
A new model to estimate daytime net surface radiation under all 
sky conditions

Inmaculada Foyo-Moreno a,b, Ismael L. Lozano c,d,*, Inmaculada Alados a,e,  
Juan Luis Guerrero-Rascado a,b

a Andalusian Institute for Earth System Research, Granada 18006, Spain
b Department of Applied Physics, University of Granada, Granada 18071, Spain
c Department of Forest Sciences, University of Helsinki, Helsinki 00014, Finland
d Institute for Atmospheric and Earth System Research, University of Helsinki, Helsinki 00014, Finland
e Applied Physics II Department, University of Málaga, Málaga 29071, Spain

A R T I C L E  I N F O

Keywords:
Net radiation
Shortwave radiation
Longwave radiation

A B S T R A C T

Net surface radiation is a crucial parameter across various fields, as it represents the available energy for the 
energy exchange between the surface and the atmosphere. This work presents a new model for estimating 
instantaneous daytime net surface radiation (Rn) under all sky conditions, using solar position via cos ϴz and the 
clearness index (kt) as predictors. Global solar radiation (G↓) is the primary factor influencing Rn and is exten
sively measured at numerous radiometric stations. Consequently, this model takes advantage of using a single 
input (G↓). The model was validated against other empirical models at various sites with diverse climatological 
characteristics. Two types of models were evaluated, one including reflected global solar irradiance (G↑) as an 
additional input variable alongside G↓. The best results were obtained when incorporating G↑. However, this 
poses a challenge as G↑ is not measured at most radiometric stations. Nevertheless, in both types, the simplest 
model consistently outperformed the others, revealing no significant improvements with the addition of extra 
variables. Overall, the proposed model demonstrated good fit with the experimental data, although with some 
overestimation. The coefficient of determination (R2) is over 0,94, except at sites with extreme surface albedo 
conditions (α > 0,55). Mean bias error values ranged from 4 Wm− 2 to 44 Wm− 2, while root mean square error 
values varied from 25 Wm− 2 to 62 Wm− 2. Additional assessments across different seasons and sky conditions 
revealed improved performance during colder seasons and under cloudy conditions. Finally, the statistical 
analysis of the proposed model falls within the range of other more sophisticated models that involve additional 
input variables.

1. Introduction

Net radiation (Rn) is the available energy provided by the Sun at the 
surface, since Rn results from the net balance of incoming and outgoing 
radiation at the surface, encompassing both shortwave and longwave 
ranges. Rn is a key parameter for studying surface processes, as this 
energy is used to heat the soil and the atmosphere, as well as to evap
orate soil water. Consequently, Rn regulates several biological and 
environmental processes, including evapotranspiration (Lu et al., 2013, 
2014; Wang and Liang, 2008), which is a critical component of agri
cultural, hydrological, and ecological research (Jiang et al., 2015), 
photosynthesis, turbulent and conductive heat fluxes. In the net balance, 

the incoming radiation for shortwave range strongly depends on the 
site's latitude, solar position and sky conditions. On the other hand, the 
incoming longwave radiation directly depends on atmospheric proper
ties such as air temperature (through Stefan Boltzmann's law) and water 
vapour pressure, and indirectly through changes in the atmospheric 
emissivity.

However, despite the importance of Rn, there are relatively few sites 
worldwide where it is measured. In fact, in contrast to the land surface, 
Rn is not routinely measured for the ocean surface. When Rn measure
ments are unavailable, various estimation methods are proposed as al
ternatives. These methods utilize either satellite data, a combination of 
satellite and surface data, or stand-alone surface data. When surface data 
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is used, the scientific literature suggests several methods to estimate Rn 
based on meteorological measurements, which can be categorized into 
two methodological types. The simplest methods use only air tempera
ture as an input variable to estimate downward longwave radiation of 
the atmosphere (Wright and Jensen, 1972; Brutsaert, 1975; Doorenbos 
and Pruitt, 1977; Weiss, 1982; Jensen et al., 1990), since air temperature 
influences the estimation of longwave radiation emitted by the atmo
sphere via the Stefan-Boltzmann law and subsequently impacts net ra
diation. However, this single parameter is insufficient to encompass the 
full variability of Rn. The other category includes methods that, in 
addition to air temperature, incorporate surface temperature to estimate 
longwave radiation emitted by the surface (Brutsaert, 1982; Ortega- 
Farias et al., 2000; Bisht et al., 2005; Saito et al., 2006; Cui et al.,2010; 
Hemmati et al., 2012). Irmak et al. (2003) also related Rn to a set of 
meteorological variables. However, Kjaersgaard et al. (2007a, 2007b)
demonstrated that certain variables, such as daily maximum and mini
mum air temperatures, are inter-correlated, which may lead to multi
collinearity and reduce the stability of prediction models (Jiang et al., 
2015). Conversely, Wang and Liang (2009) were the first to consider the 
inclusion of surface elevation in Rn estimation. However, they showed 
that the original model, without this variable, provided accurate 
estimates.

Furthermore, many commonly used methods are based on the rela
tionship between Rn and incoming shortwave radiation (often referred 
to as global solar radiation, G↓) (Jiang et al., 2015; Alados et al., 2003), 
since G↓ plays a critical role in the climate system and global energy 
balance (Wang et al., 2022). This approach is practical because G↓ is 
commonly measured at many radiometric stations. There are two main 
types of empirical methods according to previous studies. The first type, 
which is widely used, estimates Rn from G↓ and other meteorological 
variables through simple linear regressions. The second type frequently 
involves creating hybrid models that combine empirical and physical 
sub-models, allowing for the separate estimation of each individual 
component of Rn. Different authors have evaluated these models (e.g. 
Iziomon et al., 2000; Alados et al., 2003; Kjaersgaard et al., 2007a, 
2007b; Sentelhas and Gillespie, 2008). Specifically, Jiang et al. (2015)
evaluated seven models based on incident and/or net shortwave radia
tion and other meteorological variables suitable for global application. 
Based on these evaluations, they proposed a new empirical model that 
incorporates multiple variables, including the normalized difference 
vegetation index (NDVI).

Regarding G↓ various forecasting methodologies are employed to 
estimate it, including empirical models, machine learning and physical 
and hybrid models. Lu et al. (2023) developed hybrid models and 
quantified the uncertainty in estimates caused by uncertainty in the 
measurement and atmospheric parameters for clear skies. They 
concluded that, under clear skies conditions, aerosol optical depth 
contributed the most to the accuracy of G↓ estimates, with an average 
contribution of 58 %. Empirical models do not consider the effects of 
physical processes or topographic or climatic features (Lu et al., 2023), 
but these models are preferred by its simplicity and the advantage is that 
with only a few input parameters is possible the estimation of interest 
variable, the disadvantage is the lack of the universality. Wang et al. 
(2024) established and compared four hybrid models by coupling a 
physical model with machine learning model to estimate G↓. Un
certainties in the atmospheric parameters greatly limit the performance 
of the hybrid model.

Based on our previous models and works, the main goal of this study 
is to propose a new, simplified model that requires only global irradi
ance measurements, which are available at many radiometric stations 
worldwide, and the solar position. The fundamental idea underlying this 
model is to consider a single input variable, which is the product of the 
clearness index (kt) and the cosine of solar zenith angle (cos ϴz). The 
model was developed using data from one station in Payerne (PAY), 
Switzerland during 2020 and 2021 and validated using data from seven 
stations: Barrows (BAR) in Alaska (USA); Gobabeb (GOB) in the Arabian 

desert; Izaña (IZA) in the Canary Islands, Spain; Budapest (BUD) in 
Hungry, Tateno (TAT) in Japan for the year 2022; and Toravere (TOR) in 
Estonia for the year 2019, each with a complete year of data; and data 
from Payerne during 2022. The structure of this article is organized as 
follows. Section 2 describes the experimental sites and instrumentation, 
Section 3 details the methodology, Section 4 presents the results and 
discussions, and Section 5 provides the conclusions.

2. Experimental sites and instrumentation

The measurements used in this study were collected at seven radio
metric stations (Fig. 1) belonging to Baseline Surface Radiation Network 
(BSRN, http://www.bsrn.awi.de) (Driemel et al., 2018; Ohmura et al., 
1998). The selection of sites has been delimited to these sites, consid
ering that not all variables are measured in the majority of sites of BSRN 
and in order to validate the empirical models and calculate their own 
coefficients, it is necessary to provide two full years. Thus, the sites are 
shown in Table 1.

The aim of the BSRN is to provide high quality measurements of 
longwave and shortwave radiation fluxes, employing a high sampling 
rate of 1 Hz, and a short retrieval interval of 1 min (Ohmura et al., 1998). 
The BSRN states accuracy requirements of 5 Wm− 2 for shortwave radi
ation and 20 Wm− 2 for longwave radiation (Ohmura et al., 1998). The 
specifications for each station included in this study are provided in 
Table 1. Climate specifications are determined according to the Köppen 
classification (Köppen and Geiger, 1936). The study sites are distributed 
worldwide to cover a wide range of locations and climates: dry arid low 
latitude (Bwd; GOB), temperate Mediterranean climate (Csb; IZA), 
humid continental mild summer (Dfb; BUD, PAY and TOR) and polar 
tundra (ET; BAR) and temperate no dry season, hot summer (Cfa; TAT).

Thus, the differences among the sites become evident when consid
ering various factors that influence net radiation. All sites, except TAT, 
are rural, each exhibiting different climatic conditions, with BAR and 
GOB representing extreme environments. PAY, BUD and TOR experi
ence cold climates with warm summers, while IZA and TOT have 
temperate climates, with IZA characterised by warm summers and TAT 
experiences hot summers. Regarding surface type, three sites are pre
dominantly grass-covered (BUD, TAT and TOR), BAR is characterised by 
tundra, GOB by desert, IZA by rocky terrain, and PAY by cultivated land. 
Latitude is another important factor, from 23,5◦N at GOB to 70◦N at 
BAR, and altitude varies significantly, from 8 m at BAR and 2373 m at 
IZA.

Fig. 1. Location of the Baseline Surface Radiation Network (BSRN) sites: 
Barrow (BAR), Budapest (BUD), Gobabeb (GOB), Izaña (IZA), Pauerne (PAY), 
Tateno (TAT), Toravere (TOR). Scale: 1:30.000.000. Information obtained from 
Geographic Institute, Ministry of Public Works, Spain Government (http 
s://www.ign.es/web/catalogo-cartoteca/resources/html/031459.)
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Each station is equipped with two pyranometers to measure down
welling (G↓) and upwelling (reflected, G↑) shortwave radiation, as well 
as two pyrgeometers to measure downwelling (L↓) and upwelling 
(emitted by the surface; L↑) longwave radiation.

To maximize the representativeness and significance of this study, an 
in-depth data quality control was performed for each site, applying the 
three tests suggested by Lozano et al. (2023) for the photosynthetic 
active radiation range of solar radiation to the shortwave radiation 
range. The first test aims to exclude errors due to the cosine response of 
the instruments; therefore, only data with a solar zenith angle (θz) below 
80◦ have been considered. The second test involves the clearness index 
(kt), defined as the ratio between the solar global radiation (G↓) and the 
extraterrestrial global irradiance (Gext). This test limits kt values be
tween 0 and 1. The third test prevents anomalies, outliers, and extreme 
values by limiting the maximum and minimum value of the solar radi
ation. Thus, values exceeding those expected under clear or overcast 
skies are eliminated. Finally, to avoid anomalous data resulting from 
equipment malfunctioning (e.g. voltage issues) and outliers in longwave 
radiation data, a visual inspection was performed.

3. Methodology

In this work, instantaneous data recorded under all sky conditions for 
solar elevations greater than 10◦ were used to avoid cosine effects. Only 
daytime measurements, defined as the time period between sunrise and 
sunset, were considered. Rn is the sum of different net terms: the dif
ference between downward (↓) and upward (↑) components in both the 
shortwave and longwave ranges (G and L, respectively). Therefore, the 
corresponding equation for Rn is: 

Rn = Gn + Ln = (G↓ − G↑) + (L↓ − L↑) = G↓(1 − α) + (L↓ − L↑) (1) 

The variables included in eq. (1) are:
Gn: Net shortwave radiation.
Ln: Net longwave radiation.
G↓: Downwelling shortwave radiation.
G↑: Reflected shortwave radiation.

L↓: Downwelling longwave radiation.
L↑: Upwelling longwave radiation.
α: Surface albedo.
Table 2 shows information about the variables that will be used.
It is widely known that the primary driver of net daytime radiation is 

its shortwave component, a concept highlighted in following section 4.1. 
In fact, the correlation observed between Rn and G↓ for the selected sites 
is very high, with determination coefficients ranging from 0,94 at TAT to 
0,97 at PAY, with the exception of BAR. This reinforces the conclusion 
that, in general, Ln shows negligible variation compared to G↓. On the 
other hand, previous research (Foyo-Moreno et al. (1999, 2007, 2017)
has consistently demonstrated a linear relationship between the 
maximum values of solar radiation, occurring under clear-sky conditions 
and θz in different spectral ranges, including ultraviolet and visible 
wavelengths. To refine peak radiation estimates to account for varying 
sky conditions, the clearness index (kt) has been introduced to this 
relationship as an additional factor. This parameter is defined as the 
ratio between global solar radiation and extraterrestrial global solar 
radiation, both on a horizontal surface. The corresponding expression is: 

kt =
G↓

Gext
(2) 

Table 1 
Information related to the seven observation sites.

Station Years and 
Datasets

Location Surface 
type

Topography 
type

Rural/ 
urban

Köppen-Geiger classification 
(*)

Instruments

Barrow (BAR) 
(71,32 N, 
156,01 W, 
8 m a.s.l.)

2021 / 
2022 

USA, Alaska Tumdra Flat Rural ET (Polar, tundra, low 
evapotranspiration, no 

summer)

Pyranometers: Eppley (two PSP). 
Pyrgeometers: Eppley (two PIR).

Budapest-Lorinc 
(BUD) 

(47,43 N, 
19,18E, 

139,1 m a.s.l.)

2021 / 
2022 

Hungary, 
Busapest

Grass Flat Rural Dfb (Cold, no dry season, warm 
summer)

Pyranometers: Kipp & Zonen (CMP11 and 
CMP6). Pyrgeometers: Kipp & Zonen 

(CGR4 and CGR3)

Gobabeb (GOB) 
(23,56S, 15,04E, 

407 m a.s.l.)

2021 / 
2022 

Namibia, 
Namib Desert

Desert 
gravel

Flat Rural BWh (Arid, desert, hot) Pyranometers: Kipp & Zonen (two CMP22). 
Pyrgeometers: Kipp & Zonen (two CGR4).

Izaña (IZA) 
(28,31 N,16,50 

W, 
2372,9 m a.s.l.)

2021 / 
2022 

Spain, Tenerife Rock Mountain top Rural Csb (Temperate, dry summer, 
warm summer)

Pyranometers: EKO (MS-802F and MR-60). 
Pyrgeometer: Kipp and Zonen (CGR4).

Payerne (PAY) 
(46,81 N, 6,94E, 

491 m a.s.l.)

2020/ 
2021 / 
2022 

Switzerland Cultivated Flat Rural Dfb (Cold, no dry season, warm 
summer)

Pyranometers: Kipp & Zonen (CMP22 and 
CMP21). 

Pyrgeometers: Kipp & Zonen (CG4) and 
Eppley (PIR).

Tateno (TAT) 
36,06 

N,140,16E, 
25 m a s.l.)

2021 / 
2022 

Japan Grass Flat Urban Cfa (Temperate, no dry season, 
hot summer)

Pyranometer, Kipp & Zonen, (two CMP21). 
Pyrgeometer, Kipp & Zonen, (two CGR4)

Torovere (TOR) 
(58,26 N, 

26,46E, 70 m a.s. 
l.)

2018 / 
2019 

Estonia Grass Flat Rural Dfb (Cold, no dry season, warm 
summer)

Pyranometers: Kipp & Zonen (SMP11 and 
CMP21), Pyrgeometers: Kipp & Zonen 

(CGR4) and Eppley (PIR).

(*) Köppen, W & Geiger, R., 1936. Das geographische System der Klimate, Belen.

Table 2 
Information about variables used in the study.

Abbreviation Variable Unit Source

G↓ Downwelling shortwave radiation Wm− 2 In situ
G↑ Upwelling shortwave radiation Wm− 2 In situ
L↓ Downwelling longwave radiation Wm− 2 In situ
L↑ Upwelling longwave radiation Wm− 2 In situ
α Albedo Calculated
Eo Inverse relative Earth–Sun distance Calculated

Gext Extraterrestrial global irradiance Wm− 2 Calculated
kt Clearness index Calculated
Ta Air temperature ◦C or K In situ

cos ϴz Cosine solar zenith angle Calculated
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where Gext is extraterrestrial global solar irradiance. Gext is calculated 
from the expression: 

Gext = Isc Eo cos θz (3) 

where Isc is the solar constant (1361,1 Wm− 2, Gueymard, 2018), Eo is the 
inverse relative Earth–Sun distance and θz is the solar zenith angle. The 
expression of cos θz is: 

cosθz = sin δsin∅+ cos δcos∅cosω (4) 

Thus, Fig. 2 shows the relationship between Rn and this combined 
metric (the product of cos θz and kt) at the PAY station over the course of 
two years (2020 and 2021). The following relationship has been found 
with a determination coefficient (R2) of 0,981 at PAY: 

Rn = ( − 16,7±0, 2)+ (716±1)kt cos θz +(241±1)(kt cos θz)
2 (5) 

Considering the analysis presented in section 4.1, the choice of PAY 
to generate the model was motivated by its intermediate conditions 
compared to the other study sites.

Considering the dependence of Rn on G↓ using an empirical linear 
regression model expressed as Rn = A G↓ + B, where A and B are 
regression constants, this relationship can be reformulated as: 

Rn = X (1 − α)G↓ +Y = X Gn +Y (6) 

where X and Y are the regression constants. This negates the assumption 
that surface albedo can be considered constant. By combining eq. (1)
and eq. (6), Ln can be expressed as a linear function of Gn as follows: 

Ln = (X − 1)Gn +Y (7) 

Defining d Ln/dGn as λ (the longwave exchange coefficient), eq. (7)
can be expressed as follows: 

λ = dLn/dGn
= (X − 1) = (Ln − Y)

/

Gn (8) 

with G↓ = 0, Ln = L0 such that Y = L0 in eq. (7). Adding Gn to both sides 
of eq. (7) results in: 

Rn = (1+ λ)Gn + L0 (9) 

λ can be considered as an index of surface thermal response. Thus, λ =
0 would imply that an increase in Gn is entirely allocated to evapo
transpiration, resulting in no change in surface temperature and no 
alteration in Ln with an increase in Gn. The longwave exchange coeffi
cient is observed to be negative for all sites, with values of − 0,10 at BAR 
and − 0,21 at TOR. For PAY and TAT, the value is − 0,15, while IZA has a 

value of − 0,18, and GOB and BUD have values of − 0,19 and − 0,20 
respectively. These results are consistent with those found by Iziomon 
et al. (2000), who reported an average value of − 0,20 for three sites at 
different altitudes in the southern Upper Rhine valley. The negative 
value of λ implies that Gn increases more rapidly than does the energy 
flux allocated to evapotranspiration at the surface. As surface temper
ature rises more quickly, Ln becomes more negative (Iziomon et al., 
2000). The different values obtained at the seven sites show the different 
capacity to the excess of sensible heat flux that is made available at the 
surface in this way subsequently gets transformed into convection and 
change in storage (Iziomon et al., 2000). Thus, BAR presents a low 
surface thermal response compared to the other sites.

To separately compare the variables used in this work, including the 
product of ktcosθz as a new proposed variable, an additional Spearman 
correlation analysis was conducted for each site. Table 3 presents the 
Spearman coefficient values. For four sites, ktcosθz displays the highest 
coefficient, followed by G↓ and cosθz, while for the remain sites, the 
order is G↓, ktcosθz and cosθz. Thus, the Spearman correlation analysis 
between Rn and the all variables used in this work reveals a high cor
relation overall, with three primary variables ranked as ktcosθz, G↓ and 
cosθz, with values exceeding 0,90 for the first two. Also, Peng et al. 
(2021) demonstrated that Rn is primarily influenced by downward 
shortwave radiation (G↓). They used data collected from 66 globally 
distributed moored buoy sites across five networks/projects. G↓ was 
found to be the most important variable, followed by the clearness 
index.

4. Results and discussion

4.1. Global characterization

4.1.1. General context
Table 4 provides a characterization of the study variables, including 

Rn and its components (G↓, G↑, L↓ and L↑), α, and kt, for all stations. This 
basic descriptive statistic includes parameters such as the arithmetic 
mean (Ave), standard deviation (SD), first and third quartile (Q1 and Q3, 
respectively), median (Md), and 10th and 90th percentiles (P10 and 
P90, respectively).

Based on sky conditions evaluated using the kt index, it is observed 
that TAT exhibits the lowest mean values, recording 0,23 ± 0,05 fol
lowed by BAR and TOR with values 0,48 ± 0,18 and 0,49 ± 0,24, 
respectively. The relatively high standard deviation value for these two 
last sites suggest high variability. The highest mean

value are registered at IZA (0,78 0,10) and and GOB (0,72 ± 0,09). 
Notably, these two sites present low variability concerning this index. 
This result indicates, on average, a greater presence of clear sky condi
tions at IZA and GOB, while TAT, BAR and TOR experience a greater 
presence of clouds and/or aerosols, TOR showing the greatest range of 
values between the extreme values compared to the other stations. TAT 
and IZA exhibit contrasting patterns with respect to sky conditions as 
indicated by the kt index. Although both sites have a temperate climate, 
TAT does not experience a dry season, which favors the formation of the 
convective clouds. Conversely, the albedo behaves oppositely. The 
highest values are observed at TAT (0,50 ± 0,20), BAR (0,48 ± 0,33) 
and also GOB (0,37 ± 0,05), while the lowest is at IZA (0,16 ± 0,02). 
Additionally, BAR exhibits a higher range of albedo variation compared 
to the other sites, ranging between 0,16 (P10) and 0,89 (P90), followed 
by TAT with values of 0,20 and 0,75 for P10 and P90, respectively. It is 
also noteworthy that GOB has high albedo values, with P10 of 0,33 and 
P90 of 0,41, although the range of values is smaller than at BAR and 
TAT. The high albedo values for at BAR are attributed to the tundra 
surface type and the cold climate, which includes snow cover for half of 
the year, in contrast to IZA, which exhibits a lower range of albedos.

For all sites, L↑ is always higher than L↓, resulting in a negative Ln. On 
the other hand, the net balance is positive during the day, indicating that 
the net shortwave radiation is higher than the net longwave radiation. 

Fig. 2. Relationship between net radiation Rn and the product of cos θz per kt in 
Payerne for 2020 and 2021.
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The component of Rn with the highest values is G↓, except at BAR and 
TOR, where the highest values are observed for L↑ and at TAT the found 
value for L↑ is close to G↓. Conversely, the variable with the lowest values 
for all sites is G↑, as expected. According to the kt values, BAR and TOR 
present the lowest values of solar radiation, with a mean value for G↓ of 
(270 ± 150) Wm− 2 and (320 ± 230) Wm− 2, respectively. In contrast, 
GOB and IZA present the highest values (670 ± 270) Wm− 2 and (650 ±
260) Wm− 2 respectively, clear skies predominate in both locations and, 
additionally, IZA's higher altitude results in higher levels of received 
radiation. This indicates 148 % more solar radiation at GOB compared to 
BAR. Consequently, these results are extrapolated to G↑. Regarding the 
Rn values, IZA also presents the maximum values with a mean of (350 ±
180) Wm− 2, while BAR records the lowest values, averaging (90 ± 100) 
Wm− 2. This represents 289 % higher Rn at IZA compared to BAR. In 
terms of P90, the highest value is found at IZA (593 Wm− 2), and the 
lowest one is recorded at BAR (251 Wm− 2). Considering the median 
values, the most substantial difference among stations occurs between 

IZA and BAR for the variable Rn (476 %) and between GOB and TOR for 
G↑ (279 %).

Regarding L↓, the highest mean value is also found at TAT (360 ± 60) 
Wm− 2 and GOB (350 ± 30) Wm− 2, and the lowest at IZA (250 ± 30) 
Wm− 2. Thus, the difference between sites is minimal, with TAT having 
44 % higher L↓ compared to IZA. This difference is associated with the 
greater cloud coverage at TAT, as indicated by the kt index, given the 
role of clouds in longwave radiation emission. This difference increases 
for L↑, with a 59 % difference between GOB and BAR, having a mean 
value of (510 ± 60) Wm− 2 and (320 ± 40) Wm− 2, respectively, asso
ciated with higher surface temperatures at BAR, which has an arid 
climate, in contrast to BAR, which has a polar climate and a surface 
covered by snow for extended periods. Among all variables, Rn presents 
the highest variability across all sites, generally followed by G↓, except at 
BAR, where high variability is observed not for G↓ but for G↑. In contrast 
L↓ and L↑ present the lowest variability for all sites, indicating that the 
main contribution to Rn, including its high variability, is from shortwave 

Table 3 
Spearman's correlation for every site between Rn and the all variables used in this work.

Station G↓ α kt cosθz Eo Ta kt cosθz

BAR 0,936** 0,054** 0,673** 0,827** -0,339** 0,265** 0,937**
BUD 0,981** -0,524** 0,762** 0,907** -0,339** 0,392** 0,979**
GOB 0,978** -0,896** 0,790** 0,941** 0,435** 0,157** 0,974**
IZA 0,981** 0,367** 0,754** 0,946** -0,101** 0,164** 0,975**
PAY 0,985** -0,539** 0,779** 0,882** -0,434** 0,985**
TAT 0,950** -0,255** 0,641** 0,685** -0,344** 0,476** 0,957**
TOR 0,938** -0,043** 0,748** 0,800** -0,482** 0,940**

** The correlation is significant at the 0.01 level.

Table 4 
Statistical parameters for kt, α, Rn, G↓, L↓, G↑, L↑. Includes arithmetic mean (Ave), standard deviation (SD), first quartile (Q1), third quartile (Q3), median (Md), and the 
10th (P10) and 90th (P90) percentiles.

Ave ±SD Q1 Md Q3 P10 P90 Ave ±SD Q1 Md Q3 P10 P90

BAR 
(2022)

IZA 
(2022)

Rn(Wm− 2) 90±100 15 62 146 − 15 251 Rn(Wm− 2) 350±180 201 357 493 93 593
G↓(Wm− 2) 270±150 149 240 379 97 502 G↓(Wm− 2) 650±260 435 663 863 280 1008
L↓(Wm− 2) 280±50 267 294 317 221 328 L↓(Wm− 2) 250±30 232 250 274 218 299
G↑(Wm− 2) 140±130 35 86 229 19 369 G↑(Wm− 2) 110±50 69 108 142 42 169
L↑(Wm− 2) 320±40 305 331 345 270 361 L↑(Wm− 2) 450±60 404 446 493 371 536

α 0,48±0,33 0,18 0,24 0,84 0,16 0,89 α 0.16±0,02 0,15 0,16 0,17 0,14 0,17
kt 0,48±0,18 0,33 0,48 0,63 0,23 0,72 kt 0.78±0,10 0,76 0,81 0,84 0,68 0,86

BUD 
(2022)

PAY 
(2022)

Rn(Wm− 2) 250±160 119 235 371 54 480 Rn(Wm− 2) 270±180 115 233 403 58 538
G↓(Wm− 2) 490±240 285 458 677 182 843 G↓(Wm− 2) 470±250 246 430 675 157 848
L↓(Wm− 2) 330±50 284 331 367 248 392 L↓(Wm− 2) 320±40 293 329 357 255 376
G↑(Wm− 2) 100±50 66 98 136 43 168 G↑(Wm− 2) 100±50 57 96 138 36 163
L↑(Wm− 2) 460±80 397 451 515 352 566 L↑(Wm− 2) 430±60 385 424 464 352 498

α 0,22±0,03 0,19 0,21 0,24 0,18 0,26 α 0,22±0,03 0,20 0,22 0,24 0,18 0,26
kt 0,65±0,14 0,57 0,69 0,75 0,42 0,79 kt 0,61±0,19 0,48 0,69 0,76 0,31 0,79

GOB 
(2022)

TAT 
(2022)

Rn(Wm− 2) 270±150 149 270 386 49 479 Rn(Wm− 2) 230±170 100 183 321 54 501
G↓(Wm− 2) 670±270 456 688 882 270 1033 G↓(Wm− 2) 460±240 214 352 563 136 799
L↓(Wm− 2) 350±30 322 346 367 303 391 L↓(Wm− 2) 360±60 309 367 415 266 434
G↑(Wm− 2) 240±90 176 254 308 110 348 G↑(Wm− 2) 90±50 49 87 135 27 166
L↑(Wm− 2) 510±60 467 510 552 423 581 L↑(Wm− 2) 450±60 407 451 486 371 517

α 0,37±0.05 0,35 0,37 0,39 0,33 0,41 α 0,50±0,2 0,31 0,53 0,70 0,20 0,75
kt 0,72±0.09 0,70 0,75 0,78 0,61 0,80 kt 0,23±0,05 0,20 0,22 0,26 0,18 0,29

TOR 
(2019)

Rn(Wm− 2) 160±140 42 111 250 11 376
G↓(Wm− 2) 320±230 128 251 481 71 670
L↓(Wm− 2) 310±50 284 317 349 252 370
G↑(Wm− 2) 80±50 32 67 121 17 161
L↑(Wm− 2) 400±50 354 398 435 325 463

α 0,27±0.14 0,21 0,23 0,25 0,19 0,31
kt 0,49±0.24 0,26 0,50 0,72 0,16 0,78
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radiation.
Considering variability as the ratio between the difference P90 and 

P10 and the median value, BAR exhibits the highest variability for Rn 
(429 %), while IZA shows the lowest (140 %). For G↓, TOR presents the 
highest variability (239 %), while PAY demonstrates the lowest (111 %). 
It is noteworthy to highlight the substantial variability found at BAR for 
G↑ (407 %) in line with the high variability detected in α. Conversely, 
GOB and IZA show the lowest variability for G↑ (94 % and 99 %, 
respectively). For L↓, the highest variability is found at TAT (46 %) and 
BUD (43 %) and the lowest at GOB (27 %). Finally, for L↑, also the 
highest is found at BUD (47 %) and the lowest at BAR (27 %). This initial 
analysis of the data for each site reveals significant differences among 
them, reflecting their different climatic characteristics. BAR and GOB 
particularly stand out in terms of extreme characteristics. Regardless, 
the primary factor controlling Rn values for all sites during the day is the 
downwelling shortwave radiation, which forms the main basis of the 
model proposed in this work.

4.1.2. Seasonal characterization
To assess potential seasonal dependence, Fig. 3 presents boxplots for 

all stations across the four seasons: winter (January, February and 
March), spring (April, May and June), summer (July, August and 
September) and autumn (October, November and December). A clear 
seasonal pattern emerges for all stations and variables (Rn and its 
components), with maximum values occurring in the warmer seasons 
and minimum values in the colder seasons. Notably, Rn and shortwave 
radiation generally peak in spring or summer and reach its lowest values 

in autumn or winter. Interestingly, the pattern is reversed at GOB. 
Seasonal variations in shortwave radiation result from the longer path of 
the radiation with greater solar zenith angles. Meanwhile, upwelling 
longwave radiation exhibits higher values during the hottest seasons 
when the surface temperatures are elevated. In the case of downwelling 
longwave radiation, clouds play a fundamental and complex role.

The seasonal variation in median Rn values ranges between 83 Wm− 2 

at IZA and 212 Wm− 2 at PAY, with 165 Wm− 2 at BAR, where the value is 
negative in winter (− 40 Wm− 2). The highest absolute differences occur 
at BAR and TOR, and the smallest at IZA, with seasonal variability of 
413 %, 408 % and 26 % for BAR, TOR and IZA respectively. For G↓, the 
differences vary between 125 Wm− 2 and 316 Wm− 2 (TAT and PAY, 
respectively), with higher variability at TOR (302 %) and lower at IZA 
(27 %). Similarly, for G↑, differences range between 10 Wm− 2 at TAT 
and 189 Wm− 2 at BAR, with a higher variability in BAR and TOR (511 % 
and 400 %, respectively), and lower in GOB, also at IZA and TAT (33 %, 
35 % and 12 %, respectively). Consequently, seasonal differences are 
consistently more pronounced at BAR and TOR and less pronounced at 
TAT and GOB for both Rn and shortwave radiation. Similar to shortwave 
radiation, a seasonal pattern emerges for longwave radiation, with 
higher values in summer (rather than spring) and lower in winter (rather 
than autumn), except at GOB, which shows the inverse pattern, similar 
to shortwave radiation. The seasonal differences in median values for L↓ 
vary from 50 Wm− 2 at GOB and 52 Wm− 2 at TOR to 150 Wm− 2 at BAR 
and TAT, presenting BAR relative high variability in winter (56 %), with 
values lower than those at other sites, which is associated with low air 
temperatures. Similarly, TAT shows higher variability in winter and 

Fig. 3. Boxplot for all seasons across each station: a) clearness index; b) albedo; c) downwelling shortwave radiation; d) reflected shortwave radiation; e) down
welling longwave radiation; f) upwelling longwave radiation; g) net radiation. The whiskers represent the P10 and P90 percentiles, the box edges correspond to the 
P25 and P75 percentiles, the midline represents the median and the dot indicates the mean value.
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autumn (42 %), a pattern linked to the increased cloud cover during 
these seasons, while for L↑, they range from 61 Wm− 2 at GOB to 137 
Wm− 2 at BUD. Seasonal variability for L↓ ranges from 16 % at GOB and 
91 % at BAR, and for L↑. between 13 % at GOB and 39 % at BAR. This 
component (L↓) exhibits the lowest variability, followed by L↑. Thus, the 
highest seasonal differences are found in shortwave radiation rather 
than longwave radiation, as mentioned in the global analysis. Addi
tionally, for Rn and shortwave radiation, the differences between sites 
are more pronounced in colder seasons, with high variability values 
reaching 2593 % for Rn between GOB and BAR and 1500 % for G↑ be
tween GOB and TOR in autumn. In winter the differences are 125 % and 
122 % for L↓ and L↑, respectively. Minor differences are observed in 
hotter seasons for all variables.

4.1.3. Sky conditions characterization
The presence of clouds significantly influences net radiation because 

clouds affect both shortwave and longwave net radiation (Alados et al., 
2003). Therefore, when direct cloud measurements are unavailable, an 
alternative method to account for cloud effects is to use the clearness 
index as an indicator of the overall atmospheric transmittance, which 
relates to the presence of clouds and also aerosols. This index also de
pends on the Sun's position (Foyo-Moreno et al., 2023), exhibiting 
certain seasonal variations. In this work, we have classified the data into 
categories of kt according to the following thresholds: kt1 (0,0 < kt ≤

0,35), kt2 (0,35 < kt ≤ 0,7) and kt3 (0,70 < kt 〈1,0). The most frequent 
category for IZA, GOB and PAY is kt3 (associated with clear skies), with 
relative frequencies of 88 %, 74 % and 47 % respectively. At BAR, the kt2 
category is the most frequent (59 %) and the kt1 is the least frequent. At 
TAT, also the kt2 category is also most frequent (43 %) and the less 
frequent is kt3 (26 %). At BUD, both kt2 and kt3 categories present similar 
values (48 % and 47 %, respectively), while at TOR, the values are also 
similar, with kt1 being the most frequent category (38 %).

Fig. 4 is analogous to Fig. 3, now distinguishing between the three 
considered categories of kt. Overall, a clear pattern emerges across all 
sites. The highest values for Rn and its components consistently appear 
in the kt3 category (clear skies), while the lowest values typically occur 
in the kt1 category (cloudy skies). An exception to this is L↓, which shows 
an inverse relationship, with higher values in the kt1 category and lower 
values in the kt3 category, as expected due to clouds emitting longwave 
radiation. However, there are some exceptions. For instance, at BUD, L↓ 
shows an inverse pattern compared to the other sites, although the dif
ferences are minimal, with a variability of only 4 % between categories. 
Similarly, at BAR, for L↑ display low variability (5 %). Additionally, the 
lowest value for Rn and G↑ are found in category kt2 rather than kt1, at 
BAR and GOB, respectively.

For every site, the differences between kt categories range from 200 
% at BAR to close to 600 % at TOR (IZA also presents a high variability 
with a value of 577 %) and the difference between sites is more high for 
intermediate conditions (377 %) and low for cloudy conditions (144 %). 
The median value for Rn in the kt3 category is 117 Wm− 2 at BAR and 411 
Wm− 2 at TAT. For this category, the differences between sites are 251 %. 
For G↓, median values range between 482 Wm− 2 and 773 Wm− 2 at BAR 
and GOB, respectively, in the kt3 category, indicating that, for clear 
skies, the differences observed between GOB and BAR are primarily 
explained by latitude, i.e. the high-latitude site (BAR) exhibits the lowest 
values, while the low-latitude site (GOB) shows the highest values. The 
values range between 105 Wm− 2 and 294 Wm− 2 at TOR and GOB, 
respectively, in the kt1 category. The differences between sites are 60 % 
in the kt3 category and 180 % for the kt1 category, indicating higher 
variability under cloudy skies. In general, for every site there is a higher 
variability for cloudy skies and lower for clear skies. The differences 
between kt categories for each site are generally similar, with values 
close to 300 %. However, the greatest difference is observed at IZA (541 
%), which is attributed to the high altitude of this mountain site, while 

Fig. 4. Boxplot for the three categories of the clearness index kt (kt1: 0,0 < kt ≤ 0,35, kt2: 0,35 < kt ≤ 0,70, and kt3: 0,70 < kt < 1,0) at each station: a) albedo; b) 
downwelling shortwave radiation; c) reflected shortwave radiation; d) downwelling longwave radiation; e) upwelling longwave radiation; f) net radiation. The 
whiskers represent the P10 and P90 percentiles, the box edges correspond to the P25 and P75 percentiles, the midline represents the median and the dot indicates the 
mean value.
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the smallest difference is observed at GOB (163 %), where the high 
values of G↓ are primarily due to the low altitude. Regarding the G↑ 
variable, as for G↓, at every site the variability is low under clear skies, 
except at BAR with a higher variability for intermediate conditions. 
There is significant variability distinguishing between these kt cate
gories at BAR (842 %) and low variability at GOB (123 %). The high 
variability at BAR is associated with the high range of values of albedo 
against the low range at GOB. As expected, the differences between sites 
are higher for the kt1 category (471 %) compared to the kt3 category 
(140 %). Considering the longwave radiation, the pattern followed for 
L↓, as previously mentioned, is inverse, with high values in the kt1 
category (except BUD) and low values in the kt3 category (except BUD, 
although there is a minor difference and PAY), an expected result 
because the clouds emit longwave radiation. The values range from 298 
Wm− 2 at IZA to 393 Wm− 2 at TAT. For all categories, the highest values 
are observed at TAT and the lowest at IZA. That is, under the same 
cloudy conditions, the values of L↓ are primarily influenced by air 
temperature, with lower values observed at higher-altitude sites. The 
variability between categories is minor at BUD (4 %) and major at BAR 
(25 %). Now, for L↑ the pattern is opposite to that L↓, with values highest 
in the kt3 category, and lowest in the kt1 category, except at BAR with 
values very similar between categories, this result is due to higher sur
face temperature for clear skies, presenting BAR the lowest variability 
between categories (5 %), in contrast to BUD (25 %), which is attributed 
to the low surface temperature of the high-latitude site. These differ
ences are primarily due to air temperature, with lower values at 
mountain sites. The median values range from 332 Wm− 2 at BAR to 526 
Wm− 2 at GOB, in fact, for all categories the lowest values are found at 
BAR and the highest are found at GOB, due to the values of surface 
temperature, this result indicates that under the same sky condition, the 
main factor affecting to L↑ is surface temperature. The differences be
tween sites for L↓ is higher for clear skies (40 %) compared to cloudy 
skies (32 %) or skies with intermediate conditions (25 %). Similarly, for 
L↑, the differences between sites are also higher under clear skies (58 %) 
compared to cloudy skies (40 %).

Under clear skies, both shortwave radiation and L↑ exhibit higher 
values, which are associated with the solar position and elevated surface 
temperatures, respectively. The maximum values observed under clear 
skies and the minimum values under cloudy conditions for shortwave 
radiation highlights the significant attenuation caused by clouds. 
However, the highest values for L↓ are found under cloudy conditions, 
which can be explained by the high emissivity of clouds (depending on 
the clouds properties). In general, clouds increase downwelling long
wave radiation, as they are one of the main factors affecting L↓.

For Rn and its shortwave components, the percentage differences 
distinguishing these three categories are generally high across all sites, 
with BAR exhibiting particularly high variability in G↑ (848 %), and 
GOB showing low variability for the same variable (123 %). However, 
for the longwave components, these differences are minimal. In general, 
the differences between sites are greater under clear skies for Rn and 
longwave radiation, whereas for shortwave radiation, the differences 
are more pronounced under cloudy skies.

As verified in the seasonal study described in section 4.1.b, the 
greatest differences across all the stations are consistently observed for 
Rn and its shortwave radiation components, while smaller differences 
are found in its longwave components. This indicates that the primary 
contribution to Rn is from shortwave radiation. The effects of clouds on 
shortwave and longwave radiation are opposite, attenuating shortwave 
radiation while increasing downwelling longwave radiation. However, 
in terms of net balance, shortwave radiation is the primary driver. It is 
worthy to highlight two sites with very different extreme characteristics: 
BAR and GOB. GOB exhibits the highest values for all components in 
every kt category, while BAR presents the lowest values for all categories 
for L↑, as expected due to its low temperatures, with minimum values of 
Rn under clear and intermediate conditions. Conversely, the minimum 
values for L↓ have been found at IZA, which has a low relative frequency 

of cloudy skies.
An analysis of relative frequency for each season at the six stations 

reveals that for GOB and IZA the most frequent category is always kt3, 
with values consistently above 70 %, and exceeding 83 % at IZA. 
However, at TOR, the most frequent category for all seasons is kt1, with a 
value of 72 % in autumn. At BUD, the percentage of kt2 and kt3 is very 
similar for all seasons except autumn, where the frequency of kt1 in
creases. At BAR, the most frequent category is kt2, except in summer 
where kt1 predominates with 50 %, and in autumn where kt1 and kt2 
categories are nearly equal in frequency (49 %). Finally, at TAT, the 
most frequent category is also kt2 with values close to 40 % and with 
higher predominance in winter (61 %).

Summarising, in the seasonal analysis, the major differences between 
sites are found during the colder seasons for Rn and all its components, 
while minor differences are observed in the warmer seasons. In the 
analysis by kt categories, the major differences are found under cloudy 
conditions for shortwave radiation, whereas for longwave radiation, the 
differences (although much smaller) are also found under cloudy con
ditions for L↓ but for L↑ the differences are higher under clear conditions, 
by the difference between the surface temperatures for the sites with 
extreme climate (GOB and BAR). This highlights the different roles of 
clouds depending on the range of wavelength. Furthermore, when 
comparing differences for a given site, it is interesting to note that the 
differences for the shortwave components are always higher for sky 
conditions than for seasons. However, for the longwave components, 
although much smaller, the differences are greater for seasons than for kt 
categories, except at BAR for L↑. Additionally, it is noteworthy that at 
TOR, the differences for Rn and its shortwave components exhibit 
similar values for both seasons and sky conditions. The differences be
tween sites for all variables are always lower for categories of kt than 
distinguishing between seasons. Thus, the variability of Rn, which is 
mainly determined by the variability in shortwave radiation, is captured 
by the type of sky using the kt index, showing minor variability between 
sites, and then a model using the index kt could be more universal. This 
result also corroborates the basis of the model proposed in this work and 
presented in the next section.

4.2. Model validation

Model validation employed Mean Bias Error (MBE), Root Mean 
Squared Error (RMSE) and R2, with definitions and results presented in 
Table 5 and Table 6, respectively. The later Table includes validation 
results for all stations. In general, the model presents good results across 
all the sites (except at BAR), with R2 exceeding 0,942. The poorer per
formance of the model at BAR will be evaluated later. The model tends 
to overestimate Rn across the sites, as indicated by MBE values ranging 
from 3 Wm− 2 to 132 Wm− 2 and RMSE values from 25 Wm− 2 to 141 
Wm− 2 at PAY and GOB, respectively. Excluding BAR and GOB, MBE 
values range from 3 Wm− 2 to 44 Wm− 2 and RMSE values from 36 Wm− 2 

to 62 Wm− 2.

Table 5 
Summary of statistical metrics used in the study.

Metrics
Equation

Determination coefficient, 
R2

( ∑n
i=1

[
(xi − x)

(
yi − y

) ] )2

∑n
i=1(xi − x)2

∑n
i=1

(
yi − y

)2

Mean bias error, 
MBE

1
n
∑n

i=1

(
yi − xi

)

Root mean squared error, 
RMSE

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1

(
yi − xi

)2
√

xi experimental values 
yi estimated values 
x mean of experimental values 
y mean of estimated values 
n number of values

I. Foyo-Moreno et al.                                                                                                                                                                                                                           Atmospheric Research 315 (2025) 107886 

8 



Jiang et al. (2015) developed a multivariate linear regression model 
to estimate Rn using shortwave radiation, achieving a global model 
RMSE of 40 Wm− 2 and a conditional mode ranging between 18 Wm− 2 

and 54 Wm− 2. Their findings suggest that incorporating net shortwave 
radiation, which accounts for surface albedo effects, yields better results 
compared to using incident shortwave radiation in nearly all eight 
evaluated models. However, the complexity of Jiang et al.'s model is 
notable, as it integrates solar shortwave radiation with conventional 
meteorological observations (air temperature and relative humidity) 
and satellite-derived measurements (NDVI and albedo). Similarly, Fer
reira et al. (2020) utilized satellite data and found MBE values ranging 
from 39 Wm− 2 to 85 Wm− 2 and for RMSE from 45 Wm− 2 to 89 Wm− 2. 
Their work highlights the potential of combining remote sensing data 
with more accessible in-situ weather data to provide spatiotemporal 
estimates of Rn, particularly in regions where direct net radiation data 
are unavailable.

An evaluation of the model's performance, distinguished by seasons, 
is presented in Table 7. Notably, in this seasonal analysis, the model 
performs well at BAR during the summer, with a R2 of 0,922. Consistent 
with the earlier global analysis, the largest errors are found at GOB. With 

the exception of BAR, R2 values are consistently over 0,90 across most 
sites, although TOR shows lower R2 values of 0,730 in winter and 0,845 
in autumn. In general, the model tends to overestimate Rn in every 
season, except for summer at BAR and summer at TAT and autumn at 
TAT and TOR. Regarding MBE and RMSE, for all sites, the smallest errors 
are observed in the colder seasons at most sites, with the exception at 
PAY. Specifically, MBE values range from − 1 Wm− 2 at TOR to 13 Wm− 2 

at BUD in autumn, and RMSE values in autumn range from 22 Wm− 2 at 
TOR to 34 Wm− 2 at IZA (excluding BAR and GOB). Conversely, the 
worst results occur during the warmer seasons, except at PAY, TAT and 
TOR, where winter shows better performance. MBE values range from 
− 1 at TAT to 69 Wm− 2 at IZA, and RMSE values range from 23 Wm− 2 at 
PAY to78 Wm− 2 at IZA.

The evaluation was also conducted based on kt categories (Table 8). 
The R2 values are consistently above 0,770 for all sites and categories, 
except at BAR for the kt2 and kt3 categories. Overall, the model tends to 
overestimate net radiation across all categories, except for the kt1 
category at BAR, PAY, TAT and TOR. Notably, the kt1 category consis
tently yields the best results, while kt3 generally produces poorer out
comes. However, exceptions include PAY, which exhibits better results 
in the kt3 category and poorer results in the kt2 category. In general, the 
best model performance is observed for skies with low transparency, i.e., 
corresponding to the presence of clouds and/or aerosols.

For the kt1 category, MBE values range from − 27 Wm− 2 to 89 Wm− 2 

at BAR and GOB, respectively. Excluding these sites, MBE values range 
from − 15 Wm− 2 to 22 Wm− 2 at PAY and IZA, respectively, while RMSE 
from 23 Wm− 2 to 45 Wm− 2 at TOR and IZA, respectively. Similarly, for 
the kt3 category, MBE ranges from 7 Wm− 2 to 147 Wm-2, whilst RMSE 
between 21 Wm− 2 and 153 Wm− 2 at PAY and GOB, respectively. These 
findings suggest that the model performs less satisfactorily under very 
clear conditions, possibly due to its simplicity, which relies solely on 
predictors related to shortwave radiation and does not account for 
longwave radiation. In contrast, the model demonstrates better perfor
mance under cloudy conditions and/or high aerosol loads. Thus, the 
model performs satisfactorily across all the scenarios, leveraging 
instantaneous measurements rather than daily values for enhanced 
precision. The simplicity of the model is its primary advantage, as it 
requires only one measured variable (G↓), which is typically available at 
most radiometric stations.

Table 6 
Statistical results for the model using the dataset from each site. Includes mean 
bias error (MBE), root mean squared error (RMSE), coefficient of determination 
(R2).

Station Rn 

Wm− 2
MBE Wm− 2 RMSE 

Wm− 2
R2

BAR 93 51 118 0,249
BUD 251 31 48 0,950
GOB 267 132 141 0,942
IZA 348 44 62 0,943
PAY 369 4 25 0,981
TAT 230 3 36 0,954
TOR 156 16 36 0,953

Table 7 
Statistical results for the model, categorized by seasons (Winter (Wi), Spring 
(Sp), Summer (Su), and Autumn (Au)), using the dataset from each site. Includes 
mean bias error (MBE), root mean squared error (RMSE), coefficient of deter
mination (R2).

Station Rn 

Wm− 2
MBE Wm− 2 RMSE 

Wm− 2
R2

BAR Wi − 34 98 141 0,018
Sp 60 119 156 0,241
Su 149 − 32 43 0,922
Au 7 39 57 0,0001

BUD Wi 182 20 32 0,950
Sp 120 25 37 0,975
Su 268 49 68 0,918
Au 153 13 23 0,968

GOB Wi 316 118 128 0,944
Sp 202 135 142 0,942
Su 210 139 147 0,944
Au 334 137 148 0,949

IZA Wi 353 7 41 0,944
Sp 384 69 78 0,971
Su 349 66 78 0,956
Au 301 23 34 0,971

PAY Wi 182 10 29 0,946
Sp 323 1 23 0,985
Su 322 3 25 0,982
Au 134 1 25 0,926

TAT Wi 113 34 49 0.845
Sp 271 − 1 31 0.972
Su 276 − 20 32 0.980
Au 168 23 40 0.913

TOR Wi 66 25 52 0,730
Sp 213 20 36 0,964
Su 169 13 28 0,970
Au 51 − 1 22 0,845

Table 8 
Statistical results for the model, categorized by kt intervals (kt1: 0,0 < kt ≤ 0,35, 
kt2: 0,35 < kt  ≤ 0,70, and kt3: 0,70 < kt < 1,0), using the dataset from each site. 
Includes mean bias error (MBE), root mean squared error (RMSE), coefficient of 
determination (R2).

Station Rn 

Wm− 2
MBE Wm− 2 RMSE 

Wm− 2
R2

BAR kt1 85 − 27 38 0,807
kt2 81 77 129 0,166
kt3 164 111 170 0,543

BUD kt1 70 13 33 0,762
kt2 156 24 39 0,912
kt3 367 40 57 0,908

GOB kt1 48 89 116 0,283
kt2 93 91 101 0,829
kt3 327 147 153 0,915

IZA kt1 67 22 45 0,776
kt2 154 26 58 0,866
kt3 376 46 64 0,939

PAY kt1 96 − 15 29 0,852
kt2 166 7 28 0,950
kt3 401 7 21 0,984

TAT kt1 116 − 19 31 0,870
kt2 207 10 38 0,932
kt3 408 17 39 0,973

TOR kt1 53 − 3 23 0,786
kt2 134 25 40 0,911
kt3 313 34 44 0,960
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4.3. Comparison with other models

This section aims to compare the proposed model with other 
empirical models. Our evaluation is based on the previous work of Jiang 
et al. (2015), which analyzed models for estimating Rn using incident 
and/or net shortwave radiation, along with other meteorological vari
ables, for global application. They found that all empirical net radiation 
fitting models that included shortwave radiation could be used for net 
radiation estimation in most situations because their fitting accuracy 
was acceptable despite some differences from each other. The compar
ison distinguishes between models that incorporate albedo as an input 
and those that do not, with a particular focus on models using reflected 
shortwave radiation as an input variable. The models not using albedo 
data are as follows:

Model 1 (Mod 1): Rn = a1G↓ + b1.
Model 2 (Mod 2): Rn = a2G↓ + b2kt + c2
Model 3 (Mod 3): Rn = a3G↓ + b3Ta,◦C + c3E0 + d3
The models including albedo are:
Model 4 (Mod 4): Rn = a4G↓(1 − α)+ b5

Model 5 (Mod 5): Rn = a5G↓(1 − α)+ b5 σT4
a,K + c6

Model 6 (Mod 6): Rn = a6

[
G↓(1 − α) + D1T6

a,K − σT4
a,K

]
+ b6kt + c6

where Ta,◦C is the mean air temperature (◦C), Eo is the inverse relative 
Earth–Sun distance, Ta,K is the absolute air temperature, σ is the Ste
fan–Boltzmann constant (5,67 × 10− 8 W K− 4 m− 2), D1 is an empirical 
constant (5,31 × 10− 13 W K− 6 m− 2 (Swinbank, 1963)) and ai, bi, ci and di 
are the coefficients specified in Table 9. While these coefficients differ 
from those originally used by the authors, they have been derived by 
Jiang et al. (2015). The decision to use these coefficients is based on 
Jiang et al.'s extensive use of a large and diverse database spanning 
several years. This broader dataset enhances the universality and 
applicability of the empirical models.

Table 10 shows the results of this comparison. Among the models of 
the first type (Mod 1, Mod 2, Mod 3), excluding our model, the simplest 
model (Mod 1), which only utilizes G↓ as an input variable, exhibits the 
lowest MBE. Excluding BAR due to its very low R2 value, and notably 
GOB, which presents large errors with an MBE of 149 Wm− 2 and a RMSE 
of 155 Wm− 2, the MBE values for Mod 1 range from 18 Wm− 2 to 57 
Wm− 2, with corresponding RMSE values ranging from 35 Wm− 2 to 68 
Wm− 2 at PAY and IZA, respectively. However, including our proposed 
model results improved performance, with reduced MBE and RMSE 
values. Specifically, compared to Mod 1, our model reduces errors at all 
sites. At BUD, MBE decreases from 46 Wm− 2 to 31 Wm− 2, and RMSE 
decreases from 57 Wm− 2 to 48 Wm− 2. At GOB, MBE decreases from 149 
Wm− 2 to 132 Wm− 2, and RMSE decreases from 155 Wm− 2 to 141 Wm− 2. 
At IZA, MBE decreases from 57 Wm− 2 to 44 Wm− 2, and RMSE decreases 
from 68 Wm− 2 to 62 Wm− 2. At PAY, MBE decreases from 18 Wm− 2 to 4 
Wm− 2, and RMSE decreases from 35 Wm− 2 to 25 Wm− 2. At TAT, MBE 
decreases from 18 Wm− 2 to 3 Wm− 2 and RMSE from 47 Wm− 2 to 36 
Wm− 2. Finally, at TOR, MBE decreases from 30 Wm− 2 to 16 Wm− 2, and 
RMSE decreases from 46 Wm− 2 to 36 Wm− 2. Thus, the model proposed 
performs well at every site except at BAR. It is worth noting that Mod 2, 
which includes G↓ and kt as input variables, performs poorly. This could 
be attributed to the fact that the variable kt already incorporates G↓.

The analysis of the second type of models also reveals that simplicity 
yields the best results, with the exception of IZA, where Mod 5, which 

includes air temperature as an additional variable, performs best. 
Notably, models incorporating albedo present high R2 values at BAR, 
unlike the first type of models, and also demonstrate significantly 
reduced errors at GOB. Specifically, MBE values range from − 4 Wm− 2 at 
BAR to 63 Wm− 2 at IZA, with RMSE values from 29 Wm− 2 at PAY to 73 
Wm− 2 at IZA. Despite minimal differences among models including the 
albedo, it is evident that adding more variables does not necessarily 
improve the results. Generally, except at BAR and GOB, the proposed 
model significantly outperforms all other analyzed models, demon
strating substantially reduced MBE values even compared to the best- 
performing model (Mod 4), which includes G↓ and G↑. Our model 
consistently shows the lowest MBE and RMSE values when compared 
with Mod 4, the simplest model including albedo. Specifically, at BUD, 
the MBE value for our model is 31 Wm− 2, compared to 35 Wm− 2 for Mod 
4; at IZA, it is 44 Wm− 2 versus 63 Wm− 2; at PAY, it is 4 Wm− 2 versus 8 
Wm− 2, at TAT 3 Wm− 2 versus 5 Wm− 2 and at TOR, 6 Wm− 2 versus 30 
Wm− 2.

In summary, the comparison between the two types of models 
highlights an improvement when incorporating reflected shortwave 
radiation, though this variable is not commonly measured at most 
radiometric stations. Besides, the inclusion of additional variables does 
not necessarily enhance the model's performance. Notably, for the first 
type of models, all models perform poorly at both BAR and GOB, with 
MBE and RMSE values exceeding 100 Wm− 2. This analysis highlights 
two specific sites with distinct characteristics. The first one is BAR, 
where no model performs well, except those including G↑. This site ex
hibits highly variable albedo values ranging from 0,16 to 0,89, indi
cating the need of a model that incorporates reflected solar radiation. 
The second site is GOB, characterised by high values of albedo exceeding 
0,30. GOB underscores the importance of including albedo information 
in the model. Therefore, the optimal model for both sites should include 
either G↑ or albedo as input variable to improve accuracy. An additional 
evaluation was conducted at BAR, stratifying the analysis based on data 
for low and high albedo (Table 11). For data with low albedo (≤0,55), 
all models perform very well, with R2 exceeding 0,90 for each model. 
Specifically, for the first type of models, MBE values range from − 30 
Wm− 2 (for the model here proposed) to 27 Wm− 2 (for Mod 3), and RMSE 
values range from 40 Wm− 2 (for Mod 1) to 46 Wm− 2 (for our model). 
Similarly, for the second type of models, MBE values range between − 18 
Wm− 2 and -22 Wm− 2, with RMSE values varying between 31 and 39 
Wm− 2. These results indicate that the models are effective with data 
characterised by low albedo values. This poor performance is attributed 
to the challenges in estimating net radiation over surface characterised 
by sparse or no vegetation and high albedo. In such cases, the physically- 
based longwave radiation parameterization models or non-linear 
models should be considered (Jiang et al., 2015).

Among the models, Mod 6 presents the best results, though it differs 
only slightly from Mod 3, which includes only two input variables. The 
latter model requires knowledge of both G↓ and albedo, adding to its 
complexity.

An additional analysis was conducted by calculating adjusted co
efficients for our model specific to each site using one year of mea
surements (2021 for all sites except TOR). For TOR, the evaluation was 
performed using data for the year 2018. Table 12 shows the coefficients 
for each site, while Table 13 presents the results of this evaluation. As 
anticipated, the model shows improved performance with site-specific 
coefficients. However, substantial improvements are primarily 
observed at the two sites where models previously performed poorly: 
BAR and GOB. For example, for the models that do not include the al
bedo, at BAR for the model with G↓ and kt the RMSE is reduced from 161 
Wm− 2 to 100 Wm− 2 and, at GOB, the same model shows a reduction 
from 273 Wm− 2 to 37 Wm− 2. Despite these improvements, the proposed 
model, when using site-specific coefficients, shows RMSE values com
parable to other models, ranging from 25 Wm− 2 at PAY to 38 Wm− 2 at 
TOR. This demonstrates the robust performance of the proposed model 
across different sites.

Table 9 
Fitting parameters for each model.

Model ai bi ci di

Mod 1 0,654 - 20,317
Mod 2 0,867 - 81,483 6310
Mod 3 0,721 0,777 - 301,420 296,842
Mod 4 0,781 – 13,596
Mod 5 0,724 0,211 - 77,253
Mod 6 0,863 - 90,491 87,219
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5. Conclusions

This study introduces a new, straightforward model for estimating 
instantaneous daytime net radiation (Rn) under all sky conditions. The 
model is based on the premise that the diurnal variability of Rn mirrors 
the sinusoidal pattern of global solar radiation (G↓), being the primary 

contributor to the net energy balance. Building on previous works that 
developed models for different spectral ranges using only two parame
ters, i.e. the solar position (through cos θz) and the clearness index (kt), 
both on a horizontal surface, this work proposes a novel model that le
verages the relationship between Rn and the product kt cos θz. The model 
reveals a quadratic relationship with a R2 of 0,981.

Six empirical models have been evaluated, categorized into two 
types based on whether they included reflected global irradiance (G↑) in 
addition to downward global irradiance (G↓) as an input variable. These 
models were validated at seven sites with diverse climate characteristics: 
Barrows in Alaska (USA), Gobabeb in the Namib desert, Izaña in the 
Canary Islands in Spain, Budapest in Hungary, Payerne in Switzerland, 
Tateno in Japan and Toravere in Estonia. Overall, incorporating G↑ 
improved model performance, particularly at sites with high albedo 
values. Despite this, the simplest model, i.e. using only G↓ as the input 
variable, consistently yielded the best results. The addition of more 
variables did not significantly enhance performance. In fact, a high 
correlation has been observed for all sites (except for BAR, which ex
hibits high values of surface albedo) between Rn and G↓, with correlation 
coefficients exceeding 0,90. Furthermore, the Spearman correlation 
analysis revealed that the most effective variables for estimating Rn, in 
order of importance, are the product kt cosθz and G↓.

In general, the proposed model demonstrates strong performance, 
with R2 values exceeding 0,94, though it tends to overestimate in most 
cases. The Mean Bias Error (MBE) ranges from 3 Wm− 2 to 44 Wm− 2, and 

Table 10 
Statistical results for the models (Mod1, Mod2, Mod3, Mod4, Mod5 and Mod6) using the dataset from each site. Includes mean bias error (MBE), root mean squared 
error (RMSE), coefficient of determination (R2).

Station Model Rn 

Wm− 2
MBE Wm− 2 RMSE 

Wm− 2
R2 Station Model Rn 

Wm− 2
MBE Wm− 2 RMSE 

Wm− 2
R2

BAR Mod 1 93 66 127 0,234 IZA Mod 1 348 57 68 0,960
Mod 2 112 161 0,263 Mod 2 158 168 0,963
Mod 3 107 154 0,274 Mod 3 128 135 0,947
Mod 4 − 4 32 0,937 Mod 4 63 73 0,963
Mod 5 − 10 33 0,944 Mod 5 50 66 0,954
Mod 6 − 17 30 0,959 Mod 6 62 73 0,961

BUD Mod 1 251 46 57 0,956 PAY Mod 1 326 18 35 0,974
Mod 2 123 135 0,958 Mod 2 94 102 0,987
Mod 3 112 121 0,944 Mod 3 – – –
Mod 4 35 44 0,970 Mod 4 8 29 0,982
Mod 5 36 49 0,959 Mod 5 – – –
Mod 6 39 50 0,962 Mod 6 – – –

GOB Mod 1 267 149 155 0,949 TAT Mod 1 230 18 47 0,937
Mod 2 259 273 0,950 Mod 2 92 105 0,953
Mod 3 229 236 0,940 Mod 3 77 86 0,951
Mod 4 53 59 0,973 Mod 4 5 34 0,965
Mod 5 60 69 0,961 Mod 5 12 37 0,971
Mod 6 60 67 0,965 Mod 6 17 29 0,983

TOR Mod 1 156 30 46 0,943
Mod 2 85 98 0,959
Mod 3 – – –
Mod 4 16 30 0,967
Mod 5 – – –
Mod 6 – – –

Table 11 
Statistical results for the proposed model (Model) and for the existing models 
(Mod1, Mod2, Mod3, Mod4, Mod5 and Mod6) using the dataset from BAR, 
categorized by surface albedo. Includes mean bias error (MBE), root mean 
squared error (RMSE), coefficient of determination (R2).

α Model Rn 

Wm− 2
MBE Wm− 2 RMSE 

Wm− 2
R2

≤ 0.55 Model 157 − 30 46 0,900
Mod 1 − 18 40 0,901
Mod 2 27 45 0,919
Mod 3 25 44 0,901
Mod 4 − 18 33 0,944
Mod 5 − 22 39 0,938
Mod 6 − 19 31 0,964

> 0.55 Model 14 152 168 0,467
Mod 1 167 185 0,441
Mod 2 215 236 0,481
Mod 3 204 221 0,485
Mod 4 13 31 0,587
Mod 5 6 26 0,669
Mod 6 − 15 26 0,719

Table 12 
Fitting parameters for the proposed model for each site. (Model: Ai + Bi kt cosθz 
+ Ci (kt cosθz)2).

Station Ai Bi Ci

BAR 45,7 ± 0,6 − 83 ± 6 1466 ± 11
BUD − 49,4 ± 0,3 799 ± 2 109 ± 2
GOB − 70,6 ± 0,3 560 ± 2 246 ± 2
IZA − 102,0 ± 0,4 950 ± 2 − 54 ± 2
PAY − 16,7 ± 0,2 716 ± 1 241 ± 1
TAT 4,0 ± 0,3 541 ± 2 449 ± 2
TOR − 19,9 ± 0,2 590 ± 2 390 ± 3

Table 13 
Statistical results for the proposed model (Model) with site-specific coefficients. 
Includes mean bias error (MBE), root mean squared error (RMSE), coefficient of 
determination (R2).

Station Rn 

Wm− 2
MBE Wm− 2 RMSE 

Wm− 2
R2

BAR 93 18 100 0,267
BUD 251 7 36 0,952
GOB 267 4 37 0,943
IZA 348 9 42 0,948
PAY 369 4 25 0,981
TAT 230 3 26 0,954
TOR 156 7 38 0, 947
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the Root Mean Squared Error (RMSE) varies from 25 Wm− 2 to 62 Wm− 2. 
Notably, restricting albedo values below 0,55 yields good results at 
Barrows, comparable to those at other stations. Further analysis by 
season and sky conditions (based on kt categories) reveals improved 
performance during cold seasons and under cloudy skies. This may be 
attributed to the reduced absolute magnitude of incident solar radiation 
under cloudy conditions. The statistical performance of the proposed 
model is comparable to that of more complex models using additional 
input variables. Additionally, an evaluation of models using site-specific 
coefficients showed improved results, with RMSE values being similar 
for both types of models (those including or excluding albedo as an input 
variable).

The primary advantage of the proposed model is its reliance on a 
single input variable: global solar radiation (G↓). This variable is 
commonly available at most radiometric stations. However, the model's 
performance at sites with a wide range of albedo values may be limited, 
similar to other empirical models. In such cases, incorporating reflected 
global irradiance (G↑) alongside G↓ could improve accuracy. Unfortu
nately, G↑ is not measured at many radiometric stations, which poses a 
challenge.

Regarding the global applicability of the empirical model proposed 
in this study, its limitations are noted, particularly for aquatic surfaces. 
The sites selected for this study are terrestrial stations, and, unlike land 
surfaces, Rn is not routinely measured over aquatic surfaces. It is also 
important to emphasize that simple models based on the relationship 
between Rn and G↓ are inadequate for sites with high albedo. In such 
cases, physically-based longwave radiation parameterization models or 
nonlinear models should be considered. The selection of sites in this 
work was limited because not all variables included in Rn were available 
for a two-year period. Therefore, extending the database to include more 
sites with a broader range of altitudes, latitudes, and different surface 
types could enhance the global applicability of the model.
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