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Abstract
In this paper we study a class of Hardy–Sobolev type systems defined in R

N and coupled
by a singular critical Hardy–Sobolev term. The main novelty of this work is that the orders
of the singularities are independent and contained in a wide range. By means of variational
techniques, wewill prove the existence of positive bound and ground states for such a system.
In particular, we find solutions as minimizers or Mountain–Pass critical points of the energy
functional on the underlying Nehari manifold.

Mathematics Subject Classification Primary 35J47 · 35J50 · 35J60 · 35Q55 · 35Q40

1 Introduction

Let us consider a family of Hardy–Sobolev type elliptic systems containing critical Hardy–
Sobolev terms with singularities of different orders, namely

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−�u − λ1
u

|x |2 − u2
∗
s1

−1

|x |s1 = ναh(x)
uα−1vβ

|x |s3 in R
N ,

−�v − λ2
v

|x |2 − v
2∗
s2

−1

|x |s2 = νβh(x)
uαvβ−1

|x |s3 in R
N ,

u, v > 0 in R
N \ {0},

(1.1)

Communicated by A. Mondino.

B Alejandro Ortega
alejandro.ortega@mat.uned.es

Ángel Arroyo
angelrene.arroyo@ua.es

Rafael López-Soriano
ralopezs@ugr.es

1 Departamento de Matemáticas, Universidad de Alicante, 03690 San Vicente del Raspeig, Alicante,
Spain

2 IMAG, Departamento de Análisis Matemático, Universidad de Granada, Campus Fuentenueva,
18071 Granada, Spain

3 Dpto. de Matemáticas Fundamentales, Facultad de Ciencias, UNED, 28040 Madrid, Spain

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00526-025-02990-y&domain=pdf
http://orcid.org/0000-0002-3561-6257
http://orcid.org/0000-0003-4345-4099
http://orcid.org/0000-0003-1902-4275


  131 Page 2 of 29 Á. Arroyo et al.

where λ1, λ2 ∈ (0,�N ), being �N = (N − 2)2

4
the best constant in the Hardy inequality,

ν > 0 and α, β are real parameters such that

α, β > 1 and
α

2∗
s1

+ β

2∗
s2

≤ 1, (1.2)

and s1, s2, s3 ∈ (0, 2) satisfying

s3 ≥ s1
α

2∗
s1

+ s2
β

2∗
s2

. (1.3)

The value 2∗
s = 2(N−s)

N−2 denotes the critical Hardy–Sobolev exponent, whereas h � 0 is a
function such that

h ∈ Lp,σ (RN ), (1.4)

for appropriate p > 1 and σ ∈ (0, 2), which will be defined in (2.3) below. Here L p,s(RN )

denotes the weighted L p-space of measurable functions u such that

‖u‖p,s :=
(∫

RN

|u|p
|x |s dx

) 1
p

< ∞.

Systems like (1.1) have been extensively studied in the last years. The case s1 = s2 =
s3 = 0 was addressed in [1], where it is proved the existence of positive bound and ground
states under the assumption h ∈ L1(RN ) ∩ L∞(RN ) if α + β < 2∗

0 (which in turn implies
that h ∈ Lq(RN ) for every q > 1) and h ∈ L∞(RN ) if α + β = 2∗

0. The same non-singular
system, for a wider range of the parameters α and β, namely 1 < α < 2 ≤ β and λ2 < λ1 or
1 < β < 2 ≤ α and λ1 < λ2, it is considered in [10], where the existence of positive bound
and ground states is derived under the same assumptions on the function h. The special case
α = 2 and β = 1, arising from the so-called Schrödinger–Korteweg–de Vries model, is
analyzed in [11],where analogous existence results for positive bound and ground states are
obtained. In [23] the presence of the Hardy–Sobolev terms with s1 = s2 = s3 = s ∈ (0, 2)
was recently studied, where the authors refined the assumptions on the function h. More
precisely, they considered

h(x) ∈ Lp,σ (RN ) with p = 2∗
s

2∗
s − α − β

and σ = s.

The main goal of this work is then to extend these existence results for bound and ground
state solutions for the wider range s1, s2, s3 ∈ (0, 2). Let us emphasized that, under the
assumption si 	= 0, the concentration phenomena could take place only at 0 and ∞ as, since
far from these points all the terms are subcritical in the Sobolev sense.

Existence results for nonlinear elliptic systems arising from some particular configurations
of system (1.1) have attracted great attention in the last years due to their connection with
some models of Physics such as Nonlinear Optics models, Quantum Mechanics models or
Bose–Einstein condensates. For instance, the case s1 = s2 = s3 = 0, is closely related to
an important family of nonlinear elliptic systems, namely Schrödinger type systems of the
form

⎧
⎨

⎩

−�u + V1(x)u = μ1u
2p−1 + νu p−1v p in R

N ,

−�v + V2(x)v = μ2v
2p−1 + νu pv p−1 in R

N ,

u, v � 0 in R
N ,
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where 1 < 2p � 2∗
0 with N ≥ 3 and the function V (x) represents the role of the potential.

There is a huge amount of literature concerning existence and multiplicity of solutions to
these systems for both subcritical and critical settings so it is complicated to give a complete
list of references. We refer to [2–4, 19, 22, 24, 26, 27]. Let us note that, if one considers
constant potentials and the critical exponent 2p = 2∗

0, then the above system has only the
trivial solution (u, v) = (0, 0) due to a Pohozaev type identity. The competitive case, namely
ν < 0, has also been extensively studied from a variational point of view in [8, 9, 28].

Elliptic systems involving Hardy type potentials Vj (x) = − λ j

|x |2 arise in nonrelativistic
Quantum Mechanics, molecular physics or combustion models. In this case the non-trivial
solutions could be singular around the point x = 0. We refer to [5, 12, 14, 16, 30] among
others. By means of an approach based on the moving planes method, some qualitative
properties of the solutions to elliptic systems involving Hardy type potentials have been
recently shown in [13] for the case h(x) = 1 and si = 0, i = 1, 2, 3. In the special case
λ1 = λ2, the authors also obtained a classification criterion of the solutions in terms of the
solutions of the uncoupled equations (see (1.5) below).

In what concerns elliptic systems involving Hardy–Sobolev critical terms the related
literature is much lower. Up to our knowledge, the first work dealing with Hardy–Sobolev
critical singular systems inR

N is [23],where the authors analyze the system (1.1) by assuming
all the singularities to be of the same order. Elliptic systems involving Hardy–Sobolev critical
terms in bounded domains were analyzed in [6, 25, 29] among others.

We analyze the existence of bound and ground states through a variational approach,
namely, we look for critical points of the energy functional associated to system (1.1) (see
(1.7)). One of the key points of this variational approach is the role of the semitrivial solutions
as critical points of the energy functional. Actually, for any ν ∈ R, note that the system (1.1)
has two solutions (z1, 0) and (0, z2), where zi satisfies the equation

− �zi − λi
zi

|x |2 = z2
∗
si

−1

|x |si and zi > 0 in R
N \ {0}. (1.5)

The solutions zi were completely characterized in [15]. Actually, the family of rescaled
functions zλiμ (see (2.6)) related to zλi are the extreme functions for the Hardy–Sobolev
inequality (2.9), that is, the functions at which the corresponding Hardy–Sobolev constant
(2.8) is attained. This result, along with the Concentration-Compactness Principle by P.-L.
Lions (cf. [20, 21]) togetherwith the characterization of concentration profiles of the functions
zλμ (cf. [18]) are pivotal in the variational approach employed in this work.

The concentration phenomenon is a typical issue in critical problems reflecting the lack
of compactness of the corresponding Sobolev embedding at the critical exponent. Since we
are considering si 	= 0, for the critical case given by the exponents configuration

α

2∗
s1

+ β

2∗
s2

= 1,

the concentration can only take place at 0 and ∞. This is where the function h comes into
play. As we will see the main role of the function h will be that of eliminate the possible
concentration at the points 0 or ∞ with the aid of its summability and its behavior around 0
and ∞. Therefore, in order to rule out this concentration phenomenon it is needed to assume
the following hypotheses,

h̃(x) = h(x)

|x |τ is continuous at 0 and ∞ and h̃(0) = 0 and lim
x→+∞ h̃(x) = 0. (1.6)
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In former works dealing with nonsingular terms, namely si = 0, the concentration can occur
at various points x j ∈ R

N , so to rule out the concentration requires additional assumptions,
either on the magnitude of the coupling parameter or by assuming the function h to be radial
(cf. [1, 10, 11]). This last assumption not only eliminates the possibility of concentration
at points x j ∈ R

N but also ensures the ground states to be radial. We will come back to
this assumption when proving existence of positive ground state solutions which are radially
symmetric.

The role of the function h is highlighted by considering different orders s1, s2 and s3. In
particular, the behavior around 0 and ∞ (see Sect. 2.1) required to h in order to cancel out
the possible concentrations taking place there. On the other hand, considering this difference
in the order of the singularities introduces some extra difficulties as the problem is no longer
homogeneous.

1.1 Main results

Notice first that the problem (1.1) is the Euler–Lagrange system for the energy functional

Jν(u, v) =1

2

∫

RN

(|∇u|2 + |∇v|2) dx − λ1

2

∫

RN

u2

|x |2 dx − λ2

2

∫

RN

v2

|x |2 dx

− 1

2∗
s1

∫

RN

|u|2∗
s1

|x |s1 dx − 1

2∗
s2

∫

RN

|v|2∗
s2

|x |s2 dx − ν

∫

RN
h(x)

|u|α|v|β
|x |s3 dx,

(1.7)

whose domain is the product space D = D1,2(RN ) × D1,2(RN ) with D1,2(RN ) defined as
the completion of C∞

0 (RN ) under the norm

‖u‖2D1,2(RN )
=
∫

RN
|∇u|2 dx .

Along this paper we shall give some results concerning the existence of solutions by the
study of the geometry of Jν . Actually, we can provide some qualitative information about
the minimizers depending on the behavior of the function h. More precisely, let us assume
that

h is a radial function and non-increasing in (0,∞). (1.8)

In a first result we are able to relate the energy level to the size of the coupling factor. In
particular, we will see that the minimum level decreases arbitrarily as ν increases. Therefore
one can guarantee the existence of a minimizer.

Theorem 1.1 Assume (1.4) and either α
2∗
s1

+ β
2∗
s2

< 1 or α
2∗
s1

+ β
2∗
s2

= 1 satisfying (1.6). Then

there exists ν > 0 such that the system (1.1) has a positive ground state (ũ, ṽ) ∈ D for every
ν > ν. Moreover, if (1.8) holds, such a ground state is radially symmetric.

Next, we establish the existence of the ground states by studying the behavior of the
semitrivial solutions. Let C(λi , si ) be the energy levels of the solutions of the decoupled
equations (1.5) for i = 1, 2, (see (2.17) below). A first configuration is one that the minimum
energy level between (z1, 0) and (0, z2) is provided by a saddle point of Jν , therefore the
existence of a ground state of (1.1) follows.

Theorem 1.2 Assume (1.4) and either α
2∗
s1

+ β
2∗
s2

< 1 or α
2∗
s1

+ β
2∗
s2

= 1 satisfying (1.6). If one

of the following statements is satisfied
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i) C(λ1, s1) � C(λ2, s2) and either β = 2 and ν large enough or β < 2,
i i) C(λ1, s1) ≥ C(λ2, s2) and either α = 2 and ν large enough or α < 2,

then system (1.1) admits a positive ground state (ũ, ṽ) ∈ D.
In particular, if max{α, β} < 2 or max{α, β} � 2 with ν sufficiently large, then system

(1.1) admits a positive ground state (ũ, ṽ) ∈ D.
Moreover, if (1.8) holds, the ground state is radially symmetric.

Subsequently, one shall study the reverse setting. For instance, if C(λ1, s1) > C(λ2, s2), the
couple (0, z2) provides the minimum energy between the semitrivial solutions. Actually, if
either α > 2 or α = 2 with ν small enough, such a couple becomes a local minimum.
Moreover, one can show the existence of a small enough ν > 0 such that the first semi-trivial
solution is indeed a ground state.

Let us stress that the constant C(λ, s) is decreasing in both λ and s (see (2.8) and (2.17)
below). In case of having s1 = s2 then the order of the constants C(λ1, s) and C(λ2, s) is
determined by that of λ1 and λ2, namely, if λ1 � λ2 then C(λ1, s) � C(λ2, s) (cf. [23]).
Nevertheless, in the general case s1 	= s2 we have a wider range of configurations and, for
example, we could have C(λ1, s1) < C(λ2, s2) even if λ1 < λ2 just by choosing properly the
exponents s1 > s2.

Theorem 1.3 Assume (1.4) and either α
2∗
s1

+ β
2∗
s2

< 1 or α
2∗
s1

+ β
2∗
s2

= 1 satisfying (1.6). Then,

i) If α ≥ 2 and C(λ1, s1) > C(λ2, s2), then there exists ν̃ > 0 such that for any 0 < ν < ν̃

the couple (0, z(2)μ ) is the ground state of (1.1).
i i) If β ≥ 2 and C(λ1, s1) < C(λ2, s2), then there exists ν̃ > 0 such that for any 0 < ν < ν̃

the couple (z(1)μ , 0) is the ground state of (1.1).
i i i) In particular, if α, β ≥ 2, then there exists ν̃ > 0 such that for any 0 < ν < ν̃, the

couple (0, z(2)μ ) is a ground state of (1.1) if C(λ1, s1) > C(λ2, s2), whereas (z(1)μ , 0) is
a ground state otherwise.

Concerning the bound states, we derive its existence by applyingmin-max techniques. In fact,
Jν exhibits a Mountain–Pass geometry for a certain choice of the parameters s1, s2, λ1 and
λ2. In particular, if the valuesC(λ1, s1) andC(λ2, s2) verify a certain separability assumption,
we can raise the mountain pass level above that of the semitrivials ones.

Theorem 1.4 Assume (1.4) and either α
2∗
s1

+ β
2∗
s2

< 1 or α
2∗
s1

+ β
2∗
s2

= 1 satisfying (1.6). If

i) Either α ≥ 2 and

2C(λ2, s2) > C(λ1, s1) > C(λ2, s2), (1.9)

i i) or β ≥ 2 and

2C(λ1, s1) > C(λ2, s2) > C(λ1, s1),

then there exists ν̃ > 0 such that for 0 < ν � ν̃, the system (1.1) admits a bound state given
as a Mountain–Pass-type critical point.

Notice that in the above theorems the thresholds ν and ν̃ depend on all the parameters
involved in the system, namely, λ1, λ2, α, β, s1, s2, s3, the function h(x) and the constants
of the functional inequalities involved in the variational setting.

The rest of the paper is organized as follows. In Sect. 2 we introduce some preliminaries
concerning the variational structure of the problem and some useful properties regarding the
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semitrivial solutions. In particular, in that section we discuss in detail the role of the potential
h and we deduce its belonging to the appropriate L p,σ (RN ) space. In Sect. 3 we study the
validity of the Palais Smale condition. Finally, the existence of bound and ground states and
its symmetry is addressed to Sect. 4.

2 Preliminaries and functional setting

Let us introduce the appropriate variational setting for the system (1.1). Recall that such
solutions are critical points of the functional Jν introduced in (1.7) correctly defined in
D = D1,2(RN ) × D1,2(RN ). The energy space D is equipped with the norm

‖(u, v)‖2
D

= ‖u‖2λ1 + ‖v‖2λ2 ,
where

‖u‖2λ =
∫

RN
|∇u|2 dx − λ

∫

RN

u2

|x |2 dx .

By applying the Hardy inequality,

�N

∫

RN

u2

|x |2 dx ≤
∫

RN
|∇u|2 dx,

the norm ‖ · ‖λ is equivalent to ‖ · ‖D1,2(RN ) for any λ ∈ (0,�N ), where �N = (N−2)2

4 is the
best constant in the Hardy inequality.

2.1 The role of the function h

One of the main difficulties when dealing with critical problems is the lack of compactness
and the possible associated concentration phenomena. Before proceeding, let us comment
on the main role of the function h in the concentration phenomena which in turn highlights
the main contribution of this work. As already mentioned, due to the presence of a singular
weight of Hardy–Sobolev type, concentration can only take place at 0 or ∞, so the function
h is precisely in charge of avoiding such concentration, namely:

h controls the concentration at 0 and ∞ through its integrability together with its behavior
around 0 and ∞.

The role of the integrability of h becomes clear when one tries to bound the coupling term
∫

RN
h(x)

|u|α|v|β
|x |s3 dx,

by relating it to the critical terms arising from u and v. Actually, in view of (1.2) and (1.3),
let us write

s3 = τ + s1
α

2∗
s1

+ s2
β

2∗
s2

(2.1)

for some τ ≥ 0, so that, using the generalized Hölder inequality with exponents

p = 1

1 − α
2∗
s1

− β
2∗
s2

∈ (1,∞], q = 2∗
s1

α
, and r = 2∗

s2

β
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we get

∫

RN
h(x)

|u|α|v|β
|x |s3 dx =

∫

RN

h(x)

|x |τ
( |u|2∗

s1

|x |s1
) α

2∗s1
( |v|2∗

s2

|x |s2
) β

2∗s2 dx

≤
(∫

RN

(
h(x)

|x |τ
)p

dx

) 1
p
(∫

RN

|u|2∗
s1

|x |s1 dx

) α

2∗s1
(∫

RN

|v|2∗
s2

|x |s2 dx

) β

2∗s2
.

(2.2)

Thus, the hypothesis

h(x)

|x |τ ∈ Lp(RN ),

with τ defined in (2.1), appears naturally and allows us to relate the coupling term to the
uncoupled critical ones. Therefore, we require

h ∈ Lp,σ (RN ),

where

σ = τp =
s3 −

(
s1

α
2∗
s1

+ s2
β
2∗
s2

)

1 −
(

α
2∗
s1

+ β
2∗
s2

) . (2.3)

Note also that in the critical regime α
2∗
s1

+ β
2∗
s2

= 1 one has p = ∞, so the hypothesis

(1.4) reduces to the boundedness of h(x)
|x |τ in L∞(RN )-norm. To continue, let us briefly discuss

some aspects of the above bound for some particular configurations of the parameters s1, s2
and s3.

(1) s1 = s2 = s3 = s > 0: In this case, analyzed in [23], equation (2.3) reads

τ = s

p
and p = 1

1 − α+β
2∗
s

and thus h ∈ Lp,s(RN ).

If α + β = 2∗
s , then σ = 0 and p = ∞, so that h ∈ L∞(RN ). Let us also stress that

p = ∞ if and only if τ = 0.
(2) s1 = s2 = s and s3 > 0: In this case

τ = s3 − α + β

2∗
s

s and p = 1

1 − α+β
2∗
s

.

The restriction (1.3) reads now s3 ≥ α+β
2∗
s
s. Regarding the integrability of h:

(a) If s3 = α+β
2∗
s
s: Then τ = 0 while p < ∞ if α + β < 2∗

s and p = ∞ if α + β = 2∗
s ,

that is
(i) h ∈ Lp(RN ) if α + β < 2∗

s .
(ii) h ∈ L∞(RN ) if α + β = 2∗

s .
(b) If s3 >

α+β
2∗
s
:

(i) If α + β < 2∗
s , we have the hypothesis (1.4) with σ = τp > 0 and p < ∞.
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(ii) If α + β = 2∗
s , we get p = ∞ while τ = s3 − s > 0, so that the integrability

hypothesis reads

h(x)

|x |τ ∈ L∞(RN ). (2.4)

Roughly speaking: if the coupling term is of order s3 > s, the function h has
to control such excess, in particular, from (2.4) above,

h(x) ∼ |x |s3−s for x << 1 or x >> 1.

In this way,

h(x)
|u|α−1|v|β

|x |s3 ∼ |x |s3−s |u|α−1|v|β
|x |s3 = |u|α−1|v|β

|x |s ,

so that h homogenizes the Hardy–Sobolev singularities at the possible concen-
tration points, namely, 0 and ∞.

The next diagram summarizes the above discussion.

s3 = α+β

2∗s s

h ∈ Lp(RN )

α + β < 2∗
s

h ∈ Lp,σ (RN )

α + β = 2∗
s

h
|x |τ ∈ L∞(RN )

(3) s1 = s3 = s and s2 > 0: In this case

τ = s

(

1 − α

2∗
s

)

− s2
β

2∗
s2

and p = 1

1 −
(

α
2∗
s

+ β
2∗
s2

) .

The restriction (1.3) establishes now

s

(

1 − α

2∗
s

)

≥ s2
β

2∗
s2

.

Let us take s∗
2 be defined as the extremal case of the above inequality, namely

s∗
2 = Ns(2∗

s − α)

β(N − s) + s(2∗
s − α)

.

Note that s∗
2 ≥ s. Furthermore, the following relation also holds,

α

2∗
s

+ β

2∗
s∗2

= α + β

2∗
0

+ 1

N
s.

In particular, α
2∗
s

+ β

2∗
s∗2

= 1 iff α + β = 2∗
s . Regarding the integrability of h:

(a) If s2 = s∗
2 :

We have τ = 0 while p < ∞ if α
2∗
s

+ β

2∗
s∗2

< 1 and p = ∞ if α
2∗
s

+ β

2∗
s∗2

= 1, so that

(i) h ∈ Lp(RN ) if α
2∗
s

+ β

2∗
s∗2

< 1.

(ii) h ∈ L∞(RN ) if α
2∗
s

+ β

2∗
s∗2

= 1.

(b) If s2 < s∗
2 :

(i) If α
2∗
s

+ β
2∗
s2

< 1, we have the hypothesis (1.4) with σ = τ p > 0 and p < ∞.
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(ii) If α
2∗
s

+ β
2∗
s2

= 1, then p = ∞ (and s∗
2 = s), while τ = β

2∗
s2

(s − s2) > 0. In line

with (2.4), we have now

h(x) ∼ |x |
β

2∗s2
(s−s2)

for x << 1 or x >> 1.

Therefore,

h(x)
|u|α−1|v|β

|x |s ∼ |u|α−1|v|β

|x |s−
β

2∗s2
(s−s2)

.

In particular, if α
2∗
s

+ β
2∗
s2

= 1, then

s − β

2∗
s2

(s − s2) = s
α

2∗
s

+ s2
β

2∗
s2

.

In this case h has a double mission: to control two orders of concentration s
and s2 at the possible concentration points 0 and ∞.

The following diagram summarizes the above discussion.
h ∈ Lp,σ (RN )

α
2∗s + β

2∗s2
< 1

h
|x |τ ∈ L∞(RN )

α
2∗s + β

2∗s2
= 1

h ∈ Lp(RN )

s∗2

On the other hand, once the optimal summability of the function h has been established,
it is also necessary to require the hypothesis (1.6). This ensures that while the functions u
and v may concentrate at the points 0 or ∞ the behavior of h around those points cancel out
the concentration values arising from such concentration phenomenon (see Lemma 3.7).

2.2 The scalar equation

As commented before, the uncoupled equations have been studied extensively nowadays. In
particular, if either the system is decoupled, i.e. ν = 0, or some component vanishes, u or v

satisfies the entire equation

− �z − λ
z

|x |2 = z2
∗
s−1

|x |s and z > 0 in R
N \ {0}. (2.5)

A complete classification of (2.5) is given in [15] where it is proved that, if λ ∈ (0,�N ), the
solutions of (2.5) are given by

z( j)μ (x) = μ− N−2
2 z

λ j ,s
1

(
x

μ

)

with zλ,s
1 (x) = A(N , λ)

N−2
2(2−s)

|x |aλ

(
1 + |x |(2−s)(1− 2

N−2 aλ)
) N−2

2−s

,

(2.6)

where A(N , λ) = 2(�N −λ)
N − s√

�N
, aλ = √

�N −√
�N − λ and μ > 0 is a scaling factor.

By direct computation, it holds that

‖zλμ‖2λ = ‖zλ,s
μ ‖2∗

s
2∗
s ,s

= [S(λ, s)] N−s
2−s , (2.7)
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where S(λ, s) is given in terms of the Rayleigh quotient

S(λ, s) = inf
u∈D1,2(RN )

u 	≡0

‖u‖2λ
‖u‖22∗

s ,s

= ‖zλ,s
μ ‖2λ

‖zλ,s
μ ‖22∗

s ,s

.

Due to [7, Theorem A] with βλ = −2aλ and αλ,s = −(2∗
s aλ + s), we have

S(λ, s) = 4(�N − λ)
N − s

N − 2

⎛

⎝
N − 2

2(2 − s)
√

�N − λ

2π
N
2

�
( N
2

)
�2

(
N−s
2−s

)

�
(
2(N−s)
2−s

)

⎞

⎠

2−s
N−s

.

(2.8)

Observe that the constant S(λ, s) is decreasing in both λ and s, so that S(0, 0) ≥ S(λ, s).
By definition, S(λ, s) is the best constant for the inequality

S(λ, s)‖u‖22∗
s ,s

≤ ‖u‖2λ. (2.9)

Taking u(x) = |x |aλ zλ,s
1 , the equation (2.5) becomes (in a weak sense)

−div(|x |−2aλ∇u) = u2
∗
s−1

|x |2∗
s aλ+s .

As a consequence,S(λ, s) is the best constant in theCaffarelli–Kohn–Nirenberg type inequal-
ity,

S(λ, s)

(∫

RN
|x |αλ,s |u|2∗

s dx

) 2
2∗s ≤

∫

RN
|x |βλ |∇u|2 dx .

Clearly, S(0, 0) = S is the best constant in the Sobolev inequality,

S‖u‖22∗
0,0

≤
∫

RN
|∇u|2dx .

Since αλ,0 = − N√
�N

aλ, we have S(λ, 0) =
(
1 − λ

�N

) N−1
N S. On the other hand, S(0, s) is

the best constant in the Hardy–Sobolev inequality,

S(0, s)‖u‖22∗
s ,s

≤
∫

RN
|∇u|2 dx .

Furthermore, one can see that (cf. [7]), lim
s→2− S(0, s) = �N .

The pairs (z1, 0) and (0, z2) satisfying (1.1) will be referred to as semi-trivial solutions.
Here zi solves (2.5) with s = si and λ = λi . Further information is provided in Sect. 2.3.
Our main aim is to look for solutions neither semi-trivial nor trivial solutions, i.e., solutions
(u, v) such that u 	≡ 0 and v 	≡ 0 in R

N .
We shall do it by means of variational methods. Let us notice first that the functional Jν

is of class C1(D, R) and it is not bounded from below. Indeed,

Jν(t ũ, t ṽ) → −∞ as t → ∞,

for (ũ, ṽ) ∈ D \ {(0, 0)}. Next, we introduce a suitable constraint to minimize Jν . Let us set

�(u, v) = 〈J ′
ν(u, v)

∣
∣(u, v)

〉

=‖(u, v)‖2
D

− ‖u‖2
∗
s1

2∗
s1

,s1
− ‖v‖2

∗
s2

2∗
s2

,s2
− ν(α + β)

∫

RN
h(x)

|u|α|v|β
|x |s3 dx,

123



Existence of solutions for a system with general… Page 11 of 29   131 

and define the Nehari manifold associated to Jν as

Nν = {(u, v) ∈ D \ {(0, 0)} : �(u, v) = 0} .

Plainly, Nν contains all the non-trivial critical points of Jν in D. Let us now recall some
properties on Nν that will be of use throughout this work. Any (u, v) ∈ Nν satisfies

‖(u, v)‖2
D

= ‖u‖2
∗
s1

2∗
s1

,s1
+ ‖v‖2

∗
s2

2∗
s2

,s2
+ ν(α + β)

∫

RN
h(x)

|u|α|v|β
|x |s3 dx, (2.10)

so we can write the energy functional constrained to Nν as

Jν

∣
∣Nν

(u, v) =
(
1

2
− 1

α + β

)

‖(u, v)‖2
D

+
(

1

α + β
− 1

2∗
s1

)

‖u‖2
∗
s1

2∗
s1

,s1
+
(

1

α + β
− 1

2∗
s2

)

‖v‖2
∗
s2

2∗
s2

,s2

=
(
1

2
− 1

2∗
s1

)

‖u‖2
∗
s1

2∗
s1

,s1
+
(
1

2
− 1

2∗
s2

)

‖v‖2
∗
s2

2∗
s2

,s2

+ ν

(
α + β − 2

2

)∫

RN
h(x)

|u|α|v|β
|x |s3 dx .

(2.11)

Given (u, v) ∈ D \ {(0, 0)}, there exists a unique value t = t(u,v) such that (tu, tv) ∈ Nν .
Indeed, t is the unique solution to the algebraic equation

‖(u, v)‖2
D

= t2
∗
s1

−2‖u‖2
∗
s1

2∗
s1

,s1
+ t2

∗
s2

−2‖v‖2
∗
s2

2∗
s2

,s2
+ ν(α + β) tα+β−2

∫

RN
h(x)

|u|α|v|β
|x |s3 dx .(2.12)

Observe that, by (1.2), we have
〈
� ′(u, v)

∣
∣(u, v)

〉
< 0, (2.13)

since, because of (2.10), for any (u, v) ∈ Nν ,
〈
� ′(u, v)

∣
∣(u, v)

〉 = (2 − α − β)‖(u, v)‖2
D

+ (α + β − 2∗
s1)‖u‖2

∗
s1

2∗
s1

,s1
+ (α + β − 2∗

s2)‖v‖2
∗
s2

2∗
s2

,s2

= (2 − 2∗
s1)‖u‖2

∗
s1

2∗
s1

,s1
+ (2 − 2∗

s2)‖v‖2
∗
s2

2∗
s2

,s2

+ ν(α + β)(2 − α − β)

∫

RN
h(x)

|u|α|v|β
|x |s3 dx .

Moreover, the couple (0, 0) is a strict minimum since, for the second variation of the energy
functional, one has that

J ′′
ν (0, 0)[ϕ1, ϕ2]2 = ‖(ϕ1, ϕ2)‖2D for any (ϕ1, ϕ2) ∈ Nν .

Hence, (0, 0) is an isolated point respect toNν ∪ {(0, 0)}. As a consequence,Nν is a smooth
complete manifold of codimension 1. Also, there exists rν > 0 such that

‖(u, v)‖D > rν for all (u, v) ∈ Nν . (2.14)

By using (2.10), (2.11) and (2.14) joint with hypothesis (1.2), one can infer that that

Jν(u, v) > C(rν) > 0 for all (u, v) ∈ Nν .
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Thus, Jν remains bounded from below on Nν and, hence, we can find solutions of (1.1) as
minimizers of Jν

∣
∣Nν

.

Finally, let us also note that, given (u, v) ∈ D a critical point of Jν

∣
∣Nν

, there exists a
Lagrange multiplier ω such that

(Jν

∣
∣Nν

)′(u, v) = J ′
ν(u, v) − ω� ′(u, v) = 0.

Then, ω
〈
� ′(u, v)

∣
∣(u, v)

〉 = 〈J ′
ν(u, v)

∣
∣(u, v)

〉 = �(u, v) = 0 so that, because of (2.13), we
have ω = 0 and, thus, J ′

ν(u, v) = 0. Consequently, Nν is a called a natural constraint in the
sense that

(u, v) ∈ D is a critical point of Jν ⇔ (u, v) ∈ D is a critical point of Jν

∣
∣Nν

.

Definition 2.1 We say that (u, v) ∈ D \ {(0, 0)} is a non-trivial bound state for (1.1) if it is
a non-trivial critical point of Jν . A non-trivial and non-negative bound state (ũ, ṽ) is said to
be a ground state if its energy is minimal, namely

c̃ν := Jν(ũ, ṽ) = min {Jν(u, v) : (u, v) ∈ Nν, u, v ≥ 0} . (2.15)

2.3 Semi-trivial solutions

Let us consider the decoupled energy functionals J j : D1,2(RN ) �→ R,

J j (u) = 1

2

∫

RN
|∇u|2 dx − λ j

2

∫

RN

u2

|x |2 dx − 1

2∗
s j

∫

RN

|u|2∗
s j

|x |s j dx . (2.16)

Notice that

Jν(u, v) = J1(u) + J2(v) − ν

∫

RN
h(x)

|u|α|v|β
|x |s3 dx .

The function z( j)μ , defined in (2.6), is a global minimum of J j on the Nehari manifold

N j =
{
u ∈ D1,2(RN ) \ {0} :

〈
J ′

j (u)
∣
∣u
〉
= 0

}

=
{

u ∈ D1,2(RN ) \ {0} : ‖u‖2λ j
= ‖u‖2

∗
s j

2∗
s j

,s j

}

.

By using (2.7), one can compute the energy levels of z( j)μ , namely, for any μ > 0 we have

C(λ j , s j ) := J j (z
( j)
μ ) = 2 − s j

2(N − s j )

[S(λ j , s j )
] N−s j

2−s j . (2.17)

Then, the energy levels of the semi-trivial solutions are given by

Jν(z
(1)
μ , 0) = C(λ1, s1) and Jν(0, z

(2)
μ ) = C(λ2, s2).

Let us remark that, since S(λ, s) is decreasing in both λ and s, we have

C(0, 0) ≥ C(λ, s) for λ ∈ (0,�N ) and s ∈ (0, 2).

Next, we characterize the variational nature of the semi-trivial couples on Nν . The proof
follows from [23, Theorem 2.2] introducing conveniently the Hölder inequality proved in
(2.2).
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Theorem 2.2 Under hypotheses (1.2) and (1.6), the following holds:

i) If α > 2 or α = 2 and ν small enough, then (0, z(2)μ ) is a local minimum of Jν on Nν .

ii) If β > 2 or β = 2 and ν small enough, then (z(1)μ , 0) is a local minimum of Jν on Nν .

iii) If α < 2 or α = 2 and ν large enough, then (0, z(2)μ ) is a saddle point for Jν on Nν .

iv) If β < 2 or β = 2 and ν large enough, then (z(1)μ , 0) is a saddle point for Jν on Nν .

To conclude this section, let us introduce an algebraic result which extends [1, Lemma
3.3], corresponding to s1 = 0 = s2; and [23, Lemma 2.3], corresponding to s1 = s2 = s > 0,
to our weighted setting dealing with arbitrary s1, s2 ∈ (0, 2).

Lemma 2.3 Let P, Q, R > 0, s1, s2 ∈ (0, 2) and α, β such that (1.2) is satisfied. Consider
the set

�ν = {σ ∈ (0,+∞) : Pσ

2
2∗s1 + Qσ

2
2∗s2 < (P + Q)σ + Rνσ

α

2∗s1
+ β

2∗s2 }.
Then, for every ε > 0 there exists ν̃ > 0 such that

inf
�ν

σ > 1 − ε for any 0 < ν < ν̃.

Proof We shall consider the function f : (0,∞) → R defined as

f (σ ) = Pσ

2−α

2∗s1
− β

2∗s2 + Qσ

2−β

2∗s2
− α

2∗s1 − (P + Q)σ
1− α

2∗s1
− β

2∗s2 .

With loss of generality, let us assume that s2 ≥ s1. By the assumptions (1.2), we can
deduce that 2−α

2∗
s1

− β
2∗
s2

< 0. Since f (1) = 0, in the case 2−β
2∗
s2

− α
2∗
s1

≤ 0, f is decreasing and

then 1 is the unique zero so we arrive at the desired conclusion.
Suppose now 2−β

2∗
s2

− α
2∗
s1

> 0. In particular, it holds 1 − α
2∗
s1

− β
2∗
s2

>
2−β
2∗
s2

− α
2∗
s1
. Let us

now consider the function

g(σ ) = Qσ

2−β

2∗s2
− α

2∗s1 − (P + Q)σ
1− α

2∗s1
− β

2∗s2 .

Observe that g admits a maximum at σ̃ = P
P+Q

2−β

2∗s2
− α

2∗s1
1− α

2∗s1
− β

2∗s2
< 1 and g(σ̃ ) > 0. Since g(σ )

is decreasing if σ > σ̃ , we can deduce that function f is decreasing if σ > σ̃ . Then 1 is also
a unique zero of the function f and the conclusion follows. ��

3 The Palais–Smale condition

As it is customary in critical problems, some care has to be taken when dealing with mini-
mizing sequences as the compactness of the Sobolev embedding does not hold for the critical
exponent. This compactes will be ensured by following the nowadays well-known Palais–
Smale approach. We start by recalling some definitions.

Definition 3.1 Let V be a Banach space. We say that {un} ⊂ V is a PS sequence at level c
for an energy functional F : V �→ R if

F(un) → c and F′(un) → 0 in V ′ as n → +∞,

where V ′ is the dual space of V . Moreover, we say that the functional F satisfies the PS
condition at level c if every PS sequence at c for F has a strongly convergent subsequence.
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The proof of the following results is similar to [10, Lemma 3.2] and [10, Lemma 3.3] respec-
tively, so we omit the details.

Lemma 3.2 Let {(un, vn)} ⊂ Nν be a PS sequence forJν

∣
∣Nν

at level c ∈ R. Then, {(un, vn)}
is a PS sequence for Jν in D, namely

J ′
ν(un, vn) → 0 in D

′ as n → +∞. (3.1)

Lemma 3.3 Let {(un, vn)} ⊂ D be a PS sequence for the energy functionalJν at level c ∈ R.
Then, ‖(un, vn)‖D < C.

Let us point out here that as a consequence of this result, given any PS sequence bounded
in D one can subtract a subsequence {(un, vn)} converging to (ũ, ṽ) ∈ D in the sense that

(un, vn)⇀(ũ, ṽ) weakly in D,

(un, vn) → (ũ, ṽ) strongly in Lq1,s1(RN ) × Lq2,s2(RN ) for 1 ≤ qi < 2∗
si with i = 1, 2,

(un, vn) → (ũ, ṽ) a.e. in R
N .

Moreover, by the Concentration-Compactness Principle (cf. [20, 21]), we have (up to a
subsequence if necessary)

lim
n→∞

∫

RN
|∇un |2ϕ dx � μ0ϕ(0) +

∫

RN
|∇ũ|2ϕ dx,

lim
n→∞

∫

RN

u2n
|x |2 ϕ dx = η0ϕ(0) +

∫

RN

ũ2

|x |2 ϕ dx,

lim
n→∞

∫

RN

|un |2∗
s1

|x |s1 ϕ dx = ρ0ϕ(0) +
∫

RN

|ũ|2∗
s1

|x |s1 ϕ dx,

(3.2)

for every function ϕ � 0 decaying to 0 at infinity, where μ0, ρ0, η0 > 0 are fixed constants.
On the other hand, the concentration at infinity can be described by the constants

μ∞ = lim
R→∞ lim sup

n→∞

∫

|x |>R
|∇un |2 dx,

ρ∞ = lim
R→∞ lim sup

n→∞

∫

|x |>R

|un |2∗
s1

|x |s1 dx,

η∞ = lim
R→∞ lim sup

n→∞

∫

|x |>R

u2n
|x |2 dx .

(3.3)

Analogous limits are also satisfied for the sequence {vn}, for which we denote the constants
as μ0, ρ0, η0 > 0 for the concentration at 0 and μ∞, ρ∞, η∞ > 0 at infinity.

Next we check that the Palais–Smale condition is satisfied for certain energy levels in both
the subcritical and critical ranges, but before, let us stress that one of the key ideas in both
cases is to test J ′

ν(un, vn) with (unϕε, 0) (resp. (0, vnϕε)), where ϕε is either ϕ0,ε or ϕ∞,ε,
two smooth cut-off functions supported in a neighborhood of 0 and near ∞, respectively.
More precisely,

ϕ0,ε(x) =
{
1 if |x | < ε

2 ,

0 if |x | � ε,
with |∇ϕ0,ε| ≤ 4

ε
,

ϕ∞,ε(x) =
{
0 if |x | < 1

ε
,

1 if |x | � 1
ε

+ 1,
with |∇ϕ∞,ε| ≤ 2.

(3.4)
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Then using the limits in (3.2) we can estimate the quantity

0 = lim
ε→0

lim
n→∞〈J ′

ν(un , vn)|(unϕ0,ε, 0)〉

= lim
ε→0

lim
n→∞

[ ∫

RN
|∇un |2ϕ0,ε dx +

∫

RN
un∇un∇ϕ0,ε dx

− λ1

∫

RN

u2n
|x |2 ϕ0,ε dx −

∫

RN

|un |2∗
s1

|x |s1 ϕ0,ε dx − να

∫

RN
h(x)

|un |α |vn |β
|x |s3 ϕ0,ε dx

]

� μ0 − λ1η0 − ρ0

+ lim
ε→0

[ ∫

RN
|∇ũ|2ϕ0,ε dx +

∫

RN
ũ∇ũ∇ϕ0,ε dx

− λ1

∫

RN

ũ2

|x |2 ϕ0,ε dx −
∫

RN

|ũ|2∗
s1

|x |s1 ϕ0,ε dx − να lim
n→∞

∫

RN
h(x)

|un |α |vn |β
|x |s3 ϕ0,ε dx

]

= μ0 − λ1η0 − ρ0 − να lim
ε→0

lim
n→∞

∫

RN
h(x)

|un |α |vn |β
|x |s3 ϕ0,ε dx .

Observe that in the subcritical range, one can deduce immediately that the limit in the last
line above vanishes. This is also the case in the critical range, but we have to be more careful
with the estimates. This is done in Lemma 3.7 below.

Analogously for ϕ∞,ε using (3.3) we have

0 = lim
ε→0

lim
n→∞〈J ′

ν(un, vn)|(unϕ∞,ε, 0)〉

� μ∞ − λ1η∞ − ρ∞ − να lim
ε→0

lim
n→∞

∫

RN
h(x)

|un |α|vn |β
|x |s3 ϕ∞,ε dx,

and the last limit vanishes in both the subcritical and the critical range.
Combining this with the inequality (2.9) we get

S(λ1, s1)ρ

2
2∗s1
0 ≤ μ0 − λ1η0 ≤ ρ0,

S(λ1, s1)ρ

2
2∗s1∞ ≤ μ∞ − λ1η∞ ≤ ρ∞,

S(λ2, s2)ρ

2
2∗s2
0 ≤ μ0 − λ2η0 ≤ ρ0,

S(λ2, s2)ρ

2
2∗s2∞ ≤ μ∞ − λ2η∞ ≤ ρ∞.

(3.5)

3.1 Subcritical range ˛
2∗
s1

+ ˇ
2∗
s2

< 1

We establish now the Palais–Smale condition for subcritical energy levels of Jν , which will
allow us to find existence of solutions for (1.1) by means of minimizing sequences.

Lemma 3.4 Assume that α
2∗
s1

+ β
2∗
s2

< 1 and hypothesis (1.3) holds. Then, the functional Jν

satisfies the PS condition for any level c such that

c < min {C(λ1, s1),C(λ2, s2)} . (3.6)
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Proof Let {un, vn} ⊂ Nν be a PS sequence for Jν |Nν at level c. Then, by using (2.11), one
has

c = lim
n→∞

[(
1

2
− 1

2∗
s1

)

‖un‖2
∗
s1

2∗
s1

,s1
+
(
1

2
− 1

2∗
s2

)

‖vn‖2
∗
s2

2∗
s2

,s2

+ ν

(
α + β

2
− 1

)∫

RN
h(x)

|un |α|vn |β
|x |s3 dx

]

� lim
n→∞

[(
1

2
− 1

2∗
s1

)

‖un‖2
∗
s1

2∗
s1

,s1
+
(
1

2
− 1

2∗
s2

)

‖vn‖2
∗
s2

2∗
s2

,s2

]

.

(3.7)

Recalling (3.2) and (3.3),

c �
(
1

2
− 1

2∗
s1

)[
‖ũ‖2

∗
s1

2∗
s1

,s1
+ ρ0 + ρ∞

]
+
(
1

2
− 1

2∗
s2

)[
‖ṽ‖2

∗
s2

2∗
s2

,s2
+ ρ0 + ρ∞

]
. (3.8)

From this it can be deduced that ρ0 = ρ0 = ρ∞ = ρ∞ = 0. On the contrary, let us
assume for example that ρ0 > 0. With the aid of (3.5), we can estimate

ρ0 � S(λ1, s1)

2∗s1
2∗s1−2

, (3.9)

so replacing this above and estimating the rest of the terms by 0 we get

c �
(
1

2
− 1

2∗
s1

)

ρ0 �
(
1

2
− 1

2∗
s1

)

S(λ1, s1)

2∗s1
2∗s1−2 = C(λ1, s1),

which contradicts the assumption (3.6), soρ0 = 0. By the same argument,ρ∞ = ρ0 = ρ∞ =
0. Then one can deduce the existence of a strongly convergent subsequence in L2∗

s1
,s1(RN )×

L2∗
s2

,s2(RN ) such that

lim
n→∞

[
‖(un − ũ, vn − ṽ)‖2

D
− 〈J ′

ν(un, vn)
∣
∣(un − ũ, vn − ṽ)

〉 ] = 0,

and thus the PS condition is satisfied. ��
Now, we shall study the validity of PS condition for supercritical energy levels. First, let

us introduce the truncated problem
⎧
⎪⎪⎨

⎪⎪⎩

−�u − λ1
u

|x |2 − (u+)
2∗
s1

−1

|x |s1 = ναh(x)
(u+)α−1 (v+)β

|x |s3 in R
N ,

−�v − λ2
v

|x |2 − (v+)
2∗
s2

−1

|x |s2 = νβh(x)
(u+)α (v+)β−1

|x |s3 in R
N ,

(3.10)

where u+ = max{u, 0}. Note that u = u+ + u− where u− is negative part of the function u,
i.e., u− = min{u, 0}. Observe that a solution of (1.1) satisfies (3.10).

Such a system admits a variational structure and its associated energy functional is

J+
ν (u, v) = ‖(u, v)‖2

D
− 1

2∗
s1

‖u+‖2
∗
s1

2∗
s1

,s1
− 1

2∗
s2

‖v+‖2
∗
s2

2∗
s2

,s2
− ν

∫

RN
h(x)

(u+)α(v+)β

|x |s3 dx,

defined in D. As we did with Jν we can define the Nehari manifold related to J+
ν . Actually,

N+
ν = {

(u, v) ∈ D \ {(0, 0)} : 〈(J+
ν )′(u, v)

∣
∣(u, v)

〉 = 0
}
.
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Lemma 3.5 Assume that α
2∗
s1

+ β
2∗
s2

< 1, α ≥ 2 and C(λ1, s1) � C(λ2, s2). Then, there exists

ν̃ > 0 such that, if 0 < ν ≤ ν̃ and {(un, vn)} ⊂ D is a PS sequence for J+
ν at level c ∈ R

such that

C(λ1, s1) < c < C(λ1, s1) + C(λ2, s2) (3.11)

and

c 	= �C(λ2, s2) for every � ∈ N \ {0},
then (un, vn) → (ũ, ṽ) ∈ D up to subsequence.

Proof Our aim is to show that

un → ũ in D1,2(RN ) and vn → ṽ in D1,2(RN ). (3.12)

In order to do that, we first show that at least one of these sequences converges inD1,2(RN ).
Then, in a second step, distinguishing cases we prove that the convergence in D1,2(RN ) of
one of the sequences implies the convergence of the other, from which (3.12) follows.

To see that (3.12) holds for at least one of the sequences, we start by claiming that

either un → ũ strongly in L2∗
s1

,s1(RN ) or vn → ṽ strongly in L2∗
s2

,s2(RN ).

(3.13)

Indeed, if any of these sequences converges strongly in its corresponding L2∗
si

,si (RN ), say
{un}n , then

lim
n→∞ ‖un − ũ‖2λ1 = lim

n→∞〈J ′
ν(un, vn)|(un − ũ, 0)〉,

from which by the equivalence of the norms ‖ · ‖λ and ‖ · ‖D1,2(RN ) it follows that {un}n
converges in D1,2(RN ) as desired.

To check that (3.13) holds, let us assume on the contrary that both {un} and {vn} do
not converge strongly in L2∗

s1 (RN ) and L2∗
s2 (RN ), respectively. Then we have ρ j > 0 and

ρk > 0 for some j, k ∈ {0,∞}. Repeating the argument leading to (3.8) in the previous
lemma, estimating by 0 and recalling (3.5) we obtain

c �
(
1

2
− 1

2∗
s1

)

ρ j +
(
1

2
− 1

2∗
s2

)

ρk

�
(
1

2
− 1

2∗
s1

)

S(λ1, s1)

2∗s1
2∗s1−2 +

(
1

2
− 1

2∗
s2

)

S(λ2, s2)

2∗s2
2∗s2−2

= C(λ1, s1) + C(λ2, s2),

which is in contradiction with the hypothesis (3.11), and so (3.13) follows.
At this point, we have already shown that at least one of the sequences in (3.12) converges

inD1,2(RN ). To show that (3.12) actually holds simultaneously for both sequenceswe discard
the cases in which one of the sequences does not converge.

1. Suppose that un 	→ ũ and vn → ṽ in D1,2(RN ). Arguing as in the proof of the previous
lemma, we recall (3.8) to write

c �
(
1

2
− 1

2∗
s1

)[
‖ũ‖2

∗
s1

2∗
s1

,s1
+ ρ0 + ρ∞

]
. (3.14)
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If {un} concentrates simultaneously at 0 and ∞, estimating by 0 the norm of ũ and using
the inequalities in (3.5) we get

c � 2

(
1

2
− 1

2∗
s1

)

S(λ1, s1)

2∗s1
2∗s1−2 = 2C(λ1, s1) � C(λ1, s1) + C(λ2, s2), (3.15)

where in the last inequality we have used that C(λ1, s1) � C(λ2, s2) by assumption.
Then we get a contradiction with the condition (3.11). Thus {un} does not concentrate
simultaneously at 0 and ∞.
Next, we show that ṽ is not identically zero by contradiction. Assume on the contrary
that ṽ ≡ 0. Then it holds that either ũ 	≡ 0 or ũ ≡ 0. In the first case, if ũ � 0, then
ũ = z(1)μ for some μ > 0, and so, by (2.7),

‖ũ‖2
∗
s1

2∗
s1

,s1
= S(λ1, s1)

2∗s1
2∗s1−2

.

Since either ρ0 = 0 or ρ∞ = 0, replacing this identity in (3.14) it turns out that the
inequalities in (3.15) also hold, so we reach again a contradiction with the condition
(3.11). On the other hand, if ũ ≡ 0, since {un} concentrates at most at one point, then

c = lim
n→∞Jν(un, vn) =

(
1

2
− 1

2∗
s1

)

‖un‖2
∗
s1

2∗
s1

,s1
=
(
1

2
− 1

2∗
s1

)

ρ j ,

with j = 0 or j = ∞, so {un} is a positive PS sequence for J j (ũ) (see (2.16)). Thus by
[18, Theorem 3.1],

ρ j = �S(λ1, s1)

2∗s1
2∗s1−2

,

for some � ∈ N, so c = �C(λ1, s1), which is in contradiction with the assumptions
c > C(λ1, s1) � C(λ2, s2). Indeed, if � = 1 then the contradiction is clear, on the other
hand, if � � 2 then c � C(λ1, s1) + C(λ2, s2), which contradicts (3.11). Hence ṽ is not
identically zero in R

N .
Next we show that the sequence {un} converges weakly in D1,2(RN ) to ũ 	≡ 0. For that,
if we assume on the contrary that ũ ≡ 0, repeating the argument above we find that
ṽ = z(2)μ for someμ > 0 and the contradiction follows analogously. Thus ũ and ṽ are not
identically zero inR

N , so recalling the identity in (3.7) and the fact that {un} concentrates
at most at one point it turns out that

C(λ1, s1) + C(λ2, s2) � c =
(
1

2
− 1

2∗
s1

)
[
‖ũ‖2

∗
s1

2∗
s1

,s1
+ ρ j

]
+
(
1

2
− 1

2∗
s2

)

‖ṽ‖2
∗
s2

2∗
s2

,s2

+ ν

(
α + β

2
− 1

)∫

RN
h(x)

ũαṽβ

|x |s3 dx,

(3.16)

where j = 0 or j = ∞. Observe that, as a consequence, since lim
n→∞

〈J ′
ν(un, vn)

∣
∣(ũ, ṽ)

〉 =
0 is equivalent to (ũ, ṽ) ∈ Nν , by (2.11) we have

Jν(ũ, ṽ) = c −
(
1

2
− 1

2∗
s1

)

ρ j .
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Using the assumption (3.11) and the inequalities in (3.5) as in (3.9), as well as the
definition of C(λ1, s1) in (2.17), we obtain

Jν(ũ, ṽ) < C(λ1, s1) + C(λ2, s2) −
(
1

2
− 1

2∗
s1

)

S(λ1, s1)

2∗s1
2∗s1−2 = C(λ2, s2).

where we have used (3.5). As a consequence,

c̃ν = inf
(u,v)∈Nν

Jν(u, v) < C(λ2, s2),

which in view of Theorem 1.3 contradicts the fact that c̃ν = C(λ2, s2) for sufficiently
small ν. Then un → ũ strongly in D1,2(RN ) as desired.

2. Suppose that un → ũ and vn 	→ ṽ in D1,2(RN ). First we claim that both ũ and ṽ are
not identically zero. In that case, recalling the identity in (3.7) as in the previous case we
have

c =
(
1

2
− 1

2∗
s1

)

‖ũ‖2
∗
s1

2∗
s1

,s1
+
(
1

2
− 1

2∗
s2

)
[
‖ṽ‖2

∗
s2

2∗
s2

,s2
+ ρ0 + ρ∞

]

+ ν

(
α + β

2
− 1

)∫

RN
h(x)

ũαṽβ

|x |s3 dx,

where at least one of the constants ρ0 and ρ∞ is strictly positive. Again by (2.11),

Jν(ũ, ṽ) = c −
(
1

2
− 1

2∗
s2

)

(ρ0 + ρ∞) ≤ c −
(
1

2
− 1

2∗
s2

)

ρ j ,

where j = 0 or j = ∞, so by (3.11), the inequalities in (3.5) and the definition of
C(λ2, s2) in (2.17), we obtain

Jν(ũ, ṽ) < C(λ1, s1) + C(λ2, s2) −
(
1

2
− 1

2∗
s2

)

S(λ2, s2)

2∗s2
2∗s2−2 ≤ C(λ1, s1).

Considering the first equation in (1.1) together with the definition of (2.9) we deduce that

S(λ1, s1)‖ũ‖22∗
s1

,s1 ≤ ‖ũ‖2
∗
s1

2∗
s1

,s1
+ ν

∫

RN
h(x)

ũαṽβ

|x |s3 dx

≤ ‖ũ‖2
∗
s1

2∗
s1

,s1
+ ν‖h‖p,σ ‖ũ‖α

2∗
s1

,s1‖ṽ‖β
2∗
s2

,s2
,

where in the second inequality we have used (2.2) with p and σ as in (2.3). To esti-
mate the norm of ṽ, we observe that the inequality (3.11) and (3.16) imply that
Jν(ũ, ṽ) < C(λ1, s1) + C(λ2, s2) ≤ 2C(λ1, s1), and by (2.11) we can bound

(
1

2
− 1

2∗
s2

)

‖ṽ‖2
∗
s2

2∗
s2

,s2
≤ Jν(ũ, ṽ) < 2C(λ1, s1) = 2

(
1

2
− 1

2∗
s1

)

S(λ1, s1)

2∗s1
2∗s1−2

,

so we obtain

‖ṽ‖β
2∗
s2

,s2
<

⎛

⎝2

1
2 − 1

2∗
s1

1
2 − 1

2∗
s2

⎞

⎠

β

2∗s2
S(λ1, s1)

β

2∗s2
· 2∗s1
2∗s1−2

.
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Replacing above,

S(λ1, s1)‖ũ‖22∗
s1

,s1 ≤ ‖ũ‖2
∗
s1

2∗
s1

,s1
+ Cν‖ũ‖α

2∗
s1

,s1 ,

for some constant C > 0 depending on h, s1, s2 and β. On the other hand, since ṽ is not
identically zero, it turns out that

(
1

2
− 1

2∗
s2

)

‖ṽ‖2
∗
s2

2∗
s2

,s2
� ε̃ > 0.

Therefore, if we take a sufficiently small ε > 0 such that εC(λ1, s1) ≤ ε̃, then by
Lemma 2.3, there exists ν̃ > 0 in such a way that

‖ũ‖2∗
s1

,s1 � (1 − ε)S(λ1, s1)
N−s1
2−s1

for any 0 < ν ≤ ν̃. Putting all these estimates together we get

Jν(ũ, ṽ) � (1 − ε)

(
1

2
− 1

2∗
s1

)

S(λ1, s1)
N−s1
2−s1 + ε̃ = C(λ1, s1).

Observe that this is a contradiction with the inequality Jν(ũ, ṽ) < C(λ1, s1) obtained
above. Thus vn → ṽ strongly in D1,2(RN ).

The above discussion shows that both un → ũ and vn → ṽ in D1,2(RN ), which is
precisely our main claim (3.12), so the proof is concluded. ��

The following can be shown in an analogous way.

Lemma 3.6 Assume that α
2∗
s1

+ β
2∗
s2

< 1, β ≥ 2 and C(λ2, s2) ≥ C(λ1, s1). Then, there exists

ν̃ > 0 such that, if 0 < ν ≤ ν̃ and {(un, vn)} ⊂ D is a PS sequence for J+
ν at level c ∈ R

such that

C(λ2, s2) < c < C(λ1, s1) + C(λ2, s2) (3.17)

and

c 	= �C(λ1, s1) for every � ∈ N \ {0}, (3.18)

then (un, vn) → (ũ, ṽ) ∈ D up to subsequence.

3.2 Critical range ˛
2∗
s1

+ ˇ
2∗
s2

= 1

For the sake of simplicity, let us write h̃(x) = h(x)
|x |σ . Hence, in view of (2.3), h̃ ∈ L∞(RN ).

Recall also that limx→+∞ h(x) = 0 by assumption and σ � 0, so limx→+∞ h̃(x) = 0.
However, the continuity of h at 0 with h(0) = 0 is not enough for our purposes in this case,
and we have to impose the continuity of h̃ at 0 with h̃(0) = 0. In short, we have to assume
that the function h satisfies (1.6), namely

h̃(x) = h(x)

|x |σ ∈ L∞(RN ) is continuous at 0 and ∞ and h̃(0) = 0 and lim
x→+∞ h̃(x) = 0.
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Lemma 3.7 Assume that α
2∗
s1

+ β
2∗
s2

= 1 and hypothesis (1.3) holds. In addition, let us assume

that h̃ satisfies (1.6) for σ is as in (2.3). Let {(un, vn)} ⊂ D be a PS sequence for Jν at level
c ∈ R such that

1. either c < min {C(λ1, s1),C(λ2, s2)},
2. or if α � 2 and C(λ1, s1) ≥ C(λ2, s2) then C(λ1, s1) < c < C(λ1, s1) + C(λ2, s2) and

c 	= �C(λ2, s2) for every � ∈ N,
3. or if β � 2 and C(λ1, s1) � C(λ2, s2) then satifies C(λ2, s2) < c < C(λ1, s1)+C(λ2, s2)

and c 	= �C(λ1, s1) for every � ∈ N.

Then, there exists ν̃ > 0 such that, for every 0 < ν ≤ ν̃, the sequence (un, vn) → (ũ, ṽ) ∈ D

up to a subsequence.

Proof As noted at the beginning of this section, we need to show that

lim
ε→0

lim sup
n→+∞

∫

RN
h(x)

|un |α|vn |β
|x |s3 ϕε dx = 0 (3.19)

for both ϕε = ϕ0,ε and ϕε = ϕ∞,ε the test functions defined in (3.4), fromwhich immediately
follows that the coupling term does not concentrate mass at 0 and ∞.

Use the precise value of σ given by (2.3) and apply Hölder inequality with the conjugate

exponents
2∗
s1
α

and
2∗
s2
β

to obtain

∫

RN
h(x)

|un |α|vn |β
|x |s3 ϕε dx =

∫

RN

(

h̃(x)
|un |2∗

s1

|x |s1
) α

2∗s1
(

h̃(x)
|vn |2∗

s2

|x |s2
) α

2∗s2
ϕε dx

≤
(∫

RN
h̃(x)

|un |2∗
s1

|x |s1 ϕε dx

) α

2∗s1
(∫

RN
h̃(x)

|vn |2∗
s2

|x |s2 ϕε dx

) β

2∗s2
.

where we have used that h̃(x) = h(x)
|x |σ . Next we focus on the first integral in the right hand

side (the other can be estimated analogously). First, for ϕε = ϕ0,ε we use that h̃ is continuous
at 0 with h̃(0) = 0 by assumption together with the third limit in (3.2) to obtain

lim
n→+∞

∫

RN
h̃(x)

|un |2∗
s1

|x |s1 ϕ0,ε dx =
∫

RN
h̃(x)

|ũ|2∗
s1

|x |s1 ϕ0,ε dx ≤
∫

|x |<ε

h̃(x)
|ũ|2∗

s1

|x |s1 dx .

Similarly for ϕε = ϕ∞,ε, we can directly estimate

lim
n→+∞

∫

RN
h̃(x)

|un |2∗
s1

|x |s1 ϕ∞,ε dx ≤ sup
|x |> 1

ε

h̃(x) lim
n→+∞

∫

|x |> 1
ε

|un |2∗
s1

|x |s1 dx

= ρ∞ sup
|x |> 1

ε

h̃(x).

Thus, since h̃ satisfies the conditions in (1.6), taking limits as ε → 0 we obtain (3.19) for
both ϕ0,ε and ϕ∞,ε. ��

4 Proofs of main results

After analyzing the validity of the Palais–Smale condition, we are in position to prove our
main results concerning the existence of solutions for the system (1.1). Let us start by the
case of ground states for large coupling parameters.
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Proof of Theorem 1.1 Consider (u, v) ∈ D \ {(0, 0)}. Then there exists a positive constant t
such that (tu, tv) ∈ Nν where t satisfies the equation (2.12).

Due to α + β > 2 and 2∗
si > 2, then t = tν → 0 as ν → +∞. Moreover, one can obtain

the relationship

lim
ν→+∞ tα+β−2

ν ν = ‖(u, v)‖2
D

(α + β)

∫

RN
h(x)

|u|α|v|β
|x |s3 dx

,

which implies that the energy of (tνu, tνv) is

Jν(tνu, tνv) =
(
1

2
− 1

α + β
+ o(1)

)

t2ν ‖(u, v)‖2
D
.

Then, we point out that

c̃ν = inf
(u,v)∈Nν

Jν(u, v) < min{Jν(z
(1)
μ , 0),Jν(0, z

(2)
μ )} = min{C(λ1, s1),C(λ2, s2)},(4.1)

for some ν > ν with ν sufficiently large. In the subcritical regime α
2∗
s1

+ β
2∗
s2

< 1, the existence

of the minimizer (ũ, ṽ) ∈ D such that Jν(ũ, ṽ) = c̃ν is a consequence of Lemma 3.4.
Concerning the positivity of the solution, it suffices to notice that

Jν(|ũ|, |ṽ|) = Jν(ũ, ṽ).

This enables us to assume that ũ ≥ 0 and ṽ ≥ 0 in R
N . Indeed ũ and ṽ are smooth in

R
N \ {0} by classical regularity arguments. Let us suppose that, ũ 	≡ 0 and ṽ 	≡ 0. By

contradiction, if ũ ≡ 0, then ṽ ≥ 0 and ṽ verifies (2.5), so ṽ = z(2)μ , which contradicts
the energy level assumption (4.1). Analogously, we deduce ṽ 	≡ 0. Finally, by applying the
maximum principle in R

N \ {0}, we get that (ũ, ṽ) ∈ Nν with ũ > 0 and ṽ > 0 in R
N \ {0},

giving the desired conclusion. If α
2∗
s1

+ β
2∗
s2

= 1, one derives the same thesis by applying

Lemma 3.7 in a suitable way.
Finally, we shall assume that function h is radial and non-increasing. In order to prove

the radial symmetry of the ground state, let us set (u, v) the Schwartz symmetrization of
(ũ, ṽ). Using the standard properties concerning symmetric-decreasing rearrangements (see
Chapter 3 in [17]), we can determine that

‖(u, v)‖D � ‖(ũ, ṽ)‖D,

‖u‖2
∗
s1

2∗
s1

,s1
+ ‖v‖2

∗
s2

2∗
s2

,s2
+ ν(α + β)

∫

RN
h∗ uαvβ

|x |s3 � ‖ũ‖2
∗
s1

2∗
s1

,s1

+ ‖ṽ‖2
∗
s2

2∗
s2

,s2
+ ν(α + β)

∫

RN
h(x)

ũαṽβ

|x |s3

(4.2)

where we have used that that h∗ = h by our assumptions. Observe that a priori we do not
know if (u, v) belongs to Nν . For that reason, consider t∗ > 0 such that t∗(u, v) ∈ Nν with
t satisfying (2.12). Since (ũ, ṽ) is a critical point of Jν we obtain that

0 = 〈J ′
ν(ũ, ṽ)

∣
∣(ũ, ṽ)

〉
� ‖(u, v)‖2

D
− ‖u‖2

∗
s1

2∗
s1

,s1
− ‖v‖2

∗
s2

2∗
s2

,s2
− ν(α + β)

∫

RN
h(x)

uαvβ

|x |s3 ,

(4.3)
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applying inequalities from (4.2). Now introducing (2.12) in (4.3), one has that

t
2∗
s1

−2
∗ ‖u‖2

∗
s1

2∗
s1

,s1
+ t

2∗
s2

−2
∗ ‖v|2

∗
s2

2∗
s2

,s2
+ ν(α + β)tα+β−2∗

∫

RN
h(x)

uαvβ

|x |s3

≤‖u‖2
∗
s1

2∗
s1

,s1
+ ‖v‖2

∗
s2

2∗
s2

,s2
+ ν(α + β)

∫

RN
h(x)

uαvβ

|x |s3 ,

which obviously implies that 0 < t∗ ≤ 1. Now, combining these expressions, we can estimate
the energetic level of t∗(u, v). Due to (2.12), we can write Jν as

Jν(t∗(u, v)) =
(
1

2
− 1

2∗
s1

)

t
2∗
s1∗ ‖u‖2

∗
s1

2∗
s1

,s1
+
(
1

2
− 1

2∗
s2

)

t
2∗
s2∗ ‖v‖2

∗
s2

2∗
s2

,s2

+ ν

(
α + β

2
− 1

)

tα+β∗
∫

RN
h(x)

uαvβ

|x |s3 dx

≤
(
1

2
− c

α + β

)

‖(ũ, ṽ)‖2
D

+
(

c

α + β
− 1

2∗
s1

)

‖ũ‖2
∗
s1

2∗
s1

,s1

+
(

c

α + β
− 1

2∗
s2

)

‖ṽ‖2
∗
s2

2∗
s2

,s2
+ ν(c − 1)

∫

RN
h(x)

ũαṽβ

|x |s3 dx

= Jν(ũ, ṽ),

which implies that

Jν(t∗(u, v)) ≤ Jν(ũ, ṽ) = c̃ν .

This proves that the ground state is radially symmetric with respect to the origin and non-
increasing. ��
Proof of Theorem 1.2 Let us discuss the existence of a positive ground state in case that
assumption i) holds. If one suppose i i), the proof is analogous. By Proposition 2.2, the
couple (z(1)μ , 0) is a saddle point of Jν on Nν . Moreover,

c̃ν < Jν(z
(1)
μ , 0) = min{C(λ1, s1),C(λ2, s2)},

where c̃ν defined in (2.15). In the subcritical α
2∗
s1

+ β
2∗
s2

< 1, Lemma 3.4 ensures the existence

of (ũ, ṽ) ∈ Nν with c̃ν = Jν(ũ, ṽ). By employing the approach in the preceding theorem,
it follows that (ũ, ṽ) is a positive ground state of the system (1.1). Regarding the critical
regime, the same conclusion is obtained by using Lemma 3.7.

The radial symmetry of the ground state follows from the approach from the previous
proof. ��
Proof of Theorem 1.3 We shall prove the result by assuming i). The proof is analogous for
the hypotheses i i) and i i i). Due to the Proposition 2.2, (0, z(2)μ ) is a local minimum for
ν sufficiently small. By contradiction, we suppose that there exists {νn} ↘ 0 such that
c̃νn < Jνn (0, z

(2)
μ ) where c̃ν is defined in (2.15). In particular, we have

c̃νn < min{C(λ1, s1),C(λ2, s2)} = C(λ2, s2). (4.4)

Due to Lemma 3.4, the PS condition is satisfied at level c̃νn for the subcritical regime. If
α
2∗
s1

+ β
2∗
s2

= 1, we infer the same deduction by Lemma 3.7 with ν sufficiently small.
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For both cases, one obtains the existence of (ũn, ṽn) ∈ D such that c̃νn = Jνn (ũn, ṽn).
Moreover, Jνn (ũn, ṽn) = Jνn (|ũn |, |ṽn |), then ũn ≥ 0 and ṽn ≥ 0. Indeed, as we proceeded
in previous results, we can guarantee that ũn > 0 and ṽn > 0 in R

N \ {0}.
Due to the expression (2.11), we have

c̃νn = Jνn (ũn, ṽn) =
(
1

2
− 1

2∗
s1

)

‖ũn‖2
∗
s1

2∗
s1

,s1
+
(
1

2
− 1

2∗
s2

)

‖ṽn‖2
∗
s2

2∗
s2

,s2

+ νn

(
α + β

2
− 1

)∫

RN
h(x)

ũα
n ṽ

β
n

|x |s3 dx .

(4.5)

By using (4.4) and (4.5), one has that
(
1

2
− 1

2∗
s1

)

‖ũn‖2
∗
s1

2∗
s1

,s1
+
(
1

2
− 1

2∗
s2

)

‖ṽn‖2
∗
s2

2∗
s2

,s2
< C(λ2, s2)=

(
1

2
− 1

2∗
s2

)

[S(λ2, s2)]
N−s2
2−s2 .

(4.6)

Note that (ũn, ṽn) is a solution of (1.1). Then, by combining its first equation and (2.9), we
have

S(λ1, s1)‖ũn‖
2∗
s1

N−2
N−s1

2∗
s1

,s1
≤ ‖ũn‖2

∗
s1

2∗
s1

,s1
+ νnα

∫

RN
h(x)

ũα
n ṽ

β
n

|x |s3 dx .

By the general Hölder’s inequality given in (2.2), one gets

∫

RN
h(x)

ũα
n ṽ

β
n

|x |s dx ≤ ‖h‖p,σ ‖ũn‖α
2∗
s1

,s1‖ṽn‖β
2∗
s2

,s2
,

where p, σ were introduced in (2.3), and then

∫

RN
h(x)

ũα
n ṽ

β
n

|x |s3 dx ≤ C‖ũn‖
α
2∗s1
2

N−2
N−s1

2∗
s1

,s1
[S(λ2, s2)]β

N−2
2(2−s2) .

Therefore, one obtains that,

S(λ1, s1)‖ũn‖
2∗
s1

N−2
N−s1

2∗
s1

,s1
< ‖ũn‖2

∗
s1

2∗
s1

,s1
+ Cνnα‖ũn‖

α
2∗s1
2

N−2
N−s1

2∗
s1

,s1
[S(λ2, s2)]β

N−2
2(2−s2) .

Now, let us employ Lemma 2.3 with s1 = s2, P = Q and σ = [S(λ1, s1)]
N−s1
s1−2 ‖ũn‖2

∗
s1

2∗
s1

,s1
, in

order to have ν̃ = ν̃(ε) > 0 such that

‖ũn‖2
∗
s1

2∗
s1

,s1
> (1 − ε)[S(λ1, s1)]

N−s1
2−s1 for any 0 < νn < ν̃. (4.7)

Since we have assumed that C(λ1, s1) > C(λ2, s2), one can take some ε > 0 with

(1 − ε)
2 − s1

2(N − s1)
[S(λ1, s1)]

N−s1
2−s1 ≥ 2 − s2

2(N − s2)
[S(λ2, s2)]

N−s2
2−s2 .

This inequality combinedwith (4.7) gives us that
2 − s1

2(N − s1)
‖ũn‖2

∗
s1

2∗
s1

,s1
> C(λ2, s2), which

violates (4.6). Therefore, for ν sufficiently small it is satisfied that

c̃ν =
(
1

2
− 1

2∗
s2

)

[S(λ2, s2)]
N−s2
2−s2 . (4.8)
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Let (ũ, ṽ) be a minimizer of Jν . Arguing by contradiction, we can state either ũ ≡ 0 or
ṽ ≡ 0. Actually, if v ≡ 0, we contradict assumption (4.8). So one can deduce that u ≡ 0
with ṽ satisfying the equation

−�ṽ − λ2
ṽ

|x |2 = |ṽ|2∗
s2

−2
ṽ

|x |s2 in R
N .

To finish, we show that ṽ = ±z(2)μ . Suppose by contradiction that ṽ changes sign so ṽ± 	≡ 0
inR

N . Since (0, ṽ) ∈ Nν , then (0, ṽ±) ∈ Nν and, by (4.5), we reach a contradiction, namely,

c̃ν = Jν(0, ṽ) =
(
1

2
− 1

2∗
s2

)

‖ṽ‖2
∗
s2

2∗
s2

,s2

=
(
1

2
− 1

2∗
s2

)(

‖ṽ+‖2
∗
s2

2∗
s2

,s2
+ ‖ṽ−‖2

∗
s2

2∗
s2

,s2

)

> Jν(0, ṽ
+) ≥ c̃ν .

Then, (0,±z(2)μ ) is the minimizer of Jν inNν if C(λ1, s1) > C(λ2, s2). Finally, we can state

that, under our hypotheses, (0, z(2)μ ) is a ground state to (1.1). ��
Proof of Theorem 1.4 Let us prove the thesis assuming condition i), as the proof follows

analogously under hypothesis i i). First, we shall prove that the energy functional J+
ν

∣
∣
∣N+

ν

admits a Mountain–Pass geometry. Secondly, we show that the PS condition holds for the
Mountain–Pass level. As a consequence, we deduce the existence of (ũ, ṽ) ∈ D which is a
critical point of J+

ν and, therefore, a bound state of (1.1).

Step 1: Let us define the set of paths that connects (z(1)μ , 0) to (0, z(2)μ ) continuously,

�ν =
{
ψ(t) = (ψ1(t), ψ2(t)) ∈ C0([0, 1],N+

ν ) : ψ(0) = (z(1)1 , 0) and ψ(1) = (0, z(2)1 )
}

,

and the Mountain–Pass level

cMP = inf
ψ∈�ν

max
t∈[0,1]J

+
ν (ψ(t)).

Take ψ = (ψ1, ψ2) ∈ �ν , then by the identity (2.10), we obtain that

‖(ψ1(t), ψ2(t))‖2D = ‖ψ+
1 (t)‖2

∗
s1

2∗
s1

,s1
+ ‖ψ+

2 (t)‖2
∗
s2

2∗
s2

,s2
+ ν(α + β)

∫

RN
h(x)

(ψ+
1 (t))α(ψ+

2 (t))β

|x |s3 dx,

(4.9)

and, using (2.11),

J+
ν (ψ(t)) =

(
1

2
− 1

2∗
s1

)

‖ψ+
1 (t)‖2

∗
s1

2∗
s1

,s1
+
(
1

2
− 1

2∗
s2

)

‖ψ+
2 (t)‖2

∗
s2

2∗
s2

,s2

+ ν

(
α + β

2
− 1

)∫

RN
h(x)

(ψ+
1 (t))α(ψ+

2 (t))β

|x |s3 dx .

(4.10)

Let us take σ(t) = (σ1(t), σ2(t)), with σ j (t) := ‖ψ+
j (t)‖2

∗
s j

2∗
s j

,s j
. Then, by (2.9) and (4.9),

S(λ1, s1)(σ1(t))
N−2
N−s1 + S(λ2, s2)(σ2(t))

N−2
N−s2 ≤ ‖(ψ1(t), ψ2(t))‖2D

= σ1(t) + σ2(t)

+ ν(α + β)

∫

RN
h(x)

(ψ+
1 (t))α(ψ+

2 (t))β

|x |s3 dx .

(4.11)
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Using Hölder’s inequality, given in (2.2), one can bound the previous integral as

∫

RN
h(x)

(ψ+
1 (t))α(ψ+

2 (t))β

|x |s3
dx ≤ ν‖h‖p,σ (σ1(t))

α
2

N−2
N−s1 (σ2(t))

β
2

N−2
N−s2 , (4.12)

with p, σ defined (2.3).
Note that, from the definition of ψ , we have

σ(0) =
(∫

RN

(z(1)1 )
2∗
s1

|x |s1 dx, 0

)

and σ(1) =
(

0,
∫

RN

(z(2)1 )
2∗
s2

|x |s2 dx

)

.

As σ(t) is continuous, there exists t̃ ∈ (0, 1) such that

σ1(t̃)

p1
= σ̃ = σ2(t̃)

p2
where p j = S(λ j , s j )

N−s j
2−s j .

Taking t = t̃ in inequality (4.11) and applying (4.12), we have that

p1σ̃
2

2∗s1 + p2σ̃
2

2∗s2 ≤ (p1 + p2)σ̃ + Cν(α + β)σ̃

α

2∗s1
+ β

2∗s2 .

Since σ̃ 	= 0, by Lemma 2.3, for some ν̃ > 0 sufficiently small the previous inequality
implies

σ̃ > 1 − ε for every 0 < ν � ν̃,

which implies

σ j (t̃) > (1 − ε)
[S(λ j , s j )

] N−s j
2−s j for every 0 < ν � ν̃. (4.13)

As a result, from (4.10) and (4.13), we deduce

max
t∈[0,1]J

+
ν (ψ(t)) > (1 − ε)

((
1

2
− 1

2∗
s1

)

[S(λ1, s1)]
N−s1
2−s1 +

(
1

2
− 1

2∗
s2

)

[S(λ2, s2)]
N−s2
2−s2

)

> 2C(λ2, s2)

> C(λ1, s1).

Then, cMP > C(λ1, s) = max{J+
ν (z(1)1 , 0),J+

ν (0, z(2)1 )}. Thus, J+
ν admits a Mountain–

Pass structure on Nν .

Step 2: We consider the path ψ(t) = (ψ1(t), ψ2(t)) =
(
(1 − t)1/2z(1)1 , t1/2z(2)1

)
for

t ∈ [0, 1]. Using the property (2.12), we infer the existence of a positive function γ :
[0, 1] �→ (0,+∞) such that γψ(t) ∈ N+

ν ∩ Nν for every t ∈ [0, 1]. Let us stress that
γ (0) = γ (1) = 1. As we did above, define

σ(t) = (σ1(t), σ2(t)) =
(∫

RN

(γψ1(t))
2∗
s1

|x |s1 dx,
∫

RN

(γψ2(t))
2∗
s2

|x |s2 dx

)

.

By (2.7), we have that

σ1(0) = [S(λ1, s1)]
N−s1
2−s1 and σ2(1) = [S(λ2, s2)]

N−s2
2−s2 . (4.14)
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Due to the expression (2.12), one obtains
∥
∥
∥

(
(1 − t)1/2z(1)1 , t1/2z(2)1

)∥
∥
∥
2

D
= (1 − t)σ1(0) + tσ2(1)

= (1 − t)
2∗
s1

/2
γ
2∗
s1

−2
(t)σ1(0) + t

2∗
s2

/2
γ
2∗
s2

−2
(t)σ2(1)

+ ν(α + β)γ α+β−2(t)(1 − t)α/2tβ/2
∫

RN
h(x)

(z(1)1 )α(z(2)1 )β

|x |s3 dx,

implying that, for every t ∈ (0, 1), it holds

(1 − t)σ1(0) + tσ2(1) > (1 − t)2
∗
s1

/2
γ
2∗
s1

−2
(t)σ1(0) + t2

∗
s2

/2
γ
2∗
s2

−2
(t)σ2(1). (4.15)

Next, we apply the energy formula (2.11)

J+
ν (γψ(t)) =

(
1

2
− 1

α + β

)

‖γψ(t)‖2
D

+
(

1

α + β
− 1

2∗
s1

)

γ
2∗
s1 (t)‖ψ1(t)‖

2∗
s1

2∗
s1

,s1
+
(

1

α + β
− 1

2∗
s2

)

γ
2∗
s2 (t)‖ψ2(t)‖

2∗
s2

2∗
s2

,s2

=
(
1

2
− 1

α + β

)

γ 2(t) [(1 − t)σ1(0) + tσ2(1)]

+
(

1

α + β
− 1

2∗
s1

)

γ
2∗
s1 (t)(1 − t)2

∗
s1

/2
σ1(0) +

(
1

α + β
− 1

2∗
s2

)

γ
2∗
s2 (t)t2

∗
s2

/2
σ2(1)

=
(
1

2
γ 2(t)(1 − t) − 1

2∗
s1

γ
2∗
s1 (t)(1 − t)

2∗s1
2

)

σ1(0) +
(
1

2
γ 2(t)t − 1

2∗
s2

γ
2∗
s2 (t)t

2∗s2
2

)

σ2(1)

− 1

α + β

(

γ 2(t) [(1 − t)σ1(0) + tσ2(1)] − γ
2∗
s1 (t)(1 − t)

2∗s1
2 σ1(0) − γ

2∗
s2 (t)t

2∗s2
2 σ2(1)

)

.

(4.16)

By using inequality (4.15), the last term of the above expression becomes negative. Then
we can bound the energy as

J+
ν (γψ(t)) <

(
1

2
γ 2(t)(1 − t) − 1

2∗
s1

γ
2∗
s1 (t)(1 − t)

2∗s1
2

)

σ1(0)

+
(
1

2
γ 2(t)t − 1

2∗
s2

γ
2∗
s2 (t)t

2∗s2
2

)

σ2(1)

= g(t)

(4.17)

for every t ∈ (0, 1).
Now, consider the function h(x) = 1

2 x
2 − 1

2∗
s
x2

∗
s with s ∈ [0, 2). Its maximum is attained

at 1, then h(x) � h(1) = 1
2 − 1

2∗
s

= 2−s
2(N−s) .

Since we can write

g(t) = h(γ (t)(1 − t)1/2)σ1(0) + h(γ (t)t1/2)σ2(1),

one infers that

J+
ν (γψ(t)) <

(
1

2
− 1

2∗
s1

)

σ1(0) +
(
1

2
− 1

2∗
s2

)

σ2(1) = C(λ1, s1) + C(λ2, s2),

using (4.16) and (1.9). Consequently,

C(λ2, s2) < C(λ1, s1) < cMP ≤ max
t∈[0,1]J

+
ν (γψ(t)) < 3C(λ2, s2).
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Then, the Mountain–Pass level cMP satisfies the assumptions of Lemmas 3.5 and 3.7. By the
Mountain–Pass Theorem, we can infer the existence of a sequence {(un, vn)} ⊂ N+

ν such
that

J+(un, vn) → cν and J+|N+
ν

(un, vn) → 0.

If α
2∗
s1

+ β
2∗
s2

< 1, by analogous versions of Lemmas 3.2 and 3.5 for J+
ν , we get {(un, vn)} →

(ũ, ṽ). Indeed, (ũ, ṽ) is a critical point of Jν onNν so it is also a critical point of Jν defined
in D. Moreover, ũ, ṽ ≥ 0 in R

N and by the maximum principle in R
N \ {0} we conclude

they are strictly positive. For assumptions i i), the PS condition follows by Lemma 3.5. If
α
2∗
s1

+ β
2∗
s2

= 1, we follow the same approach using now Lemma 3.7. ��
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