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Abstract 

Vitamin D (VD) is involved in a wide variety of physiological processes. The high prevalence of VD deficiency in the population requires stronger preven- 

tive measures. The aim was to characterize the dietary and lifestyle determinants of VD levels in blood and of VD deficiency to further develop predictive 

models of these two outcomes. A total of 63,759 participants from the UK Biobank study with available data on dietary intake of VD, assessed via 24-hour 

recalls, and with measurements of serum 25(OH)D levels were included. Linear and logistic regression models were applied to identify factors associated 

with VD levels and VD deficiency outcomes, and to evaluate the influence of covariates on the association between VD in serum and VD in the diet. 

Predictive models for both VD outcomes were constructed using classical regression models and machine learning methods based on penalized likelihood 

methods. Approximately 10% of the participants had VD deficiency (VD < 25 nmol/L), and 38.9% were at risk of VD inadequacy (VD 25–49 nmol/L). The 

dietary intake of VD was significantly lower in the VD deficient group. This latter group showed lower engagement in physical activity (22.1%) compared 

to the non-deficient group (13.4%; P < .001). Also, overweight and obesity (vs normal weight) were related to a greater likelihood of VD deficiency (OR = 1.18 

and 1.96, respectively). A similar odds of VD deficiency was observed for abdominal obesity (OR = 1.83). A weaker association was observed between dietary 

VD intake, based on participant reports, and VD levels. With regard to sunlight exposure, darker skin tones (OR dark vs fair skin = 3.11), season (OR winter vs 

autumn = 3.76) and less outdoor time activities (OR per 1 h increase = 0.96) were also related to VD deficiency. Predictive models for both classical regression 

and machine learning, showed good accuracy (AUC = 0.8–0.9 for VD deficiency). In conclusion, while a rich diet in VD boosts its levels, sun exposure plays 

a more significant role particularly in populations from the UK or Northern Europe. A predictive model including key determinants could effectively assess 

VD deficiency. 

© 2025 The Author(s). Published by Elsevier Inc. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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1. Introduction 

Vitamin D (VD), including cholecalciferol and ergocalciferol, is a

fat-soluble vitamin involved in a wide variety of physiological pro-

cesses and has multiple functions; it is the most important bone
Abbreviations: AI, adequate Intakes; AIC, Akaike Information Criterion; AUC,  

CIs, confidence intervals; EFSA, European Food Safety Authority; ENET, Elastic-Net;  

RMSE, root mean square error; R2, R squared; SE, standard error; UKB, UK Biob  

25(OH)D, 25-hydroxyvitamin D. 
∗ Corresponding author at: Angela Alcalá-Santiago, Department of Nutrition  

18071, Spain. Tel.: 958027450. 

E-mail address: angela.alcala@ugr.es (Á. Alcalá-Santiago) . 

https://doi.org/10.1016/j.jnutbio.2025.109919 

0955-2863/© 2025 The Author(s). Published by Elsevier Inc. This is an open access article u
 Area under the curve; BMI, body mass index; CVD, cardiovascular disease;

 LASSO, least absolute shrinkage and selection operator; ORs, Odds Ratios;

ank; UVB, ultraviolet B radiation; VD, Vitamin D; 24-HR, 24-hour recalls;

 and Food Science, Faculty of Pharmacy. University of Granada, Granada

mineralization factor because it regulates the levels of calcium and

phosphorus in the bone matrix [ 1 , 2 ]. Its regulatory impact extends

to multiple aspects, including not only calcium homeostasis but

also the endocrine system, the proliferation of skin keratinocytes,

and notably, the modulation of the immune system, related to T
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cells, monocytes and dendritic cells [ 3–5 ]. VD is also a crucial reg-

ulator of protein expression due to its ability to bind to various

genes, influencing mRNA synthesis [ 3–5 ]. 

The primary source of VD in humans is sunlight exposure, to-

gether with dietary VD. It is synthesized in the skin after exposure

to sunlight (ultraviolet B radiation, UVB). VD can also be obtained

from the diet, which becomes essential when sunlight exposure is

limited, as is the case during winter months at northern latitudes

or when exposure to UVB is restricted [ 6 ]. Dietary intake is com-

monly derived from natural sources (such as fish and eggs), forti-

fied food products (including dairies and cereals) or supplements

[ 2 ]. Indeed, VD supplementation and fortified foods have gained

significant importance in recent years, given the widespread de-

ficiency of VD observed in the general population. In fact, ob-

servational data indicate that approximately 40% of the European

population may experience VD deficiency or risk of inadequacy,

with 13% facing deficiency [ 7 ]. Overall, levels of less than 20-

30 ng/mL 25-hydroxycholecalciferol in the serum, also termed as

25-hydroxyvitamin D (25(OH)D), a metabolite of VD, are consid-

ered to indicate VD deficiency [ 8 , 9 ]. Recommended dietary intakes

of VD provided by the European Food Safety Authority (EFSA) in

terms of the Adequate Intakes (AI) refer to 15 μg/d for adults of

both sexes [ 10 ]. However, there is limited evidence to affirm that

sufficient intake levels of this vitamin exerts beneficial health ef-

fects beyond bone health [ 11 ], or whether this intake allows us to

overcome VD deficiency [ 8 ]. Despite the lack of conclusive data,

in recent years, numerous investigations have suggested a poten-

tial association between adequate VD levels and positive outcomes

in conditions such as cancer [ 12 ], cardiovascular disease (CVD)

[ 13 ], diabetes mellitus, and obesity [ 14 ], among other chronic dis-

eases. However, the evidence remains mixed, and further research

is needed to better understand the role of VD in these conditions.

Additionally, diminished VD levels in blood have been associated

with a heightened incidence of comorbidities in clinical contexts

[ 11 ]. Hence, inconsistent or insufficient VD intake comibined with

limited UVB exposure could lead to persistent VD deficiency, in-

creasing the risk of developing certain diseases or exacerbating

their severity, as previously highlighted. 

The most common method for assessing VD status in individ-

uals involves serum 25(OH)D levels. However, unnecessary blood

tests are neither beneficial nor cost-effective, and their financial

implications must be considered [ 15 ]. Implementing a screening

strategy to anticipate serum VD levels and identify individuals

at risk of VD deficiency could be highly valuable. Likewise, fore-

casting VD levels based on the subject’s characteristics could be

key to preventing unnecessary analytical determinations. Predic-

tive models allow classification and quantitative assessments based

on patterns identified in the data [ 2 ]. Classical statistical meth-

ods, such as stepwise regression, face several challenges in the se-

lection and estimation of covariate effects [ 16 ]. Machine learning

approaches for classification and prediction have become a new

paradigm in predictive modeling. These methods use training sets

to identify patterns and test sets to validate predictions [ 17 , 18 ].

Among these methods, penalized likelihood methods such as least

absolute shrinkage and selection operator (LASSO) and Elastic-Net

(ENET) are approaches that avoid problems related to the stabil-

ity of the estimated parameters compared to classical methods

[ 19 , 20 ]. 

Previous research has revealed associations between VD lev-

els and various sociodemographic and lifestyle factors, including

dietary VD intake, supplements use, sun exposure, age, adipos-

ity, physical activity, season, and others [ 21 , 22 ]. Even race and so-

cioeconomic status have emerged as potential determinants of VD

status in populations from the UK [ 23 ]. Additionally, some stud-

ies have developed predictive models for VD deficiency in adults,
with the majority of these studies focusing on populations from

the USA, Netherlands, Australia, and Spain [ 2 , 24–26 ]. 

The aim of this study was to characterize the dietary and

lifestyle factors associated with serum 25(OH)D levels, allowing us

to explore in depth the determinants related to VD deficiency, us-

ing a large population sample from the UK Biobank (UKB) study.

Based on this first assessment, we also aimed to apply predictive

modeling approaches to predict serum 25(OH)D levels and, there-

fore, VD status and VD deficiency. 

2. Methods 

2.1. Study design and population 

This study is based on data from the UKB cohort study. This ini-

tiative is designed to research both genetic and nongenetic factors

influencing diseases in middle-aged and aged individuals. Its pri-

mary objective involves a meticulous evaluation of various expo-

sures, accompanied by a thorough follow-up and characterization

of diverse health-related outcomes [ 27 ]. 

The study included nearly half a million participants aged 40

to 69 years who were recruited from the UK during their base-

line assessments, which were conducted between 2006 and 2010.

The assessment involved 22 centers across the UK to encompass a

diverse range of settings and of exposures. Various physical met-

rics, such as height, weight, and blood pressure, along with biolog-

ical samples including blood, urine, and saliva, were collected [ 28 ].

Furthermore, additional phenotyping assessments across all partic-

ipants or large subsets have been performed [ 27 ]. 

2.2. Data access and selection of participants 

The data received approval from the UKB under reference num-

ber 76564. Thus, the data used was authorized by the data owner

and adheres to ethical and legal standards. The information extrac-

tion was carried out between the months of January and July 2023.

The inclusion criteria for this study were as follows: (i) complete

blood VD level determinations and (ii) complete dietary informa-

tion obtained from 24-hour recalls (24-HR). A total of 63,759 par-

ticipants met the eligibility criteria for the study (Supplementary

Fig. 1). 

2.3. Assessment of VD status 

Biochemical assays were conducted on blood samples obtained

during the initial assessment. Briefly, serum samples were col-

lected in a silica clot accelerator tube and stored at −80 °C. These

samples were subsequently processed in a central laboratory using

an automated dispensing system. The serum 25(OH)D concentra-

tion was determined through a chemiluminescence immunoassay

(DiaSorin LIAISON XL, Italy), certified by the VD Standardization-

Certification Program of the Centers for Disease Control and Pre-

vention. To ensure analytical precision, quali-ty control samples

at various concentrations were analyzed, and the VD testing as-

say was validated through the RIQAS Immunoassay Specialty I

EQA program (Randox Laboratories), an external quality assurance

scheme [ 2 , 29 ]. 

2.4. Assessment of dietary VD 

A 24-HR dietary questionnaire was emailed to participants with

known work email addresses ( ∼320,0 0 0 participants). They were

administered four times between February 2011 and April 2012, in

order to capture seasonal dietary variations and provide an aver-

age measure of habitual consumption. In addition, an online ques-

tionnaire, validated by the Cancer Epidemiology Unit for the UKB,
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that included detailed questions on the intake of approximately

200 common foods and drinks over the past 24 h was adminis-

tered. Participants indicated food amounts or used standard serv-

ings. The questionnaire also included inquiries about meal timings

and locations [ 30 ]. 

2.5. Selection of covariates 

The covariates were selected based on their relevance to 25

(OH)D serum levels in the body. The risk of nutritional insuffi-

ciency, related to the probability of not reaching the adequate in-

take of essential nutrients, is defined as intakes below 15 µg for

VD. These data included age, sex, time spent outdoors in win-

ter and summer, VD intake from the diet (24-HR), and supple-

ment use. Additionally, covariates such as smoking, body mass in-

dex (BMI), waist circumference, physical activity, alcohol consump-

tion and the deprivation index [ 31 ], which are proxies for socioe-

conomic status, were considered. All covariates were self-reported

at baseline. The season was determined according to the month

of blood sampling and categorized as summer (June-August),

autumn (September-November), winter (December-February) or

spring (March-May). As for the assessment center, the north-to-

south location was set to one of three latitudes ( < 510 , 52-530 ,

and 54-550 ). Age was divided into three groups ( < 50, 50-60, > 60),

and BMI was determined at baseline using height and weight

measurements (calculated as body weight in kilograms divided by

height squared in meters) and categorized into three groups: nor-

mal weight ( < 25), overweight ( < 30), and obesity ( ≥30) [ 32 ]. To

ascertain the presence or absence of abdominal obesity, waist cir-

cumference was taken into account. For women, abdominal obe-

sity was categorized as > 88 cm, while for men, abdominal obesity

was considered when the values were > 102 cm [ 33 ]. In relation to

physical activity, we considered both METs (vigorous, moderate, or

walking activity, measured in minutes per week) and physical ac-

tivity levels derived from the International Physical Activity Ques-

tionnaire IPAQ [ 34 ]. Physical activity was thereby categorized into

three levels: low, moderate, and high. Alcohol consumption was as-

sessed based on consumption status and frequency. Consumption

status was classified into three levels: never, previous, and cur-

rent. The frequency of alcohol consumption was categorized into

five levels (daily, 3/4 per week, 1/2 per week, 1 to 3 per month,

special occasion and never). The skin type and ease of skin tanning

were considered to account for melanogenic differences and ethnic

skin types. In particular, skin type was categorized into five levels

(very fair, fair, light olive, dark olive, brown and black), while the

ease of skin tanning was categorized into four levels (very tanned,

moderately tanned, mildly tanned, and never tanned). 

2.6. Statistical analysis 

All analyses were performed using R v 4.3.0 [ 35 ]. For continu-

ous variables, descriptive statistics were based on medians along

with the 25th (p25) and 75th (p75) percentiles since all variables

followed a nonnormal distribution (Shapiro-Wilks test, P < .05). For

categorical variables, the relative frequencies and percentages were

calculated. The Chi-square test and the Kruskall-Wallis test (non-

parametric) were applied to evaluate differences between groups

within categorical and continuous variables, respectively. The ini-

tial significance level was set at 0.05; the p-value adjusted for pair-

wise comparisons (Type I error) by Bonferroni (0.05/n tests) was

set at 0.001. 

Linear and logistic regression models were fitted to examine

the associations of dietary and lifestyle variables with VD sta-

tus (continuous outcome variable) and with VD deficiency (binary

outcome variable, yes vs no), respectively. For analyses involving
serum 25(OH)D levels as a continuous outcome measure, we ap-

plied natural logarithmic transformation to account for its skewed

distribution in the linear regression model. All models were ad-

justed for age, sex, and center. Subsequently, models were indi-

vidually adjusted for obesity (overall and abdominal), skin type,

season, smoking status, physical activity, and other relevant covari-

ates. In these linear regression models, the results were conveyed

in terms of the beta coefficient and corresponding confidence in-

tervals (CIs), the standard error (SE), and the R squared (R2). With

respect to the logistic regression model, by which the association

between VD deficiency and the aforementioned covariates was ex-

amined, the results are presented as Odds Ratios (ORs), along with

the upper and lower CIs. 

To assess the association between serum 25(OH)D levels and

the dietary VD intake (adjusted for energy intake), we applied lin-

ear regression models in which log-transformed serum 25(OH)D

was considered as the outcome variable and dietary VD intake

was the main predictor variable. For the latter, we considered log2

transformed VD to represent a doubling of intake. The models

were adjusted for age, sex and center, and subsequently adjusted

for the other variables including physical activity, time spent out-

doors in winter and summer, BMI, waist circumference, skin type

and color, season of the year, and alcohol and tobacco consump-

tion. This comprehensive adjustment aimed to discern the multi-

faceted influence of these factors on the association between blood

25(OH)D levels and dietary intake. To account for multiple testing

issues, adjusted p-values obtained by Bonferroni correction were

deemed significant. In addition, the strength of the association be-

tween serum 25(OH)D and dietary VD was explored via Spearman

correlation analyses. 

We evaluated effect modification on these associations by vari-

ables such as sex, age, BMI and season, by introducing an inter-

action term defined as VD∗covariate in the model. Interaction was

deemed significant for P -values < .05 (Wald test). In addition, sub-

group analyses by these variables were carried out to evaluate po-

tential effect modification further. 

For the prediction models, we ran both classical and machine

learning approaches. Overall, the selected variables were ranked

according to variable importance. The prediction models were built

on a dataset with complete observations ( N = 48,913) and 21 vari-

ables, with 70% of the participants ( N = 34,239) used for the train-

ing set and the remaining 30% ( N = 14,457) for the test set. 

In the first case, we applied multiple linear and logistic regres-

sion to select the predictors in the model. The absence of collinear-

ity was verified in the models. Herewith, the model used to predict

either VD levels (continuous outcome) or VD deficiency (binary

outcome) was determined from a set of predictors (x1, x2, x3, …)

using the stepAIC function (both stepwise selection procedures) in

R. The performance of the models was evaluated via the Akaike In-

formation Criterion (AIC). For internal validation purposes, we ran-

domly divided the data into a training set (70% for creating a pre-

dictive model) and a test set (30% for evaluating the model). The

best classification (VD deficiency, yes vs no) model was defined as

the model that had the lowest classification error rate or highest

area under the curve (AUC) and accuracy in the test data (“pROC”

package in R). To forecast VD levels as the outcome, the model was

defined in terms of the root mean square error (RMSE) by calcu-

lating the average difference between the observed and predicted

values and the R2, with a lower RMSE and higher R2 indicating a

better model. 

In the second case, several feature selection methods based

on penalized likelihood methods (Ridge Regression, least absolute

shrinkage and selection operator-LASSO or ENET) were applied us-

ing the “caret” and “glmnet” R packages. These methods adjust for

collinearity through a penalization approach [ 17–20 ]. To select the
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model parameters (alpha and lambda), the data were again ran-

domly split into a test (30% of the observations) and training set

(70% of the observations) in a 100 times repeated 10-fold cross-

validation. The estimated performance was obtained from the av-

erage of all repetitions. The accuracy and kappa metrics were used

to choose the parameters and best predictive model for VD defi-

ciency (“MLeval” package in R), whereas the RMSE and R2 were

considered for VD levels. 

The ENET method showed the highest performance met-

rics for predicting VD deficiency (accuracy = 0.91) and VD levels

in blood (RMSE = 18.5). The estimated tuning parameters were:

alpha = 0.889 and lambda = 0.00753 for VD deficiency, and alpha = 1

and lambda = 0.01 for VD levels. 

2.7. Ethics 

The study received ethical approval from the Granada Research

Ethics Committee (CEIm/CEI Provincial de Granada) to utilize the

UKB data (reference: 6/21). Additionally, approval for ethical con-

siderations concerning the UKB was obtained from the National In-

formation Governance Board for Health and Social Care and the

North West Multicentre Research Ethics Committee (11/NW/0382).

This analysis was conducted in accordance with UKB application

76564. 

3. Results 

3.1. Characteristics of the study population 

Among the 63,759 participants considered in this analysis

( Table 1 ), 6,215 (9.75%) exhibited VD deficiency, and 24,806 (38.9%)

were at risk of VD inadequacy (Table S1). The mean 25(OH)D

concentration in the entire cohort was 50.7 nmol/L; the median

25(OH)D concentration in participants with VD deficiency was

20.2 nmol/L, while in participants without VD deficiency, it was

53.5 nmol/L. Notably, the dietary intake of VD was significantly

lower in the VD-deficient group. Around 80% of the participant

were at risk of nutritional inadequacy for VD ( < 10 μg/d). Partic-

ipants with VD deficiency were younger (median age = 54.0 years)

than nondeficient participants (median age = 58.0 years) ( p < .001).

Women seemed to be more prone to VD deficiency than men were

( P = .009). Indeed, women had lower 25(OH)D serum concentra-

tions (Table S2). There were also significant differences according

to socioeconomic status with regard to VD deficiency, with VD de-

ficient participants having a greater deprivation index than their

counterparts. 

Concerning physical activity, the deficient group exhibited lower

engagement in physical activity (22.1%) than did the nondeficient

group (13.4%) ( p < .001). The level of moderate physical activity was

significantly lower in the VD-deficient group (280 min/wk) than in

the nondeficient group (480 min/wk) ( p < .001). Similarly, walking

activity was lower in the deficient group (528 min/wk) than in the

nondeficient group (693 min/wk) ( p < .001). 

With regard to other lifestyle factors, the smoking prevalence

was greater in the deficient group (12.3%) than in the the nonde-

ficient group (7.99%) ( P < .001). Alcohol consumption patterns also

differed, with a lower proportion of current drinkers in the VD-

deficient group (86.9%) than in the nondeficient group (93.3%)

( P < .001). VD deficiency was also associated with a greater preva-

lence of obesity (32.5%) and abdominal obesity (39.6%), while the

nondeficient counterpart exhibited lower rates of both obesity

measures (obesity: 21.7%, abdominal obesity: 27.7%) ( P < .001). Ad-

ditionally, the median concentration of 25(OH)D differed accord-

ing to overall obesity status (Table S3), and abdominal obesity sub-

groups (Table S4). 
Focusing on sun exposure and its impact on VD levels, individ-

uals with VD deficiency reported spending less time outdoors both

in winter and in summer ( P < .001). The distribution of skin types

varied significantly between the two groups ( P < .001). The nonde-

ficient group tended to have more fair skin (67.6%) than the defi-

cient group (56.5%). VD supplementation practices were also more

common in the deficient group than in the non-deficient group

( P < .001). By season at which blood was drawn, it was observed

that VD deficiency was more prevalent in winter than in summer

( P < .001). In addition, VD levels were shown to vary by season (Ta-

ble S5). Moreover, VD deficiency was to be more frequent in cen-

ters of northern latitudes. 

3.2. Dietary and lifestyle variables associated with VD deficiency and 

VD status 

The dietary and lifestyle variables associated with VD deficiency

and VD status are shown in Table 2 . Significant associations (at p

value level < 0.001) between VD deficiency/status and various vari-

ables were detected via multivariate models adjusted for age, sex

and center. These estimates were close to those obtained in uni-

variate analyses ( Table 1 ). Dietary intake of VD was positively re-

lated to blood levels of VD ( β per 1 µg VD/20 0 0 kcal = 0.0 04) but

inversely related to VD deficiency (OR = 0.94). An increase of one

unit in BMI was associated with a 6% greater likelihood of VD defi-

ciency. Similarly, each additional centimeter in waist circumference

was associated with a 2.7% increase in the odds of VD deficiency.

Likewise, with respect to normal weight, overweight increased the

odds by 18%, while obesity did so by 96%. Abdominal obesity in

nonobese subjects also increased the risk of VD deficiency (OR per

1 unit increase = 1.83. An increase of 1 unit in body mass index

(BMI) was linked to a decrease of 0.017nmol/L in VD levels. Also,

per 1-unit increase in waist circumference VD levels decreased on

average by 0.007nmol/L. 

Regarding physical activity, moderate and high levels (vs low

levels) had protective effects against VD deficiency, reducing the

odds by 35% and 59%, respectively. 

Individuals with darker skin (vs. very fair skin) had greater

odds of having VD deficiency (black skin: OR = 3.12), and those who

never tanned (vs. very tanned) also had an increased risk of VD

deficiency (OR = 1.5). Additionally, the duration of outdoor activities

in both winter and summer was inversely associated with vitamin

D deficiency (OR per 1-h increase in outdoor activities = 0.96 and

0.93, respectively). Each additional hour spent outdoors in win-

ter was associated with an increase of 0.010 nmol/L in the serum

25(OH)D levels. Concerning seasons, in summer, there was a sig-

nificant decrease of 37.7% in the odds of this deficiency (OR: 0.62)

compared with autumn; in contrast, in winter, there was a 3.8 fold

increase in the odds of VD deficiency. 

Furthermore, VD deficiency was determined by various lifestyle

factors. There was an 11.2% decrease in the odds of VD deficiency

among former smokers compared to nonsmokers and a 44.5% in-

crease in the odds of VD deficiency among current smokers. Over-

all, former smokers had on average 0.019 lower levels of serum

25(OH)D levels than nonsmokers did; in current smokers, the lev-

els decreased by 0.08 units. Regarding alcohol consumption, former

drinkers had a 39.4% lower odds of VD deficiency than nondrinkers

did (increased VD levels: β= 0.12); moreover, current drinkers had

a 62% reduction of this odds (increased VD levels: β= 0.21). In ad-

dition, drinking only on special occasions was associated with an

increased likelihood of VD deficiency compared to daily alcohol

consumption (OR: 1.86). Importantly, those who had never con-

sumed alcohol showed 2.3 times higher odds of having VD defi-

ciency (increased VD levels: β= 0.17). 
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Table 1 
Characteristics of the study population ( n = 63,759), overall and by VD status deficiency. 

Overall VD deficiency (nmol/L) 

N = 63,759∗ No; N = 57,544 Yes; N = 6,215 

Median (p25,p75) 

N (%) 

N Median (p25,p75) 

N (%) 

Median (p25,p75) 

N (%) 

OR (95% CI) 

Serum 25(OH)D (nmol/L) 50.7 (36.1;65.5) 63,759 53.5 (40.6;67.3) 20.2 (16.9;22.8) NA 

VD µg/2,0 0 0 kcal 1.64 (0.81;3.09) 63,759 1.67 (0.83;3.15) 1.36 (0.64;2.53) 0.94 (0.93;0.95) 

VD µg in tertiles 63,759 
T1: (0.3,0.8) 21,267 (33.4%) 18,721 (32.5%) 2,546 (41.0%) Ref. 
T2: (1.3,2.0) 21,328 (33.5%) 19,298 (33.5%) 2,030 (32.7%) 0.77 (0.73;0.82) 

T3: (3.2,9.1) 21,163 (33.2%) 19,525 (33.9%) 1,639 (26.4%) 0.62 (0.58;0.66) 

VD supplementation 26,023 
No 25,598 (40.1%) 24,292 (42.2%) 1,306 (21.0%) Ref. 
Yes 425 (0.67%) 414 (0.72%) 11 (0.18%) 0.50 (0.26;0.87) 
Age (years) 57.0 (49.0;63.0) 63,759 58.0 (50.0;63.0) 54.0 (47.0;61.0) 0.97 (0.96;0.97) 

Sex: 63,759 

Men 29,036 (45.5%) 26,303 (45.7%) 2,733 (44.0%) Ref. 
Women 34,723 (54.5%) 31241 (54.3%) 3,482 (56.0%) 1.07 (1.02;1.13) 

Centre 63,759 

≤ 510 32,092 (50.3%) 28,894 (50.2%) 3,198 (51.5%) Ref. 

52–530 27,921 (43.8%) 25,123 (43.7%) 2,798 (45.0%) 1.01 (0.95;1.06) 

54–550 3,746 (5.88%) 3,527 (6.13%) 219 (3.52%) 0.56 (0.49;0.64) 

Multiple deprivation index 12.7 (7.58;21.6) 62,231 12.3 (7.46;20.9) 16.8 (9.65;27.1) 0.548 (0.545; 0.550)∗
Smoking status 63,579 
Never 35,947 (56.4%) 32,376 (56.3%) 3,571 (57.5%) Ref. 

Previous 22,270 (34.9%) 20,416 (35.5%) 1,854 (29.8%) 0.82 (0.78;0.87) 
Current 5,362 (8.41%) 4,599 (7.99%) 763 (12.3%) 1.50 (1.38;1.64) 

Alcohol status 63,691 
Never 2,397 (3.76%) 1,899 (3.30%) 498 (8.01%) Ref. 
Previous 2,221 (3.48%) 1,918 (3.33%) 303 (4.88%) 0.60 (0.52;0.70) 

Current 59,073 (92.7%) 53,674 (93.3%) 5,399 (86.9%) 0.38 (0.35;0.43) 
Alcohol frequency 63,706 
Daily 13,906 (21.8%) 12,783 (22.2%) 1,123 (18.1%) Ref. 

3/4 per week 14,806 (23.2%) 13,746 (23.9%) 1,060 (17.1%) 0.88 (0.80;0.96) 
1/2 per week 15,963 (25.0%) 14,603 (25.4%) 1,360 (21.9%) 1.06 (0.98;1.15) 

1 to 3 per month 7,312 (11.5%) 6,493 (11.3%) 819 (13.2%) 1.44 (1.31;1.58) 
Special occasion 7,086 (11.1%) 6,049 (10.5%) 1,037 (16.7%) 1.95 (1.78;2.13) 
Never 4,633 (7.27%) 3,830 (6.66%) 803 (12.9%) 2.39 (2.16;2.63) 

IPAQ physical activity 53,420 
Low 9,105 (14.3%) 7,730 (13.4%) 1,375 (22.1%) Ref. 

Moderate 22,099 (34.7%) 19,832 (34.5%) 2,267 (36.5%) 0.64 (0.60;0.69) 

High 22,216 (34.8%) 20,712 (36.0%) 1,504 (24.2%) 0.41 (0.38;0.44) 

Moderate activity (METs) 
(min/wk) 

480 (160;1,200) 53,420 480 (160;1,260) 280 (40.0;840) 0.565 (0.562; 0.567)† 

Vigorous activity (METs) 

(min/week) 

240 (0.00;960) 53,420 240 (0.00;960) 0.00 (0.00;480) 0.563 (0.561; 0.565)† 

Walking activity (METs) 

(min/wk) 

693 (330;1,386) 53,420 693 (330;1,386) 528 (248;1,040) 0.563 (0.561; 0.566)† 

Time outdoors in winter 

(h/d) 

1.00 (1.0 0;2.0 0) 60,793 1.00 (1.0 0;2.0 0) 1.00 (0.00;2.00) 0.88 (0.87;0.90) 

Time outdoors in summer 
(h/d) 

3.00 (2.00;5.00) 60,788 3.00 (2.00;5.00) 2.00 (2.00;4.00) 0.86 (0.85;0.87) 

BMI (kg/m2 ) 26.5 (23.9;29.6) 63,609 26.4 (23.8;29.4) 27.5 (24.4;31.4) 1.06 (1.05;1.06) 
Waist circumference (cm) 89.0 (80.0;98.9) 63,696 89.0 (79.0;98.0) 92.0 (82.0;102) 1.02 (1.02;1.02) 

Overall obesity: 63,609 
Normal weight 22,724 (35.6%) 20,900 (36.3%) 1,824 (29.3%) Ref. 

Over weight 26,407 (41.4%) 24,077 (41.8%) 2,330 (37.5%) 1.11 (1.04;1.18) 

obesity 14,478 (22.7%) 12,461 (21.7%) 2,017 (32.5%) 1.85 (1.73;1.98) 
Abdominal obesity: 63,696 

No 45,290 (71.0%) 41,550 (72.2%) 3,740 (60.2%) Ref. 
Yes 18,406 (28.9%) 15,947 (27.7%) 2,459 (39.6%) 1.71 (1.62;1.81) 

( continued on next page ) 
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Table 1 ( continued ) 

Overall VD deficiency (nmol/L) 

N = 63,759∗ No; N = 57,544 Yes; N = 6,215 
Median (p25,p75) 
N (%) 

N Median (p25,p75) 
N (%) 

Median (p25,p75) 
N (%) 

OR (95% CI) 

Skin type 63,040 

Very fair 5,035 (7.90%) 4,410 (7.66%) 625 (10.1%) Ref. 
Fair 42,410 (66.5%) 38,901 (67.6%) 3,509 (56.5%) 0.64 (0.58;0.70) 

Light olive 11,833 (18.6%) 10,945 (19.0%) 888 (14.3%) 0.57 (0.51;0.64) 
Dark olive 1,091 (1.71%) 953 (1.66%) 138 (2.22%) 1.02 (0.84;1.24) 

Brown 2,126 (3.33%) 1,350 (2.35%) 776 (12.5%) 4.05 (3.59;4.58) 

Black 545 (0.85%) 369 (0.64%) 176 (2.83%) 3.37 (2.76;4.10) 
Ease of skin tanning 62,301 

Very tanned 13,588 (21.3%) 12,408 (21.6%) 1,180 (19.0%) Ref. 
Moderately tanned 25,178 (39.5%) 23,156 (40.2%) 2,022 (32.5%) 0.92 (0.85;0.99) 

Midly tanned 13,185 (20.7%) 11,753 (20.4%) 1,432 (23.0%) 1.28 (1.18;1.39) 

Never tanned 10,350 (16.2%) 9,060 (15.7%) 1,290 (20.8%) 1.50 (1.38;1.63) 
Season 63,759 

Autumn 19,367 (30.4%) 18,127 (31.5%) 1,240 (20.0%) Ref. 
Spring 15,616 (24.5%) 2,739 (44.1%) 2,739 (44.1%) 3.11 (2.90;3.34) 

Summer 21,884 (34.3%) 21,016 (36.5%) 868 (14.0%) 0.60 (0.55;0.66) 
Winter 6,892 (10.8%) 5,524 (9.60%) 1,368 (22.0%) 3.62 (3.33;3.93) 

1 Numbers do not sum up due to missingness. Data for continuous variables are expressed in median (p25-p75), and data for categorical 

variables are presented as frequencies and percentages. VD deficiency was established for values less than 25 nmol/L 25(OH)D. The Chi 
square test for categorical variables and the Kruskall-Wallis test for continuous variables were used to assess differences according to VD 

deficiency groups. Differences according to VD deficiency were statistically significant: P < .001 for all covariates and for sex ( P = .009). VD 

intake was adjusted for energy intake, considering a 20 0 0 kcal diet. 

† Calculated by standard deviation increase. NA, not applicable since VD levels were used as cutoff points to define VD deficiency. T, Tertile. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finally, the variable that explained most of the variance of

serum 25(OH)D levels was the season (R2 = 0.106), followed by skin

type and obesity. Dietary VD intake, which was determined based

on a subjective questionnaire, explained only 1.5% of the variance

of VD levels. 

3.3. The association between dietary VD and VD status, and the 

effect of other covariates on this association 

There was no correlation between the serum 25(OH)D concen-

trations and the energy-adjusted dietary intake of VD (rho = 0.05).

Likewise, dietary VD intake from the 24 h preceding blood sam-

pling showed a weak correlation with serum 25(OH)D levels

( r = 0.07). The correlations remained similar when correlations

were explored among individuals with and without VD deficiency

(rho = 0.03 in both groups), suggesting a weak relationship between

VD status and dietary VD. Table 3 shows the associations between

serum levels of 25(OH)D and dietary intake of VD, and the im-

pacts of other covariates have on this association. With multi-

variate adjusted regression models adjusted for age, sex and cen-

ter (Model 1), we observed a significant, albeit weak association

between both VD measures ( β for doubling intakes of energy-

adjusted dietary VD = 0.03). The explained variance of this model

was 0.015. After adjusting for anthropometric variables, the asso-

ciation between serum 25(OH)D and dietary VD became weaker

( β= 0.01) and the explained variance increased up to 0.046. Thus,

anthropometric variables such as BMI and/or waist circumference

strongly influence to a high extent the association between serum

and dietary VD, although the association remains statistically sig-

nificant. When physical activity-related variables were considered

in the model, we also observed a notable change in the estimates

( β= 0.01) and an increase in the explained variance (R2 = 0.02-0.04).

For other sunlight exposure-related variables, when skin type was

added, ease of skin tanning, or time spent outdoors were included
in Model 1, the association between the serum 25(OH)D and di-

etary VD also remained statistically significant albeit with more

modest effect sizes ( β= 0.01). Collectively, these variables also con-

tributed to a higher explained variance in the serum 25(OH)D

levels (R2 = 0.02-0.06). Importantly, season had the greatest influ-

ence on the association between serum 25(OH)D and dietary VD

(R2 = 0.121). Concerning smoking and alcohol-related variables, sta-

tistically significant associations remained, despite the effect sizes

being small. The combined impact of smoking and alcohol con-

sumption on the association between serum and dietary VD was

also notable. Thus, an association between serum and dietary VD

was detected, with several variables affecting this association. 

There was no evidence of effect modification by any covariate

( P > .05) on the association between VD in blood and dietary in-

take of VD (data not shown). Subgroup analyses by sex and other

variables (obesity and season) also did not reveal any evidence for

effect modification (data not shown). 

3.4. Predictive models to estimate VD deficiency and VD status 

3.4.1. Using Classical Regression Models in Predictive Modeling 

Table 4 shows the predictive models obtained to forecast VD

deficiency and the estimates of the selected variables. The pre-

dictive model of VD deficiency (binary model) with the lowest

AIC included the following variables: sex, age, center, IPAQ, vig-

orous METS, smoking status (current), alcohol consumption, skin

type (fair and brown) and ease of skin tanning, season, waist cir-

cumference, BMI (overweight), time spent outdoors in winter and

summer, energy-adjusted dietary VD, and deprivation index. This

model showed the lowest classification error rate (0.91). The pre-

dictive ability of this model in terms of the AUC was 0.8, suggest-

ing that the ability of the model to distinguish between individuals

with and without VD deficiency is high. 
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Table 2 
Association between dietary and lifestyle variables and VD deficiency or VD status among UKB participants. 

VD deficiency (nmol/L) VD levels nmol/L 

OR (95% CI) P -value Beta ( β) SE R2 P -value 

Energy-adjusted dietary VD per 1 unit ( µg) 0.94 (0.930;0.950) < .001 0.004 0.0 0 03 0.015 < .001 

Anthropometric variables 

BMI (kg/m2) per 1 unit 1.060 (1.055;1.065) < .001 −0.017 0.0 0 0 0.042 < .001 

Waist circumference (cm) per 1 unit 1.027 (1.027;1.029) < .001 −0.007 0.0 0 0 0.049 < .001 
Overall obesity: 0.041 

Normal weight 1. 00 (Ref) 1. 00 (Ref) 
Overweight 1.180 (1.106;1.260) < .001 −0.064 0.004 < .001 

obesity 1.963 (1.834;2.101) < .001 −0.195 0.004 < .001 
Abdominal obesity: 0.039 

No 1. 00 (Ref) 1. 00 (Ref) 
Yes 1.829 (1.731;1.931) < .001 −0.163 0.003 < .001 

Sunlight exposure variables 

IPAQ physical activity 0.038 
Low 1. 00 (Ref) 1. 00 (Ref) 

Moderate 0.651 (0.605;0.700) < .001 0.093 0.005 < .001 
High 0.410 (0.379;0.443) < .001 0.198 0.005 < .001 

Skin type 0.046 

Very Fair 1. 00 (Ref) 1. 00 (Ref) 

Fair 0.657 (0.600:0.720) < .001 0.105 0.006 < .001 
Light Olive 0.572 (0.513;0.638) < .001 0.149 0.007 < .001 
Dark Olive 1.012 (0.827;1.230) .9065 0.084 0.014 < .001 

Brown 3.841 (3.399;4.344) < .001 −0.342 0.011 < .001 
Black 3.108 (2.543;3.789) < .001 −0.324 0.019 < .001 

Time outdoors in winter (hour/day) 0.960 (0.955;0.965) < .001 0.010 0.0 0 0 0.022 < .001 
Time outdoors in summer (hour/day) 0.933 (0.928;0.939) < .001 0.019 0.0 0 0 0.033 < .001 
Ease of skin tanning 0.027 

Very Tanned 1. 00 (Ref) 1. 00 (Ref) 
Moderately Tanned 0.924 (0.857;0.996) .0391 −0.011 0.004 .0172 
Mildly Tanned 1.247 (1.149;1.354) < .001 −0.092 0.005 < .001 

Never Taned 1.499 (1.378;1.631) < .001 −0.137 0.005 < .001 
Season 0.106 

Autumn 1. 00 (Ref) 1. 00 (Ref) 
Spring 3.206 (2.986;3.443) < .001 −0.252 0.004 < .001 

Summer 0.623 (0.570;0.681) < .001 0.063 0.004 < .001 
Winter 3.759 (3.459;4.085) < .001 −0.303 0.005 < .001 

Lifestyle variables 
Smoking status 0.015 

Never 1. 00 (Ref) 1. 00 (Ref) 
Previous 0.888 (0.837;0.943) < .001 0.019 0.003 < .001 
Current 1.445 (1.327;1.572) < .001 −0.081 0.006 < .001 

Alcohol status 0.019 
Never 1. 00 (Ref) 1. 00 (Ref) 

Previous 0.606 (0.517;0.708) < .001 0.121 0.013 < .001 

Current 0.380 (0.343;0.422) < .001 0.209 0.009 < .001 

Alcohol frequency 0.027 

Daily 1. 00 (Ref) 1. 00 (Ref) 
3/4 per week 0.829 (0.760;0.906) < .001 0.022 0.005 < .001 

1/2 per week 0.977 (0.899;1.062) .5841 0.0015 0.005 .775 
1 to 3 per month 1.311 (1.191;1.443) < .001 −0.0623 0.006 < .001 

Special occasion 1.861 (1.698;2.039) < .001 −0.135 0.006 < .001 
Never 2.302 (2.085;2.540) < .001 −0.170 0.007 < .001 

Logistic (VD deficiency) and linear (log-transformed serum levels of VD) regressions were conducted to assess the effect of various variables 

(main predictors) on the outcome VD variables in multivariate models adjusted for age, sex and center. Regression models were conducted, 

for VD intake variables (energy-adjusted dietary VD), anthropometric measures (BMI and waist circumference), sun exposure variables 

(IPAQ, walking activity, moderate activity and vigorous activity (METs), skin type, ease of skin tanning, time outdoors in winter, time 
outdoors in summer and season), and for lifestyle factors (smoking, alcohol status and alcohol frequency). R2 = R -squared. 
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Table 3 

Influence of energy-adjusted dietary VD (log2 transformed) on serum 25(OH)D levels, considering the impact of other variables on the 

associations among UKB cohort participants. 

VD levels nmol/L 

Beta ( β) SE (95%CI) R2 

Model 1 

Age, sex, center 0.03 0.002 (0.026;0.033) 0.015
Model 1 + anthropometric variables 

BMI (kg/m2) per 1 unit 0.01 0.001 (0.009;0.012) 0.046 

Waist circumference (cm) per 1 unit 0.01 0.001 (0.009;0.011) 0.052
BMI + WC 0.03 0.002 (0.026;0.033) 0.054

Model 1 + sunlight exposure variables 
IPAQ 0.009 0.001 (0.008;0.011) 0.040

Walking activity (METs) (min/week) 0.009 0.001 (0.008;0.011) 0.021

Moderate activity (METs) (min/week) 0.009 0.001 (0.008;0.011) 0.024
Vigorous activity (METs) (min/week) 0.009 0.001 (0.008;0.011) 0.030
Skin type 0.008 0.001 (0.007;0.010) 0.059
Ease of skin tanning 0.01 0.001 (0.009;0.011) 0.018

Time outdoors in winter (hours/day) 0.01 0.001 (0.008;0.011) 0.024

Time outdoors in summer (hours/day) 0.01 0.001 (0.008;0.011) 0.035
Season 0.009 0.001 (0.008;0.011) 0.121 

Model 1 + lifestyle variables 
Smoke 0.01 0.001 (0.008;0.011) 0.017 

Alcohol status 0.009 0.001 (0.008;0.011) 0.022
Alcohol frequency 0.009 0.001 (0.008;0.011) 0.032

Smoke + Alcohol 0.03 0.002 (0.026;0.033) 0.024

Linear regressions were performed to assess associations between log-transformed serum 25(OH)D levels and log2-transformed energy- 
adjusted dietary VD intake to account for the impact of doubling intakes of VD on VD status, considering the influence of other variables 
on this association. In Model 1, the association between dietary VD (the main predictor variable) and serum 25(OH)D levels, adjusted for 

age, sex and center, was assessed. Model 1 was further adjusted for anthropometric variables (BMI and/or waist circumference), for sun 

exposure variables (IPAQ, walking activity, Moderate activity and Vigorous activity (METs), skin type, ease of skin tanning, time out-doors 

in winter, time outdoors in summer and season) and lifestyle factors (smoking status, alcohol status and alcohol frequency). R2 = R -squared. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

With regard to the predictive models of serum 25(OH)D lev-

els (linear model), the selected variables and beta coefficients are

shown in Table 4 . The model with the lowest AIC and RMSE in-

cluded the variables described above for the VD deficiency model.

The observed outcome values in the test data and the outcome val-

ues predicted by the model in the training set were similar (data

not shown). The R2 value confirmed that the model could accu-

rately predict the serum 25(OH)D levels. 

3.4.2. Applying machine learning approaches in predictive modeling 

Table 4 also shows the results of the estimates and beta co-

efficients of the predictive models derived by machine learning,

for VD deficiency and VD status, respectively. With respect to the

binary model, the ENET-based model yielded a higher accuracy

(0.91) than did the other methods (LASSO and Ridge Regression:

0.90). The concordance of the predictions (kappa) in the training

and test sets was also greater in the ENET model (data not shown).

The selected variables of this model were: age, IPAQ (high), vig-

orous METS score, smoking status (current), alcohol consumption

(current), skin type (brown and black) and ease of skin tanning,

season, waist circumference, BMI, time spent outdoors in sum-

mer, energy-adjusted dietary VD, and deprivation index. Brown

skin, winter and spring were among the most important variables

( Fig. 1 A). This model showed an even higher value of the AUC for

the prediction of VD deficiency prediction (AUC = 0.89). 

According to the linear model, the RMSE values were lower

for the ENET-based model (mean = 18.487), than fo the other

methods (LASSO and Ridge Regression: mean = 18.489). This model

also exhibited the highest R2 values (data not shown). Thus, the

ENET model also emerged as the most accurate predictor of serum
25(OH)D levels. The variables selected were: sex, age, IPAQ score,

all kinds of physical activity in METs, smoking and alcohol status

(current), skin type and ease of skin tanning, season, waist circum-

ference, BMI (obesity), time spent outdoors in winter and summer,

energy-adjusted dietary VD, and deprivation index. The variables

skin type (brown and black) and season (spring and winter) had

the highest scores in the model ( Figure 1 B). The predicted mean

of serum 25(OH)D in the training and test set was close (52.2 vs

52.7 nmol/L, respectively), suggesting that the modelś performance

was good. 

4. Discussion 

This study examined the determinants of VD deficiency and

VD status, to shed light on variables associated with low levels

of this vitamin and to identify populations at high-risk of VD de-

ficiency, a condition that has been associated with unfavorable

health outcomes. The results of this study are thus highly valuable

for screening for VD deficiency in the population. Indeed, our study

showed that overweight and obese individuals, those who are less

physically active and elderly subjects, are more prone to low serum

25(OH)D levels. Dietary VD is not the main determinant of VD sta-

tus, whereas variables related to sunlight exposure strongly con-

tribute to high VD levels in this North-European population. How-

ever, our study also showed, that both dietary and serum 25(OH)D

are positively related with each other, regardless of age, sex, cen-

ter, and even BMI or other variables. This study also aimed to de-

velop a predictive model for VD status and VD deficiency from 21

distinct variables sourced from the UKB study. Various approaches

including multiple linear regression, logistic regression, and ma-
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Table 4 

Beta coefficients of variables included in the prediction model obtained by classical models and machine learning models (ENET regression) 

for VD deficiency and VD blood levels. 

Classical regression models Machine learning models 

Binary model Linear model Binary model Linear model 
Estimate 
(VD deficiency) 

β coefficients 
(VD blood) 

Estimate 
(VD deficiency) 

β coefficients 
(VD blood) 

Intercept −3.73 36.24 −2.20 66.2 

Sex (Women) 0.134 −0.650 . −21.8 

Age −0.0162 −0.0121 0.0707 
IPAQ (Moderate) −0.161 0.279 . 1.32 

IPAQ (High) −0.371 1.08 −0.171 3.72 
METs (moderate) −0.0 0 0109 . −0.0 0 0430 

METs (vigorous) −0.0 0 0141 0.0 0 0215 −0.0 0 0 0 0562 0.0 0 0950 

METs (walikng) −0.0 0 0159 . −0.0 0 0138 
Smoke (Previous) . . . 0.285 
Smoke (Current) 0.567 −0.763 0.254 −3.47 
Alcohol freq (3/4 per week) −0.153 . 

Alcohol freq (1/2 per week) . . 

Alcohol freq (1 to 3 per month) . −0.474 
Alcohol freq (Special occasion) 0.246 −0.420 

Alcohol freq (Never) 0.398 NA . 2.62 
Alcohol status (Previous) 1.13 

Alcohol_status (Current) 1.18 −0.249 3.89 
Skin Fair −0.1949 . . 2.02 

Skin light olive . . . 1.67 
Skin dark olive 0.297 . . −0.0691 
Skin brown 0.888 −1.78 1.57 −14.8 

Skin black . . 0.668 −13.4 
Time outdoors winter 0.0400 −0.101 . −0.333 

Time outdoors summer −0.146 0.316 −0.101 1.41 
Ease skin (Moderately tanned) 0.176 −0.498 . −1.90 
Ease skin (Midly tanned) 0.403 −1.05 0.0153 −4.63 

Ease skin (Never tanned) 0.5232 −1.23 0.125 −5.25 
BMI . 0.0135 −0.0822 
Waist circumference 0.0186 −0.0531 0.00188 −0.219 

BMI (overweight) −0.169 . . . 
BMI (obesity) . 0.116 −1.64 

Abdominal obese (yes) 0.163 −0.0125 
Age group (50–60 y) . . . 0.0 0 0 0525 

Age group ( > 60 y) . 0.447 −0.0659 1.46 
Season (spring) 1.22 −1.84 0.968 −10.5 
Season (summer) −0.618 0.715 −0.467 3.74 

Season (winter) 1.36 −2.42 1.12 −12.5 

VitD adjusted by E (R24h) µg/2,0 0 0 kcal −0.0696 0.0505 −0.102 1.05 
Multiple deprivation index 0.0139 −0.0130 0.0130 −0.121 
Centre (52-53 °) 0.372 

Centre (54-55 °) 0.886 

Beta-coefficients are of different signs in both models because the binary model predicts VD deficiency, that is, levels less than 25 nmol/L, 
meanwhile, the linear model predicts VD levels. The OR of the binary model can be derived from the exponentiated beta coefficient. 

For a given predictor variable, the coefficient ( β) can be interpreted as the average effect on y (VD deficiency or VD blood levels in 

this case) of a one-unit increase in the predictor, holding all other predictors fixed. The prediction models were built on a dataset with 

complete observations ( N = 48,913) and 21 variables, with 70% of the participants ( N = 34,239) used for the training set and the remaining 

30% ( N = 14,457) for the test set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

chine learning techniques were applied. The classical and machine

learning prediction models were robust and able to predict both

VD outcomes. 

Our study provides relevant findings on the relationship be-

tween sun exposure and 25(OH)D levels. The results showed that

individuals with VD deficiency spent less time outdoors in both

winter and summer, emphasizing the potential influence of sea-

sonal sun exposure on serum 25(OH)D levels. The study also re-

vealed a significant decrease in physical activity in those with VD
deficiency compared to those in the nondeficient group. This find-

ing suggests a potential link between VD deficiency and reduced

engagement in moderate physical activity, as observed in prior

studies in which VD deficiency was shown to be influenced by

both sun exposure and physical activity [ 36 , 37 ]. In fact, as has been

previously reported, engaging in physical activity, especially out-

doors, can confer benefits to the population by reducing the preva-

lence of VD deficiency [ 37 ]. Additionally, a significant association

has been observed regarding obesity, specifically with both vis-
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Fig. 1. Variable Importance plots retrieved from ENET for VD deficiency (alpha = 0.889, lambda = 0.00753) (A) and VD levels in blood (alpha = 1, lambda = 0.01) (B). 

The variable importance plot is scaled to 100 units. A 10-fold cross-validation procedure with 100 repetitions was carried out to select the variables and to fit the predictive 

model with appropriate alpha and lambda values on a training (observations = 70%; N = 34,239) and test sets (observations = 30%; N = 14,457). For the ENET model only those 

variables that are key in the predictive model were selected. The LASSO model provided similar results, though with higher RMSE values (data not shown). The Ridge Regression 

approach selected all the variables and obtained higher RMSE values. The variable importance defined by both models was similar. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ceral and abdominal obesity and VD. Previous observational stud-

ies have reported a negative association between serum 25(OH)D

levels and the presence of obesity or overweight [ 38–41 ]. One po-

tential explanation for this result is the lipophilic nature of VD,

which leads to its accumulation in adipose tissue and lowers the

serum concentration of the vitamin. However, other studies, mostly

those that were cross-sectional and had limited sample sizes, have

not shown any association between 25(OH)D levels and obesity in

adults [ 42 ] or adolescents [ 43 ]. Hence, additional studies address-

ing this topic are warranted to provide knowledge for monitoring

serum 25(OH)D levels in overweight or obese individuals. Another

explanation could be the fact that individuals with obesity tend to

be less active, resulting in reduced sun exposure and, consequently,

lower serum levels of 25(OH)D. This inactivity increases suscepti-

bility to VD deficiency [ 44 , 45 ]. As mentioned above, engaging in

physical activity, especially outdoors, may boost VD levels in these

individuals. 

Regarding skin type, tanning and season, our study suggests a

link between VD deficiency and factors such as fair skin preva-

lence and seasonal variation. For instance, the results support that

darker skin tones are associated with lower 25(OH)D levels. In fact,

previous studies have proposed that heightened skin pigmentation

might contribute to the ineffective synthesis of VD in the skin.

Melanin pigment, the chief determinant of skin color can hinder

the photoproduction of VD by acting as a natural filter for solar

UVB radiation within the epidermis [ 46 , 47 ]. Similar findings have

been reported in other studies [ 48 ], indicating that sun tanning

substantially contributes to serum 25(OH)D concentrations during

the summer months, irrespective of race or ethnicity. Thus, these

findings underscore the impact of skin tanning on 25(OH)D levels

and seasonal variation. 

In relation to the connection between serum 25(OH)D levels

and dietary VD intake, we observed a noteworthy, albeit modest

correlation between the two measures of VD. This correlation was

influenced by anthropometric variables, physical activity, and the

season of the year, although it was statistically significant. Diet is

recognized as a key factor influencing 25(OH)D levels, especially in

individuals with limited outdoor activity. It has been consistently
shown that dietary intake of VD affects serum levels of 25(OH)D

[ 49 , 50 ], and that VD supplementation contributes to increasing

levels of 25(OH)D [ 51 , 52 ]. While diet is acknowledged as an impor-

tant factor affecting VD levels, some studies suggest the need for

a more comprehensive understanding of the mechanisms underly-

ing the interaction between dietary VD and macronutrients [ 45 ].

For instance, it has been reported that the dietary composition of

a meal can alter the bioavailability of VD, and postprandial events

seem to influence VD [ 53 ]. These factors might account for the ob-

served weak association in our study. Main food sources of VD are

blue fish and oil, egg yolk, mushrooms, amongst others. A previous

study conducted within the UKB cohort that evaluated the associ-

ation of foods rich in VD with 25(OH)D levels in serum, reported

that regular consumption of fatty fish was associated with lower

odds of VD deficiency, this food being the main dieary determinant

of VD status [ 9 ]. It is also important to consider that fortified foods

are significant sources of VD in the diet. Although fortification was

not considered in this study, it would be interesting to include it

in future research, as the general population, especially in the UK,

consumes fortified foods such as fat spreads and breakfast cereals

to achieve the recommended levels of VD [ 54 ]. Importantly, a rel-

atively high proportion of the study population had risk of dietary

VD inadequacy. However, not all exhibited VD deficient levels in

serum, emphasizing that VD status is influenced by variables other

than dietary VD. 

Finally, it is worth noting that alcohol and tobacco consumption

influence serum 25(OH)D levels and, consequently, on the presence

or absence of VD deficiency. In our study, individuals with VD de-

ficiency exhibited a slightly higher prevalence of smoking and a

lower proportion of current alcohol drinkers than did those with-

out deficiency. The multivariate regression analyses also demon-

strated the impact of tobacco and alcohol consumption patterns

on the likelihood of VD deficiency. Other previous studies have re-

ported similar findings with regard to alcohol [ 25 ]. In particular,

individuals who did not consume alcohol in the past 12 months

were more likely to have VD deficiency [ 22 ]. It has been sug-

gested that this association might be linked to the fact that alcohol

consumption is often associated with increased social interaction,
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leading to greater sunlight exposure. As a result, individuals who

consume alcohol may be less prone to having insufficient levels of

serum 25(OH)D [ 22 ]. Regarding tobacco, it has been seen in other

studies that circulating VD levels tend to be even lower in smokers

[ 55 , 56 ], likely due to tobacco’s role in disrupting the VD endocrine

system. Smoking has been shown to interfere with the activation

and metabolism of VD in the liver and kidneys, key organs respon-

sible for converting VD into its active form. Additionally, smoking

can lead to a reduced intake of VD through dietary changes, as it

can alter taste perception and appetite, causing smokers to con-

sume less VD-rich foods. The toxic compounds in tobacco may also

increase inflammation and oxidative stress, further depleting VD

levels by increasing the body’s demands for this nutrient [ 56 , 57 ]. 

In summary, results of our study suggest significant correlations

between lifestyle factors and both serum levels and dietary VD in-

take.These variables were considered for the predictive modelling

using classical and machine learning approaches. In both models,

variables such as skin type (especially brown and black), season,

current smoking status and alcohol consumption, IPAQ, obesity sta-

tus (visceral and abdominal), skin tanning, and time spent out-

doors were consistently chosen. Previous studies have also con-

structed predictive models related to 25(OH)D serum levels [ 2 , 24 ]

and VD deficiency [ 25 , 26 , 58 , 59 ], but none of them used a com-

bination of classical and machine learning approaches or consid-

ered as many variables as our study, nor did they encompass pre-

dictive models for both serum 25(OH)D levels and VD deficiency.

For instance, in a Spanish study on predictive models of serum

VD levels involving 200 participants, it was reported that sex, age,

physical activity and BMI, as well as other sunlight exposure vari-

ables, composed a model able to predict the VD status and dis-

criminate between VD deficiency and non-deficiency with an AUC

of 0.8 [ 2 ]. Another study used using the classical approach and

incorporating similar variables obtained low R2 values, but was

able validate the model in independent samples [ 24 ]. In another

study that used machine learning-based predictive models among

5,106 participants, as in our study, the model baed on the ENET re-

gression reached the highest AUC [ 58 ]. In the study by Sohl et al.

[ 59 ], where the classical approach was used, two levels at 50 and

30 nmol/L were considered. This study achieved similar AUC values

for both VD cutpoints, and yielded an AUC similar to ours. These

AUC values have also been reported by others [ 26 ]. Finally, the

study by Narang et al. [ 25 ] also used a classical logistic regression

predictive model and obtained slightly lower AUC values (approxi-

mately 0.7). However, they emphasized the significant role of non-

European ethnicity as a crucial risk factor for VD deficiency. In our

study, ethnicity did not appear to be a decisive determinant of VD

deficiency. Nonetheless, skin type and tanning ease were consid-

ered to account for melanogenic differences and ethnic skin types.

Compared to these studies, our study included more variables

and a larger population, leading to superior AUC, RMSE, and R2

results. Finally, although most of these studies were not externally

validated, our model incorporates similar variables and estimates. 

4.1. Strengths and limitations 

Our study is based in a large sample study population, for

which comprehensive sociodemographic and lifestyle data are

available. This enabled us to explore indepth the determinants re-

lated to VD deficiency. Another strength of our study is the consid-

eration of dietary VD derived from 24-HR. Various predictive mod-

els and subsequent comparative analyses were used, to illustrate

the effectiveness of both classical approaches and machine learn-

ing models for VD prediction. Although 25(OH)D blood sampling

remains the gold standard for assessing VD deficiency in the pop-
ulation, this model could be useful for identifying people with this

condition. 

There are also several limitations to consider. The first one is

that the blood sample and the 24-HR were not done on the same

day. However, the dietary intake of VD relied on several 24-HR. A

limitation of this study is the indirect and subjective nature of es-

timating daily VD intake from food, which relies on self-reported

dietary data and may not fully capture the actual consumption or

variations in fortified food products. Another limitation to consider

is the low representativeness of the UKB study population with re-

gard to the general population [ 7 ]. However, the study is valid for

assessing exposure-outcome relationships. In line with this limi-

tation, since our study included adults, the results may have lim-

ited applicability to specific groups such as children, characterized

by distinct metabolic and physiological processes. Additionally, our

study lacks external validation for predictive models, making it

more suitable for epidemiological and research contexts than for

clinical settings, unless externally validated in other studies. Never-

theless, predictive models using machine learning approaches and

cross-validation procedures, as applied in this study, reduce over-

fitting issues and improve model performance [ 14 , 15 ]. In addition,

we used a single 25(OH)D serum measurement, which does not

necessarily resemble VD status in the long term. It is also im-

portant to note the potential for bias in the self-reported ques-

tionnaire answers, which could lead to participant misclassification

due to underreporting or overreporting of sunlight exposure and

lifestyle variables. Furthermore, sun protection measures, which

could affect the synthesis of VD in the skin, were not considered.

This variable, however, did not emerge as relevant in our study. In

addition we did not take into consideration VD supplementation,

but few participants ( n = 425) reported the use of multivitamin

supplements. It is important to highlight that VD food fortification

was accounted for in the nutritional assessment. 

5. Conclusions 

Several variables related to sunlight exposure and lifestyle vari-

ables, including dietary VD intake, and anthropometrics indices

among others, are determinants of serum 25(OH)D levels and VD

deficiency. While high dietary VD contributes to increased VD lev-

els, there are various factors, mostly referred to sun exposure, that

impact VD levels to a greater extent. The predictive model based

on machine learning approaches and comprising the main deter-

minants of VD status could be valuable for assessing VD deficiency,

aiding in the assessment of the risk of diseases associated with this

condition. 
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