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 A B S T R A C T

Controlling collaborative robots (cobots) is a new and challenging paradigm within the field of robot motion 
control and safe human–robot interaction (HRI). The safety measures needed for a reliable interaction between 
the robot and its environment hinder the use of classical position control methods, pushing researchers to 
explore alternative motor control techniques, with a strong focus on those rooted in machine learning (ML). 
While reinforcement learning has emerged as the predominant approach for creating intelligent controllers 
for cobots, supervised learning represents a promising alternative in developing data-driven model-based ML 
controllers in a faster and safer way. In this work, we study several aspects of the methodology needed to create 
a dataset for learning the dynamics of a robot. To this aim, we fine-tune several PD controllers across different 
benchmark trajectories using multi-objective evolutionary algorithms (MOEAs) that take into account controller 
accuracy, and compliance in terms of low torques in the framework of safe HRI. We delve into various aspects 
of the data extraction methodology including the selection and calibration of the MOEAs. We also demonstrate 
the need to tune controllers individually for each trajectory and how the speed of a trajectory influences both 
the tuning process and the resulting dynamics of the robot. Finally, we create a novel dataset and validate its 
use by feeding all the extracted dynamic data into an inverse dynamic robot model and integrating it into a 
feedforward control loop. Our approach significantly outperforms individual standard PD controllers previously 
tuned, thus illustrating the effectiveness of the proposed methodology.
1. Introduction

Collaborative robotics is an emerging field dedicated to designing 
and developing robots capable of safe human-machine interaction, 
i.e., human–robot collaboration [1]. The control of motion in these 
collaborative systems is a complex problem since it conjugates both 
active safety measures, such as torque control to minimize joint applied 
forces, and passive measures, such as incorporating elastic elements 
to enhance higher levels of compliance in case of an impact with 
humans or objects in the environment. These safety measures hinder 
the calculation of the analytical dynamic model of the collaborative 
robot (also known as cobot), which prevents the use of classical torque-
based control algorithms that rely on simplified rigid dynamic models 

I The code for the presented work is publicly available in the following repository: https://github.com/EduardoRosLab/From-Data-Extraction-to-Data-Driven-
Dynamic-Modeling-for-Collaborative-Robots/. This includes everything necessary to fine-tune PD controllers using MOEAs and the training/deployment of a BRNN 
trained with extracted data.
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of robots [2]. Furthermore, position-based control proves unsuitable for 
human–robot interaction (HRI) due to commanded motion, which can 
carry significant levels of inertia, resulting in high-impact energy levels 
that pose a risk to human safety [3].

To overcome the reliance on an analytical definition of system 
dynamics in traditional control theory, machine learning (ML) is being 
profusely used [4]. ML offers promising control solutions for operating 
model-free dynamic systems, enabling accurate and safe task perfor-
mance. Reinforcement learning, with its capability for generalization 
and data capture through practice, stands out as a prevalent approach 
in ML for robotics [5–8]. Nevertheless, this learning approach does 
come with certain drawbacks for real systems, including a lengthy 
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Fig. 1.  Stages for implementing and deploying a BRNN-based inverse dynamic model. Stage 1: Controller Calibration and Tuning - Define and tune the preliminary PC 
controller to ensure accurate motion data extraction. Stage 2: Trajectory Data Acquisition -Execute multiple trajectories using the tuned controllers to generate a comprehensive 
dataset. Stage 3: BRNN Inverse Model Training - Train the BRNN using the collected position (Q) and velocity (Q’) inputs, with torque (𝜏) as output. Stage 4: Hybrid Control 
deployment -Implement the trained BRNN model in a feedforward + feedback control loop.
learning period and an exploration stage that can pose risks to both 
the robot and its environment [5,8].

In this work, we focus on developing a methodology to create a 
dataset that facilitates data-driven learning of a cobot dynamic model, 
rather than calculating it analytically [9]. Building upon the previous 
discussion, our main goal is to generate a dataset for studying and 
developmenting supervised learning models to mitigate breakdown 
risks during the learning stages with reinforcement learning or other 
adaptive control alternatives.  A data-driven inverse dynamic model 
takes as input the current position and velocity of each robot joint 
(denoted as 𝑄𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑄′

𝑐𝑢𝑟𝑟𝑒𝑛𝑡) along with the target state (denoted as 
𝑄𝑡𝑎𝑟𝑔𝑒𝑡, 𝑄′

𝑡𝑎𝑟𝑔𝑒𝑡) and outputs the torque values per joint needed to 
track the desired motion (denoted as 𝜏). Nevertheless, to capture this 
input–output relationship accurately, we shall move the robot in a 
controlled manner, which requires a preliminary controller. Note that 
the different stages for collecting the data and deploying the data-
driven ML controller can be seen in Fig.  1. For this purpose, we use 
a proportional derivative (PD) controller chosen for its high accuracy 
when operating at a specific working point and its ease of tuning, as 
it requires only two parameters per joint [10]. Note that the dataset 
alone does not directly generalize to new control scenarios without a 
learned model. The derived data-driven inverse model uses this dataset 
to generalize and predict appropriate torques for trajectory tracking, 
adapting to different motion conditions.

An accurate data-driven inverse model shall learn from a wide 
variety of input–output data. Hence, we require several benchmark 
trajectories representing different types of motion (to be further ex-
plained in Section 2.8). Note that the parameters of the PD controller 
will depend heavily on the operating points and the specific trajectories 
used for tuning. Consequently, if we were to use the same PD controller 
for every trajectory (hereafter denoted as ‘‘generic PD controller’’), 
its performance would be inferior compared to using different PD 
controllers, each fine-tuned for a single trajectory (hereafter denoted as 
‘‘fine-tuned PD controllers’’). We will further illustrate this difference 
in the Results section.  The PD controller is adjusted through evolu-
tionary multi-objective optimization, prioritizing movement precision 
and torque values to ensure safety (see Fig.  2). Several algorithms are 
used for comparative purposes, i.e., NSGA-II [11], SPEA2 [12] and 
HypE [13].

Fine-tuning the PD controller requires precise adjustment of its pa-
rameters for each benchmark trajectory. Each data sequence of torque 
value and reached position, obtained from individual PD adjustments, 
is generated specifically to train a subsequent ML controller. This ML 
controller will be able to generalize the control action and adapt it to 
different types of trajectories [15]. PD control is widely used in robotic 
manipulators due to its simplicity [10], minimal adjustment required 
for each robot joint i.e., only two parameters per joint, and accuracy for 
simple tasks within a limited range of motion. Note that the parameters 
2 
of the PD controller will depend heavily on the operating points and the 
specific trajectories used for tuning.

Previous studies have extensively explored the use of MOEAs in 
fine-tuning PD controllers across diverse robotic applications. For in-
stance, in [16], a Proportional–Integral–Derivative (PID) controller was 
tuned using NSGA-II. Many of these studies were designed for robotic 
manipulators. However, they were mostly used in simplistic planar 
two-degree-of-freedom (d.o.f.) simulated mechanical models [16–21], 
which do not resemble those commonly used in real-life industrial 
applications [22]. In contrast, this work investigates diverse aspects of 
using MOEAs in fine-tune PD controllers, particularly focusing on the 
more complex KUKA LBR iiwa robot arm equipped with 7 d.o.f. [23].

After fine-tuning a set of PD controllers to different benchmark 
trajectories, the proposed dataset captures the motion state of the cobot 
(joint positions and velocities) and the commanded torque values. 
This allows us to model the relationship between desired motion and 
torque control. Depending on the direction of this relationship (reached 
position to applied torque values or vice versa), the dataset can serve to 
build either an inverse dynamic model or a forward dynamic model of 
the cobot. Furthermore, using the inverse dynamic model of the system, 
we can create a ML-based feedforward controller to work conjointly 
with a PD controller. This ML controller will be able to generalize the 
control action, adapting to different types of trajectories [15], thereby 
overcoming one of the major drawbacks of PD control. We will try 
this approach using a Recurrent Neural Network (RNN) as the ML 
controller.

Similarly, in [15], we conducted an experiment focusing on iden-
tifying the types of trajectories best suited for inverse dynamic ML 
learning. Building on that work, here, we shift our focus to the quality 
of the data being learned, beyond just the trajectories themselves. 
This quality is achieved by using a multi-objective approach for fine-
tuning PD controllers. We compare the performance of PD controllers 
fine-tuned to each specific trajectory in the dataset with more generic 
all-purpose controllers tuned to handle all trajectories simultaneously.

The main contributions of the presented work are as follows:

• Proposal and application of a methodology for dataset creation in 
data-driven dynamic modeling: We describe the steps needed to 
create a dataset fit for ML-based dynamic modeling. This dataset 
links the state of the robot to the corresponding torque commands 
per joint, thus enabling the creation of either a data-based inverse 
or a direct dynamic model using ML techniques.

• Data validation through model construction: We validate our 
dataset and methodology by training two RNN models to learn 
the inverse dynamic model of a simulated KUKA iiwa cobot. One 
model is trained using data from the fine-tuned PD set while 
the other uses data from the generic PD set. The resulting RNN 
dynamic models outperformed even the fine-tuned PD torque 
controllers when used as feedforward controllers in a real-time 
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Fig. 2. Control system schematic view: This figure shows the PD torque control loop flow diagram. The 4-layer architecture is adapted from EU project IMOCO4.E [14] to our 
methodology. The system layer  reads the desired trajectory and  sends the  desired position and velocity at time t  ([𝑄𝑡𝑎𝑟𝑔𝑒𝑡(𝑡), 𝑄′

𝑡𝑎𝑟𝑔𝑒𝑡(𝑡)]) to the controller; the control layer sends 
torque commands (𝜏(𝑡)) to the cobot; and the sensor layer returns the current state ([𝑄𝑎𝑐𝑡𝑢𝑎𝑙(𝑡), 𝑄′

𝑎𝑐𝑡𝑢𝑎𝑙(𝑡)]). Extracted data is saved for asynchronous use by the analytic layer to 
update the PD controller gains (𝐾). [𝜏,𝑄𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑄𝑎𝑐𝑡𝑢𝑎𝑙] represent arrays, while [𝜏(𝑡), 𝑄𝑡𝑎𝑟𝑔𝑒𝑡(𝑡), 𝑄𝑎𝑐𝑡𝑢𝑎𝑙(𝑡)] represent the 𝑡th element of each array.
control loop. This significant performance improvement remarks 
the importance of high-quality datasets for fitting data-driven 
dynamic models, used as torque controllers.

The rest of the article is structured as follows: Section 2 describes 
in detail the methodology for capturing the proposed dataset. Then, 
Section 3 presents the experimentation and results obtained. Finally, 
Section 4 shows the conclusions and challenges for future works.

2. Materials and methods

2.1. Multi-objective optimization

Optimization problems arise in multiple fields, from Engineering to 
Applied Sciences [24,25].  These problems typically seek the extrema 
of functions representing aspects of interest, which depend on different 
variables. The function defines whether one seeks minima or maxima, 
which particularizes the problem into minimization or maximization, 
3 
respectively. In our context, one can view the parameters of a PD 
controller as the decision variables, and the resulting accuracy of 
movement as the performance criterion (to be maximized in our case).

Mathematically, let f  be a function in which we are interested in 
finding its minimum (point and value). It is possible to define the 
following optimization (minimization) problem: 
minimize 𝑓 (𝑥)
𝑥 subject to 𝐿𝑖 ≤ 𝑥𝑖 ≤ 𝑈𝑖, 𝑖 = 1,… , 𝑛,

(1)

where f  is an n-dimensional function of the form 𝑓 ∶ R𝑛 → R called 
the objective function, and 𝑥 refers to a generic input in [𝐿1, 𝑈1] ×⋯×
[𝐿𝑛, 𝑈𝑛] ∈ R𝑛. Accordingly, feasible inputs belong to a vector subspace 
in R𝑛 that is limited by a lower and an upper bound in each dimension 
𝑖, i.e., 𝐿𝑖 and 𝑈𝑖 for 𝑖 = 1,… , 𝑛, respectively. This space is known as the 
feasible or search space. Based on this formulation, minimization and 
maximization are virtually equivalent because finding the minimum of 
𝑓 (𝑥) is the same as obtaining the maximum of −𝑓 (𝑥).
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Sometimes, there is no further information about the objective 
function, e.g., an analytical expression directly relating the variables, 
and the constraints are variable bounds only. Then, the problem can be 
defined as a black-box optimization problem with box constraints [24,
26], which fits well with model-tuning applications where the objective 
function ultimately depends on a computer simulation [24,26]. It is 
also the most common application case for evolutionary algorithms and 
metaheuristics in general, as it is not feasible to obtain the solution 
analytically [24,25,27]. This is the approach followed in [24,28,29].

However, in real-world problems, it may be necessary to consider 
several objective functions in conflict [30,31]. Fortunately, the previous 
formulation can be extended to deal with multi-objective problems with 
𝑚 objective functions, 𝑓1,… , 𝑓𝑚 ∶ R𝑛 → R as follows: 
minimize 𝐹 (𝑥) = (𝑓1(𝑥),… , 𝑓𝑚(𝑥))

𝑥 subject to 𝐿𝑖 ≤ 𝑥𝑖 ≤ 𝑈𝑖, 𝑖 = 1,… , 𝑛.
(2)

In this context, the m-dimensional vectors 𝐹 (𝑥) = (𝑓1(𝑥),… , 𝑓𝑚(𝑥)) ∈
R𝑚 are known as objective vectors. It is also common to call decision 
vector to any feasible n-dimensional input of variables, (𝑥1,… , 𝑥𝑛). 
Maintaining the single-objective scheme, solving the problem in Eq. (2) 
would imply finding the decision vector that results in the objective 
vector with the lowest possible value for each component. However, 
provided that there are objectives in conflict, i.e., the components of 
𝐹 (𝑥) are competing, the solution to the problem is not unique. Instead, 
it consists of multiple trade-off points of the feasible space, and the 
user who launched the optimization process must choose the decision 
vector to consider [30,31]. For this reason, this person is usually called 
the decision maker in multi-objective optimization.

This situation can be illustrated within the context of this work; 
consider two different sets of PD controller parameters for operating 
a robotic arm. One set yields the highest accuracy, while the other 
ensures the safest operation in terms of applied forces.  As solutions, 
both are virtually equivalent, and it all depends on the final decision. 
However, before that point, it has been possible to discard other options 
as sub-optimal.  The reason is that two different objective vectors can 
be compared according to dominance, which is a key concept in multi-
objective optimization. Specifically, provided two objective vectors x
and y, x dominates y, expressed as 𝑥 ≻ 𝑦, if none of the components of x, 
i.e., 𝐹 (𝑥) = (𝑓1(𝑥),… , 𝑓𝑚(𝑥)) is worse (higher, assuming minimization) 
than its equivalent in y, i.e., 𝐹 (𝑦) = (𝑓1(𝑦),… , 𝑓𝑚(𝑦)), and there is at 
least one in 𝐹 (𝑥) that is better than its analogue. Mathematically [30]: 

𝑥 ≻ 𝑦 ↔

{

∀𝑖 ∈ 1,… , 𝑚 ∶ 𝑓𝑖(𝑥) ≤ 𝑓𝑖(𝑦),
∃𝑗 ∈ 1,… , 𝑚 ∶ 𝑓𝑗 (𝑥) < 𝑓𝑗 (𝑦).

(3)

If an objective vector dominates another, the decision vector (input 
variables) producing  the former is intrinsically better than that of 
the latter, which can be discarded as a solution. However, neither 
may dominate the other. In this situation, both vectors are called 
indifferent to each other. The solutions to the problem in Eq. (2) will be 
decision vectors generating indifferent non-dominated objective ones. 
Accordingly, solving a multi-objective problem involves finding the 
decision vectors linked to non-dominated objective ones. These points 
are also known as Pareto-optimal or optimal in the Pareto sense. They 
form the Pareto optimal set, and their associated objective vectors 
define the Pareto front. Section 2.2 further particularizes these concepts 
for the problem at hand, and Section 3.5 explains how to select points 
from the Pareto front.

2.2. PD controller tuning: Optimization problem formulation

For a robot with 𝑛 joints, a PD controller is defined by a proportional 
constant (KP𝑖) and a derivative one (KD𝑖) for each joint 𝑖. Thus, such a 
controller can be defined by a vector 𝐾 ∈ R2𝑛 according to Eq. (4). 
𝐾 = (KP0,KD0,… ,KP𝑛,KD𝑛). (4)
4 
When controlling collaborative robots there are 2 main problems to 
be addressed. First, accuracy in trajectory tracking; the cobot must be 
accurate when following a specified trajectory. This is quantified using 
the mean Euclidean distance, commonly referred to as the Mean Av-
erage Error (MAE), between the end-effector and the desired Cartesian 
coordinates (benchmark trajectory) along the trajectory. See Eq. (5), 
where 𝑄(𝑡)𝑡𝑎𝑟𝑔𝑒𝑡 and 𝑄(𝑡)𝑎𝑐𝑡𝑢𝑎𝑙 represent the target and actual coordi-
nates of the end-effector at time 𝑡, respectively. 

𝑓𝑎(𝑄𝑡𝑎𝑟𝑔𝑒𝑡, 𝑄𝑎𝑐𝑡𝑢𝑎𝑙) =
1
𝑇

𝑇
∑

𝑡=1
|𝑄(𝑡)𝑡𝑎𝑟𝑔𝑒𝑡 −𝑄(𝑡)𝑎𝑐𝑡𝑢𝑎𝑙|. (5)

This metric is commonly used when evaluating the accuracy of robotic 
manipulators and collaborative robots [32], providing a robust estima-
tion of the robot performance in executing the desired task.

The second problem lies in robot safety for HRI; the robot torque 
values commanded by the controller must remain low and change 
smoothly, avoiding sudden acceleration peaks. To measure this, we use 
Eq. (6), where 𝜏 represents the vector of commanded torque values, 𝑇
denotes the number of steps in a trajectory, and 𝜏(𝑡) corresponds to the 
torque applied at time 𝑡. 

𝑓𝑡(𝜏) =
1
𝑇

𝑇
∑

𝑡=1
(𝜏(𝑡) − 𝜏(𝑡 − 1))2. (6)

We use the squared power of the derivative. This approach allows 
us to measure how much torque is used throughout the trajectory 
while penalizing any sudden spike in torque that may cause unsafe and 
unpredictable behavior, similar to the 𝑇𝑉  metric presented in [33].

In general, higher KP and KD values improve the accuracy of the 
control system by letting it take faster and more intense reactions to 
trajectory deviations. However, when they become too high, they can 
cause overshoots and oscillations. High PD values also lead to higher 
torque values and potentially abrupt torque changes, which is unsafe 
for HRI. Furthermore, the kinematic chain constituting the robot makes 
the joint motions influence each other, i.e., inertia coupling effects [9]. 
Therefore, the KP and KD parameters of each joint must be tuned 
simultaneously to find trade-off configurations.

For a given configuration vector, 𝐾, the only way to know the 
MAE and 𝜏 in a specific trajectory is by executing it. Consequently, let 
us define an abstract function followPath(trajectory, 𝐾) that executes 
the trajectory using the specified PD parameters (𝐾) and returns the 
tuple (𝑄target, 𝑄actual, 𝜏). This imaginary function may refer to a real 
experiment or an accurate simulation, as in this work. In either case, it 
allows computing Eqs.  (5) and (6), which ultimately let us reformulate 
them as 𝑓𝑎(𝐾) and 𝑓𝑡(𝐾), respectively.  When using more than one 
trajectory for PD tuning, as is the case with generic PD controllers, an 
average across all trajectories is calculated for 𝑓𝑎 and 𝑓𝑡 .

With this modification, we can define the target optimization prob-
lem as expressed in Eq. (7). Solutions to this problem maximize the 
accuracy and safety of the target cobot by minimizing the MAE and 
torque values applied, respectively. 
minimize 𝐹 (𝐾) = (𝑓𝑎(𝐾), 𝑓𝑡(𝐾))

𝐾 subject to 0 < 𝐾𝑖 < 𝑈𝑖, 𝑖 = 1,… , 2𝑛,
(7)

where 𝑛 is the number of joints, and 𝑈𝑖 is the upper bound of the 𝑖th 
element in vector 𝐾. This upper bound is set to five times the maximum 
torque value for each joint. This approach ensures that joints with 
higher precision but lower power have a smaller exploration range than 
those with more power but less accuracy.

For the sake of computational efficiency, the discrete-time deriva-
tive of the error will be calculated as 𝑑𝑒

𝑑𝑡 = (𝑒𝑡 − 𝑒𝑡−1), without 
normalizing by the control loop frequency (250 Hz in our case). Con-
sequently, the derivative error will be amplified by a factor of 250. 
To compensate for this amplification, the maximum values of the 
derivative components of the PD controller will be divided by 250. 
Taking all these considerations into account, the maximum values for 
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each variable will be KP = {1600, 1600, 880, 880, 550, 200, 200}, KD 
= {6.4, 6.4, 3.52, 3.52, 2.2, 0.8, 0.8}.

Once the optimization process is completed, a Pareto front is gen-
erated where each point in the Pareto front represents a specific PD 
controller configuration derived during the data extraction (Fig.  1, 
Stage 1 and 2). In this context, each point corresponds to a candidate 
PD controller with a specific trade-off between accuracy and safety. 
The resulting Pareto front set the decision-maker to choose a PD con-
troller. Please see Section 3.5 for further details regarding PD controller 
selection inside the Pareto front. 

The evaluation and comparison of the solution sets provided by the 
MOEAs when adjusting PD gains relies on the Hypervolume Indicator 
(HV) [34], a well-established metric in multi-objective optimization. 
It is defined around the concept of dominance between solutions. As 
explained in Section 2.1, a solution s is said to dominate another solu-
tion t when s outperforms t in at least one objective without obtaining 
inferior results in the rest [35]. Based on this idea, the HV quantifies 
the quality of the solutions found by a MOEA by measuring the volume 
of the objective space they dominate (Fig.  4.a). More specifically, given 
a set of sorted non-dominated solutions 𝑆 generated by a MOEA, which 
defines a Pareto set, and a reference point 𝑅 (typically set to a point 
dominated by all solutions), the HV is calculated according to Eq. (8). 

HV(𝑆,𝑅) =
𝑁−1
∑

𝑖=1
((𝑆𝑎[𝑖 + 1] − 𝑆𝑎[𝑖]) ∗ (𝑅𝑡 − 𝑆𝑡[𝑖]))

+ ((𝑆𝑎[𝑁] − 𝑅𝑎) ∗ (𝑅𝑡 − 𝑆𝑡[𝑁])),

(8)

where 𝑆𝑎[𝑖] and 𝑆𝑡[𝑖] refer to the objective values of the 𝑖th solution in 
the Pareto front according to 𝑓𝑎 and 𝑓𝑏, respectively. Similarly, 𝑅𝑎 and 
𝑅𝑡 are the objective values of the reference point in the corresponding 
objectives. Finally, 𝑁 is the size of the Pareto front.

The HV is typically normalized by the volume of the entire objective 
space, resulting in HV𝑛𝑜𝑟𝑚 (see Eq. (9)). This way, it provides a scalar 
value between 0 and 1, where 1 indicates the ideal situation in which 
the entire objective space is covered. This metric provides a compre-
hensive comparison criterion of the spread and convergence rate of the 
Pareto fronts found by the different MOEAs. Accordingly, all HV values 
used in Section 3 will be normalized. 
HV𝑛𝑜𝑟𝑚(𝑆,𝑅) =

𝐻𝑉 (𝑆,𝑅)
𝑅𝑎𝑅𝑡

. (9)

Given the wear and tear occurring in the robot during the tuning 
process, achieving fast convergence is essential. Thus, a strict termi-
nation criterion is necessary. In this work, we will use the stability of 
the evolution of the HV as a termination criterion. A MOEA will be 
considered to have converged when the HV (rounded to three decimals) 
stops improving for five consecutive generations, at which point the 
algorithm halts. A generation is considered not to have improved when 
the difference between the HV defined by its current population of 
solutions and that of the previous one is less than 0.001. It is also 
noteworthy to mention that  even if the MOEA continues to find new 
Pareto-dominant solutions,  it automatically halts upon reaching 4000 
evaluations.  This limit is set to ensure computational efficiency and 
prevent excessive runtime, as improvements beyond this point tend to 
be marginal while significantly increasing computational cost.

2.3. MOEA algorithms: Pseudo-code for NSGA-II, SPEA2 and HypE

In the selection of the MOEA for dataset creation, we evaluated the 
performance of three different algorithms: NSGA-II [11], SPEA2 [12], 
and HypE [13]. We also compared the results of these three algorithms 
with those of a random search, serving as a baseline. Additionally, 
we provide the pseudo-code for each algorithm to offer the reader a 
clearer understanding of their intricacies and functionality, particularly 
tailored to our specific use case. The detailed pseudo-code fragments 
are presented in algorithm 1.

The initial population is generated randomly, with each variable 
taking values between 0 and an upper limit as discussed in Section 2.2.
5 
2.4. Analytical cobot dynamic modeling and its limitations

The dynamic model of a robot describes the relationship between 
the torque applied by the joint motors and the resulting motion. This 
relationship is typically articulated through the Lagrange formulation 
as expressed below: 
𝜏 = 𝑀(𝑞)𝑞′′ + 𝐶(𝑞, 𝑞′) + 𝑔(𝑞) + 𝜀(𝑞, 𝑞′, 𝑞′′), (10)

where, (𝑞, 𝑞′, 𝑞′′) terms represent the joint positions, velocities and ac-
celerations, respectively. The terms 𝑀(𝑞), 𝐶(𝑞, 𝑞′), and 𝑔(𝑞) correspond 
to the inertia matrix, Coriolis effect, and gravitational pull, respectively. 
Finally, the term 𝜀(𝑞, 𝑞′, 𝑞′′) encompasses factors that are not considered 
in the dynamic model, such as friction effects or the elastic components 
within the cobot. In the dynamic models of many rigid robots, the term 
𝜀(𝑞, 𝑞′, 𝑞′′) is assumed to be negligible since their high-ratio gear boxes 
cause M(q) and C(q,q′) dynamic terms to have a rather higher impact 
than 𝜀(𝑞, 𝑞′, 𝑞′′).

Conversely, in cobotics, safety features, such as less powerful mo-
tors in the joints or the presence of elastic components, amplify the 
influence of 𝜀(𝑞, 𝑞′, 𝑞′′) in the dynamics of the cobot. Consequently, an 
expansion of the original formulation becomes imperative.

While several works have pursued the modeling of the friction 
component [36,37], modeling becomes more complicated when dealing 
with the effects of elastic components [38]. Therefore, the dynamic 
modeling of collaborative robots remains a challenge, demanding not 
only an accurate representation of rigid body dynamics, but also cap-
turing the elastic behavior inherent in the cobot joints. Due to the 
mathematical intractability caused by these elastic behaviors, cobot 
dynamic modeling is prone to be learned rather than calculated, unlike 
traditional rigid industrial robots [32,39,40].

2.5. The collaborative robot

The lightweight robot, LBR iiwa, from KUKA®  was used as our 
virtual robotic demonstrator. LBR iiwa is an industrial robot specifi-
cally designed for human–robot collaboration (HRC), and as such, it 
integrates several sensors to measure torque in all of its joints and 
offers the Fast Research Interface (FRI), able to send torque commands 
from an external computer. This interface will allow us to use torque 
control to balance accuracy and safety. The connection between the 
PD controller and FRI has been done using the interface provided 
by [41]. All experiments were conducted in simulation, using the 
Gazebo simulator [42]. The simulation was reset after each trajectory 
to ensure determinism during controller testing.

2.6. Data acquisition method: Torque control loop

To create a data-driven dynamic model, it is mandatory to capture 
information about the relationship between the torque and motion. For 
this purpose, the cobot must execute specific trajectories i.e., bench-
mark trajectories. However, to allow trajectory execution, a preliminary 
torque controller is essential. The type of motion generated by this 
preliminary torque controller serves as the basis for the final dynamic 
cobot model, and as such, the accuracy and safety of this preliminary 
torque controller are crucial for obtaining high-quality data. As in [15], 
where different trajectories are used, each fine-tuned with a specific 
PD controller, here we propose finding optimal examples of motion 
that can then be extrapolated into a general-purpose controller using 
ML. PD controllers, known for their simplicity, are widely used in 
motion control [10]. As demonstrated later in this study, while not 
suitable for general applications, they exhibit remarkable accuracy 
when precisely tuned to a specific motion (see Section 3.4). In the 
creation of our dataset, we will use a torque-based PD controller, with 
gravity compensation provided by the LBR iiwa internal controller. The 
torque control loop is illustrated in Fig.  2.
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2.7. Data acquisition method: 4-layer architecture

The proposed method for data gathering follows a 4-layer archi-
tecture (Fig.  2) inspired by [14,43]. This 4-layer architecture will be 
interconnected using ROS2 (Robot Operating System 2) [44] and can 
be described as follows:

• Sensor/Actuator Layer: This layer comprises sensors and actua-
tors used by the LBR iiwa cobot. It receives instructions from the 
controller and provides data on joint states.

• Control Layer: The PD controller is located at this layer and 
receives information regarding the next desired set-point. It uses 
the PD parameters (proportional gain, KP, and derivative gain, 
KD) and sends the corresponding torque commands to the motor 
actuators.

• System Layer: Responsible for path planning, this layer sends 
data related to the desired benchmark trajectory to be followed 
to the Control Layer.

• Analytic Layer: In this layer, MOEAs are used. These algorithms 
adjust PD controller gains based on accuracy and safety measure-
ments integrated into their fitness functions, ensuring precision 
and safety in the resulting motion.
6 
The System, Control, and Actuator/Sensor layers operate on a real-
time loop at 250 Hz frequency. Within this time frame, the System 
layer sends the benchmark trajectory to the Control layer, which, in 
turn, transmits the torque commands to the cobot and receives the 
updated sensor data. The torque value, position, and velocity of each 
joint are recorded in an array and written to a file once the trajectory is 
completed. Subsequently, the analytic layer reads this data file to eval-
uate performance and communicates asynchronously with the Control 
layer to update the PD gains. This division ultimately facilitates the 
scalability of our methodology by separating the Analytic and System 
layers from the Control and Sensor ones. Furthermore, it enables the 
use of multiple cobots following the same trajectory in parallel.

2.8. Benchmark trajectories for dataset inclusion

Incorporating benchmark trajectories into our dataset aligns with 
the findings from [15]. Specifically, we incorporate spiral and random 
trajectories, chosen for their ability to generate meaningful datasets 
without unnecessary data volume [15]. This selection ensures that the 
dataset remains suitable for the efficient training of ML controllers. 
We also use rectilinear trajectories, which combine linear movements 
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Fig. 3. Benchmark trajectories used for data gathering. Snapshots of the different benchmark trajectories included in the dataset: spiral, rectilinear, and random trajectories.
with sharp turns. These trajectories aim to enhance the ML controller 
understanding when operating under high acceleration and velocity 
gradients, thus resulting in larger inertia values. Examples of the tra-
jectory dataset are illustrated in Fig.  3. It is necessary to differentiate 
between traditional dynamic model identification, which relies on ex-
citation trajectories for analytical modeling [45], primarily for rigid-
bodied robots, and data-driven dynamic models, which use motion 
examples to learn optimal torque commands for desired movements, 
especially for non-rigid-bodied cobots [15]. Consequently, trajectories 
suitable for one form of modeling may not be suitable for the other.

Rigid-bodied robot modeling frequently uses long trajectories last-
ing dozens of seconds, needing control in position mode. These trajecto-
ries typically consist of a combination of Fourier series and polynomial 
functions, helping in parameter identification for the robot dynamic 
model equations [46]. However, due to their length, torque control is 
not commonly applied, resulting in suboptimal torque commands for 
desired movements. To the best of our knowledge, no study has yet 
investigated the optimal trajectories for data-driven dynamic modeling. 
Therefore, it is essential to define our set of trajectories to cover a broad 
range of possible movements.

To facilitate the design of trajectories for the KUKA LBR iiwa robot 
arm, we establish a working space that defines the area in which our 
training is focused. This space defines the range of motion for the 
end-effector and can be re-defined according to the specific tasks for 
the cobot. In our scenario, the working space boundaries are X =
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[−0.1,0.1], Y = [0.45,0.65] and Z = [0.3,0.5], with the origin point 
(0,0,0) defined as the center of robot base. These boundaries position 
the working space in front of the robot arm, trying to emulate common 
usage scenarios for this type of robotic arm.

The spiral trajectories (see Fig.  3 Spiral 0, 1 and 2) in these tests 
were generated using Eq. (11), where 𝐴𝑥1, 𝐴𝑥2 and 𝐴𝑥1 correspond 
to the chosen axes [𝑋, 𝑌 ,𝑍], [𝑌 ,𝑍,𝑋], or [𝑍,𝑋, 𝑌 ], depending on the 
spiral orientation. All three cases are included in the dataset to facilitate 
movements along any Cartesian axis effectively. Similarly, 𝑐1, 𝑐2 and 
𝑐3 denote the center of the trajectory, which is fixed at Cartesian 
coordinates 𝑥 = 0.0, 𝑦 = 0.55 and 𝑧 = 0.4. In this equation, 𝑇  stands for 
the total number of steps in the trajectory, with 𝑡 ∈ 𝑇  representing the 
step at time 𝑡. The parameter 𝜃 determines the number of revolutions 
the end-effector completes around the center point. More specifically, 
𝜃 = 2𝜋

𝑇 ∕N◦ of revolutions , where ‘‘N◦ of revolutions’’ denotes the number of 
revolutions around the center-point. 
𝐴𝑥1 = 𝑐1 + cos(𝜃𝑡)𝑟,

𝐴𝑥2 = 𝑐2 + sin(𝜃𝑡)𝑟,

𝐴𝑥3 = 𝑐3 + 0.1 𝑡
𝑇
,

𝑟 = 0.1
|

|

|

|

𝑡 − 𝑇
2
|

|

|

|

.

(11)

For the rectilinear trajectories (see Fig.  3 Rectilinear 0, 1 and 2), we 
define a series of key points using Eq. (12), where 𝑁 represents the 
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total number of key points and 𝑖 ∈ 𝑁 . After determining all the key 
points, we implement a quintic polynomial interpolation in Cartesian 
space using the Robotics Toolbox library [47].

Both spiral and rectilinear trajectories undergo changes in size to 
capture different speeds and variations in speed within the dataset. In 
the case of spiral trajectories, they initially expand to the maximum 
radius of the working space before contracting, whereas rectilinear tra-
jectories begin with longer and faster movements to gradually decrease 
in size towards the midpoint of the trajectory. 

𝐴𝑥1 =

{

𝑐1 + 𝑟 if 𝑖%4 == 1 or 𝑖%4 == 2,
𝑐1 − 𝑟 otherwise,

𝐴𝑥2 =

{

𝑐2 + 𝑟 if 𝑖%4 > 1,
𝑐2 − 𝑟 otherwise,

𝐴𝑥3 = 𝑐3 + 0.1 𝑖
𝑁

,

𝑟 = 0.1 − 0.05
|

|

|

|

𝑖 − 𝑁
2
|

|

|

|

.

(12)

In the case of the random trajectories (see Fig.  3 Random 0, 1 and 
2), random points are selected within the working space, and then 
interpolation in joint space is performed using quintic polynomial 
interpolation.

The number of steps in each trajectory determines the motion speed, 
significantly affecting the resulting dynamic model. For this reason, the 
design choice of this parameter will be addressed in Section 3.3.

2.9. Dynamic model learning

To train a ML dynamic model to validate our methodology, the 
collected data will be organized into tuples (𝑝𝑖(𝑡), 𝑣𝑖(𝑡), 𝜏𝑖(𝑡)) represent-
ing, position, velocity and torque of joint 𝑖 at time 𝑡, respectively. This 
arrangement allows the ML dynamic model to infer those torque values 
per link needed to reach a desired 𝑝𝑖(𝑡 + 1) and 𝑣𝑖(𝑡 + 1) based on past 
and current positions and velocities per link. The collected torque data 
will be the one extracted from the PD, before gravity compensation is 
added, as this module is implemented inside the robot system after the 
torque command is sent through FRI.

The ML model to be used is based on a previous work in [15], 
consisting of a bidirectional recurrent neural network (BRNN) capable 
of learning the inverse dynamic model of a cobot. Similarly to the 
approach followed in [15], we will use the BRNN inverse dynamic 
model of our cobot as a feedforward controller, integrated with a PD 
watchdog for feedback support (refer to Section 3.6). Our BRNN will be 
designed to incorporate the overall dynamic information of the robot, 
abstracting it from the trajectories obtained with each of the previously 
tuned PD controllers. This enables the BRNN to operate in a broader 
workspace without compromising performance, unlike a PD controller 
tuned for a single working point.

The dynamic dataset will be partitioned into three different subsets: 
training, validation, and testing. The training subset will be used to 
train the BRNN inverse dynamic model, while the validation subset 
will be used to calculate the validation loss during the training process, 
i.e., the validation loss will indicate when training should be stopped. 
Subsequently, the test subset will provide an evaluation of the BRNN 
dynamic model performance. Specifically the training subset will com-
prise all spiral and rectilinear trajectories, along with the initial random 
trajectory. The second random trajectory (Random 1) will serve as the 
validation subset, and the last random trajectory (Random 2) will serve 
for testing the BRNN performance.

3. Results

3.1. Comparison metrics and methodology

We used the HV as the primary metric to compare the solutions 
generated by the MOEAs, i.e., NSGA II, SPEA2 and HypE based on 
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Table 1
Experiment settings for algorithm comparison.
 Parameter Value(s)  
 N◦ trials 5  
 N◦ of variables 14 (2 per joint)  
 Max. n◦ evaluations 4000  
 HV reference point [0.03 (MAE), 0.5 (torque function)] 
 Trajectory length 1000 timesteps (4 s)  
 N◦ of trajectories 9  

the Pareto front for each solution obtained during the tracking of 
benchmark trajectories. As explained in Section 2.2, the HV calculates 
the area between the Pareto front, i.e., set of non-dominated solutions 
found by a MOEA, and a reference point (see Fig.  4.a for a visual 
representation). This reference point was standardized across all Pareto 
fronts and selected based on the maximum allowed values for both ob-
jective functions. It does not represent a real controller, but rather the 
maximum values allowed for each objective function. More specifically, 
the maximum value for the accuracy function was set to a mean average 
error of 0.03 m (3 cm), and the maximum for the torque function 
was 0.5. Any point exceeding these values was discarded. Note that 
the selection of these values can be somewhat arbitrary, as long as 
they are not too extreme, because they only impact the weight of the 
extremes of the Pareto front. Using the same reference point for all 
comparisons ensures that any possible bias introduced by this selection 
will be shared in all cases, leading to a fairer comparison among 
algorithms. Due to the stochastic nature of MOEAs, all executions were 
repeated 5 times to ensure the robustness and reliability of the results. 
For statistical analyses, we used the repeated measures ANOVA test to 
discern if there are significant differences in our comparisons and paired 
t-tests as Post-hoc tests to identify where those differences lie. To do 
so, the mean values obtained for each trajectory from Fig.  3 were 
used for analysis. Later, the difference among algorithms was analyzed 
between trajectories. This approach allows us to identify significant and 
consistent differences across all trajectories, thus enabling the selection 
of the most suitable algorithm with the appropriate hyperparameters. 
All the settings for the algorithm comparison are detailed in Table  1.

3.2. MOEA selection and fine-tuning

To select the MOEA to be used in the dataset creation, we assessed 
the performance of three different algorithms, namely NSGA-II [11], 
SPEA2 [12], and HypE [13]. NSGA-II and SPEA2 were chosen due to 
their widespread use in multi-objective optimization [48,49]. HypE was 
also selected as a popular indicator-based MOEA focused on improving 
our main metric: the HV. We also compared the results of these three al-
gorithms with those of a random search consisting of 4000 evaluations, 
which served as a baseline for comparison.

All the MOEAs shared the same crossover and mutation operators, 
and also used the same termination criterion. Due to the encoding used 
in our problem, i.e., real numbers instead of a binary representation, 
we decided to use Simulated Binary Crossover (SBX crossover) and 
polynomial mutation. The mutation probability was set to 1

𝑁 , where 
𝑁 represents the number of variables, i.e., 7 joints with 2 variables 
per joint, for a total of 14 variables. MOEA comparison was initially 
performed with a distribution index of 20, a common starting point as 
observed in [50], but was later fine-tuned to find the optimal value. 
This adjustment aimed to optimize the performance of these MOEAs 
for the problem at hand.

Tables  A.6 and A.7 in Appendix  A contain the results obtained in 
each trajectory. These tables compare four different population sizes 
(20, 40, 60 and 80 individuals) since this parameter directly influences 
both the convergence speed, i.e., number of evaluations, and the final 
quality of the Pareto front. As observed in Tables  A.6 and A.7, a popu-
lation size of 20 individuals leads to premature convergence, typically 
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Fig. 4. (a) Diagram depicting the calculation of the hypervolume indicator. This metric is obtained by calculating the area between the Pareto front and a reference point. A 
higher value indicates a better Pareto front. (b) Differences between the results obtained with a population of size 40 and 60 with the SPEA2 algorithm across all trajectories. We 
can see that a population of size 60 achieves better Hypervolume values but also takes longer to converge. (c) Comparison when following the Spiral 0 path at different speeds. 
Trajectory duration is measured in time steps, with each step taking 2 ms. As can be seen, longer durations (slower movements) correspond with higher Hypervolume values, 
which points to an easier dynamic.
occurring within 500–1000 evaluations. It resulted in similar (or even 
worse) performance outcomes to the 4000 random evaluations. Hence, 
this population size was discarded from further consideration. Con-
versely, when using a population size of 80 individuals, convergence 
often requires more evaluations, occasionally reaching the maximum 
allowed limit (4000). Despite this large number of evaluations, the 
performance outcomes did not exhibit noticeable differences with those 
generated with a population size of 60 individuals. Consequently, we 
discard the largest population size as well.

When comparing the three selected MOEAs in Table  A.8, we ob-
served no discernible differences among the Pareto fronts, i.e, the 
HV distribution remains similar across all cases. Nevertheless, when 
comparing the convergence speed, as indicated in (Tables  A.7 and
A.9), HypE presents a slower convergence rate compared to NSGA-II 
and SPEA2, which is even more noticeable with smaller population 
sizes. Consequently, we discarded HypE for our problem domain. Our 
analysis did not reveal any significant difference in convergence speed 
between NSGA-II and SPEA2. The primary difference between these 
2 algorithms lies in their chromosome selection, that is, the use of 
the crowding distance metric in NSGA-II and the neighbor euclidean 
distance in SPEA2. Nevertheless, due to strict limits on the number 
of evaluations, these differences do not seem to be reflected in the 
data. Thus, we used both algorithms in the following sections. Note 
that despite finding no significant differences in the HV distribution 
among the 3 MOEAs, we observed a noticeable improvement over the 
random search whenever the population size was above 20 individuals 
(with p-values of 0.0006 for NSGA-II, 0.014 for SPEA2 and 0.020 for 
HypE when the population size is 40, and even smaller values for 
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larger population sizes). This indicates the importance of algorithm 
selection. However, in the case of our chosen MOEAs, the differences 
among algorithms, mainly related to the selection of individuals of the 
same rank, are not significant enough to impact the results of these 
tests. When comparing population sizes of 40 and 60 individuals, both 
NSGA-II and SPEA2 show significant differences in both the HV (0.03 
and 2.6∗10e−6 respectively) and the number of evaluations (0.001 and 
0.0003). This suggests two possible choices: either using a population 
size of 40 individuals, which will cause less wear and tear on the robot 
joints at the cost of a slightly worse Pareto front, or using a population 
size of 60 individuals to achieve optimal results. In our case, we will 
proceed with a population size of 60 individuals in the following tests.

An example of these differences between population sizes 40 and 
60 can be found in Fig.  4.b, where we see the HV and number of 
evaluations across all trajectories for the SPEA2 algorithm.

As mentioned before, these tests have been performed with a distri-
bution index of 20 for both the mutation and crossover operators, but 
further tuning of this parameter is advisable [50]. The results of these 
tests can be seen in Table  2. Only the average of all trajectories is shown 
in this table for the sake of clarity, but it is important to remember that 
each trajectory has a different range of values, as seen in Fig.  4.b.

The results of the statistical analysis can be seen in Table  3. When 
performing a repeated measures ANOVA, we find that using the NSGA-
II algorithm there are significant differences both in the HV and the 
number of evaluations (p-values of 0.00 and 0.05, respectively), while 
SPEA2 only shows a notable difference in HV (p-values of 0.00 and 
0.24).

When performing the post-hoc test, we find no difference between 
values of 1 and 10 in either algorithm. In the same way, a value 
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Table 2
Algorithm tuning: Distribution index comparison.
 Algorithm Metric 1 10 20 100  
 NSGA-II Hypervolume 0.769 0.769 0.765 0.756 
 N◦ evaluations 2185 2177 2231 1897  
 SPEA2 Hypervolume 0.767 0.767 0.765 0.753 
 N◦ evaluations 2134 2118 2168 1890  

Table 3
Algorithm tuning: Statistic analysis of distribution index values.
 Algorithm Metric ANOVA 1/10 p-val. 10/20 p-val. 20/100 p-val. 
 NSGA-II Hypervolume 0.00 0.96 0.13 0.00  
 N◦ evaluations 0.05 0.95 0.69 0.02  
 SPEA2 Hypervolume 0.00 0.86 0.23 0.00  
 N◦ evaluations 0.24 0.90 0.80 0.04  

of 100 seems to underperform in both algorithms but also converge 
slightly faster. Even though we cannot discard the null-hypothesis when 
comparing values 10 and 20, a slight trend can be perceived (smaller 
values seem to work better), especially when looking at Table  2. Thus, 
it seems advisable to use a distribution index of 10 instead of the default 
value of 20.

3.3. Analysis of trajectory speed

As discussed in Section 2.8, the length of the benchmark trajectory, 
that is the number of time steps, significantly influences the robot speed 
and, consequently, its dynamics and the extracted data. Therefore, we 
examined the results obtained by applying our optimization algorithms 
to benchmark trajectories while varying their temporal duration. Fig. 
4.c illustrates the results obtained from the spiral path (Spiral 0) 
depicted in Fig.  3. These trajectories follow identical paths but vary in 
the number of time steps, ranging from 900 steps (equivalent to 3.6 s, 
resulting in faster motions) to 1500 steps (equivalent to 6 s, resulting 
in slower motions). Note that we use always 250 Hz, thus 250 steps per 
second.

As depicted in Fig.  4.c, slower trajectories are easier to track, 
leading to an increase in the HV. This reflects the fact that slower trajec-
tories show simpler and more linear dynamics, while faster movements, 
characterized by more ballistic motion, give rise to more complex 
dynamics with stronger nonlinear effects. Note that this effect is not 
linear and, consequently, the difference between a trajectory of 900 
time-steps and one of 1000 is much higher than the difference between 
1000 and 1100. When attempting to execute trajectories in 800 time-
steps, the values of the objective functions typically fall outside of the 
values chosen as the reference point (MAE of 0.03 and torque function 
of 0.5), that is, trajectories become too risky to optimize. This means 
that the data extracted during dataset creation should be well-matched 
and coordinated to the task to be performed by the final controller. In 
some cases, it may even be advisable to include different speeds for 
each path during the data extraction phase.

3.4. Comparison between generic and fine-tuned PD

To illustrate the necessity of fine-tuning PD controllers for each 
trajectory individually, and to highlight the challenge of achieving a 
universal control system applicable to various trajectories, a set of 
‘‘generic controllers’’ underwent tuning using the NSGA-II algorithm 
with a population size of 60 and a distribution index of 10. Each 
controller was evaluated using an average of every trajectory. Hence, 
if a single PD controller could perform well on every trajectory, or 
if the designed trajectories were too similar, we would expect similar 
performance between the generic controllers and those fine-tuned using 
only one trajectory each. Nevertheless, Table  4 illustrates a significant 
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Table 4
Comparison between general and fine-tuned PD. Hypervolume Indicator is used to 
compare Pareto fronts. A higher value indicates a better Pareto front.
 Trajectory General Fine-tuned  
 Spiral 0 0.779 ± 0.008 0.806 ± 0.015 
 Spiral 1 0.652 ± 0.007 0.693 ± 0.012 
 Spiral 2 0.738 ± 0.007 0.759 ± 0.005 
 Rectilinear 0 0.7 ± 0.006 0.729 ± 0.013 
 Rectilinear 1 0.599 ± 0.016 0.646 ± 0.013 
 Rectilinear 2 0.73 ± 0.008 0.746 ± 0.016 
 Random 0 0.792 ± 0.012 0.835 ± 0.005 
 Random 1 0.835 ± 0.009 0.847 ± 0.011 
 Random 2 0.823 ± 0.003 0.839 ± 0.003 

difference in performance between the general and fine-tuned con-
trollers. This difference is particularly noticeable when attempting to 
balance the torque value and accuracy, as depicted in Fig.  5.a where the 
biggest difference is observed in the central region, while the extremes 
show a closer alignment.

3.5. Decision making: Controller selection

Once the final Pareto front is obtained, selecting one controller 
for each trajectory becomes crucial to avoid conflicting data. To that 
aim, different approaches to controller selection exist, as documented 
in [48]. In our case, an a posteriori preference method was used, that 
is, the selection process occurred after the search concluded.

Many different approaches to controller selection are plausible, such 
as measuring the distance of each point to a desired optimum [51]. 
However, determining this optimum value beforehand is typically not 
feasible in a real-world setting such as the one being emulated here. 
Alternatively, another possible approach is to use a utility function to 
weight each objective [52]. However, note that accurately weighting 
each objective can be challenging, which is one of the primary reasons 
for using a multi-objective algorithm.

In this study, we want to emphasize the knee-based approach, which 
prioritizes finding the optimal trade-off between objectives [53–55]. 
There are different methods for defining a knee in a Pareto front, such 
as measuring the angle between nearby points [53] or specifying a 
desired trade-off between objectives [54]. While these methods often 
identify multiple points of interest requiring expert evaluation, this 
study favors those approaches that yield a single optimal value, such as 
the normal boundary intersection or line-distance-based method [56]. 
This method involves drawing a line between the two extremes of 
the Pareto front and calculating the perpendicular distance towards 
the origin of each non-dominated solution to this line (see Fig.  5.b). 
This method shares similarities with the Hypervolume-based approach, 
particularly when the HV reference point for calculating the dominated 
area is based on the maximum values of the Pareto front in each 
objective.

3.6. Use case example; the BRNN controller within a feedforward control 
loop

To demonstrate the usefulness of storing dynamic robot information 
extracted from MOEA optimal controllers into a dataset for training any 
ML controller, we trained different BRNN-based dynamic models of the 
robot using trajectories obtained from a tuned PD controller as in [15]. 
Moreover, to evaluate the influence of dataset quality on the BRNN-
based dynamic model, we trained two models: (a) using data extracted 
with generic PD controllers, and (b) using data extracted with fine-
tuned, trajectory-specific PD controllers (see Section 3.4). Both models 
were trained with data divided identically and the same configuration, 
including hyperparameters.

The two BRNN-based dynamic models consisted of 64 GRU units 
and used a temporal window of 97 time steps, accounting for time 
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Fig. 5. (a) Comparison between generic and fine-tuned controllers. The generic controllers have been tuned using all the trajectories in the dataset, while the fine-tuned ones only 
use the specific trajectory in which they are being tested. (b) Diagram depicting the calculation of the line-based knee. A line is drawn between the extremes of the Pareto front 
and the perpendicular distance between said line and each non-dominated solution is used to find the knee-point. The trajectory shown in both cases is Spiral 1.
steps [t−48, t+48]. During the training stage, values corresponding to 
future time steps were known in advance; however, during the infer-
ence stage, they were substituted with the desired trajectory values. 
The BRNN-based model trained with data extracted from fine-tuned, 
trajectory-specific PD controllers achieved an 𝑅2 value of 0.94 on the 
test set, indicating high prediction accuracy, whereas the model trained 
with data from generic PD controllers achieved a lower prediction 
accuracy, with an 𝑅2 value of 0.87. Both BRRN-based models were 
used as feedforward controllers, both following the non-parametric 
inverse dynamic configuration (NID) architecture described in [15]. 
The feedforward controller was used conjointly with a feedback PD 
controller to prevent drift from the actual trajectory, i.e, as a watch-dog 
or complementary safety controller only becoming significantly active 
in case of major deviations. The resulting control loop is depicted in 
Fig.  7.a.

For tuning the feedback PD watch-dog controller, we followed the 
same steps as for the generic PD controllers described in Section 3.4. We 
used lower upper limits for each variable to be tuned, thereby limiting 
their overall control actions, as the main contributor in the control loop 
should be the feedforward controller. The upper limits used were KP =
{320, 320, 176, 176, 110, 40, 40}, KD = {1.28, 1.28, 0.7, 0.7, 0.44, 
0.16, 0.16} (five times lower than in Section 2.2).

To demonstrate the dominance of feedforward control action, we 
compared the Torque Time Integral (TTI) provided by both the feed-
back (PD) and feedforward (BRNN model) controllers for each tra-
jectory (see Table  5). The TTI offers a clear measure of the energy 
output by each controller, revealing that the feedforward controller 
had a significantly greater impact on the overall control system output. 
In contrast, the PD watchdog controller primarily corrected minor 
deviations that occurred during the trajectory execution.

The influence of data quality within the dynamic dataset on the 
subsequent performance of the BRNN-based controller was clearly il-
lustrated when comparing the MOEA Pareto front obtained in four 
different scenarios in torque-control trajectory-tracking: (1) feedback 
control loop using generic PD controllers, (2) feedback control loop 
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Table 5
Torque Time Integral (TTI) in N m*s provided by both the feedback (PD) and feed-
forward controllers (BRNN-based model trained using data extracted from fine-tuned, 
trajectory-specific PD controllers) for each trajectory. The feedforward component 
torque contributes significantly more to the overall torque control action within the 
control loop.
 Trajectory PD watch-dog Feedforward model 
 Spiral 0 2145 ± 185 13201 ± 103  
 Spiral 1 2920 ± 236 10026 ± 47  
 Spiral 2 2394 ± 97 15022 ± 89  
 Rectilinear 0 4194 ± 330 9849 ± 41  
 Rectilinear 1 4569 ± 166 9443 ± 114  
 Rectilinear 2 4426 ± 153 10353 ± 109  
 Random 0 2711 ± 116 7402 ± 60  
 Random 1 3484 ± 230 7587 ± 29  
 Random 2 3128 ± 82 6458 ± 110  

using fine-tuned, trajectory-specific PD controllers, (3) feedforward 
+ watch-dog PD control loop using a BRNN-based inverse dynamic 
model trained with data extracted from generic PD controllers, and (4) 
feedforward + watch-dog PD control loop using a BRNN-based inverse 
dynamic model trained with data extracted with fine-tuned, trajectory-
specific PD controllers. Cases 1 and 2 are extracted from the Pareto 
fronts shown in Section 3.4. The Pareto front results (see Fig.  7.b) 
revealed the advantage of using a dataset from which an inverse data-
based dynamic model could be extracted, as in cases 3 and 4, where 
the Pareto front consistently outperformed the best results obtained for 
cases 1 and 2. When comparing cases 3 and 4, the results confirmed the 
advantage of having quality data for extracting the data-based inverse 
dynamic model for the robot. There was a clear improvement achieved 
when using fine-tuned data, particularly noticeable in the accuracy 
function (𝐹𝑎(𝑄𝑡𝑎𝑟𝑔𝑒𝑡, 𝑄𝑎𝑐𝑡𝑢𝑎𝑙)), resulting in a lower mean average error 
for the same torque function  (See Fig.  6).
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Fig. 6.  Snapshot from the video comparing the accuracy of a BRNN model trained with fine-tuned data and one trained using generic PD data. The video can be found at 
https://youtu.be/JKbuu6ykNJs.
Fig. 7. (a) Flow diagram of the Feedforward + watch-dog PD torque control loop. (b) Comparison of the MOEA Pareto front obtained in four different scenarios in torque-control 
trajectory-tracking: (blue triangle) feedback control loop using generic PD controllers, (yellow circle) feedback control loop using fine-tuned, trajectory-specific PD controllers, 
(purple pentagon) feedforward + watch-dog PD control loop using a BRNN-based inverse dynamic model trained with data extracted from generic PD controllers, and (red star) 
feedforward + watch-dog PD control loop using a BRNN-based inverse dynamic model trained with data extracted with fine-tuned, trajectory-specific PD controllers. Tracked 
trajectories depicted are: Spiral 1 (up), which was part of the training set, and Random 2 (down), which was only used in the test set. The knee point used for the fine-tuned 
dataset creation is marked for an easier comparison of the improvements over the original PD controller. The set of controllers obtained using feedforward BRNN inverse dynamic 
models improves upon the results obtained by the fine-tuned PDs, and a clear enhancement is observed when training the BRNN-based inverse dynamic model with data extracted 
from the fine-tuned PD controllers instead of generic PD controllers.
4. Conclusions

The presented work addresses challenges in creating a dataset for 
data-driven dynamic model identification of a collaborative robot. This 
requires the use of pre-existing controllers that can be fine-tuned to 
different trajectories, facilitating the gathering of richer samples for 
the dataset. As demonstrated, this fine-tuning can be achieved by 
12 
combining PD control and MOEAs to ensure both accuracy and safety 
in generated motions. To evaluate this PD-MOEAs combination, we 
conducted tests comparing NSGA-II, the state of the art MOEA used 
in most robotic PID applications [48] with two similar MOEAs, SPEA2 
and HypE.

We have also demonstrated the potential of constructing a dynamic 
dataset designed for highly nonlinear dynamic systems, such as cobots. 

https://youtu.be/JKbuu6ykNJs
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Table A.6
Algorithm comparison: Hypervolume indicator.
 Algorithm Pop. size Spiral 0 Spiral 1 Spiral 2 Rect. 0 Rect. 1  
 Random 4000 0.78 ± 0.004 0.66 ± 0.003 0.74 ± 0.006 0.68 ± 0.005 0.59 ± 0.012 
 NSGA-II 20 0.77 ± 0.011 0.65 ± 0.029 0.73 ± 0.015 0.68 ± 0.027 0.61 ± 0.028 
 40 0.78 ± 0.019 0.68 ± 0.004 0.75 ± 0.015 0.71 ± 0.012 0.63 ± 0.005 
 60 0.80 ± 0.020 0.68 ± 0.018 0.75 ± 0.006 0.72 ± 0.007 0.64 ± 0.012 
 80 0.79 ± 0.017 0.69 ± 0.008 0.76 ± 0.009 0.72 ± 0.005 0.64 ± 0.010 
 SPEA2 20 0.77 ± 0.023 0.66 ± 0.026 0.73 ± 0.015 0.70 ± 0.019 0.61 ± 0.014 
 40 0.78 ± 0.006 0.68 ± 0.011 0.75 ± 0.006 0.71 ± 0.011 0.64 ± 0.011 
 60 0.80 ± 0.009 0.69 ± 0.010 0.76 ± 0.018 0.72 ± 0.008 0.65 ± 0.005 
 80 0.81 ± 0.023 0.69 ± 0.006 0.75 ± 0.009 0.71 ± 0.009 0.64 ± 0.018 
 HypE 20 0.77 ± 0.012 0.66 ± 0.010 0.74 ± 0.007 0.67 ± 0.047 0.63 ± 0.018 
 40 0.78 ± 0.009 0.68 ± 0.011 0.75 ± 0.011 0.71 ± 0.007 0.63 ± 0.016 
 60 0.79 ± 0.020 0.69 ± 0.013 0.76 ± 0.017 0.71 ± 0.016 0.64 ± 0.010 
 80 0.79 ± 0.013 0.69 ± 0.008 0.76 ± 0.022 0.72 ± 0.011 0.65 ± 0.020
 Algorithm Pop. size Rect. 2 Random 0 Random 1 Random 2  
 Random 4000 0.72 ± 0.003 0.82 ± 0.005 0.83 ± 0.004 0.82 ± 0.001 
 NSGA-II 20 0.73 ± 0.013 0.81 ± 0.016 0.83 ± 0.023 0.82 ± 0.015 
 40 0.75 ± 0.013 0.83 ± 0.008 0.85 ± 0.011 0.83 ± 0.005 
 60 0.75 ± 0.016 0.83 ± 0.009 0.86 ± 0.013 0.84 ± 0.004 
 80 0.75 ± 0.017 0.83 ± 0.010 0.85 ± 0.010 0.84 ± 0.004 
 SPEA2 20 0.72 ± 0.012 0.76 ± 0.077 0.82 ± 0.013 0.82 ± 0.003 
 40 0.73 ± 0.016 0.82 ± 0.014 0.84 ± 0.037 0.83 ± 0.005 
 60 0.74 ± 0.018 0.83 ± 0.008 0.85 ± 0.016 0.83 ± 0.003 
 80 0.76 ± 0.018 0.84 ± 0.006 0.85 ± 0.016 0.84 ± 0.006 
 HypE 20 0.73 ± 0.037 0.82 ± 0.009 0.84 ± 0.017 0.82 ± 0.011 
 40 0.74 ± 0.014 0.82 ± 0.019 0.85 ± 0.023 0.82 ± 0.017 
 60 0.76 ± 0.026 0.83 ± 0.004 0.85 ± 0.021 0.83 ± 0.006 
 80 0.76 ± 0.011 0.83 ± 0.012 0.85 ± 0.010 0.83 ± 0.008 
We include the obtained results of the different MOEAs for 9 different trajectories.
* A higher value represents a better set of solutions.
This dataset enables a BRNN operating as a controller to capture non-
linear behaviors comprehensively within a data-driven inverse dynamic 
model. This capability increases the overall performance of the BRNN 
controller compared to generic PD solutions in trajectory tracking at 
low torque conditions. The combination of BRNN feedforward control 
and PD feedback acting as a watch-dog is shown to outperform even 
the fine-tuned PDs from which the original data was extracted.

Moreover, implementing this PD-MOEAs combination methodology 
into a real system presents new challenges. Simulation dynamics are 
often too different from the real system to allow for direct sim-to-
real tuning, meaning that the PD parameters obtained in a simulated 
environment may not be directly applicable to a real robot. For this 
reason, we recommend tuning the controllers directly using real hard-
ware, with a focus on convergence speed and the number of evaluations 
to minimize wear and tear of the cobot joints. Additional challenges 
may arise from controlling MOEA randomization to ensure robot and 
human safety during the fine-tuning process, as some intermediate PD 
combinations could result in unsafe motions (with risks of damage to 
the different robot components).
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Table A.7
Algorithm comparison: Number of evaluations..
 Algorithm Pop. size Spiral 0 Spiral 1 Spiral 2 Rect. 0 Rect. 1  
 NSGA-II 20 654 ± 414 691 ± 146 336 ± 113 816 ± 493 785 ± 266  
 40 836 ± 302 1726 ± 698 1145 ± 377 1529 ± 557 1571 ± 389  
 60 1571 ± 560 3397 ± 937 1272 ± 383 2729 ± 493 3270 ± 1000 
 80 2072 ± 1091 3680 ± 405 1645 ± 639 3430 ± 664 3099 ± 808  
 SPEA2 20 568 ± 228 826 ± 296 357 ± 126 857 ± 323 946 ± 197  
 40 837 ± 265 1714 ± 429 650 ± 146 1834 ± 365 1981 ± 594  
 60 1547 ± 469 2923 ± 254 1406 ± 905 2518 ± 737 3859 ± 229  
 80 2257 ± 721 4000 ± 0 1539 ± 374 2911 ± 1066 3457 ± 936  
 HypE 20 598 ± 216 1045 ± 335 337 ± 41 778 ± 682 1367 ± 344  
 40 1025 ± 578 2374 ± 977 626 ± 167 2151 ± 605 2334 ± 1379 
 60 1176 ± 911 3560 ± 855 1254 ± 403 3092 ± 887 3943 ± 157  
 80 1720 ± 769 4000 ± 0 1439 ± 925 3865 ± 372 3600 ± 1110
 Algorithm Pop. size Rect. 2 Random 0 Random 1 Random 2  
 NSGA-II 20 863 ± 326 572 ± 109 374 ± 260 539 ± 194  
 40 1619 ± 385 1129 ± 103 1260 ± 465 1329 ± 369  
 60 1923 ± 138 1964 ± 307 1829 ± 390 2191 ± 587  
 80 3217 ± 777 2093 ± 942 1904 ± 478 2674 ± 685  
 SPEA2 20 627 ± 397 644 ± 165 378 ± 148 568 ± 172  
 40 1394 ± 678 1132 ± 236 1101 ± 814 1322 ± 229  
 60 1914 ± 226 1747 ± 308 1694 ± 711 1999 ± 463  
 80 3313 ± 859 2619 ± 502 2037 ± 728 2466 ± 729  
 HypE 20 855 ± 594 711 ± 280 516 ± 506 741 ± 319  
 40 1709 ± 486 1416 ± 196 1280 ± 565 1322 ± 506  
 60 3192 ± 690 2055 ± 460 1581 ± 693 2149 ± 1032 
 80 4000 ± 0 2057 ± 578 2351 ± 294 1989 ± 275  
 We include the obtained results of the different MOEAs for 9 different trajectories.
* Maximum number of evaluations allowed is 4000.
Table A.8
Algorithm comparison: Statistic analysis of the Hypervolume Indicator.
 Pop. size ANOVA NSGA-II/SPEA2 NSGA-II/HypE SPEA2/HypE

 <0.05 𝑝-value Statistics 𝑝-value Statistics 𝑝-value Statistics 
 20 0.32 0.45 0.77 0.16 −1.54 0.26 −1.19  
 40 0.61 0.48 0.73 0.40 0.87 0.92 0.09  
 60 0.90 0.77 0.29 0.84 −0.20 0.68 −0.42  
 80 0.84 0.64 −0.47 0.28 −1.15 0.94 0.06  

Table A.9
Algorithm comparison: Statistic analysis of the number of evaluations.
 Pop. size ANOVA NSGA-II/SPEA2 NSGA-II/HypE HypE/SPEA2

 <0.05 𝑝-value Statistics 𝑝-value Statistics 𝑝-value Statistics 
 20 0.03 0.70 −0.39 0.07 −2.08 0.03 −2.58  
 40 0.04 0.83 0.12 0.11 −1.73 0.00 −3.70  
 60 0.20 0.56 0.60 0.25 −1.21 0.15 −1.58  
 80 0.67 0.43 −0.81 0.42 −0.84 0.80 −0.26  

Data availability

Data will be made available on request.
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