
Robotics and Autonomous Systems 191 (2025) 105006

A
0

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

From data extraction to data-driven dynamic modeling for cobots: A method

using multi-objective optimizationI

Diego Navarro-Cabrera a ,∗, Juan H. García-Guzmán a , Nicolás C. Cruz a ,
Brayan Valencia-Vidal a,b, Niceto R. Luque a ,1, Eduardo Ros a,1
a Research Centre for Information and Communication Technologies, University of Granada, Granada, Spain
b Research Group Osiris & Bioaxis, Faculty of Engineering, El Bosque University, Bogotá, Colombia

A R T I C L E I N F O

Keywords:
Torque control
Dynamic modeling
Genetic algorithms
PD control
Machine learning
Supervised learning

 A B S T R A C T

Controlling collaborative robots (cobots) is a new and challenging paradigm within the field of robot motion
control and safe human–robot interaction (HRI). The safety measures needed for a reliable interaction between
the robot and its environment hinder the use of classical position control methods, pushing researchers to
explore alternative motor control techniques, with a strong focus on those rooted in machine learning (ML).
While reinforcement learning has emerged as the predominant approach for creating intelligent controllers
for cobots, supervised learning represents a promising alternative in developing data-driven model-based ML
controllers in a faster and safer way. In this work, we study several aspects of the methodology needed to create
a dataset for learning the dynamics of a robot. To this aim, we fine-tune several PD controllers across different
benchmark trajectories using multi-objective evolutionary algorithms (MOEAs) that take into account controller
accuracy, and compliance in terms of low torques in the framework of safe HRI. We delve into various aspects
of the data extraction methodology including the selection and calibration of the MOEAs. We also demonstrate
the need to tune controllers individually for each trajectory and how the speed of a trajectory influences both
the tuning process and the resulting dynamics of the robot. Finally, we create a novel dataset and validate its
use by feeding all the extracted dynamic data into an inverse dynamic robot model and integrating it into a
feedforward control loop. Our approach significantly outperforms individual standard PD controllers previously
tuned, thus illustrating the effectiveness of the proposed methodology.
1. Introduction

Collaborative robotics is an emerging field dedicated to designing
and developing robots capable of safe human-machine interaction,
i.e., human–robot collaboration [1]. The control of motion in these
collaborative systems is a complex problem since it conjugates both
active safety measures, such as torque control to minimize joint applied
forces, and passive measures, such as incorporating elastic elements
to enhance higher levels of compliance in case of an impact with
humans or objects in the environment. These safety measures hinder
the calculation of the analytical dynamic model of the collaborative
robot (also known as cobot), which prevents the use of classical torque-
based control algorithms that rely on simplified rigid dynamic models

I The code for the presented work is publicly available in the following repository: https://github.com/EduardoRosLab/From-Data-Extraction-to-Data-Driven-
Dynamic-Modeling-for-Collaborative-Robots/. This includes everything necessary to fine-tune PD controllers using MOEAs and the training/deployment of a BRNN
trained with extracted data.
∗ Corresponding author.
E-mail addresses: diegonavaca@ugr.es (D. Navarro-Cabrera), jhelg@ugr.es (J.H. García-Guzmán), ncalvocruz@ugr.es (N.C. Cruz), nluque@ugr.es

(N.R. Luque), eros@ugr.es (E. Ros).
1 Both of these authors contributed equally to this work.

of robots [2]. Furthermore, position-based control proves unsuitable for
human–robot interaction (HRI) due to commanded motion, which can
carry significant levels of inertia, resulting in high-impact energy levels
that pose a risk to human safety [3].

To overcome the reliance on an analytical definition of system
dynamics in traditional control theory, machine learning (ML) is being
profusely used [4]. ML offers promising control solutions for operating
model-free dynamic systems, enabling accurate and safe task perfor-
mance. Reinforcement learning, with its capability for generalization
and data capture through practice, stands out as a prevalent approach
in ML for robotics [5–8]. Nevertheless, this learning approach does
come with certain drawbacks for real systems, including a lengthy
https://doi.org/10.1016/j.robot.2025.105006
Received 4 June 2024; Received in revised form 19 February 2025; Accepted 3 Ap
vailable online 25 April 2025
921-8890/© 2025 The Authors. Published by Elsevier B.V. This is an open access a
ril 2025

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/robot
https://www.elsevier.com/locate/robot
https://orcid.org/0000-0002-7583-016X
https://orcid.org/0000-0001-9114-5616
https://orcid.org/0000-0002-5839-9451
https://orcid.org/0000-0002-0626-5048
https://github.com/EduardoRosLab/From-Data-Extraction-to-Data-Driven-Dynamic-Modeling-for-Collaborative-Robots/
https://github.com/EduardoRosLab/From-Data-Extraction-to-Data-Driven-Dynamic-Modeling-for-Collaborative-Robots/
mailto:diegonavaca@ugr.es
mailto:jhelg@ugr.es
mailto:ncalvocruz@ugr.es
mailto:nluque@ugr.es
mailto:eros@ugr.es
https://doi.org/10.1016/j.robot.2025.105006
https://doi.org/10.1016/j.robot.2025.105006
http://creativecommons.org/licenses/by/4.0/

D. Navarro-Cabrera et al. Robotics and Autonomous Systems 191 (2025) 105006
Fig. 1. Stages for implementing and deploying a BRNN-based inverse dynamic model. Stage 1: Controller Calibration and Tuning - Define and tune the preliminary PC
controller to ensure accurate motion data extraction. Stage 2: Trajectory Data Acquisition -Execute multiple trajectories using the tuned controllers to generate a comprehensive
dataset. Stage 3: BRNN Inverse Model Training - Train the BRNN using the collected position (Q) and velocity (Q’) inputs, with torque (𝜏) as output. Stage 4: Hybrid Control
deployment -Implement the trained BRNN model in a feedforward + feedback control loop.
learning period and an exploration stage that can pose risks to both
the robot and its environment [5,8].

In this work, we focus on developing a methodology to create a
dataset that facilitates data-driven learning of a cobot dynamic model,
rather than calculating it analytically [9]. Building upon the previous
discussion, our main goal is to generate a dataset for studying and
developmenting supervised learning models to mitigate breakdown
risks during the learning stages with reinforcement learning or other
adaptive control alternatives. A data-driven inverse dynamic model
takes as input the current position and velocity of each robot joint
(denoted as 𝑄𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑄′

𝑐𝑢𝑟𝑟𝑒𝑛𝑡) along with the target state (denoted as
𝑄𝑡𝑎𝑟𝑔𝑒𝑡, 𝑄′

𝑡𝑎𝑟𝑔𝑒𝑡) and outputs the torque values per joint needed to
track the desired motion (denoted as 𝜏). Nevertheless, to capture this
input–output relationship accurately, we shall move the robot in a
controlled manner, which requires a preliminary controller. Note that
the different stages for collecting the data and deploying the data-
driven ML controller can be seen in Fig. 1. For this purpose, we use
a proportional derivative (PD) controller chosen for its high accuracy
when operating at a specific working point and its ease of tuning, as
it requires only two parameters per joint [10]. Note that the dataset
alone does not directly generalize to new control scenarios without a
learned model. The derived data-driven inverse model uses this dataset
to generalize and predict appropriate torques for trajectory tracking,
adapting to different motion conditions.

An accurate data-driven inverse model shall learn from a wide
variety of input–output data. Hence, we require several benchmark
trajectories representing different types of motion (to be further ex-
plained in Section 2.8). Note that the parameters of the PD controller
will depend heavily on the operating points and the specific trajectories
used for tuning. Consequently, if we were to use the same PD controller
for every trajectory (hereafter denoted as ‘‘generic PD controller’’),
its performance would be inferior compared to using different PD
controllers, each fine-tuned for a single trajectory (hereafter denoted as
‘‘fine-tuned PD controllers’’). We will further illustrate this difference
in the Results section. The PD controller is adjusted through evolu-
tionary multi-objective optimization, prioritizing movement precision
and torque values to ensure safety (see Fig. 2). Several algorithms are
used for comparative purposes, i.e., NSGA-II [11], SPEA2 [12] and
HypE [13].

Fine-tuning the PD controller requires precise adjustment of its pa-
rameters for each benchmark trajectory. Each data sequence of torque
value and reached position, obtained from individual PD adjustments,
is generated specifically to train a subsequent ML controller. This ML
controller will be able to generalize the control action and adapt it to
different types of trajectories [15]. PD control is widely used in robotic
manipulators due to its simplicity [10], minimal adjustment required
for each robot joint i.e., only two parameters per joint, and accuracy for
simple tasks within a limited range of motion. Note that the parameters
2
of the PD controller will depend heavily on the operating points and the
specific trajectories used for tuning.

Previous studies have extensively explored the use of MOEAs in
fine-tuning PD controllers across diverse robotic applications. For in-
stance, in [16], a Proportional–Integral–Derivative (PID) controller was
tuned using NSGA-II. Many of these studies were designed for robotic
manipulators. However, they were mostly used in simplistic planar
two-degree-of-freedom (d.o.f.) simulated mechanical models [16–21],
which do not resemble those commonly used in real-life industrial
applications [22]. In contrast, this work investigates diverse aspects of
using MOEAs in fine-tune PD controllers, particularly focusing on the
more complex KUKA LBR iiwa robot arm equipped with 7 d.o.f. [23].

After fine-tuning a set of PD controllers to different benchmark
trajectories, the proposed dataset captures the motion state of the cobot
(joint positions and velocities) and the commanded torque values.
This allows us to model the relationship between desired motion and
torque control. Depending on the direction of this relationship (reached
position to applied torque values or vice versa), the dataset can serve to
build either an inverse dynamic model or a forward dynamic model of
the cobot. Furthermore, using the inverse dynamic model of the system,
we can create a ML-based feedforward controller to work conjointly
with a PD controller. This ML controller will be able to generalize the
control action, adapting to different types of trajectories [15], thereby
overcoming one of the major drawbacks of PD control. We will try
this approach using a Recurrent Neural Network (RNN) as the ML
controller.

Similarly, in [15], we conducted an experiment focusing on iden-
tifying the types of trajectories best suited for inverse dynamic ML
learning. Building on that work, here, we shift our focus to the quality
of the data being learned, beyond just the trajectories themselves.
This quality is achieved by using a multi-objective approach for fine-
tuning PD controllers. We compare the performance of PD controllers
fine-tuned to each specific trajectory in the dataset with more generic
all-purpose controllers tuned to handle all trajectories simultaneously.

The main contributions of the presented work are as follows:

• Proposal and application of a methodology for dataset creation in
data-driven dynamic modeling: We describe the steps needed to
create a dataset fit for ML-based dynamic modeling. This dataset
links the state of the robot to the corresponding torque commands
per joint, thus enabling the creation of either a data-based inverse
or a direct dynamic model using ML techniques.

• Data validation through model construction: We validate our
dataset and methodology by training two RNN models to learn
the inverse dynamic model of a simulated KUKA iiwa cobot. One
model is trained using data from the fine-tuned PD set while
the other uses data from the generic PD set. The resulting RNN
dynamic models outperformed even the fine-tuned PD torque
controllers when used as feedforward controllers in a real-time

D. Navarro-Cabrera et al. Robotics and Autonomous Systems 191 (2025) 105006
Fig. 2. Control system schematic view: This figure shows the PD torque control loop flow diagram. The 4-layer architecture is adapted from EU project IMOCO4.E [14] to our
methodology. The system layer reads the desired trajectory and sends the desired position and velocity at time t ([𝑄𝑡𝑎𝑟𝑔𝑒𝑡(𝑡), 𝑄′

𝑡𝑎𝑟𝑔𝑒𝑡(𝑡)]) to the controller; the control layer sends
torque commands (𝜏(𝑡)) to the cobot; and the sensor layer returns the current state ([𝑄𝑎𝑐𝑡𝑢𝑎𝑙(𝑡), 𝑄′

𝑎𝑐𝑡𝑢𝑎𝑙(𝑡)]). Extracted data is saved for asynchronous use by the analytic layer to
update the PD controller gains (𝐾). [𝜏,𝑄𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑄𝑎𝑐𝑡𝑢𝑎𝑙] represent arrays, while [𝜏(𝑡), 𝑄𝑡𝑎𝑟𝑔𝑒𝑡(𝑡), 𝑄𝑎𝑐𝑡𝑢𝑎𝑙(𝑡)] represent the 𝑡th element of each array.
control loop. This significant performance improvement remarks
the importance of high-quality datasets for fitting data-driven
dynamic models, used as torque controllers.

The rest of the article is structured as follows: Section 2 describes
in detail the methodology for capturing the proposed dataset. Then,
Section 3 presents the experimentation and results obtained. Finally,
Section 4 shows the conclusions and challenges for future works.

2. Materials and methods

2.1. Multi-objective optimization

Optimization problems arise in multiple fields, from Engineering to
Applied Sciences [24,25]. These problems typically seek the extrema
of functions representing aspects of interest, which depend on different
variables. The function defines whether one seeks minima or maxima,
which particularizes the problem into minimization or maximization,
3
respectively. In our context, one can view the parameters of a PD
controller as the decision variables, and the resulting accuracy of
movement as the performance criterion (to be maximized in our case).

Mathematically, let f be a function in which we are interested in
finding its minimum (point and value). It is possible to define the
following optimization (minimization) problem:
minimize 𝑓 (𝑥)
𝑥 subject to 𝐿𝑖 ≤ 𝑥𝑖 ≤ 𝑈𝑖, 𝑖 = 1,… , 𝑛,

(1)

where f is an n-dimensional function of the form 𝑓 ∶ R𝑛 → R called
the objective function, and 𝑥 refers to a generic input in [𝐿1, 𝑈1] ×⋯×
[𝐿𝑛, 𝑈𝑛] ∈ R𝑛. Accordingly, feasible inputs belong to a vector subspace
in R𝑛 that is limited by a lower and an upper bound in each dimension
𝑖, i.e., 𝐿𝑖 and 𝑈𝑖 for 𝑖 = 1,… , 𝑛, respectively. This space is known as the
feasible or search space. Based on this formulation, minimization and
maximization are virtually equivalent because finding the minimum of
𝑓 (𝑥) is the same as obtaining the maximum of −𝑓 (𝑥).

D. Navarro-Cabrera et al. Robotics and Autonomous Systems 191 (2025) 105006
Sometimes, there is no further information about the objective
function, e.g., an analytical expression directly relating the variables,
and the constraints are variable bounds only. Then, the problem can be
defined as a black-box optimization problem with box constraints [24,
26], which fits well with model-tuning applications where the objective
function ultimately depends on a computer simulation [24,26]. It is
also the most common application case for evolutionary algorithms and
metaheuristics in general, as it is not feasible to obtain the solution
analytically [24,25,27]. This is the approach followed in [24,28,29].

However, in real-world problems, it may be necessary to consider
several objective functions in conflict [30,31]. Fortunately, the previous
formulation can be extended to deal with multi-objective problems with
𝑚 objective functions, 𝑓1,… , 𝑓𝑚 ∶ R𝑛 → R as follows:
minimize 𝐹 (𝑥) = (𝑓1(𝑥),… , 𝑓𝑚(𝑥))

𝑥 subject to 𝐿𝑖 ≤ 𝑥𝑖 ≤ 𝑈𝑖, 𝑖 = 1,… , 𝑛.
(2)

In this context, the m-dimensional vectors 𝐹 (𝑥) = (𝑓1(𝑥),… , 𝑓𝑚(𝑥)) ∈
R𝑚 are known as objective vectors. It is also common to call decision
vector to any feasible n-dimensional input of variables, (𝑥1,… , 𝑥𝑛).
Maintaining the single-objective scheme, solving the problem in Eq. (2)
would imply finding the decision vector that results in the objective
vector with the lowest possible value for each component. However,
provided that there are objectives in conflict, i.e., the components of
𝐹 (𝑥) are competing, the solution to the problem is not unique. Instead,
it consists of multiple trade-off points of the feasible space, and the
user who launched the optimization process must choose the decision
vector to consider [30,31]. For this reason, this person is usually called
the decision maker in multi-objective optimization.

This situation can be illustrated within the context of this work;
consider two different sets of PD controller parameters for operating
a robotic arm. One set yields the highest accuracy, while the other
ensures the safest operation in terms of applied forces. As solutions,
both are virtually equivalent, and it all depends on the final decision.
However, before that point, it has been possible to discard other options
as sub-optimal. The reason is that two different objective vectors can
be compared according to dominance, which is a key concept in multi-
objective optimization. Specifically, provided two objective vectors x
and y, x dominates y, expressed as 𝑥 ≻ 𝑦, if none of the components of x,
i.e., 𝐹 (𝑥) = (𝑓1(𝑥),… , 𝑓𝑚(𝑥)) is worse (higher, assuming minimization)
than its equivalent in y, i.e., 𝐹 (𝑦) = (𝑓1(𝑦),… , 𝑓𝑚(𝑦)), and there is at
least one in 𝐹 (𝑥) that is better than its analogue. Mathematically [30]:

𝑥 ≻ 𝑦 ↔

{

∀𝑖 ∈ 1,… , 𝑚 ∶ 𝑓𝑖(𝑥) ≤ 𝑓𝑖(𝑦),
∃𝑗 ∈ 1,… , 𝑚 ∶ 𝑓𝑗 (𝑥) < 𝑓𝑗 (𝑦).

(3)

If an objective vector dominates another, the decision vector (input
variables) producing the former is intrinsically better than that of
the latter, which can be discarded as a solution. However, neither
may dominate the other. In this situation, both vectors are called
indifferent to each other. The solutions to the problem in Eq. (2) will be
decision vectors generating indifferent non-dominated objective ones.
Accordingly, solving a multi-objective problem involves finding the
decision vectors linked to non-dominated objective ones. These points
are also known as Pareto-optimal or optimal in the Pareto sense. They
form the Pareto optimal set, and their associated objective vectors
define the Pareto front. Section 2.2 further particularizes these concepts
for the problem at hand, and Section 3.5 explains how to select points
from the Pareto front.

2.2. PD controller tuning: Optimization problem formulation

For a robot with 𝑛 joints, a PD controller is defined by a proportional
constant (KP𝑖) and a derivative one (KD𝑖) for each joint 𝑖. Thus, such a
controller can be defined by a vector 𝐾 ∈ R2𝑛 according to Eq. (4).
𝐾 = (KP0,KD0,… ,KP𝑛,KD𝑛). (4)
4
When controlling collaborative robots there are 2 main problems to
be addressed. First, accuracy in trajectory tracking; the cobot must be
accurate when following a specified trajectory. This is quantified using
the mean Euclidean distance, commonly referred to as the Mean Av-
erage Error (MAE), between the end-effector and the desired Cartesian
coordinates (benchmark trajectory) along the trajectory. See Eq. (5),
where 𝑄(𝑡)𝑡𝑎𝑟𝑔𝑒𝑡 and 𝑄(𝑡)𝑎𝑐𝑡𝑢𝑎𝑙 represent the target and actual coordi-
nates of the end-effector at time 𝑡, respectively.

𝑓𝑎(𝑄𝑡𝑎𝑟𝑔𝑒𝑡, 𝑄𝑎𝑐𝑡𝑢𝑎𝑙) =
1
𝑇

𝑇
∑

𝑡=1
|𝑄(𝑡)𝑡𝑎𝑟𝑔𝑒𝑡 −𝑄(𝑡)𝑎𝑐𝑡𝑢𝑎𝑙|. (5)

This metric is commonly used when evaluating the accuracy of robotic
manipulators and collaborative robots [32], providing a robust estima-
tion of the robot performance in executing the desired task.

The second problem lies in robot safety for HRI; the robot torque
values commanded by the controller must remain low and change
smoothly, avoiding sudden acceleration peaks. To measure this, we use
Eq. (6), where 𝜏 represents the vector of commanded torque values, 𝑇
denotes the number of steps in a trajectory, and 𝜏(𝑡) corresponds to the
torque applied at time 𝑡.

𝑓𝑡(𝜏) =
1
𝑇

𝑇
∑

𝑡=1
(𝜏(𝑡) − 𝜏(𝑡 − 1))2. (6)

We use the squared power of the derivative. This approach allows
us to measure how much torque is used throughout the trajectory
while penalizing any sudden spike in torque that may cause unsafe and
unpredictable behavior, similar to the 𝑇𝑉 metric presented in [33].

In general, higher KP and KD values improve the accuracy of the
control system by letting it take faster and more intense reactions to
trajectory deviations. However, when they become too high, they can
cause overshoots and oscillations. High PD values also lead to higher
torque values and potentially abrupt torque changes, which is unsafe
for HRI. Furthermore, the kinematic chain constituting the robot makes
the joint motions influence each other, i.e., inertia coupling effects [9].
Therefore, the KP and KD parameters of each joint must be tuned
simultaneously to find trade-off configurations.

For a given configuration vector, 𝐾, the only way to know the
MAE and 𝜏 in a specific trajectory is by executing it. Consequently, let
us define an abstract function followPath(trajectory, 𝐾) that executes
the trajectory using the specified PD parameters (𝐾) and returns the
tuple (𝑄target, 𝑄actual, 𝜏). This imaginary function may refer to a real
experiment or an accurate simulation, as in this work. In either case, it
allows computing Eqs. (5) and (6), which ultimately let us reformulate
them as 𝑓𝑎(𝐾) and 𝑓𝑡(𝐾), respectively. When using more than one
trajectory for PD tuning, as is the case with generic PD controllers, an
average across all trajectories is calculated for 𝑓𝑎 and 𝑓𝑡 .

With this modification, we can define the target optimization prob-
lem as expressed in Eq. (7). Solutions to this problem maximize the
accuracy and safety of the target cobot by minimizing the MAE and
torque values applied, respectively.
minimize 𝐹 (𝐾) = (𝑓𝑎(𝐾), 𝑓𝑡(𝐾))

𝐾 subject to 0 < 𝐾𝑖 < 𝑈𝑖, 𝑖 = 1,… , 2𝑛,
(7)

where 𝑛 is the number of joints, and 𝑈𝑖 is the upper bound of the 𝑖th
element in vector 𝐾. This upper bound is set to five times the maximum
torque value for each joint. This approach ensures that joints with
higher precision but lower power have a smaller exploration range than
those with more power but less accuracy.

For the sake of computational efficiency, the discrete-time deriva-
tive of the error will be calculated as 𝑑𝑒

𝑑𝑡 = (𝑒𝑡 − 𝑒𝑡−1), without
normalizing by the control loop frequency (250 Hz in our case). Con-
sequently, the derivative error will be amplified by a factor of 250.
To compensate for this amplification, the maximum values of the
derivative components of the PD controller will be divided by 250.
Taking all these considerations into account, the maximum values for

D. Navarro-Cabrera et al. Robotics and Autonomous Systems 191 (2025) 105006
each variable will be KP = {1600, 1600, 880, 880, 550, 200, 200}, KD
= {6.4, 6.4, 3.52, 3.52, 2.2, 0.8, 0.8}.

Once the optimization process is completed, a Pareto front is gen-
erated where each point in the Pareto front represents a specific PD
controller configuration derived during the data extraction (Fig. 1,
Stage 1 and 2). In this context, each point corresponds to a candidate
PD controller with a specific trade-off between accuracy and safety.
The resulting Pareto front set the decision-maker to choose a PD con-
troller. Please see Section 3.5 for further details regarding PD controller
selection inside the Pareto front.

The evaluation and comparison of the solution sets provided by the
MOEAs when adjusting PD gains relies on the Hypervolume Indicator
(HV) [34], a well-established metric in multi-objective optimization.
It is defined around the concept of dominance between solutions. As
explained in Section 2.1, a solution s is said to dominate another solu-
tion t when s outperforms t in at least one objective without obtaining
inferior results in the rest [35]. Based on this idea, the HV quantifies
the quality of the solutions found by a MOEA by measuring the volume
of the objective space they dominate (Fig. 4.a). More specifically, given
a set of sorted non-dominated solutions 𝑆 generated by a MOEA, which
defines a Pareto set, and a reference point 𝑅 (typically set to a point
dominated by all solutions), the HV is calculated according to Eq. (8).

HV(𝑆,𝑅) =
𝑁−1
∑

𝑖=1
((𝑆𝑎[𝑖 + 1] − 𝑆𝑎[𝑖]) ∗ (𝑅𝑡 − 𝑆𝑡[𝑖]))

+ ((𝑆𝑎[𝑁] − 𝑅𝑎) ∗ (𝑅𝑡 − 𝑆𝑡[𝑁])),

(8)

where 𝑆𝑎[𝑖] and 𝑆𝑡[𝑖] refer to the objective values of the 𝑖th solution in
the Pareto front according to 𝑓𝑎 and 𝑓𝑏, respectively. Similarly, 𝑅𝑎 and
𝑅𝑡 are the objective values of the reference point in the corresponding
objectives. Finally, 𝑁 is the size of the Pareto front.

The HV is typically normalized by the volume of the entire objective
space, resulting in HV𝑛𝑜𝑟𝑚 (see Eq. (9)). This way, it provides a scalar
value between 0 and 1, where 1 indicates the ideal situation in which
the entire objective space is covered. This metric provides a compre-
hensive comparison criterion of the spread and convergence rate of the
Pareto fronts found by the different MOEAs. Accordingly, all HV values
used in Section 3 will be normalized.
HV𝑛𝑜𝑟𝑚(𝑆,𝑅) =

𝐻𝑉 (𝑆,𝑅)
𝑅𝑎𝑅𝑡

. (9)

Given the wear and tear occurring in the robot during the tuning
process, achieving fast convergence is essential. Thus, a strict termi-
nation criterion is necessary. In this work, we will use the stability of
the evolution of the HV as a termination criterion. A MOEA will be
considered to have converged when the HV (rounded to three decimals)
stops improving for five consecutive generations, at which point the
algorithm halts. A generation is considered not to have improved when
the difference between the HV defined by its current population of
solutions and that of the previous one is less than 0.001. It is also
noteworthy to mention that even if the MOEA continues to find new
Pareto-dominant solutions, it automatically halts upon reaching 4000
evaluations. This limit is set to ensure computational efficiency and
prevent excessive runtime, as improvements beyond this point tend to
be marginal while significantly increasing computational cost.

2.3. MOEA algorithms: Pseudo-code for NSGA-II, SPEA2 and HypE

In the selection of the MOEA for dataset creation, we evaluated the
performance of three different algorithms: NSGA-II [11], SPEA2 [12],
and HypE [13]. We also compared the results of these three algorithms
with those of a random search, serving as a baseline. Additionally,
we provide the pseudo-code for each algorithm to offer the reader a
clearer understanding of their intricacies and functionality, particularly
tailored to our specific use case. The detailed pseudo-code fragments
are presented in algorithm 1.

The initial population is generated randomly, with each variable
taking values between 0 and an upper limit as discussed in Section 2.2.
5
2.4. Analytical cobot dynamic modeling and its limitations

The dynamic model of a robot describes the relationship between
the torque applied by the joint motors and the resulting motion. This
relationship is typically articulated through the Lagrange formulation
as expressed below:
𝜏 = 𝑀(𝑞)𝑞′′ + 𝐶(𝑞, 𝑞′) + 𝑔(𝑞) + 𝜀(𝑞, 𝑞′, 𝑞′′), (10)

where, (𝑞, 𝑞′, 𝑞′′) terms represent the joint positions, velocities and ac-
celerations, respectively. The terms 𝑀(𝑞), 𝐶(𝑞, 𝑞′), and 𝑔(𝑞) correspond
to the inertia matrix, Coriolis effect, and gravitational pull, respectively.
Finally, the term 𝜀(𝑞, 𝑞′, 𝑞′′) encompasses factors that are not considered
in the dynamic model, such as friction effects or the elastic components
within the cobot. In the dynamic models of many rigid robots, the term
𝜀(𝑞, 𝑞′, 𝑞′′) is assumed to be negligible since their high-ratio gear boxes
cause M(q) and C(q,q′) dynamic terms to have a rather higher impact
than 𝜀(𝑞, 𝑞′, 𝑞′′).

Conversely, in cobotics, safety features, such as less powerful mo-
tors in the joints or the presence of elastic components, amplify the
influence of 𝜀(𝑞, 𝑞′, 𝑞′′) in the dynamics of the cobot. Consequently, an
expansion of the original formulation becomes imperative.

While several works have pursued the modeling of the friction
component [36,37], modeling becomes more complicated when dealing
with the effects of elastic components [38]. Therefore, the dynamic
modeling of collaborative robots remains a challenge, demanding not
only an accurate representation of rigid body dynamics, but also cap-
turing the elastic behavior inherent in the cobot joints. Due to the
mathematical intractability caused by these elastic behaviors, cobot
dynamic modeling is prone to be learned rather than calculated, unlike
traditional rigid industrial robots [32,39,40].

2.5. The collaborative robot

The lightweight robot, LBR iiwa, from KUKA® was used as our
virtual robotic demonstrator. LBR iiwa is an industrial robot specifi-
cally designed for human–robot collaboration (HRC), and as such, it
integrates several sensors to measure torque in all of its joints and
offers the Fast Research Interface (FRI), able to send torque commands
from an external computer. This interface will allow us to use torque
control to balance accuracy and safety. The connection between the
PD controller and FRI has been done using the interface provided
by [41]. All experiments were conducted in simulation, using the
Gazebo simulator [42]. The simulation was reset after each trajectory
to ensure determinism during controller testing.

2.6. Data acquisition method: Torque control loop

To create a data-driven dynamic model, it is mandatory to capture
information about the relationship between the torque and motion. For
this purpose, the cobot must execute specific trajectories i.e., bench-
mark trajectories. However, to allow trajectory execution, a preliminary
torque controller is essential. The type of motion generated by this
preliminary torque controller serves as the basis for the final dynamic
cobot model, and as such, the accuracy and safety of this preliminary
torque controller are crucial for obtaining high-quality data. As in [15],
where different trajectories are used, each fine-tuned with a specific
PD controller, here we propose finding optimal examples of motion
that can then be extrapolated into a general-purpose controller using
ML. PD controllers, known for their simplicity, are widely used in
motion control [10]. As demonstrated later in this study, while not
suitable for general applications, they exhibit remarkable accuracy
when precisely tuned to a specific motion (see Section 3.4). In the
creation of our dataset, we will use a torque-based PD controller, with
gravity compensation provided by the LBR iiwa internal controller. The
torque control loop is illustrated in Fig. 2.

D. Navarro-Cabrera et al. Robotics and Autonomous Systems 191 (2025) 105006
2.7. Data acquisition method: 4-layer architecture

The proposed method for data gathering follows a 4-layer archi-
tecture (Fig. 2) inspired by [14,43]. This 4-layer architecture will be
interconnected using ROS2 (Robot Operating System 2) [44] and can
be described as follows:

• Sensor/Actuator Layer: This layer comprises sensors and actua-
tors used by the LBR iiwa cobot. It receives instructions from the
controller and provides data on joint states.

• Control Layer: The PD controller is located at this layer and
receives information regarding the next desired set-point. It uses
the PD parameters (proportional gain, KP, and derivative gain,
KD) and sends the corresponding torque commands to the motor
actuators.

• System Layer: Responsible for path planning, this layer sends
data related to the desired benchmark trajectory to be followed
to the Control Layer.

• Analytic Layer: In this layer, MOEAs are used. These algorithms
adjust PD controller gains based on accuracy and safety measure-
ments integrated into their fitness functions, ensuring precision
and safety in the resulting motion.
6
The System, Control, and Actuator/Sensor layers operate on a real-
time loop at 250 Hz frequency. Within this time frame, the System
layer sends the benchmark trajectory to the Control layer, which, in
turn, transmits the torque commands to the cobot and receives the
updated sensor data. The torque value, position, and velocity of each
joint are recorded in an array and written to a file once the trajectory is
completed. Subsequently, the analytic layer reads this data file to eval-
uate performance and communicates asynchronously with the Control
layer to update the PD gains. This division ultimately facilitates the
scalability of our methodology by separating the Analytic and System
layers from the Control and Sensor ones. Furthermore, it enables the
use of multiple cobots following the same trajectory in parallel.

2.8. Benchmark trajectories for dataset inclusion

Incorporating benchmark trajectories into our dataset aligns with
the findings from [15]. Specifically, we incorporate spiral and random
trajectories, chosen for their ability to generate meaningful datasets
without unnecessary data volume [15]. This selection ensures that the
dataset remains suitable for the efficient training of ML controllers.
We also use rectilinear trajectories, which combine linear movements

D. Navarro-Cabrera et al. Robotics and Autonomous Systems 191 (2025) 105006
Fig. 3. Benchmark trajectories used for data gathering. Snapshots of the different benchmark trajectories included in the dataset: spiral, rectilinear, and random trajectories.
with sharp turns. These trajectories aim to enhance the ML controller
understanding when operating under high acceleration and velocity
gradients, thus resulting in larger inertia values. Examples of the tra-
jectory dataset are illustrated in Fig. 3. It is necessary to differentiate
between traditional dynamic model identification, which relies on ex-
citation trajectories for analytical modeling [45], primarily for rigid-
bodied robots, and data-driven dynamic models, which use motion
examples to learn optimal torque commands for desired movements,
especially for non-rigid-bodied cobots [15]. Consequently, trajectories
suitable for one form of modeling may not be suitable for the other.

Rigid-bodied robot modeling frequently uses long trajectories last-
ing dozens of seconds, needing control in position mode. These trajecto-
ries typically consist of a combination of Fourier series and polynomial
functions, helping in parameter identification for the robot dynamic
model equations [46]. However, due to their length, torque control is
not commonly applied, resulting in suboptimal torque commands for
desired movements. To the best of our knowledge, no study has yet
investigated the optimal trajectories for data-driven dynamic modeling.
Therefore, it is essential to define our set of trajectories to cover a broad
range of possible movements.

To facilitate the design of trajectories for the KUKA LBR iiwa robot
arm, we establish a working space that defines the area in which our
training is focused. This space defines the range of motion for the
end-effector and can be re-defined according to the specific tasks for
the cobot. In our scenario, the working space boundaries are X =
7
[−0.1,0.1], Y = [0.45,0.65] and Z = [0.3,0.5], with the origin point
(0,0,0) defined as the center of robot base. These boundaries position
the working space in front of the robot arm, trying to emulate common
usage scenarios for this type of robotic arm.

The spiral trajectories (see Fig. 3 Spiral 0, 1 and 2) in these tests
were generated using Eq. (11), where 𝐴𝑥1, 𝐴𝑥2 and 𝐴𝑥1 correspond
to the chosen axes [𝑋, 𝑌 ,𝑍], [𝑌 ,𝑍,𝑋], or [𝑍,𝑋, 𝑌], depending on the
spiral orientation. All three cases are included in the dataset to facilitate
movements along any Cartesian axis effectively. Similarly, 𝑐1, 𝑐2 and
𝑐3 denote the center of the trajectory, which is fixed at Cartesian
coordinates 𝑥 = 0.0, 𝑦 = 0.55 and 𝑧 = 0.4. In this equation, 𝑇 stands for
the total number of steps in the trajectory, with 𝑡 ∈ 𝑇 representing the
step at time 𝑡. The parameter 𝜃 determines the number of revolutions
the end-effector completes around the center point. More specifically,
𝜃 = 2𝜋

𝑇 ∕N◦ of revolutions , where ‘‘N◦ of revolutions’’ denotes the number of
revolutions around the center-point.
𝐴𝑥1 = 𝑐1 + cos(𝜃𝑡)𝑟,

𝐴𝑥2 = 𝑐2 + sin(𝜃𝑡)𝑟,

𝐴𝑥3 = 𝑐3 + 0.1 𝑡
𝑇
,

𝑟 = 0.1
|

|

|

|

𝑡 − 𝑇
2
|

|

|

|

.

(11)

For the rectilinear trajectories (see Fig. 3 Rectilinear 0, 1 and 2), we
define a series of key points using Eq. (12), where 𝑁 represents the

D. Navarro-Cabrera et al. Robotics and Autonomous Systems 191 (2025) 105006
total number of key points and 𝑖 ∈ 𝑁 . After determining all the key
points, we implement a quintic polynomial interpolation in Cartesian
space using the Robotics Toolbox library [47].

Both spiral and rectilinear trajectories undergo changes in size to
capture different speeds and variations in speed within the dataset. In
the case of spiral trajectories, they initially expand to the maximum
radius of the working space before contracting, whereas rectilinear tra-
jectories begin with longer and faster movements to gradually decrease
in size towards the midpoint of the trajectory.

𝐴𝑥1 =

{

𝑐1 + 𝑟 if 𝑖%4 == 1 or 𝑖%4 == 2,
𝑐1 − 𝑟 otherwise,

𝐴𝑥2 =

{

𝑐2 + 𝑟 if 𝑖%4 > 1,
𝑐2 − 𝑟 otherwise,

𝐴𝑥3 = 𝑐3 + 0.1 𝑖
𝑁

,

𝑟 = 0.1 − 0.05
|

|

|

|

𝑖 − 𝑁
2
|

|

|

|

.

(12)

In the case of the random trajectories (see Fig. 3 Random 0, 1 and
2), random points are selected within the working space, and then
interpolation in joint space is performed using quintic polynomial
interpolation.

The number of steps in each trajectory determines the motion speed,
significantly affecting the resulting dynamic model. For this reason, the
design choice of this parameter will be addressed in Section 3.3.

2.9. Dynamic model learning

To train a ML dynamic model to validate our methodology, the
collected data will be organized into tuples (𝑝𝑖(𝑡), 𝑣𝑖(𝑡), 𝜏𝑖(𝑡)) represent-
ing, position, velocity and torque of joint 𝑖 at time 𝑡, respectively. This
arrangement allows the ML dynamic model to infer those torque values
per link needed to reach a desired 𝑝𝑖(𝑡 + 1) and 𝑣𝑖(𝑡 + 1) based on past
and current positions and velocities per link. The collected torque data
will be the one extracted from the PD, before gravity compensation is
added, as this module is implemented inside the robot system after the
torque command is sent through FRI.

The ML model to be used is based on a previous work in [15],
consisting of a bidirectional recurrent neural network (BRNN) capable
of learning the inverse dynamic model of a cobot. Similarly to the
approach followed in [15], we will use the BRNN inverse dynamic
model of our cobot as a feedforward controller, integrated with a PD
watchdog for feedback support (refer to Section 3.6). Our BRNN will be
designed to incorporate the overall dynamic information of the robot,
abstracting it from the trajectories obtained with each of the previously
tuned PD controllers. This enables the BRNN to operate in a broader
workspace without compromising performance, unlike a PD controller
tuned for a single working point.

The dynamic dataset will be partitioned into three different subsets:
training, validation, and testing. The training subset will be used to
train the BRNN inverse dynamic model, while the validation subset
will be used to calculate the validation loss during the training process,
i.e., the validation loss will indicate when training should be stopped.
Subsequently, the test subset will provide an evaluation of the BRNN
dynamic model performance. Specifically the training subset will com-
prise all spiral and rectilinear trajectories, along with the initial random
trajectory. The second random trajectory (Random 1) will serve as the
validation subset, and the last random trajectory (Random 2) will serve
for testing the BRNN performance.

3. Results

3.1. Comparison metrics and methodology

We used the HV as the primary metric to compare the solutions
generated by the MOEAs, i.e., NSGA II, SPEA2 and HypE based on
8
Table 1
Experiment settings for algorithm comparison.
 Parameter Value(s)
 N◦ trials 5
 N◦ of variables 14 (2 per joint)
 Max. n◦ evaluations 4000
 HV reference point [0.03 (MAE), 0.5 (torque function)]
 Trajectory length 1000 timesteps (4 s)
 N◦ of trajectories 9

the Pareto front for each solution obtained during the tracking of
benchmark trajectories. As explained in Section 2.2, the HV calculates
the area between the Pareto front, i.e., set of non-dominated solutions
found by a MOEA, and a reference point (see Fig. 4.a for a visual
representation). This reference point was standardized across all Pareto
fronts and selected based on the maximum allowed values for both ob-
jective functions. It does not represent a real controller, but rather the
maximum values allowed for each objective function. More specifically,
the maximum value for the accuracy function was set to a mean average
error of 0.03 m (3 cm), and the maximum for the torque function
was 0.5. Any point exceeding these values was discarded. Note that
the selection of these values can be somewhat arbitrary, as long as
they are not too extreme, because they only impact the weight of the
extremes of the Pareto front. Using the same reference point for all
comparisons ensures that any possible bias introduced by this selection
will be shared in all cases, leading to a fairer comparison among
algorithms. Due to the stochastic nature of MOEAs, all executions were
repeated 5 times to ensure the robustness and reliability of the results.
For statistical analyses, we used the repeated measures ANOVA test to
discern if there are significant differences in our comparisons and paired
t-tests as Post-hoc tests to identify where those differences lie. To do
so, the mean values obtained for each trajectory from Fig. 3 were
used for analysis. Later, the difference among algorithms was analyzed
between trajectories. This approach allows us to identify significant and
consistent differences across all trajectories, thus enabling the selection
of the most suitable algorithm with the appropriate hyperparameters.
All the settings for the algorithm comparison are detailed in Table 1.

3.2. MOEA selection and fine-tuning

To select the MOEA to be used in the dataset creation, we assessed
the performance of three different algorithms, namely NSGA-II [11],
SPEA2 [12], and HypE [13]. NSGA-II and SPEA2 were chosen due to
their widespread use in multi-objective optimization [48,49]. HypE was
also selected as a popular indicator-based MOEA focused on improving
our main metric: the HV. We also compared the results of these three al-
gorithms with those of a random search consisting of 4000 evaluations,
which served as a baseline for comparison.

All the MOEAs shared the same crossover and mutation operators,
and also used the same termination criterion. Due to the encoding used
in our problem, i.e., real numbers instead of a binary representation,
we decided to use Simulated Binary Crossover (SBX crossover) and
polynomial mutation. The mutation probability was set to 1

𝑁 , where
𝑁 represents the number of variables, i.e., 7 joints with 2 variables
per joint, for a total of 14 variables. MOEA comparison was initially
performed with a distribution index of 20, a common starting point as
observed in [50], but was later fine-tuned to find the optimal value.
This adjustment aimed to optimize the performance of these MOEAs
for the problem at hand.

Tables A.6 and A.7 in Appendix A contain the results obtained in
each trajectory. These tables compare four different population sizes
(20, 40, 60 and 80 individuals) since this parameter directly influences
both the convergence speed, i.e., number of evaluations, and the final
quality of the Pareto front. As observed in Tables A.6 and A.7, a popu-
lation size of 20 individuals leads to premature convergence, typically

D. Navarro-Cabrera et al. Robotics and Autonomous Systems 191 (2025) 105006
Fig. 4. (a) Diagram depicting the calculation of the hypervolume indicator. This metric is obtained by calculating the area between the Pareto front and a reference point. A
higher value indicates a better Pareto front. (b) Differences between the results obtained with a population of size 40 and 60 with the SPEA2 algorithm across all trajectories. We
can see that a population of size 60 achieves better Hypervolume values but also takes longer to converge. (c) Comparison when following the Spiral 0 path at different speeds.
Trajectory duration is measured in time steps, with each step taking 2 ms. As can be seen, longer durations (slower movements) correspond with higher Hypervolume values,
which points to an easier dynamic.
occurring within 500–1000 evaluations. It resulted in similar (or even
worse) performance outcomes to the 4000 random evaluations. Hence,
this population size was discarded from further consideration. Con-
versely, when using a population size of 80 individuals, convergence
often requires more evaluations, occasionally reaching the maximum
allowed limit (4000). Despite this large number of evaluations, the
performance outcomes did not exhibit noticeable differences with those
generated with a population size of 60 individuals. Consequently, we
discard the largest population size as well.

When comparing the three selected MOEAs in Table A.8, we ob-
served no discernible differences among the Pareto fronts, i.e, the
HV distribution remains similar across all cases. Nevertheless, when
comparing the convergence speed, as indicated in (Tables A.7 and
A.9), HypE presents a slower convergence rate compared to NSGA-II
and SPEA2, which is even more noticeable with smaller population
sizes. Consequently, we discarded HypE for our problem domain. Our
analysis did not reveal any significant difference in convergence speed
between NSGA-II and SPEA2. The primary difference between these
2 algorithms lies in their chromosome selection, that is, the use of
the crowding distance metric in NSGA-II and the neighbor euclidean
distance in SPEA2. Nevertheless, due to strict limits on the number
of evaluations, these differences do not seem to be reflected in the
data. Thus, we used both algorithms in the following sections. Note
that despite finding no significant differences in the HV distribution
among the 3 MOEAs, we observed a noticeable improvement over the
random search whenever the population size was above 20 individuals
(with p-values of 0.0006 for NSGA-II, 0.014 for SPEA2 and 0.020 for
HypE when the population size is 40, and even smaller values for
9
larger population sizes). This indicates the importance of algorithm
selection. However, in the case of our chosen MOEAs, the differences
among algorithms, mainly related to the selection of individuals of the
same rank, are not significant enough to impact the results of these
tests. When comparing population sizes of 40 and 60 individuals, both
NSGA-II and SPEA2 show significant differences in both the HV (0.03
and 2.6∗10e−6 respectively) and the number of evaluations (0.001 and
0.0003). This suggests two possible choices: either using a population
size of 40 individuals, which will cause less wear and tear on the robot
joints at the cost of a slightly worse Pareto front, or using a population
size of 60 individuals to achieve optimal results. In our case, we will
proceed with a population size of 60 individuals in the following tests.

An example of these differences between population sizes 40 and
60 can be found in Fig. 4.b, where we see the HV and number of
evaluations across all trajectories for the SPEA2 algorithm.

As mentioned before, these tests have been performed with a distri-
bution index of 20 for both the mutation and crossover operators, but
further tuning of this parameter is advisable [50]. The results of these
tests can be seen in Table 2. Only the average of all trajectories is shown
in this table for the sake of clarity, but it is important to remember that
each trajectory has a different range of values, as seen in Fig. 4.b.

The results of the statistical analysis can be seen in Table 3. When
performing a repeated measures ANOVA, we find that using the NSGA-
II algorithm there are significant differences both in the HV and the
number of evaluations (p-values of 0.00 and 0.05, respectively), while
SPEA2 only shows a notable difference in HV (p-values of 0.00 and
0.24).

When performing the post-hoc test, we find no difference between
values of 1 and 10 in either algorithm. In the same way, a value

D. Navarro-Cabrera et al. Robotics and Autonomous Systems 191 (2025) 105006
Table 2
Algorithm tuning: Distribution index comparison.
 Algorithm Metric 1 10 20 100
 NSGA-II Hypervolume 0.769 0.769 0.765 0.756
 N◦ evaluations 2185 2177 2231 1897
 SPEA2 Hypervolume 0.767 0.767 0.765 0.753
 N◦ evaluations 2134 2118 2168 1890

Table 3
Algorithm tuning: Statistic analysis of distribution index values.
 Algorithm Metric ANOVA 1/10 p-val. 10/20 p-val. 20/100 p-val.
 NSGA-II Hypervolume 0.00 0.96 0.13 0.00
 N◦ evaluations 0.05 0.95 0.69 0.02
 SPEA2 Hypervolume 0.00 0.86 0.23 0.00
 N◦ evaluations 0.24 0.90 0.80 0.04

of 100 seems to underperform in both algorithms but also converge
slightly faster. Even though we cannot discard the null-hypothesis when
comparing values 10 and 20, a slight trend can be perceived (smaller
values seem to work better), especially when looking at Table 2. Thus,
it seems advisable to use a distribution index of 10 instead of the default
value of 20.

3.3. Analysis of trajectory speed

As discussed in Section 2.8, the length of the benchmark trajectory,
that is the number of time steps, significantly influences the robot speed
and, consequently, its dynamics and the extracted data. Therefore, we
examined the results obtained by applying our optimization algorithms
to benchmark trajectories while varying their temporal duration. Fig.
4.c illustrates the results obtained from the spiral path (Spiral 0)
depicted in Fig. 3. These trajectories follow identical paths but vary in
the number of time steps, ranging from 900 steps (equivalent to 3.6 s,
resulting in faster motions) to 1500 steps (equivalent to 6 s, resulting
in slower motions). Note that we use always 250 Hz, thus 250 steps per
second.

As depicted in Fig. 4.c, slower trajectories are easier to track,
leading to an increase in the HV. This reflects the fact that slower trajec-
tories show simpler and more linear dynamics, while faster movements,
characterized by more ballistic motion, give rise to more complex
dynamics with stronger nonlinear effects. Note that this effect is not
linear and, consequently, the difference between a trajectory of 900
time-steps and one of 1000 is much higher than the difference between
1000 and 1100. When attempting to execute trajectories in 800 time-
steps, the values of the objective functions typically fall outside of the
values chosen as the reference point (MAE of 0.03 and torque function
of 0.5), that is, trajectories become too risky to optimize. This means
that the data extracted during dataset creation should be well-matched
and coordinated to the task to be performed by the final controller. In
some cases, it may even be advisable to include different speeds for
each path during the data extraction phase.

3.4. Comparison between generic and fine-tuned PD

To illustrate the necessity of fine-tuning PD controllers for each
trajectory individually, and to highlight the challenge of achieving a
universal control system applicable to various trajectories, a set of
‘‘generic controllers’’ underwent tuning using the NSGA-II algorithm
with a population size of 60 and a distribution index of 10. Each
controller was evaluated using an average of every trajectory. Hence,
if a single PD controller could perform well on every trajectory, or
if the designed trajectories were too similar, we would expect similar
performance between the generic controllers and those fine-tuned using
only one trajectory each. Nevertheless, Table 4 illustrates a significant
10
Table 4
Comparison between general and fine-tuned PD. Hypervolume Indicator is used to
compare Pareto fronts. A higher value indicates a better Pareto front.
 Trajectory General Fine-tuned
 Spiral 0 0.779 ± 0.008 0.806 ± 0.015
 Spiral 1 0.652 ± 0.007 0.693 ± 0.012
 Spiral 2 0.738 ± 0.007 0.759 ± 0.005
 Rectilinear 0 0.7 ± 0.006 0.729 ± 0.013
 Rectilinear 1 0.599 ± 0.016 0.646 ± 0.013
 Rectilinear 2 0.73 ± 0.008 0.746 ± 0.016
 Random 0 0.792 ± 0.012 0.835 ± 0.005
 Random 1 0.835 ± 0.009 0.847 ± 0.011
 Random 2 0.823 ± 0.003 0.839 ± 0.003

difference in performance between the general and fine-tuned con-
trollers. This difference is particularly noticeable when attempting to
balance the torque value and accuracy, as depicted in Fig. 5.a where the
biggest difference is observed in the central region, while the extremes
show a closer alignment.

3.5. Decision making: Controller selection

Once the final Pareto front is obtained, selecting one controller
for each trajectory becomes crucial to avoid conflicting data. To that
aim, different approaches to controller selection exist, as documented
in [48]. In our case, an a posteriori preference method was used, that
is, the selection process occurred after the search concluded.

Many different approaches to controller selection are plausible, such
as measuring the distance of each point to a desired optimum [51].
However, determining this optimum value beforehand is typically not
feasible in a real-world setting such as the one being emulated here.
Alternatively, another possible approach is to use a utility function to
weight each objective [52]. However, note that accurately weighting
each objective can be challenging, which is one of the primary reasons
for using a multi-objective algorithm.

In this study, we want to emphasize the knee-based approach, which
prioritizes finding the optimal trade-off between objectives [53–55].
There are different methods for defining a knee in a Pareto front, such
as measuring the angle between nearby points [53] or specifying a
desired trade-off between objectives [54]. While these methods often
identify multiple points of interest requiring expert evaluation, this
study favors those approaches that yield a single optimal value, such as
the normal boundary intersection or line-distance-based method [56].
This method involves drawing a line between the two extremes of
the Pareto front and calculating the perpendicular distance towards
the origin of each non-dominated solution to this line (see Fig. 5.b).
This method shares similarities with the Hypervolume-based approach,
particularly when the HV reference point for calculating the dominated
area is based on the maximum values of the Pareto front in each
objective.

3.6. Use case example; the BRNN controller within a feedforward control
loop

To demonstrate the usefulness of storing dynamic robot information
extracted from MOEA optimal controllers into a dataset for training any
ML controller, we trained different BRNN-based dynamic models of the
robot using trajectories obtained from a tuned PD controller as in [15].
Moreover, to evaluate the influence of dataset quality on the BRNN-
based dynamic model, we trained two models: (a) using data extracted
with generic PD controllers, and (b) using data extracted with fine-
tuned, trajectory-specific PD controllers (see Section 3.4). Both models
were trained with data divided identically and the same configuration,
including hyperparameters.

The two BRNN-based dynamic models consisted of 64 GRU units
and used a temporal window of 97 time steps, accounting for time

D. Navarro-Cabrera et al. Robotics and Autonomous Systems 191 (2025) 105006
Fig. 5. (a) Comparison between generic and fine-tuned controllers. The generic controllers have been tuned using all the trajectories in the dataset, while the fine-tuned ones only
use the specific trajectory in which they are being tested. (b) Diagram depicting the calculation of the line-based knee. A line is drawn between the extremes of the Pareto front
and the perpendicular distance between said line and each non-dominated solution is used to find the knee-point. The trajectory shown in both cases is Spiral 1.
steps [t−48, t+48]. During the training stage, values corresponding to
future time steps were known in advance; however, during the infer-
ence stage, they were substituted with the desired trajectory values.
The BRNN-based model trained with data extracted from fine-tuned,
trajectory-specific PD controllers achieved an 𝑅2 value of 0.94 on the
test set, indicating high prediction accuracy, whereas the model trained
with data from generic PD controllers achieved a lower prediction
accuracy, with an 𝑅2 value of 0.87. Both BRRN-based models were
used as feedforward controllers, both following the non-parametric
inverse dynamic configuration (NID) architecture described in [15].
The feedforward controller was used conjointly with a feedback PD
controller to prevent drift from the actual trajectory, i.e, as a watch-dog
or complementary safety controller only becoming significantly active
in case of major deviations. The resulting control loop is depicted in
Fig. 7.a.

For tuning the feedback PD watch-dog controller, we followed the
same steps as for the generic PD controllers described in Section 3.4. We
used lower upper limits for each variable to be tuned, thereby limiting
their overall control actions, as the main contributor in the control loop
should be the feedforward controller. The upper limits used were KP =
{320, 320, 176, 176, 110, 40, 40}, KD = {1.28, 1.28, 0.7, 0.7, 0.44,
0.16, 0.16} (five times lower than in Section 2.2).

To demonstrate the dominance of feedforward control action, we
compared the Torque Time Integral (TTI) provided by both the feed-
back (PD) and feedforward (BRNN model) controllers for each tra-
jectory (see Table 5). The TTI offers a clear measure of the energy
output by each controller, revealing that the feedforward controller
had a significantly greater impact on the overall control system output.
In contrast, the PD watchdog controller primarily corrected minor
deviations that occurred during the trajectory execution.

The influence of data quality within the dynamic dataset on the
subsequent performance of the BRNN-based controller was clearly il-
lustrated when comparing the MOEA Pareto front obtained in four
different scenarios in torque-control trajectory-tracking: (1) feedback
control loop using generic PD controllers, (2) feedback control loop
11
Table 5
Torque Time Integral (TTI) in N m*s provided by both the feedback (PD) and feed-
forward controllers (BRNN-based model trained using data extracted from fine-tuned,
trajectory-specific PD controllers) for each trajectory. The feedforward component
torque contributes significantly more to the overall torque control action within the
control loop.
 Trajectory PD watch-dog Feedforward model
 Spiral 0 2145 ± 185 13201 ± 103
 Spiral 1 2920 ± 236 10026 ± 47
 Spiral 2 2394 ± 97 15022 ± 89
 Rectilinear 0 4194 ± 330 9849 ± 41
 Rectilinear 1 4569 ± 166 9443 ± 114
 Rectilinear 2 4426 ± 153 10353 ± 109
 Random 0 2711 ± 116 7402 ± 60
 Random 1 3484 ± 230 7587 ± 29
 Random 2 3128 ± 82 6458 ± 110

using fine-tuned, trajectory-specific PD controllers, (3) feedforward
+ watch-dog PD control loop using a BRNN-based inverse dynamic
model trained with data extracted from generic PD controllers, and (4)
feedforward + watch-dog PD control loop using a BRNN-based inverse
dynamic model trained with data extracted with fine-tuned, trajectory-
specific PD controllers. Cases 1 and 2 are extracted from the Pareto
fronts shown in Section 3.4. The Pareto front results (see Fig. 7.b)
revealed the advantage of using a dataset from which an inverse data-
based dynamic model could be extracted, as in cases 3 and 4, where
the Pareto front consistently outperformed the best results obtained for
cases 1 and 2. When comparing cases 3 and 4, the results confirmed the
advantage of having quality data for extracting the data-based inverse
dynamic model for the robot. There was a clear improvement achieved
when using fine-tuned data, particularly noticeable in the accuracy
function (𝐹𝑎(𝑄𝑡𝑎𝑟𝑔𝑒𝑡, 𝑄𝑎𝑐𝑡𝑢𝑎𝑙)), resulting in a lower mean average error
for the same torque function (See Fig. 6).

D. Navarro-Cabrera et al. Robotics and Autonomous Systems 191 (2025) 105006
Fig. 6. Snapshot from the video comparing the accuracy of a BRNN model trained with fine-tuned data and one trained using generic PD data. The video can be found at
https://youtu.be/JKbuu6ykNJs.
Fig. 7. (a) Flow diagram of the Feedforward + watch-dog PD torque control loop. (b) Comparison of the MOEA Pareto front obtained in four different scenarios in torque-control
trajectory-tracking: (blue triangle) feedback control loop using generic PD controllers, (yellow circle) feedback control loop using fine-tuned, trajectory-specific PD controllers,
(purple pentagon) feedforward + watch-dog PD control loop using a BRNN-based inverse dynamic model trained with data extracted from generic PD controllers, and (red star)
feedforward + watch-dog PD control loop using a BRNN-based inverse dynamic model trained with data extracted with fine-tuned, trajectory-specific PD controllers. Tracked
trajectories depicted are: Spiral 1 (up), which was part of the training set, and Random 2 (down), which was only used in the test set. The knee point used for the fine-tuned
dataset creation is marked for an easier comparison of the improvements over the original PD controller. The set of controllers obtained using feedforward BRNN inverse dynamic
models improves upon the results obtained by the fine-tuned PDs, and a clear enhancement is observed when training the BRNN-based inverse dynamic model with data extracted
from the fine-tuned PD controllers instead of generic PD controllers.
4. Conclusions

The presented work addresses challenges in creating a dataset for
data-driven dynamic model identification of a collaborative robot. This
requires the use of pre-existing controllers that can be fine-tuned to
different trajectories, facilitating the gathering of richer samples for
the dataset. As demonstrated, this fine-tuning can be achieved by
12
combining PD control and MOEAs to ensure both accuracy and safety
in generated motions. To evaluate this PD-MOEAs combination, we
conducted tests comparing NSGA-II, the state of the art MOEA used
in most robotic PID applications [48] with two similar MOEAs, SPEA2
and HypE.

We have also demonstrated the potential of constructing a dynamic
dataset designed for highly nonlinear dynamic systems, such as cobots.

https://youtu.be/JKbuu6ykNJs

D. Navarro-Cabrera et al. Robotics and Autonomous Systems 191 (2025) 105006
Table A.6
Algorithm comparison: Hypervolume indicator.
 Algorithm Pop. size Spiral 0 Spiral 1 Spiral 2 Rect. 0 Rect. 1
 Random 4000 0.78 ± 0.004 0.66 ± 0.003 0.74 ± 0.006 0.68 ± 0.005 0.59 ± 0.012
 NSGA-II 20 0.77 ± 0.011 0.65 ± 0.029 0.73 ± 0.015 0.68 ± 0.027 0.61 ± 0.028
 40 0.78 ± 0.019 0.68 ± 0.004 0.75 ± 0.015 0.71 ± 0.012 0.63 ± 0.005
 60 0.80 ± 0.020 0.68 ± 0.018 0.75 ± 0.006 0.72 ± 0.007 0.64 ± 0.012
 80 0.79 ± 0.017 0.69 ± 0.008 0.76 ± 0.009 0.72 ± 0.005 0.64 ± 0.010
 SPEA2 20 0.77 ± 0.023 0.66 ± 0.026 0.73 ± 0.015 0.70 ± 0.019 0.61 ± 0.014
 40 0.78 ± 0.006 0.68 ± 0.011 0.75 ± 0.006 0.71 ± 0.011 0.64 ± 0.011
 60 0.80 ± 0.009 0.69 ± 0.010 0.76 ± 0.018 0.72 ± 0.008 0.65 ± 0.005
 80 0.81 ± 0.023 0.69 ± 0.006 0.75 ± 0.009 0.71 ± 0.009 0.64 ± 0.018
 HypE 20 0.77 ± 0.012 0.66 ± 0.010 0.74 ± 0.007 0.67 ± 0.047 0.63 ± 0.018
 40 0.78 ± 0.009 0.68 ± 0.011 0.75 ± 0.011 0.71 ± 0.007 0.63 ± 0.016
 60 0.79 ± 0.020 0.69 ± 0.013 0.76 ± 0.017 0.71 ± 0.016 0.64 ± 0.010
 80 0.79 ± 0.013 0.69 ± 0.008 0.76 ± 0.022 0.72 ± 0.011 0.65 ± 0.020
 Algorithm Pop. size Rect. 2 Random 0 Random 1 Random 2
 Random 4000 0.72 ± 0.003 0.82 ± 0.005 0.83 ± 0.004 0.82 ± 0.001
 NSGA-II 20 0.73 ± 0.013 0.81 ± 0.016 0.83 ± 0.023 0.82 ± 0.015
 40 0.75 ± 0.013 0.83 ± 0.008 0.85 ± 0.011 0.83 ± 0.005
 60 0.75 ± 0.016 0.83 ± 0.009 0.86 ± 0.013 0.84 ± 0.004
 80 0.75 ± 0.017 0.83 ± 0.010 0.85 ± 0.010 0.84 ± 0.004
 SPEA2 20 0.72 ± 0.012 0.76 ± 0.077 0.82 ± 0.013 0.82 ± 0.003
 40 0.73 ± 0.016 0.82 ± 0.014 0.84 ± 0.037 0.83 ± 0.005
 60 0.74 ± 0.018 0.83 ± 0.008 0.85 ± 0.016 0.83 ± 0.003
 80 0.76 ± 0.018 0.84 ± 0.006 0.85 ± 0.016 0.84 ± 0.006
 HypE 20 0.73 ± 0.037 0.82 ± 0.009 0.84 ± 0.017 0.82 ± 0.011
 40 0.74 ± 0.014 0.82 ± 0.019 0.85 ± 0.023 0.82 ± 0.017
 60 0.76 ± 0.026 0.83 ± 0.004 0.85 ± 0.021 0.83 ± 0.006
 80 0.76 ± 0.011 0.83 ± 0.012 0.85 ± 0.010 0.83 ± 0.008
We include the obtained results of the different MOEAs for 9 different trajectories.
* A higher value represents a better set of solutions.
This dataset enables a BRNN operating as a controller to capture non-
linear behaviors comprehensively within a data-driven inverse dynamic
model. This capability increases the overall performance of the BRNN
controller compared to generic PD solutions in trajectory tracking at
low torque conditions. The combination of BRNN feedforward control
and PD feedback acting as a watch-dog is shown to outperform even
the fine-tuned PDs from which the original data was extracted.

Moreover, implementing this PD-MOEAs combination methodology
into a real system presents new challenges. Simulation dynamics are
often too different from the real system to allow for direct sim-to-
real tuning, meaning that the PD parameters obtained in a simulated
environment may not be directly applicable to a real robot. For this
reason, we recommend tuning the controllers directly using real hard-
ware, with a focus on convergence speed and the number of evaluations
to minimize wear and tear of the cobot joints. Additional challenges
may arise from controlling MOEA randomization to ensure robot and
human safety during the fine-tuning process, as some intermediate PD
combinations could result in unsafe motions (with risks of damage to
the different robot components).

CRediT authorship contribution statement

Diego Navarro-Cabrera: Writing – original draft, Visualization,
Validation, Software, Project administration, Methodology, Investi-
gation, Formal analysis, Data curation, Conceptualization. Juan H.
García-Guzmán: Software, Investigation. Nicolás C. Cruz: Writing
– review & editing, Validation, Supervision. Brayan Valencia-Vidal:
Writing – review & editing, Software, Data curation. Niceto R. Luque:
Writing – review & editing, Supervision, Project administration, Fund-
ing acquisition. Eduardo Ros: Writing – review & editing, Supervision,
Project administration, Funding acquisition.
13
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This study was supported by the EU with the IMOCOe4.0 [EU
H2020RIA-101007311] project and by Spanish national funding
[PCI2021-121925]. This project has received funding from the EC-
SEL Joint Undertaking (JU) under Grant Agreement No 101007311.
This study was also supported by SPIKEAGE [PID2020-113422GA-
I00] by the Spanish Ministry of Science and Innovation MCIN/AEI/
10.13039/501100011033, awarded to NRL; DLROB [TED2021-
131294B-I00] funded by MCIN/AEI/ 10.13039/501100011033 and by
the European Union NextGenerationEU/PRTR, awarded to NRL; MUS-
CLEBOT [CNS2022-135243] funded by MCIN/AEI/10.13039/
501100011033 and by the European Union NextGenerationEU/PRTR,
awarded to NRL; Grant PID2022-140095NB-I00 funded by MICIU/AEI/
10.13039/501100011033/ and FEDER, UE. Grant PID2022-140095NB-
I00 funded by MICIU/AEI/ 10.13039/501100011033/ and FEDER,
UE awarded to ER. N.C. Cruz is supported by the Ministry of Eco-
nomic Transformation, Industry, Knowledge and Universities from the
Andalusian government (PAIDI 2021: POSTDOC_21_00124).

Appendix A. Algorithm comparison tables

See Tables A.6–A.9.

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.robot.2025.105006.

https://doi.org/10.1016/j.robot.2025.105006

D. Navarro-Cabrera et al. Robotics and Autonomous Systems 191 (2025) 105006
Table A.7
Algorithm comparison: Number of evaluations..
 Algorithm Pop. size Spiral 0 Spiral 1 Spiral 2 Rect. 0 Rect. 1
 NSGA-II 20 654 ± 414 691 ± 146 336 ± 113 816 ± 493 785 ± 266
 40 836 ± 302 1726 ± 698 1145 ± 377 1529 ± 557 1571 ± 389
 60 1571 ± 560 3397 ± 937 1272 ± 383 2729 ± 493 3270 ± 1000
 80 2072 ± 1091 3680 ± 405 1645 ± 639 3430 ± 664 3099 ± 808
 SPEA2 20 568 ± 228 826 ± 296 357 ± 126 857 ± 323 946 ± 197
 40 837 ± 265 1714 ± 429 650 ± 146 1834 ± 365 1981 ± 594
 60 1547 ± 469 2923 ± 254 1406 ± 905 2518 ± 737 3859 ± 229
 80 2257 ± 721 4000 ± 0 1539 ± 374 2911 ± 1066 3457 ± 936
 HypE 20 598 ± 216 1045 ± 335 337 ± 41 778 ± 682 1367 ± 344
 40 1025 ± 578 2374 ± 977 626 ± 167 2151 ± 605 2334 ± 1379
 60 1176 ± 911 3560 ± 855 1254 ± 403 3092 ± 887 3943 ± 157
 80 1720 ± 769 4000 ± 0 1439 ± 925 3865 ± 372 3600 ± 1110
 Algorithm Pop. size Rect. 2 Random 0 Random 1 Random 2
 NSGA-II 20 863 ± 326 572 ± 109 374 ± 260 539 ± 194
 40 1619 ± 385 1129 ± 103 1260 ± 465 1329 ± 369
 60 1923 ± 138 1964 ± 307 1829 ± 390 2191 ± 587
 80 3217 ± 777 2093 ± 942 1904 ± 478 2674 ± 685
 SPEA2 20 627 ± 397 644 ± 165 378 ± 148 568 ± 172
 40 1394 ± 678 1132 ± 236 1101 ± 814 1322 ± 229
 60 1914 ± 226 1747 ± 308 1694 ± 711 1999 ± 463
 80 3313 ± 859 2619 ± 502 2037 ± 728 2466 ± 729
 HypE 20 855 ± 594 711 ± 280 516 ± 506 741 ± 319
 40 1709 ± 486 1416 ± 196 1280 ± 565 1322 ± 506
 60 3192 ± 690 2055 ± 460 1581 ± 693 2149 ± 1032
 80 4000 ± 0 2057 ± 578 2351 ± 294 1989 ± 275
 We include the obtained results of the different MOEAs for 9 different trajectories.
* Maximum number of evaluations allowed is 4000.
Table A.8
Algorithm comparison: Statistic analysis of the Hypervolume Indicator.
 Pop. size ANOVA NSGA-II/SPEA2 NSGA-II/HypE SPEA2/HypE

 <0.05 𝑝-value Statistics 𝑝-value Statistics 𝑝-value Statistics
 20 0.32 0.45 0.77 0.16 −1.54 0.26 −1.19
 40 0.61 0.48 0.73 0.40 0.87 0.92 0.09
 60 0.90 0.77 0.29 0.84 −0.20 0.68 −0.42
 80 0.84 0.64 −0.47 0.28 −1.15 0.94 0.06

Table A.9
Algorithm comparison: Statistic analysis of the number of evaluations.
 Pop. size ANOVA NSGA-II/SPEA2 NSGA-II/HypE HypE/SPEA2

 <0.05 𝑝-value Statistics 𝑝-value Statistics 𝑝-value Statistics
 20 0.03 0.70 −0.39 0.07 −2.08 0.03 −2.58
 40 0.04 0.83 0.12 0.11 −1.73 0.00 −3.70
 60 0.20 0.56 0.60 0.25 −1.21 0.15 −1.58
 80 0.67 0.43 −0.81 0.42 −0.84 0.80 −0.26

Data availability

Data will be made available on request.

References

[1] Shirine El Zaatari, Mohamed Marei, Weidong Li, Zahid Usman, Cobot program-
ming for collaborative industrial tasks: An overview, Robot. Auton. Syst. 116
(2019) 162–180.

[2] Hicham Chaoui, Pierre Sicard, Wail Gueaieb, ANN-based adaptive control of
robotic manipulators with friction and joint elasticity, IEEE Trans. Ind. Electron.
56 (2009) 3174–3187.

[3] Sami Haddadin, Physical safety in robotics, in: SyDe Summer School, 2015.
[4] Rongrong Liu, Florent Nageotte, Philippe Zanne, Michel de Mathelin, Bir-

gitta Dresp-Langley, Deep reinforcement learning for the control of robotic
manipulation: A focussed mini-review, Robot. 10 (1) (2021).
14
[5] I. Elguea-Aguinaco, Antonio Serrano-Muñoz, Dimitrios Chrysostomou, Ibai
Inziarte-Hidalgo, Simon Bøgh, Nestor Arana-Arexolaleiba, A review on reinforce-
ment learning for contact-rich robotic manipulation tasks, Robot. Comput.-Integr.
Manuf. 81 (2023) 102517.

[6] Yingbai Hu, Mingyang Cui, Jianghua Duan, Wenjun Liu, Dianye Huang, Alois
Knoll, Guang Chen, Model predictive optimization for imitation learning from
demonstrations, Robot. Auton. Syst. 163 (2023) 104381.

[7] Andrew S. Robbins, Miao Ling Ho, M. Teodorescu, Model-free dynamic control of
robotic joints with integrated elastic ligaments, Robot. Auton. Syst. 155 (2022)
104150.

[8] Mei Liu, Yutong Li, Yingqi Chen, Yimeng Qi, Long Jin, A distributed competitive
and collaborative coordination for multirobot systems, IEEE Trans. Mob. Comput.
23 (2024) 11436–11448.

[9] N.D. Vuong, M.H. Ang, Dynamic model identification for industrial robots, Acta
Polytech. Hung. 6 (5) (2009) 51–68.

[10] Rafael Kelly, PD control with desired gravity compensation of robotic
manipulators, Int. J. Robot. Res. 16 (1997) 660–672.

[11] Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, T. Meyarivan, A fast and elitist
multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6 (2002)
182–197.

[12] Eckart Zitzler, Marco Laumanns, Lothar Thiele, SPEA2: Improving the strength
Pareto evolutionary algorithm for multiobjective optimization, 3242, 2001,

[13] Johannes Bader, Eckart Zitzler, Hype: An algorithm for fast hypervolume-based
many-objective optimization, Evol. Comput. 19 (2011) 45–76.

[14] Sajid Mohamed, Gijs van der Veen, Hans Kuppens, Matias Vierimaa, Tassos
Kanellos, Henry Stoutjesdijk, Riccardo Masiero, Kalle Määttä, Jan Wytze van der
Weit, Gabriel Ribeiro, Ansgar Bergmann, Davide Colombo, Javier Arenas, Alfie
Keary, Martin Goubej, Benjamin Rouxel, Pekka Kilpeläinen, Roberts Kadik, is,
Mikel Armendia, Petr Blaha, Joep Stokkermans, Martin Cech, Arend-Jan Beltman,
The IMOCO4.e reference framework for intelligent motion control systems, 2023
IEEE 28th Int. Conf. Emerg. Technol. Fact. Autom. (ETFA) (2023) 1–8.

[15] Brayan Valencia-Vidal, Eduardo Ros, Ignacio Abadía, Niceto R. Luque, Bidirec-
tional recurrent learning of inverse dynamic models for robots with elastic joints:
a real-time real-world implementation, Front. Neurorobotics 17 (2023).

[16] Helon Vicente Hultmann Ayala, Leandro dos Santos Coelho, Tuning of PID
controller based on a multiobjective genetic algorithm applied to a robotic
manipulator, Expert Syst. Appl. 39 (10) (2012) 8968–8974.

[17] Liu Qiang, Shi Xuhua, Lan Ting, Chen Xiaoxia, Zhuang Jianpei, Multi-objective
optimization based self tuning robot manipulator controller, 2019 Chin. Control.
Decis. Conf. (CCDC) (2019) 2593–2598.

http://refhub.elsevier.com/S0921-8890(25)00092-2/sb1
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb1
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb1
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb1
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb1
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb2
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb2
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb2
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb2
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb2
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb3
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb4
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb4
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb4
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb4
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb4
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb5
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb5
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb5
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb5
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb5
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb5
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb5
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb6
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb6
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb6
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb6
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb6
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb7
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb7
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb7
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb7
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb7
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb8
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb8
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb8
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb8
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb8
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb9
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb9
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb9
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb10
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb10
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb10
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb11
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb11
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb11
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb11
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb11
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb12
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb12
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb12
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb13
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb13
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb13
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb14
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb14
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb14
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb14
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb14
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb14
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb14
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb14
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb14
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb14
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb14
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb14
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb14
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb15
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb15
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb15
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb15
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb15
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb16
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb16
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb16
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb16
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb16
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb17
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb17
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb17
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb17
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb17

D. Navarro-Cabrera et al. Robotics and Autonomous Systems 191 (2025) 105006
[18] Vijay Mohan, Himanshu Chhabra, Asha Rani, Vijander Singh, Robust self-tuning
fractional order PID controller dedicated to non-linear dynamic system, J. Intell.
Fuzzy Syst. 34 (2018) 1467–1478.

[19] Vijay Mohan, Himanshu Chhabra, Asha Rani, Vijander Singh, An expert 2DOF
fractional order fuzzy PID controller for nonlinear systems, Neural Comput. Appl.
31 (2019) 4253–4270.

[20] Vijay Mohan, Bharti Panjwani, Himanshu Chhabra, Asha Rani, Vijander Singh,
Self-regulatory fractional fuzzy control for dynamic systems: An analytical
approach, Int. J. Fuzzy Syst. 25 (2022) 794–815.

[21] Himanshu Chhabra, Vijay Mohan, Asha Rani, Vijander Singh, Robust nonlinear
fractional order fuzzy PD plus fuzzy I controller applied to robotic manipulator,
Neural Comput. Appl. 32 (2019) 2055–2079.

[22] Eloise Matheson, Riccardo Minto, Emanuele G.G. Zampieri, Maurizio Faccio,
Giulio Rosati, Human-robot collaboration in manufacturing applications: A
review, Robotics 8 (2019) 100.

[23] KU.K.A. Robotics Corporation, LBR iiwa, 2024, URL https://www.kuka.com/en-
us/products/robotics-systems/industrial-robots/lbr-iiwa.

[24] Nicolás C. Cruz, Juana López Redondo, Eva M. Ortigosa, Pilar Martínez Ortigosa,
On the design of a new stochastic meta-heuristic for derivative-free optimization,
in: Communication Systems and Applications, 2022.

[25] G. Lindfield, John Penny, Introduction to nature-inspired optimization, 2017, pp.
1–238,

[26] Alberto Costa, Giacomo Nannicini, Rbfopt: an open-source library for black-
box optimization with costly function evaluations, Math. Program. Comput. 10
(2018).

[27] Sad Salhi, Heuristic search: The emerging science of problem solving, 2017, URL
https://doi.org/10.1007/978-3-319-49355-8.

[28] Milagros Marín, María José Sáez-Lara, Eduardo Ros, Jesús Alberto Garrido,
Optimization of efficient neuron models with realistic firing dynamics. the case
of the cerebellar granule cell, Front. Cell. Neurosci. 14 (2020).

[29] Milagros Marín, Nicolás C. Cruz, Eva M. Ortigosa, María José Sáez-Lara,
Jesús Alberto Garrido, Richard R. Carrillo, On the use of a multimodal optimizer
for fitting neuron models. application to the cerebellar granule cell, Front.
Neuroinformatics 15 (2021).

[30] Algirdas Lancinskas, Pilar Ortigosa, Julius Zilinskas, Multi-objective single agent
stochastic search in non-dominated sorting genetic algorithm, Nonlinear Anal.
Model. Control 18 (2013) 293–313.

[31] Ernestas Filatovas, Algirdas Lancinskas, Olga Kurasova, Julius Zilinskas,
A preference-based multi-objective evolutionary algorithm R-NSGA-ii with
stochastic local search, Central Eur. J. Oper. Res. 25 (2016) 859–878.

[32] Ignacio Abadía, Francisco Naveros, Jesús Alberto Garrido, Eduardo Ros, Niceto R.
Luque, On robot compliance: A cerebellar control approach, IEEE Trans. Cybern.
51 (2020) 2476–2489.

[33] Saeed Tavakoli, Ian Griffin, Peter John Fleming, Multi-objective optimization
approach to the PI tuning problem, 2007 IEEE Congr. Evol. Comput. (2007)
3165–3171.

[34] Andreia P. Guerreiro, Carlos M. Fonseca, Luís Paquete, The hypervolume
indicator: Computational problems and algorithms, ACM Comput. Surv. 54 (6)
(2021).

[35] Katsutoshi Tamura, Shinji Miura, Necessary and sufficient conditions for local
and global nondominated solutions in decision problems with multi-objectives,
J. Optim. Theory Appl. 28 (1979) 501–523.

[36] Lei Troy Hao, Roberto Pagani, Manuel Beschi, Giovanni Legnani, Dynamic
and friction parameters of an industrial robot: Identification, comparison and
repetitiveness analysis, Robot. 10 (2021) 49.

[37] Jianwei Dong, Jianming Xu, Qiaoqian Zhou, Junwei Zhu, Li Yu, Dynamic
identification of industrial robot based on nonlinear friction model and LS-SOS
algorithm, IEEE Trans. Instrum. Meas. 70 (2021) 1–12.

[38] Chan Lee, Suhui Kwak, Jihoo Kwak, Sehoon Oh, Generalization of series elastic
actuator configurations and dynamic behavior comparison, Actuators 6 (2017)
26.

[39] Ignacio Abadía, Francisco Naveros, Eduardo Ros, Richard R. Carrillo, Niceto R.
Luque, A cerebellar-based solution to the nondeterministic time delay problem
in robotic control, Sci. Robot. 6 (2021).

[40] Yazhou Hu, Wenxue Wang, Hao Liu, Lianqing Liu, Reinforcement learning
tracking control for robotic manipulator with kernel-based dynamic model, IEEE
Trans. Neural Networks Learn. Syst. 31 (2020) 3570–3578.

[41] Maciej Bednarczyk, ICube-robotics/iiwaros2: ros-galactic, 2022, http://dx.doi.
org/10.5281/zenodo.6420784, URL https://doi.org/10.5281/zenodo.6420784.

[42] Nathan P. Koenig, Andrew Howard, Design and use paradigms for gazebo, an
open-source multi-robot simulator, 2004 IEEE/ RSJ Int. Conf. Intell. Robot. Syst.
(IROS) (IEEE Cat. No. 04CH37566) 3 (2004) 2149–2154 vol.3.

[43] Martin Cech, Arend-Jan Beltman, Kaspars Ozols, Digital twins and AI in smart
motion control applications, 2022 IEEE 27th Int. Conf. Emerg. Technol. Fact.
Autom. (ETFA) (2022) 1–7.

[44] Steve Macenski, Tully Foote, Brian P. Gerkey, Chris Lalancette, William Woodall,
Robot operating system 2: Design, architecture, and uses in the wild, Sci. Robot.
7 (2022).

[45] Giuseppe Carlo Calafiore, Marina Indri, Basilio Bona, Robot dynamic calibration:
Optimal excitation trajectories and experimental parameter estimation, J. Field
Robot. 18 (2001) 55–68.
15
[46] Tolga-Can Callar, Sven Böttger, Hybrid learning of time-series inverse dynamics
models for locally isotropic robot motion, IEEE Robot. Autom. Lett. 8 (2022)
1061–1068.

[47] Peter Corke, Jesse Haviland, Not your grandmother’s toolbox–the robotics tool-
box reinvented for python, in: 2021 IEEE International Conference on Robotics
and Automation, ICRA, IEEE, 2021, pp. 11357–11363.

[48] Alejandro Rodríguez-Molina, Efrén Mezura-Montes, Miguel Gabriel Villarreal-
Cervantes, Mario Aldape-Pérez, Multi-objective meta-heuristic optimization in
intelligent control: A survey on the controller tuning problem, Appl. Soft Comput.
93 (2020) 106342.

[49] Yunfei Cui, Zhiqiang Geng, Qunxiong Zhu, Yongming Han, Review: Multi-
objective optimization methods and application in energy saving, Energy 125
(2017) 681–704.

[50] Mohammad Hamdan, Revisiting the distribution index in simulated binary
crossover operator for evolutionary multiobjective optimisation algorithms, 2014
Fourth Int. Conf. Digit. Inf. Commun. Technol. Appl. (DICTAP) (2014) 37–41.

[51] Eberhard E. Bischoff, A posteriori trade-off analysis in reference point
approaches, 1984, URL https://doi.org/10.1007/978-3-662-00184-4_16.

[52] Jianbo Yang, Pratyush Sen, Preference modelling by estimating local utility
functions for multiobjective optimization, European J. Oper. Res. 95 (1996)
115–138.

[53] Jürgen Branke, Kalyanmoy Deb, Henning Dierolf, Matthias Osswald, Finding
knees in multi-objective optimization, in: Parallel Problem Solving from Nature,
2004.

[54] Kalyanmoy Deb, Shivam Gupta, Understanding knee points in bicriteria problems
and their implications as preferred solution principles, Eng. Optim. 43 (2011)
1175–1204.

[55] Arash Heidari, Jixiang Qing, Sebastian Rojas-Gonzalez, Jürgen Branke, Tom
Dhaene, Ivo Couckuyt, Finding knees in Bayesian multi-objective optimization,
in: Parallel Problem Solving from Nature, 2022.

[56] Indraneel Das, On characterizing the ‘‘knee’’ of the Pareto curve based on
normal-boundary intersection, Struct. Optim. 18 (1999) 107–115.

Diego Navarro-Cabrera Diego Navarro Cabrera is a PhD
student who graduated from Computer Science in 2021 and
got a Masters Degree in Data Science in 2022, both at Uni-
versity of Granada. During his Masters Degree he joined the
Applied Computational Neuroscience (ACN) Group to work
on the IMOCO4.E project, applying data science techniques
to collaborative robotics. His main research interests include
machine learning and torque control in robotics.

Juan H. García-Guzmán Juan Helios García Guzmán is a
PhD student at the Department of Computer Engineering,
Automation and Robotics at University of Granada under the
supervision of Niceto Luque and Eduardo Ros. He obtained
a B.S in Computer Science in 2021 and a M.S in Data
Science in 2022. Within the context of his doctoral studies,
his research interests range from the development of infants
to robotics learning and cognition.

Nicolás C. Cruz Nicolás Cruz is a post-doctoral researcher
at the Department of Computer Engineering, Automation,
and Robotics of the University of Granada, Spain. After
achieving bachelors and masters degrees in Computer En-
gineering, he obtained his PhD in Computer Science at the
University of Almería, Spain, in 2019. He is a member
of the Supercomputing-Algorithms Research Group at that
institution. His research focuses on numerical optimization
through metaheuristics and high-performance computing
applied to different problems, such as the design and control
of solar power tower plants, neural model tuning, and
optimization of mechanisms.

Brayan Valencia-Vidal Brayan Valencia received his B.Sc.
in mechatronics engineering in 2013 from the U. Nacional
de Colombia. He is currently working towards the Ph.D.
degree at the U. Granada (Spain). He is Assistant Professor
and member of the Osiris & Bioaxis Research Group of the
U. El Bosque (Colombia). His main research interests include
neural networks, dynamic modeling and control of robots.

http://refhub.elsevier.com/S0921-8890(25)00092-2/sb18
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb18
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb18
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb18
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb18
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb19
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb19
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb19
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb19
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb19
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb20
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb20
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb20
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb20
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb20
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb21
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb21
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb21
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb21
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb21
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb22
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb22
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb22
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb22
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb22
https://www.kuka.com/en-us/products/robotics-systems/industrial-robots/lbr-iiwa
https://www.kuka.com/en-us/products/robotics-systems/industrial-robots/lbr-iiwa
https://www.kuka.com/en-us/products/robotics-systems/industrial-robots/lbr-iiwa
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb24
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb24
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb24
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb24
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb24
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb25
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb25
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb25
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb26
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb26
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb26
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb26
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb26
https://doi.org/10.1007/978-3-319-49355-8
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb28
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb28
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb28
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb28
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb28
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb29
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb29
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb29
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb29
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb29
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb29
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb29
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb30
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb30
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb30
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb30
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb30
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb31
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb31
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb31
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb31
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb31
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb32
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb32
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb32
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb32
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb32
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb33
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb33
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb33
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb33
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb33
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb34
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb34
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb34
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb34
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb34
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb35
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb35
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb35
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb35
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb35
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb36
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb36
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb36
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb36
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb36
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb37
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb37
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb37
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb37
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb37
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb38
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb38
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb38
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb38
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb38
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb39
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb39
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb39
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb39
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb39
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb40
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb40
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb40
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb40
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb40
http://dx.doi.org/10.5281/zenodo.6420784
http://dx.doi.org/10.5281/zenodo.6420784
http://dx.doi.org/10.5281/zenodo.6420784
https://doi.org/10.5281/zenodo.6420784
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb42
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb42
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb42
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb42
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb42
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb43
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb43
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb43
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb43
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb43
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb44
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb44
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb44
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb44
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb44
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb45
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb45
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb45
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb45
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb45
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb46
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb46
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb46
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb46
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb46
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb47
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb47
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb47
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb47
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb47
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb48
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb48
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb48
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb48
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb48
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb48
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb48
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb49
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb49
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb49
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb49
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb49
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb50
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb50
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb50
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb50
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb50
https://doi.org/10.1007/978-3-662-00184-4_16
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb52
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb52
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb52
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb52
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb52
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb53
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb53
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb53
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb53
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb53
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb54
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb54
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb54
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb54
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb54
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb55
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb55
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb55
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb55
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb55
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb56
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb56
http://refhub.elsevier.com/S0921-8890(25)00092-2/sb56

D. Navarro-Cabrera et al. Robotics and Autonomous Systems 191 (2025) 105006
Niceto R. Luque Dr. Luque, an Associate Professor at the
Department of Information and Communication Technolo-
gies, Automation, and Robotics (ICAR), earned a Bachelor’s
in Electronics Engineering and a Master’s in Automatics and
Industrial Electronics from the University of Cordoba (Spain)
in 2003 and 2006, respectively. He later obtained a Ph.D.
in Computer Architecture and Networks from the University
of Granada in 2013.
 His research focuses on computational neuroscience,
neurorobotics, and neuromorphic engineering, particularly
studying cerebellar adaptation and its role in aging,
and applying motor intelligence to cobots via cerebellum
simulation.
16
Eduardo Ros Dr. Eduardo Ros is currently Full Professor at
the Department of ICAR (Computer Engineering, Automa-
tion and Robotics) at the University of Granada.
 He is a very active researcher at an international level,
he has participated as IP in 10 European Grants. He leads an
interdisciplinary lab, with interest in computational neuro-
science, neurorobotics, neuromorphic engineering, real-time
image processing, time transfer and synchronization, etc. In
particular, his main research interests include simulation
of biologically plausible processing schemes with spiking
neural networks, neurorobotics, collaborative robotics and
time transfer and synchronization techniques, etc.

	From data extraction to data-driven dynamic modeling for cobots: A method using multi-objective optimization
	Introduction
	Materials and methods
	Multi-objective Optimization
	PD controller tuning: Optimization problem formulation
	MOEA Algorithms: Pseudo-code for NSGA-II, SPEA2 and HypE
	Analytical cobot dynamic modeling and its limitations
	The collaborative robot
	Data Acquisition Method: Torque control loop
	Data Acquisition Method: 4-Layer architecture
	Benchmark Trajectories for Dataset Inclusion
	Dynamic Model learning

	Results
	Comparison metrics and methodology
	MOEA selection and fine-tuning
	Analysis of Trajectory Speed
	Comparison between generic and fine-tuned PD
	Decision Making: Controller Selection
	Use Case example; the BRNN controller within a feedforward control loop

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A. Algorithm Comparison Tables
	Appendix B. Supplementary data
	Data availability
	References

