.2 of Section 5 develops the analysis and interpretation of the
results (Tables 14 and 16). The analysis and interpretation of Table 15 is like that shown
in Table 14.

5. Analysis and Interpretation of Results
This section constitutes the interpretative and explanatory processes of the two ap-

proaches addressed by the IV-NLP methodology (Figure 1) applied to classify the argumen-
tative and non-argumentative texts, provided in Spanish, of a socio-political phenomenon
in Peru between the years 2020 and 2021:

5.1. Causal Effect Estimation on the Global Data Set

In this subsection, the analysis and interpretation of the estimation and causal inference
from the original data set and the synthetic data set are developed.

5.1.1. Original Data

Analysis and interpretation of the results in Table 9:

• Regarding the coefficients: The coefficients show the estimated impact of each
topic (instrument) on the dependent variable (argument_class). Each positive co-
efficient reflects a direct relationship, while a negative one reflects an inverse re-
lationship. The p > t values indicate whether the effect of each topic is significant,
so Predicted_Topic_0, Predicted_Topic_1, Predicted_Topic_2, and Predicted_Topic_4
have values less than 0.05, indicating that their effects on Argument_Class are sig-
nificant. However, Predicted_Topic_3 is not statistically significant (p-value = 0.130),
indicating that this topic might not have a relevant effect on the dependent variable.

• Regarding the sign and magnitude of coefficients, Predicted_Topic_0, Predicted_Topic_1,
and Predicted_Topic_4 have positive coefficients, which suggests a direct association
with Argument_Class. This indicates that an increase in these topics predicts an in-
crease in the probability of their belonging to a specific Argument_Class class. Pre-
dicted_Topic_2 has a negative coefficient and is significant, indicating an inverse
association with Argument_Class.

• Regarding the descriptive statistics, the Durbin–Watson statistic is 1.792 (very close to
2), which is quite positive because it shows that there is no residual autocorrelation
(neither positive nor negative) in the model; that is, the null hypothesis is not rejected
(there is no autocorrelation in the ut perturbation). Regarding the descriptive R-
squared (0.007), it explains only 0.7% of the variability of Argument_Class, suggesting
that although some of the topics have significant relationships with Argument_Class,
the total variation in the Argument_Class explained by the model is low.

• Regarding the interpretation of the causal effect, these coefficients indicate that there
is a significant relationship between certain topics, such as Predicted_Topic_0, Pre-
dicted_Topic_1, Predicted_Topic_2, and Predicted_Topic_4 and Argument_Class, to
the extent that changes in the Predicted_Topics affect Argument_Class. To clarify the
results obtained in the coefficients of each topic regarding its causal effect on Argu-
ment_Class, 95% confidence intervals were included so that they could be visualized
graphically and the results and significance could be appreciated (Figure 7).
In Figure 7, positive coefficients are presented above the zero (0) dotted line, indicating
a positive (direct) relationship with Argument_Class, while negative coefficients indi-
cate an inverse relationship. Also, we can see that the coefficient of Predicted_Topic_3
includes the zero (0) dotted line of the confidence interval (which is close to zero),
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indicating that this coefficient is not statistically significant, which coincides with its
p-value of 0.130 (Table 9).
To complete the analysis and interpretation of the causal effect results, individual scat-
ter plots were implemented for each of the significant topics (Predicted_Topic_0, Pre-
dicted_Topic_1, Predicted_Topic_2, and Predicted_Topic_4) for the Argument_Class.
Likewise, the regression line was added to show the trend of each Predicted_Topic
concerning Argument_Class (Figure 8).
From Figure 8, the following interpretation can be made:
The red line helps us visualize the average effect of each Predicted_Topic on the
Argument_Class and indicates the type and strength of the relationship. The slope
of the line reflects the direction and magnitude of the association between the Pre-
dicted_Topic and Argument_Class. The dispersion of the blue points around the
red line suggests variability in the data: if the points are close to the line, it implies
a stronger relationship, i.e., less variability, while if the points are more dispersed,
then the relationship is weaker and there could be other factors affecting the Argu-
ment_Class. The red line mainly shows the central tendency of the relationship; for
example, a positive slope indicates that as the Predicted_Topic increases, then the Ar-
gument_Class also increases, while a negative slope indicates the opposite. The graph
shows how this pattern changes concerning Argument_Class when Predicted_Topic
varies. For example, we can see that Predicted_Topic_0, Predicted_Topic_1, and Pre-
dicted_Topic_4 maintain positive slopes while Predicted_Topic_2 maintains a negative
slope, as shown in the graph of Predicted_Topic concerning Argument_Class with a
95% confidence interval (Figure 7), which shows that the model is robust and there is
no deviation in its results regarding the estimation of the causal effect.

Figure 7. Causal effect of Predicted_Topic on Argument_Class with 95% confidence interval.
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Figure 8. Causal effect relationship between statistically significant Predicted_Topic and Argu-
ment_Class.

5.1.2. With Synthetic Data

Analysis and interpretation of the results in Table 13:
Regarding the coefficients of the predictors, each coefficient indicates the expected

change in the dependent variable (Argument_Class) associated with a unit change in the
corresponding predictor variable, leaving the others constant. Since the Argument_Class
variable has two values (0 and 1), the model reflects how the predictor variables influence
the result of Argument_Class = 1, maintaining a base or reference (const = 0.4149) when
all the predictors are equal to zero (0). In this context, an analysis of each of the topics is
presented, as follows:

• Predicted_Topic_0: The increases in this topic are positively related to the prob-
ability of the argument_class. It has a positive and highly significant coefficient
(p < 0.05). This implies that as the values of these topics increase, the probability of
Argument_Class = 1 also increases.
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• Predicted_Topic_1: Reflects a negative and weakly significant relationship with Ar-
gument_Class. A negative and marginally significant coefficient (p = 0.043) suggests
that this topic has a slightly negative relationship with Argument_Class = 1; that is, an
increase in this predictor variable decreases the probability of Argument_Class = 1.

• Predicted_Topic_2: Has no significant effect on Argument_Class. This predictor does
not contribute in a relevant way to the model’s ability to determine Argument_Class.

• Predicted_Topic_3 and Predicted_Topic_4: Both predictors reflect a positive rela-
tionship with Argument_Class. They have positive and very significant coefficients
(p < 0.05). This implies that as the values of these topics increase, the probability of
Argument_Class = 1 also increases.

• The intercept (const) of 0.4149 (41.49%) represents the probability of the base (Argu-
ment_Class = 1) when all predictors are 0. In this case, it is close to 50%, suggesting a
relatively balanced result for Argument_Class = 1 versus Argument_Class = 0.

Regarding the robust model, after the experiments were performed with other models
(OLS, LR), LSR (Least Squares Regression) was the right choice because it efficiently handles
outliers and provides reliable estimates, which is evidenced by the rapid convergence of the
model and especially by the significance of the coefficients. Regarding the estimated causal
effect, since “date” is the instrumental variable, the coefficient values reflect the adjusted
estimate of how the topics through “date” causally affect the variable “Argument_Class”.
The most significant or influential predictors are Predicted_Topic_0, Predicted_Topic_3, and
Predicted_Topic_4, because they positively impact Argument_Class = 1. Predicted_Topic_1
has a slight negative effect, while Predicted_Topic_2 is not significant. To provide greater
transparency to the results obtained in the coefficients of each topic regarding its causal
effect on Argument_Class, 95% confidence intervals were included so that the results can
be presented graphically, and the results and significance are shown in Figure 9.

Figure 9. Causal effect of Predicted_Topic with Argument_Class including 95% confidence intervals.

Given that it was necessary to implement a robust regression model (RLM) in the
second regression, the following figure presents the non-linear relationships and allows
us to observe more complex patterns (Figure 10). Regarding the pattern or trend, the
regression line allows us to estimate the average change in the value of Argument_Class
can change when the value of the topic varies. If we have a positive slope, this indicates
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that as the value of the topic increases, the Argument_Class also increases, while a negative
slope indicates the opposite. Regarding the inclination of the red line, the direction and
inclination of this line reflect the direction and magnitude of the association between the
Predicted_Topic and Argument_Class, which should be reflected in the estimation of the
causal effect of Predicted_Topic and Argument_Class. In this regard, Topic_0 and Topic_1
maintain a positive and negative slope, respectively: Predicted_Topic_4 maintains a positive
slope in accordance with the estimation of its causal effect. However, Predicted_Topic_3
maintains a negative slope, evidencing an inconsistency in the estimation of its causal effect
(Figure 9).

Figure 10. Causal effect relationship between significant Predicted_Topics and Argument_Class
(smoothing curve).

5.1.3. Discrepancies in the Behaviour of the Models Concerning the Estimation of the
Causal Effect

Regarding the original data set, the causal effect relationship between statistically
significant predicted topics and class demonstrates that the method and model used are
robust, and the results do not deviate from the estimation of the overall causal effect.



Electronics 2025, 14, 1676 25 of 39

Regarding the synthetic data set, Predicted_Topic_3 was found to be inconsistent in
the estimation of the overall causal effect. To analyze the deviation of the Predicted_Topic_3
from its causal effect estimate for the Argument_Class, simple regression was implemented
to eliminate possible influences from other topics and to verify whether the coefficient
of Predicted_Topic_3 remained positive. As a result (Table 17), it was verified that Pre-
dicted_Topic_3 remained negative, while with LSR, it was positive (Table 13).

Table 17. Simple regression results for each significant topic.

Predicted_Topic Coefficients Prob (F-Statistic) * Significance Level

Predicted_Topic_0 0.3854 1.70 × 10−7 Very significant
Predicted_Topic_1 −0.4071 1.70 × 10−7 Very significant
Predicted_Topic_3 −9.4341 1.70 × 10−7 Very significant
Predicted_Topic_4 1.5446 1.70 × 10−7 Very significant

* Represents the p-value.

In Table 17, an equal p-value can be seen for each relevant topic. Correlation analysis
was used to analyze the collinearity between the predicted topics to demonstrate how the
collinearity and the quality of the data generated by the GPT-35-turbo-0125 model affects
the results; see Figure 11.

Figure 11. Correlation matrix between the relevant Predicted_Topics.

Additionally, Figure 12 shows a comparative graph between the OLS and RLM
coefficients.

In Figure 12, we can see that only Predicted_Topic_3, when using RLM, yields a
direction opposite to that of an OLS regression. We see how the coefficients of the simple
linear regression OLS for an RLM can differ significantly, which shows that the RLM model
was the optimal choice because it adjusted the coefficients better, assigning more reasonable
values to the topics in the face of collinearity. In this regard, we can see that the OLS
regression suffered large deviations, for example, with Predicted_Topic_3, due to the most
important aspects, presented as follows:
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Figure 12. Comparison of coefficients obtained with the OLS and RLM models.

• Synthetic data quality: The GPT-35-turbo-0125 model generated a significant degree
of homogeneity in the generated words (e.g., important, fundamental, some discourse
markers, and linking words), which may have reduced the LDA model’s ability to
identify better-differentiated topics. This also confirms the current limitations of
synthetic data in domain-specific contexts. This relates to the extreme collinearity in
the Predicted_Topic, which made interpretation and analysis difficult.

• Impact of collinearity: The coefficient comparison graph of the Simple OLS Regression
model and the Robust RLM regression model reinforces LSR was an appropriate
choice ffor the final model at the second regression stage, as it successfully addressed
these issues.

• Visualization of complexity: The patterns between topics and classes are not linear
in the individual scatter plots for each predicted topic, including smoothing curves
(Figure 10). This non-linearity may be another source of the discrepancy observed in
the Predicted_Topic_3.

5.2. Performance During the Retraining of the Three Best DL Models

The three best DL models were retrained using performance metrics on unseen data.
Upon completion of this process, the predicted data sets were generated.

5.2.1. Behavior and Performance of the Best Model

The configuration of the best model architecture (CNN-LSTM-MLP) included the
“Cyclical Learning Rate” method. Additionally, a callback was implemented to save the
best model during training. The results obtained are as follows.

In Figure 13, (a) shows how the CLR method seeks to take advantage of different
learning rates to improve model convergence, demonstrating that the CLR method worked
as expected due to the pattern of triangles that was formed, providing a balance between
exploration and the model’s ability to generalize. (b) and (c) show the model accuracy
and model loss, respectively. Overfitting was generated in the fifth epoch, which was
temporary because the training and validation curves converged again. Between epochs 6
and 10, the training and validation show a better balance, probably thanks to the CLR’s
dynamic adjustment of the learning_rate. Epochs from approximately 12 to 25 show how
the separation stabilizes within a moderate range of epochs, indicating that the model
reached a solid equilibrium. With the values shown in (d), a sensitivity of 82.62% and a
specificity of 86.49% were obtained, which are balanced values and reflect no evident bias
toward the prediction of false positives or false negatives. The precision (86.57%) and high
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specificity reflect that the model avoids false positives. It also achieved an Accuracy of
84.50% and an F1 score of 84.55%.

Figure 14 shows the confusion matrix generated by the best CNN-LSTM-MLP model
(with automatic saving) obtained during training. This model validates the best value of
the val_accuracy metric that the model can achieve during retraining. From the values
shown in Figure 14, a sensitivity of 84.05% and a specificity of 87.68% were obtained, which
are balanced values and reflect no evident bias toward the prediction of false positives
or false negatives. The precision (86.57%) and the high specificity reflect that the model
is good at avoiding false positives. Likewise, the improvement in the accuracy (85.82%)
and the F1 score (85.88%) of the previous model positions this model as the most balanced
and robust.

(a) (b)

(c) (d)

Figure 13. This is a wide figure. The schemes follow the same formatting. If there are multiple panels,
they should be listed as follows: (a) learning rate variation during training; (b) model accuracy—
CNN-LSTM-MLP; (c) model loss—CNN-LSTM-MLP; (d) confusion matrix—CNN-LSTM-MLP.
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Figure 14. Confusion Matrix—CNN-LSTM-MLP Best Model.

5.2.2. Comparison of Performance Metrics of the Top Three Models

The comparison of relative performance metrics during model training is presented
in Figure 15. The best model of the hybrid CNN-LSTM-MLP architecture achieved a
validation accuracy of 88.50% (val_accuracy) and a validation loss of 0.3534 (val_loss) at
epoch 10 using a learning rate of 3.25 ×10−4. The best three models and their weights were
saved (.keras format and .weights.h5 format, respectively). Likewise, in the case of the
best model, the model with the best performance during training was saved for possible
future evaluations (’best_cnn_lst_mlp_cyclicLR.keras’). Regarding the CNN model, epoch
9 was selected because it presented the lowest validation loss value (val_loss) of 0.3047,
compared to the val_loss of 0.3349 observed in epoch 13. Both epochs showed the same
val_accuracy of 0.8600, so the loss-based metric was used to make the choice. In the case of
the CNN-LSTM model, the values were taken from the last training epoch (epoch 10) using
the early stopping criterion, and for the CNN-LSTM-MLP model, the values from epoch 10
were selected, which was where the model achieved the highest accuracy (Table 18).

(a) (b)

Figure 15. Step 3 has two phases: (a) comparison of accuracies during training; (b) comparison of
losses during training.
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Table 18. Summary of Val_Accuracy and Val_Loss metrics.

Model Selected Epoch Val Accuracy (%) Val Loss

CNN 9 86 0.3047
CNN-LSTM 10 86.50 0.4341

CNN-LSTM-MLP 10 88.50 0.3534

Finally, Table 19 emphasizes that the main criterion for selecting the best three models
was the value obtained in the “test_accuracy” because it reflects the performance of the DL
models with data not used during the training or retraining stages.

Table 19. Top three DL models’ performance on unseen data.

Classifier
F1: NA F1: A Test Accuracy

F1: 0 F1: 1 Decimal Percentage

CNN 0.86 0.85 0.855 85.53%
CNN-LSTM-MLP 0.85 0.84 0.845 84.50%
CNN-LSTM-MLP 0.86 0.86 0.858 85.82%

5.3. Comparison of Global Causal Effects with Causal Effects of Predicted Subsets

The results in this section reveal interesting findings regarding the following question:
Are the AI models that achieve the best accuracy percentages the best models? In this
regard, the results found for the best model and the third-best model are presented (the
second-best model yielded very similar results to the best model).

5.3.1. The Best Model

Analysis and interpretation of results of the best DL model (Table 14):

• The coefficients show the estimated impact of each topic (instrument) on the dependent
variable (Class_Argument). Each positive coefficient reflects a direct relationship,
while a negative one reflects an inverse relationship. Predicted_Topic_0_Proportion,
Predicted_Topic_1_Proportion, and Predicted_Topic_4_Proportion have values less
than 0.05, indicating that their effects on Class_Argument are significant. However,
Predicted_Topic_2_Proportion and Predicted_Topic_3_Proportion are not statistically
significant (p-values of 0.062 and 0.152, respectively), which indicates that these
particular topics might not have a relevant effect on the dependent variable.

• Regarding the sign and magnitude of the coefficients, Predicted_Topic_0_Proportion,
Predicted_Topic_1_Proportion, and Predicted_Topic_4_Proportion have positive coef-
ficients, suggesting a direct association with Argument_Class. Predicted_Topic_2
_Proportion and Predicted_Topic_3_Proportion have negative coefficients and are
significant, indicating an inverse association with Argument_Class.

• Regarding the interpretation of the causal effect, these coefficients indicate that there is
a significant relationship between certain topics, such as Predicted_Topic_0, Pre-
dicted_Topic_1, and Predicted_Topic_4 with Argument_Class, to the extent that
changes in the Predicted_Topics affect the Argument_Class.

To clarify the results obtained on the coefficients of each topic regarding its causal
effect on the Argument_Class, 95% confidence intervals were included so the results
could be presented graphically, and the results and their significance could be fully un-
derstood (a) (Figure 16). To complete the analysis and interpretation of the causal effect
results, individual scatter plots were used for each significant topic (Predicted_Topic_0,
Predicted_Topic_1, and Predicted_Topic_4) to the Argument_Class. Likewise, the regres-
sion line was added to show the trend of each Predicted_Topic_Proportion concerning



Electronics 2025, 14, 1676 30 of 39

the Argument_Class (Figure 16b). The red line shows the average effect of each Pre-
dicted_Topic_Proportion on the Argument_Class and indicates the type and strength of
the relationship. The slope of the line reflects the direction and magnitude of the asso-
ciation between Predicted_Topic_Proportion and Argument_Class. It mainly shows the
central tendency of the relationship; in this case, the positive slope indicates that as the
value of Predicted_Topic_Proportion increases, then Argument_Class also increases. We
can see in the graph that Predicted_Topic_0, Predicted_Topic_1, and Predicted_Topic_4
maintain positive slopes, as demonstrated in the graph of Predicted_Topic_Proportion
against Argument_Class, with a 95% confidence interval (a), thus proving that the model is
robust. However, it is verified that the behavior pattern of the predicted topics generated
by the best DL model deviates from the global causal effect estimated for the original data
set because Predicted_Topic_2 is not statistically significant. It should be noted that the
second-best model showed the same behavior (Table 15).

(a) (b)

Figure 16. Effects of the prediction of topic proportions on Argument_Class—best model: (a) topic
proportion prediction with confidence intervals; (b) causal effect relationship between proportion of
statistically significant topics and Argument_Class.

5.3.2. The Third-Best Model

Analysis and interpretation ofthe results of the best DL model (Table 16):

• Coefficients: Predicted_Topic_0_Proportion, Predicted_Topic_1_Proportion, Pre-
dicted_Topic_2_Proportion, and Predicted_Topic_4_Proportion have values less
than 0.05, which indicates that their effects on Argument_Class are significant.
However, Predicted_Topic_3_Proportion was not statistically significant (p-value of
0.113), indicating that this particular topic might not have a relevant effect on the
dependent variable.

• Regarding the sign and magnitude of coefficients, Predicted_Topic_0_Proportion,
Predicted_Topic_1_Proportion, and Predicted_Topic_4_Proportion have positive co-
efficients, suggesting a direct relationship with Argument_Class, while Predicted
_Topic_2_Proportion has a negative coefficient, reflecting an inverse relationship
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with Argument_Class. This indicates that an increase or decrease in these topics
predicts an increase or decrease in the probability of the topic belonging to a specific
Argument_Class class.

• Regarding the interpretation of the causal effect, these coefficients indicate that
there is a significant relationship in topics such as Predicted_Topic_0_Proportion,
Predicted_Topic_1_Proportion, Predicted_Topic_2_Proportion, Predicted_Topic_
4_Proportion with Argument_Class, to the extent that changes in these Pre-
dicted_Topics_Proportion affect Argument_Class.

To clarify the results obtained regarding the coefficients of each topic and its causal
effect on the Argument_Class, 95% confidence intervals were included so that the re-
sults could be presented graphically and the significance could be obtained, as shown in
Figure 17a:

(a) (b)

Figure 17. Effects of the prediction of topic proportions on Argument_Class—third-best model:
(a) topic proportion prediction with confidence intervals; (b) causal effect relationship between
proportion of statistically significant topics and Argument_Class.

In Figure 17b, a scatter graph was included for each significant topic to visual-
ize the pattern that “Predicted_Topic_topic_Proportion” follows for “Argument_Class”.
The red line mainly shows the central tendency of the relationship; for example,
a positive slope indicates that as Predicted_Topic_Proportion increases, then Argu-
ment_Class also increases, while a negative slope indicates the opposite. We see in
the graph that Predicted_Topic_0_Proportion, Predicted_Topic_1_Proportion, and Pre-
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dicted_Topic_4_Proportion maintain positive slopes while Predicted_Topic_2_Proportion
presents a negative slope as demonstrated in the graph of Predicted_Topic_Proportion
against Argument_Class with a 95% confidence interval, thus proving that the model is
robust. Finally, it is shown that the third-best DL model aligns with the results obtained
after estimating the overall causal effect on the original data set, not only because Pre-
dicted_Topic_2 is statistically significant but also because the model manages to capture
its inverse trend (negative slope), unlike Predicted_Topic_0, Predicted_Topic_1, and Pre-
dicted_Topic_4 (see (Figure 8)). These findings demonstrate that the best DL model (based
on predictive performance) does not necessarily align with the estimated overall causal
effect relationship.

6. Discussion
6.1. From the Perspective of Causal Inference and Estimation

In line with [38], we consider that the findings of our research are aligned with the
third perspective, “Causality for XAI”, because the implementation of causal inference
techniques in AI models constitutes the preparatory stage of consolidating XAI (eXplainable
Artificial Intelligence) by naturally facilitating its interpretation. On the other hand, it is
important to mention that causal inference reveals whether there is a cause–effect relation-
ship between certain characteristics and the prediction, while causal estimation quantifies
this relationship through the model’s results. In our research, these two perspectives were
implemented to demonstrate the robustness of the models and statistical methods used
to apply the proposed IV-NLP method. Upon investigation, the causal inference methods
were found to have followed two important approaches.

The first approach prioritizes performance metrics when predicting the causal effect
by minimizing the MSE (Mean Square Error) metric. The second approach prioritizes the
explainability of causal effects by facilitating their interpretability. In the first approach,
the work of [39] addressed the problem of nonlinearity between variables Y and X. It
proposed Kernel Instrumental Variable (KIV) as a nonparametric IV method prioritizing
predictive performance. However, it did not explicitly address the challenges of causal
inference in NLP. The work of [40] proposed using the Deep Feature Instrumental Variable
Regression (DFIV) method to learn the optimal representations of instrumental and treat-
ment variables. While DFIV outperformed the estimation accuracy achieved by KIV, its
applicability depends on the availability of sufficiently large, structured, or numerical data,
making it less applicable to NLP tasks. Likewise, ref. [41] proposed the Deep IV method to
optimize the accuracy in estimating causal effects by using neural networks in nonlinear
relationships between instrumental variables and treatments. In our research, the problem
of nonlinearity between variables Y and X arose due to the presence of atypical elements,
homogeneity, and heteroscedasticity in the synthetic data (GPT-3.5-turob-0125), so, at the
second stage of the instrumental analysis, the Robust Regression Model (RLM) with the
Huber norm was applied to mitigate this problem.

In the second approach, ref. [42] proposed using Causal Shapley Values (CSV) as a
tool to improve the causal interpretability of deep learning models by implementing Pearl,
Judea’s concept [20] regarding the causal structure of the data. Along these same lines,
Instrumental Variables-based Regression Methods offer interpretability in estimations of
the causal effect. Using this framework, IV-NLP has two stages: the first stage performs
causal inference and estimation by integrating IV-based methods and statistical methods
such as logistic regression and robust regression to mitigate the presence of non-linear
relationships, heteroscedasticity, and outliers (original data and synthetic data); in the
second stage, it is possible to capture causal patterns in the predicted data using the best
DL models in NLP. When this proposal was applied to the field of NLP, it was possible
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to explain and interpret the results using a causal approach, but at the cost of certain
limitations in the flexibility of the models.

Finally, ref. [43] proposed a more balanced approach with the Causal Forests method,
which allows for the heterogeneity of the treatment effects in different population groups
to be understood while maintaining a balance with the precision needed to estimate the
causal effect. With IV-NLP, not only is the precision measured in terms of the stability and
statistical significance of the coefficients obtained in the second stage of the instrumental
analysis, an understanding can be obtained of the causal patterns underlying the data
to interpret DL models in the field of NLP. This justifies the choice of the models and
techniques, where the IV-NLP method was applied to balance these two approaches.

6.2. From the Perspective of the Characteristics of the Data Set

Yao et al. [16] present a compilation of data sets commonly used in causal inference,
highlighting the importance of structured attributes regarding treatments, covariates, and
outcomes. However, it was shown that the absence of explicit treatments does not prevent
the implementation of causal inference methods if an underlying structure allows for the
identification of the causal effect [23]. Our research used a data set with 4015 records and
a synthetic data set with 3966 records with low dimensionality. Although our research
worked with a data set with a reduced number of features, the presence of endogeneity and
the knowledge of the domain motivated the application of the IV method. This data set does
not define an explicit treatment; however, this approach allowed us to estimate the causal
effect of the explanatory variable on the target variable by reducing the bias introduced
by unobserved confounding elements. This perspective broadens the understanding of
the applicability of IV in the field of NLP, where the conventional data structure for causal
inference is not necessarily directly observable.

6.3. From the Perspective of Synthetic Data Generation and Causal Inference Techniques

Wood-Doughty et al. [44] proposed a framework based on LDA and GPT-2 to produce
high-dimensional synthetic textual data with causal effects controlled by propensity score
matching and inverse propensity weighting (IPW) methods. However, these methods
may fail to adjust the causal effect due to unobserved confounders in the textual data. In
contrast, we applied IV-NLP with a low-dimensional data set, which facilitated the use of
the LDA model to segment predefined topics from the original data and applied the IV
method to estimate the causal effects to identify whether the causal pattern of the synthetic
data aligned with the causal pattern of the original data. The authors of [45] used the
GPT-3 model (“text-davinci-003”) to address the class imbalance problem in sentiment
analyses. Their study showed that using synthetic data improved sentiment classification.
However, the presence of redundant synthetic data affected the diversity of their data.
Along these lines, in our study, when applying IV-NLP, the GPT-3.5-turbo-0125 model
was first used with a variation of the standard RAG technique to increase the amount of
data in the original data set and mitigate false synthetics; however, after conducting a
causal analysis on the synthetic data, it was decided not to use them for prediction tasks
because their causal pattern deviated from the causal pattern in the original data due to
their homogeneity and collinearity, which impacted the diversity of the data set.

7. Conclusions and Future Work
Causality and explanation are complementary concepts in artificial intelligence, so

they must be treated together. Causality naturally gives way to explainability, allowing for
robust and explainable models to be developed. The application of the proposed method,
IV-NLP, demonstrates that a methodological choice based on a causal approach may not
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only depend on increasing the predictive capacity of the model but also on the need to
more clearly understand the dynamics of the treatment of the outcome variable, ensuring
that the causal pattern identified in the observed data is consistent with the behavior of
the predicted data. This perspective is important because, in the field of NLP, the need for
high accuracy in causal estimation is less critical, and interpretation plays a more dominant
role. The IV method constitutes an alternative route to implementing causal inference and
estimation techniques in NLP, specifically in data structures where one or more treatments
do not necessarily explicitly exist. Likewise, the IV method applies to data sets with low
dimensionality, favoring the robustness of the models in small data sets. Besides these, the
selection of the best AI (ML, DL) model should not be based solely on performance metrics
on unseen data. Rather, the causal pattern in the predicted data should be considered
so that the selected AI model aligns with the data’s overall causal effect pattern. On the
other hand, the intervention method used to generate synthetic textual data (Figure 2)
emphasized the need to correctly generate argumentative and non-argumentative texts;
however, GPT-3.5-turbo-0125 did not always adequately modify the original text. These
findings reveal a critical need to evaluate the quality of synthetic data before incorporating
them into specific knowledge domains. We believe that mitigating this problem requires a
more in-depth analysis of the reliability of generative models as substitutes for real data
in specific domains. This work serves as a wake-up call to assess the feasibility of using
synthetic data in real-world applications, which has significant implications for causal
inference, especially in sensitive or highly structured domains.

In future work, from the perspective of causal inference and estimation, the Causal
Forests model [43] and the CSV tool [42] could be included in order to compare their
results regarding the variations in treatment impact in different scenarios to facilitate
the understanding of causal patterns in NLP and mitigate the limitations found in the
flexibility of traditional models. From the perspective of data structure, working with high-
dimensional data sets that include the presence of confounders in the field of NLP will allow
for the use of other more sophisticated IV regression methods during the application of the
IV-NLP method. From the perspective of synthetic data generation, improving the quality
and validation of the data generated by an LLM can be mitigated using GPT-4, GPT-4o, and
GPT-4-turbo. To improve the proposed IV-NLP methodology, IV-NLP should be applied
to other NLP tasks, such as implementing ML models in other two-class and multi-class
problems. IV-NLP should also be applied to other data sets based on texts written in native
English and with much larger data sets. Finally, it is recommended that when applying
the IV-NLP method to other domains, the predicted data sets are generated during the
training stage. This will avoid additional effort in retraining the models. Additionally, the
results produced by a superior GPT model should be verified to assess the extent to which
homogeneity is reduced and the diversity of the outputs is increased. If the causal effect
pattern of the synthetic data aligns with the real data, then the synthetic data could be used
in predictive tasks.
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Appendix A. Recovering Features from Original and Synthetic Data Sets
• Step 1: Recovering ‘Date’ and ‘Id’ features to the original datasets (Figure A1)

The data set format was converted (from ‘utf-8’ to ‘latin-1’) with the attributes Id, Text,
and Class_Argument. The attribute ‘Date’ was retrieved from the annotated data set.
The Pandas merge library was used and 2895 records were obtained, with the ‘Date’
characteristic being retrieved automatically. The assignment of the ‘Date’ and the ‘ID’
of the rest of the records was carried out manually. The manual verification of the
records was necessary because the IDs were compared with their respective texts, so a
significant effort was made in terms of time by the annotators to guarantee the quality
of the data.

• Step 2: Feature recovery on the six (06) original datasets distributed from the global
corpus (Figure A2)
An automated procedure was implemented using the Pandas (version 2.1.4) libraries
with the Keras (version 3.4.1) framework to filter the global data set generated in
Step 1. Duplicate records were eliminated, and subsequently, the verification of each
feature recovery process was carried out for each of the six (06) data sets, finding only
one record from the set of argumentative texts of the training set in which the match
could not be established because it was not located in the global data set of Step 1;
this was eliminated, leaving the set of argumentative texts of the “Training” set with
1526 records with their attributes duly recovered. No incidence was found in the rest
of the data sets, and the attributes of the six (06) data sets were successfully recovered
(see Figure A3).

Figure A1. Process of recovering the features ’Id’ and ’Date’ to the original global data set.
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Figure A2. Feature retrieval in the six datasets with original texts.

• Step 3: Feature recovery on the six (06) datasets with synthetic texts generated by the
GPT-3.5-turbo-0125 model
This step was carried out in two (02) phases:

– Phase 1: Assignment of ‘Date’ and ‘Id’ to the six (06) sets of synthetic texts
generated by the GPT35-turbo-0125 model (OUTPUT of the Intervention Method
defined in Figure 2). Figure A3 graphically shows the procedure carried out in
this phase.
The process consisted of adding the columns ‘Date’ and ‘Id’ according to the index
position of the Excel file of the data set, ensuring that there was the same number
of records in both data sets. This was because code routines were implemented so
that the GPT3.5-turbo-0125 model would generate an alternative text for each text
in the data set (See Figure 2). During the process of assigning the attributes ‘Date’
and ‘Id’ to the data sets with generated texts, only one incident was found, so two
records were eliminated from the set of argumentative texts in the training set
because the GPT3.5-turbo-0125 model generated two different textual records for
the same record for these two records. In the remaining five (05) sets of generated
texts, there was no incidence because the model generated, in all cases, only
one alternative text in front of each of the records of the original sets of texts.
Table 4 shows the results obtained. The data sets for the generated texts had
the following structure: Date, Original_Id, Tweet_Checked, Clase_Argumento
(where Original_Id is the Id value of the data sets with original texts, which will
be helpful in terms of data traceability during the data interpretation stage).

– Phase 2: Assignment of ‘Date’ and ‘Id’ to the six (06) sets of synthetic texts
generated by the GPT35-turbo-0125 model (validation of texts generated by the
model defined in the intervention method described in Figure 2). Figure A3
graphically shows the procedure carried out in this phase.
Records whose generated texts were the same as those of the texts generated
once they passed through data validation at the end of the intervention method
were filtered out. This process was repeated for each pair of data sets (training,
testing, and validation). For the training set, the attributes ‘Date’ and ‘Id’ were
automatically recovered for 1500 and 1537 records in the set of argumentative
and non-argumentative texts, respectively. A manual verification of the sets of
argumentative and non-argumentative texts was then performed to complete
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the attributes ‘Date’ and ‘Id’ in the 25 and 27 missing records, respectively, to
correctly assign these two attributes in line with the intervention method detailed
in Figure 2. The procedure performed for the training set was replicated for the
test and validation sets. Likewise, no incidents were presented.

(a) (b)

Figure A3. Step 3 has two phases: (a) Step 3—Phase 1: the assignment of features in the synthetic text
sets generated by the model; (b) Step 3—Phase 2: the assignment of features in the generated and
validated text sets.
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