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Abstract
In this paper we show the existence of strictly monotone heteroclinic type solutions of semi-
linear elliptic equations in cylinders. The motivation of this construction is twofold: first, it
implies the existence of an entire bounded solution of a semilinear equation without critical
points which is not one-dimensional. Second, this gives an example of a bounded stationary
solution for the 2D Euler equations without stagnation points which is not a shear flow, com-
pleting previous results of Hamel and Nadirashvili. The proof uses a minimization technique
together with a truncation argument, and a limit procedure.

Mathematics Subject Classification 35J25 · 35B08 · 35Q35

1 Introduction andmain results

Let N ≥ 2 and consider a smooth and bounded domain ω ⊆ R
N−1. We denote by � the

unbounded N -dimensional cylinder of section ω, i.e.,

� = ω × R ⊆ R
N .

We are interested in solutions of the following semilinear elliptic problem:{
−�u = f (u) in �,

u = 0 on ∂�,
(1.1)
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for some nonlinear term f ∈ C1(R). Here, and in the sequel, we write x = (x ′, xN ) for a
generic point inRN , where x ′ = (x1, . . . , xN−1) ∈ R

N−1, andwe denote eN = (0, . . . , 0, 1).
In particular we focus on heteroclinic type solutions of problem (1.1): given two different

solutions ϕ1, ϕ2 we are looking for another solution u linking ϕ1 and ϕ2 in the sense that

lim
λ→−∞ u(· + λeN ) = ϕ1(·), and lim

λ→+∞ u(· + λeN ) = ϕ2(·). (1.2)

In the literature there are many works about heteroclinic solutions for elliptic PDEs in dif-
ferent contexts. As far as we know, the closest contributions to our interest are the papers [28,
29] by P. H. Rabinowitz, in a periodic setting: that is, the limit functions ϕ1 and ϕ2 are peri-
odic in the xN variable. We will come back to this after the statement of our Theorem 1.1
below. For further results in cylinders we refer also to [7, 11, 25, 30]. A lot of work has been
addressed also in the case of heteroclinic solutions for a non autonomous Allen-Cahn type
problem in the whole space RN , see for instance [1–6, 31, 32] and the references therein.

In this paper we look for (strictly) monotone solutions of problem (1.1), (1.2), where
ϕ1 = 0 and ϕ2 = ϕ > 0 are independent of xN , that is, they are solutions of the N − 1
dimensional problem on ω: {

−�x ′φ = f (φ) in ω,

φ = 0 on ∂ω.
(1.3)

Here we denote by �x ′ the Laplacian with respect to the first N − 1 coordinates. Clearly
problem (1.3) is the Euler-Lagrange equation of the action functional I : H1

0 (ω) → R,

I (u) =
∫
ω

(
1

2
|∇x ′u|2 − F(u)

)
dx ′, where F(u) =

u∫
0

f (s) ds. (1.4)

In our main result we make the following assumptions:

I (0) = inf
{
I (u) : u ∈ H1

0 (ω)
} = 0 and 0 is an isolated minimizer of I ; (H1)

there exists ψ ∈ H1
0 (ω), ψ > 0 such that I (ψ) = 0. (H2)

In other words, we are assuming that 0 and ψ are global minimizers of I , and that 0 is
isolated. In particular, 0 and ψ are solutions of (1.3), which implies f (0) = 0. Moreover, it
can be proved (see Lemma 3.2) that under these assumptions there exists a solution to (1.3),
denoted by ϕ, which is minimal among the set of global minimizers. In other words, ϕ ∈
H1
0 (ω) is a positive function such that I (ϕ) = 0, and if ψ ∈ H1

0 (ω), ψ > 0, satisfies
I (ψ) = 0, then ϕ ≤ ψ .

The following is our main result:

Theorem 1.1 Assume that f ∈ C1(R) is such that (H1), (H2) are satisfied. Then, there exists
u ∈ C2,α(�) solution of (1.1) such that

0 < u < ϕ in �.

Moreover, u is heteroclinic from 0 to ϕ, i.e.

lim
xN→−∞ u(·, xN ) = 0, and lim

xN→+∞ u(·, xN ) = ϕ(·),

uniformly in x ′ ∈ ω. Finally, u is strictly increasing in xN , that is,

∂xN u > 0 in �.
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This result is strongly related to [28] and especially to [29, Section 4]. In those papers
the existence of heteroclinic solutions is shown both for Neumann and Dirichlet boundary
conditions. The limit solutions ϕ1 and ϕ2 are periodic in xN and they are also minima of
the related energy functional, as in our case. The applications studied [28, 29] are concerned
with an odd nonlinearity and a heteroclinic solution u connecting −ϕ and +ϕ is found. As
will be explained in the sequel, for the applications we have in mind, we are interested in
solutions without any critical point in�. In particular, we look for solutions which are strictly
increasing in xN and positive in�, so that the Hopf lemma implies that the normal derivative
is nonzero in ∂�. To the best of our knowledge, this question has not been addressed in the
literature, and for this we need the exact form of Theorem 1.1.

A further comment on our set of hypotheses (H1) and (H2) is in order. First, given any
bounded smooth domain ω ⊆ R

N−1, we can build f so that (H1) and (H2) are satisfied, see
Proposition 3.1. Moreover we shall see that, to some extent, assumptions (H1) and (H2) are
necessary for the existence of the heteroclinic solution given in Theorem 1.1, see Proposi-
tion 3.3.

The proof of Theorem 1.1 follows from a truncated minimization procedure. First, we
consider the family of bounded domains:

�n = ω × (−n, n).

For each one of those domains we will consider the problem of finding a solution to the
following: ⎧⎪⎨

⎪⎩
−�un = f (un) in �n,

un = 0 on ∂�n \ (ω × {n}),
un = ϕ on ω × {n}.

(1.5)

These solutions will be searched as minimizers of the corresponding energy functional.
Then, we make n → +∞ and show that, up to a suitable translation, un converges locally to
our desired solution. In our proofs the use of a Hamiltonian identity (see for instance [19])
will be a crucial tool.

Our main motivation for this paper comes from two related questions, that we discuss
below.

1.1 Entire solutions of semilinear equations

Let us consider a bounded entire solution of the problem:

− �u = f (u) in R
2, (1.6)

for some function f ∈ C1(R). It is well known that if the following monotonicity condition
holds:

∂xN u(x) > 0 for all x ∈ R
2, (1.7)

then u is 1-dimensional, that is, its level sets are hyperplanes (see [16]). In the case of
the Allen-Cahn nonlinearity f (u) = u − u3 this is the statement of the well known De
Giorgi conjecture. The De Giorgi conjecture has been proved to hold also in dimension 3
([8]); instead, in dimension N ≥ 9 there are solutions of the problem −�u = u − u3

satisfying (1.7) which are not 1-dimensional, see [12]. For 4 ≤ N ≤ 8 the problem is open:
it is known that monotone solutions to the Allen-Cahn equation are 1-dimensional under
certain additional conditions, see [34].
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Back in dimension 2, a similar result can be proved for stable solutions: that is, if u
is a stable solution, then it is 1-dimensional.1 Here stability means that Q(φ) ≥ 0 for all
φ ∈ C∞

0 (R2), where Q is the quadratic form associated to the linearized operator:

Q(φ) =
∫
R2

(|∇φ|2 − f ′(u)φ2) dx .

It is well known that the monotonicity property (1.7) implies stability: for this and other
questions in this framework we refer to the monograph [13].

Hence, one could think of relaxing hypothesis (1.7) in a different direction, at least in
dimension 2. A natural possibility could be replacing the monotonicity condition by:

∇u(x) 
= 0 for all x ∈ R
2. (1.8)

In other words, is it true that bounded solutions to (1.6) without critical points are 1-
dimensional?

The following observation is contained in [15]: under condition (1.8), we can write
∇u(x) = ρ(x)eiθ(x), by using complex notation. By regularity estimates ρ is uniformly
bounded, and it turns out that

div(ρ2∇θ) = 0. (1.9)

In [9] Berestycki, Caffarelli and Nirenberg gave a Liouville type result for equation (1.9). In
our case this result implies that if θ is bounded then θ is necessarily constant, and this implies
that u is 1-dimensional. Observe that (1.7) implies that θ(x) ∈ (0, π), and this argument was
used in [15] to give an alternative proof of the De Giorgi conjecture in dimension 2.

In general, one can obtain the same conclusion under some control on the growth of θ

(see [35] for the sharp growth condition that can be admitted). In [23] the authors assume
0 < c < ρ(x) for all x ∈ R

2: with this assumption the operator in (1.9) is uniformly elliptic,
and by using Harnack estimates they can estimate the growth of θ and conclude that θ is
constant. But this argument does not work if we only assume (1.8).

As a consequence of Theorem 1.1, we shall show an example of a solution to (1.6)
without critical points which is not 1-dimensional. Being more specific, we take ω = (0, 1),
and extend the solution given in Theorem 1.1 to the whole plane by odd reflection. In doing
so we obtain an entire solution with the required properties (see Theorem (1.8) for details).

We point out that if � = (0, 1) × R, the solution given in Theorem 1.1 is an example of
a solution of (1.1) with {θ(x) : x ∈ �} = (0, π), as that of [20, Theorem 1.3].

1.2 Stationary solutions to the 2D Euler equations

In the recent years a lot of work has been devoted to the study of rigidity result for solutions
of the stationary Euler equation {

u · ∇u = −∇ p in �,

div u = 0 in �,
(1.10)

where � is an open subset ofR2. Here u = (u1,u2) is the velocity vector field of an inviscid
and incompressible fluid and p is the pressure.

1 By the way, the extension of this result to higher dimensions, even to dimension 3, is a very important open
problem.
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Several results regarding rigidity and non rigidity for the stationary Euler equations can
be found in [14, 17, 18, 20, 21, 24, 26, 27, 33, 36]. In [23], Hamel and Nadirashvili consider
bounded solutions of (1.10) without stagnation points inR2 nor "at infinity", that is inf |u| >

0. Under these assumptions, the authors prove that u is a shear flow, that means, u(x) = U (x ·
e⊥)e, for some e = (e1, e2) ∈ S

1 and e⊥ = (−e2, e1). Moreover, they show, by providing
explicit counterexamples, that if u has some stagnation point, then it is not necessarily a shear
flow. Similar results have been obtained by the same authors also in the half-plane R+ × R

and in the strip (0, 1) ×R ([22]) under tangential boundary conditions u · η = 0, where η is
the outer normal vector on ∂�.

Hence, a natural question is whether such results hold true assuming only the absence of
stagnation points, that is, u(x) 
= 0 for all x ∈ �. In other words we allow the presence of
stagnation points "at infinity", that is, infR2 |u| = 0. As a consequence of our main result, we
can build bounded solutions in a strip, a half-space or the whole spaceR2, without stagnation
points, which are not shear flows (Corollary 4.3). The idea is to look for stream functions
which are solutions to a semilinear elliptic equation as commented above.

1.3 Organization of the paper

The rest of the paper is organized as follows: in the next section we establish some prelimi-
naries and prove Theorem 1.1. Section3 is devoted to a discussion on our assumptions (H1)
and (H2). In particular, we show that we can build nonlinear functions f (u) such that those
conditions are satisfied. We also show that (H1) and (H2) imply the existence of a minimal
solution, and finally we point out that, to some extent, these assumptions are necessary for
Theorem 1.1. In Sect. 4 we present the applications of Theorem 1.1 to the questions men-
tioned above, namely, entire solutions of semilinear equations without critical points and
steady solutions of the 2D Euler equations without stagnation points.

2 Proof of Theorem 1.1

First of all, let us state a Hamiltonian-type identity for solutions on a cylinder, in the spirit
of [19]. We give the proof below for the sake of completeness.

Proposition 2.1 Let A ⊆ R an interval, and �A = ω × A. For any t ∈ A we denote by
ωt = {(x ′, t) : x ′ ∈ ω}. Let u be a C2 solution of the problem:{

−�u = f (u) in �A,

u = 0 on ∂ω × A.

Then, the Hamiltonian:

H =
∫
ωt

(
1

2

(|∇x ′u|2 − (∂xN u)2
) − F(u)

)
dx ′,

is independent of t .

Proof It suffices to write H as:

H(t) =
∫
ω

(
1

2

(|∇x ′u(x ′, t)|2 − (∂xN u(x ′, t))2
) − F(u(x ′, t))

)
dx ′.
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Then we compute the derivative with respect to t and integrate by parts to conclude:

d

dt
H(t) =

∫
ω

(∇x ′u · ∇x ′(∂xN u) − ∂xN u ∂2xN xN u − f (u)∂xN u
)
dx ′

=
∫
ω

(∇x ′u · ∇x ′(∂xN u) + ∂xN u �x ′u
)
dx ′ = 0.

�


We now point out that under assumptions (H1) and (H2), there exists a minimal positive
minimizer of I , which will be denoted by ϕ. This must be rather well known, but we have
not found an explicit reference, so we include its proof in Sect. 3 (see Lemma 3.2).

We are now in conditions to address the proof of Theorem 1.1. The general strategy is
to build the solution u of the problem (1.1) by approximation on the domain �. At least
formally, the energy functional associated to problem (1.1) is

J (u) =
∫
�

L(u) dx,

where

L(u) = 1

2
|∇u|2 − F(u), F(u) =

u∫
0

f (s) ds.

Let us recall that, for any n ∈ N, we defined the approximating domains:

�n = ω × (−n, n).

Hence we set

Hn = {
u ∈ H1(�n)|u = 0 on ∂�n \ {xN = n}, u = ϕ on {xN = n}} ,

where ϕ is the minimal solution given by Lemma 3.2.
By taking a suitable function ξ : [−n, n] → R with ξ(−n) = 0 and ξ(n) = 1, we have

that φ(x ′, xN ) = ξ(xN )ϕ(x ′) ∈ Hn , so thatHn is not empty. Then we consider the restriction
of the functional J to the set Hn ,

Jn : Hn → R, Jn(u) =
∫
�n

L(u) dx .

The first step in the proof of Theorem 1.1 is the following:

Proposition 2.2 For any n ∈ N, we denote cn = inf Jn. Then, the following assertions hold
true:

(1) cn > 0 and cn is decreasing in n.
(2) There exists un ∈ Hn such that Jn(un) = cn. In particular, un is a solution of (1.5).
(3) 0 < un(x ′, xN ) < ϕ(x ′) for all (x ′, xN ) ∈ �n.
(4) Hn < 0 where Hn denotes the value of the Hamiltonian defined in Proposition 2.1.
(5) un ∈ C2,α(�n), and ∂xN un(x) > 0 for all x ∈ �n.

123
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Proof We first show that cn ≥ 0. For any u ∈ H1(�n) with u = 0 on ∂ω× (-n,n) - and then
in particular for all u ∈ Hn - there holds:

Jn(u) =
∫
�n

L(u(x)) dx =
n∫

−n

∫
ω

L(u(x ′, xN )) dx ′ dxN

=
n∫

−n

I (u(·, xN ))dxN + 1

2

n∫
−n

∫
ω

(∂xN u(x ′, xN ))2 dx ′ dxN

≥
n∫

−n

I (u(·, xN )) dxN ≥ 0,

(2.1)

where I is defined in (1.4). Moreover the strict inequality holds for u ∈ Hn since ∂xN u cannot
vanish by the boundary conditions.

Let n,m ∈ N with n < m, and take u ∈ Hn . Then we can extend:

ũ(x ′, xN ) =

⎧⎪⎨
⎪⎩
u(x ′, xN ) if xN ∈ (−n, n),

0 if xN < −n,

ϕ(x) if xN > n.

Clearly ũ ∈ Hm and Jm(ũ) = Jn(u). In this way, we can embed Hn ⊂ Hm and then
cn ≥ cm .

In order to prove (2), consider a minimizing sequence (vk)k∈N ⊆ Hn such that Jn(vk) →
cn , as k → +∞. Then it is not hard to see that

wk(x) =

⎧⎪⎨
⎪⎩
0, if vk(x) ≤ 0,

vk(x), if 0 < vk(x) < ϕ(x),

ϕ(x), if vk(x) ≥ ϕ(x),

is still a minimizing sequence. Indeed taking into account that (vk)
− = min{vk, 0},

max{ϕ, vk} ∈ H1(�n) and they both vanish on ∂ω × (−n, n), (2.1) implies∫
{vk≤0}

L(vk) dx = Jn((vk)
−) ≥ 0,

∫
{vk<ϕ}

L(ϕ) dx +
∫

{vk≥ϕ}
L(vk) dx = Jn(max{ϕ, vk}) ≥ 0,

and then

Jn(wk) =
∫

{0<vk<ϕ}
L(vk) dx +

∫
{vk≥ϕ}

L(ϕ) dx

≤
∫

{vk≤0}
L(vk) dx +

∫
{0<vk<ϕ}

L(vk) dx +
∫

{vk≥ϕ}
L(ϕ) dx

+
∫

{vk<ϕ}
L(ϕ) dx +

∫
{vk≥ϕ}

L(vk) dx

123
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= Jn(vk) +
n∫

−n

I (ϕ) dxN = Jn(vk).

In particular from the uniform L∞ boundedness of wk , we get∣∣∣∣∣∣∣
∫
�n

F(wk) dx

∣∣∣∣∣∣∣ ≤ Cn,

for some positive constant Cn independent of k. This estimate, together with the fact that
wk is a minimizing sequence and 0 ≤ wk ≤ ϕ in �n , implies that ‖wk‖H1(�n)

is uniformly
bounded in k. Up to a subsequence we can assume that wk⇀w in H1 sense, and moreover,
wk → w pointwise. By the weak lower semicontinuity of the norm in H1 and the dominated
convergence theorem we obtain that w is a minimizer, and (2) is proved. In what follows we
will denote by un the minimizer of Jn . Moreover, from (2.1) and the subsequent comment
we get cn > 0, completing the proof of (1).

Of course from the fact that 0 ≤ wk ≤ ϕ in �n and the pointwise convergence of wk to
un , one has 0 ≤ un ≤ ϕ in �n . The strict inequality stated in (3) will be a consequence of
(5).

In order to prove (4) we just compute the Hamiltonian at t = −n:

Hn = −1

2

∫
ω

(∂xN un(x
′,−n))2 dx ′ ≤ 0.

Moreover, if Hn is equal to 0, have that ∂xN un(x
′,−n) = 0 for all x ′ ∈ ω. By unique

continuation this implies that un ≡ 0, which is impossible.
We now prove (5). Standard regularity estimates imply that un ∈ C0,α(�n) ∩ C2,α(�n \

Nε), where:

Nε = {(x ′, xN ) ∈ �n : dist(x ′, ∂ω) + min{|xN − n|, |xN + n|} < ε}.
We now show that the C2,α regularity extends to the whole domain. Indeed, define:
ζ(x ′, xN ) = un(x ′, xN ) − ϕ(x ′). It is clear that

−�ζ(x) = f (un(x)) − f (ϕ(x)) = h(x),

where h ∈ C0,α(�n), and moreover ζ(x ′, n) = 0, h(x ′, n) = 0 for all x ′ ∈ ω. We extend ζ

and h by reflection:

ζ̃ (x ′, xN ) =
{

ζ(x ′, xN ) if xN ≤ n,

−ζ(x ′, 2n − xN ) if n < xN ≤ 2n,

h̃(x ′, xN ) =
{
h(x ′, xN ) if xN ≤ n,

−h(x ′, 2n − xN ) if n < xN ≤ 2n.

Clearly h̃ ∈ C0,α(ω × (−n, 2n)) and ζ̃ is a (weak, a priori) solution of the problem:

−�ζ̃(x) = h̃(x), x ∈ ω × (−n, 2n).

By local regularity up to the boundary, we conclude that ζ̃ ∈ C2,α in a neighborhood of
ω×{n}, which implies regularity of un . In an analogous way we can argue around ω×{−n},
and we conclude.

123
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The function ∂xN un is a weak solution of the linearized problem{
−�(∂xN un) = f ′(un)∂xN un in �n,

∂xN un ≥ 0 on ∂�n,

where the boundary condition is satisfied since un ≡ 0 on ∂ω × (−n, n) and the fact that
0 ≤ un ≤ ϕ in �N implies ∂xN un ≥ 0 on ω × {−n, n}.

Observe now that, since un is a global minimizer of Jn ,

J ′′
n (un)(φ, φ) =

∫
�n

(|∇φ|2 − f ′(un)φ2) dx ≥ 0, for all φ ∈ H1
0 (�n).

In particular, λ1 ≥ 0, where λ1 denotes the first eigenvalue of the operator −� − f ′(un)
under homogeneous Dirichlet boundary conditions. As a consequence this operator satisfies
the maximum principle (see for instance [10]). Hence ∂xN un ≥ 0 in �n , and equality holds
only if ∂xN un(x) ≡ 0. But this is impossible since 0 = un(x ′,−n) < un(x ′, n) = ϕ(x ′), and
the strict inequality holds. Observe that this implies also the strict inequality in (3).

�

It is now our intention to obtain a solution to (1.1) as a limit of the functions un . This

will be made by means of the Ascoli-Arzelà Theorem. However, we could obtain the trivial
solutions 0 or ϕ in the limit: in order to avoid that, we make a convenient translation along
the xN axis.

To this end, let us fix z′ ∈ ω such that ϕ(z′) = ‖ϕ‖L∞(ω). Since, un = 0 on ω × {−n},
un = ϕ on ω × {n} and un is strictly monotone, there exists a unique zn ∈ (−n, n) such that

un(z
′, zn) = 1

2
ϕ(z′) = 1

2
‖ϕ‖L∞(ω).

The following lemma is a key step in passing to a limit:

Lemma 2.3 We have that n − zn → +∞ and n + zn → +∞.

Proof We reason by contradiction, and we assume that n + zn is not a diverging sequence.
Passing to a subsequence and using Ascoli-Arzelà Theoremwe can assume that n+ zn → z0
and the sequence vn(x ′, xN ) = un(x ′, xN − n) converges locally in C2,α sense to a limit
function v which solves the problem:{

−�v = f (v) in ω × R
+,

v = 0 on ∂
(
ω × R

+)
.

Moreover, v(z′, z0) = 1
2‖ϕ‖L∞(ω), which implies in particular that v 
≡ 0.

Furthermore, we have that 0 ≤ v(x ′, xN ) ≤ ϕ(x ′) and ∂xN v ≥ 0. By monotonicity, we
can define:

v̄(x ′) = lim
xN→+∞ v(x ′, xN ).

By the C2 boundedness of v we obtain that the above limit holds in C1 norm. We now
use the invariance of the Hamiltonian to reach a contradiction. If we apply Proposition 2.1
to v at t = 0 we obtain:

H = −1

2

∫
ω

(∂xN v(x ′, 0))2 dx ′ ≤ 0.

123
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Moreover, being v̄ ∈ H1
0 (ω), one has

lim
t→+∞ H(t) = lim

t→+∞

∫
ω

(
1

2

(|∇x ′v(x ′, t)|2 − (∂xN v(x ′, t))2
) − F(v(x ′, t))

)
dx ′

=
∫
ω

(
1

2
|∇x ′ v̄|2 − F(v̄(x ′))

)
dx ′ = I (v̄) ≥ 0.

As a consequence, ∂xN v(x ′, 0) = 0 for all x ′ ∈ ω. By unique continuation we would
obtain that v ≡ 0, a contradiction.

If we assume instead that n − zn is not diverging we can argue in an analogous manner.
�


We are now in conditions to prove Theorem 1.1.

Proof of Theorem 1.1 Define ûn(x ′, xN ) = un(x ′, xN − zn), so that ûn(z′, 0) = 1
2‖ϕ‖L∞ .

Passing to a subsequence and using Ascoli-Arzelà Theorem, and taking into account
Lemma 2.3, we conclude that ûn → u in C2,α

loc (�) sense, where u is a solution of prob-
lem (1.1). By the pointwise convergence of the derivatives we have that ∂xN u ≥ 0. This
monotonicity allows us to define:

u(x ′) = lim
xN→−∞ u(x ′, xN ), u(x ′) = lim

xN→+∞ u(x ′, xN ).

Clearly, 0 ≤ u < u ≤ ϕ are solutions of the problem:{
−�x ′φ = f (φ) in ω,

φ = 0 on ∂ω.

Moreover, by pointwise convergence,

u(z′) ≤ u(x ′, 0) = 1

2
ϕ(z′) ≤ u(z′). (2.2)

We now make use of the Hamiltonian associated to u. Observe that since the Hamiltonian
values Hn are negative for all n ∈ N, passing to the limit we obtain that H ≤ 0. Then:

0 ≥ H = lim
t→+∞

∫
ω

(
1

2

(|∇x ′u(x ′, t)|2 − (∂xN u(x ′, t))2
) − F(u(x ′, t))

)
dx ′

=
∫
ω

(
1

2
|∇x ′u(x ′)|2 − F(u(x ′))

)
dx ′ = I (u) ≥ 0.

Analogously we also obtain that I (u) = 0. By the minimality of ϕ (recall Lemma 3.2)
and (2.2) we conclude that u = 0 and u = ϕ.

Finally, observe that ∂xN u is a weak solution of:

−�(∂xN u) = f ′(u)∂xN u.

The maximum principle applies and we obtain that ∂xN u > 0.
�
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3 On the assumptions (H1) and (H2)

As we have shown in the previous section, Theorem 1.1 holds under the hypotheses (H1)
and (H2). In this section our intention is to shed some light on those assumptions. First, we
show that we can always find functions f so that these assumptions are satisfied. Second,
we show that under (H1) and (H2) there exists a positive minimal solution of (1.3). Finally,
we will see that such assumptions are rather natural: indeed, the existence of a solution as
given by Theorem 1.1 implies that 0, ϕ are stable solutions of the problem (1.3) at the same
energy level.

Proposition 3.1 Given a smooth and bounded domain ω ⊆ R
N−1, we can find a smooth odd

function f : R → R such that assumptions (H1) and (H2) hold true.

Proof The function f claimed in Proposition 3.1 will have the form:

fλ(t) = t3 − λt5,

for some λ > 0 to be found. Clearly its primitive is:

Fλ(t) =
t∫

0

fλ(s) ds = t4

4
− λ

t6

6
.

Furthermore, we define Iλ : H1
0 (ω) → (−∞,+∞],

Iλ(ψ) =
∫
ω

(
1

2
|∇x ′ψ |2 − Fλ(ψ)

)
dx ′ =

∫
ω

(
1

2
|∇x ′ψ |2 − 1

4
ψ4 + λ

6
ψ6

)
dx ′,

and

mλ = inf
H1
0 (ω)

Iλ.

Let us point out that Iλ(0) = 0 and then mλ ≤ 0, for all λ ≥ 0. Moreover, observe that for
any λ, 0 is a critical point of Iλ and

I ′′
λ (0)[φ] =

∫
ω

|∇φ|2 dx ′, for all φ ∈ H1
0 (ω), (3.1)

that means it is an isolated, uniformly in λ, local minimizer.
The proof will be done in several steps.

Step 1: For any λ > 0 the infimum mλ is finite and it is achieved. Moreover, mλ ≤ mλ′ if
λ ≤ λ′.

For all λ > 0 we have that Fλ(t) ≥ kλ for some constant kλ ∈ R. Therefore,

Iλ(ψ) ≥ 1

2
‖ψ‖2

H1
0 (ω)

− kλ |ω| , (3.2)

and coercivity easily follows. Then the weak lower semicontinuity is a consequence of the
fact that Fλ ≥ kλ and Fatou’s Lemma. Finally, the monotonicity of mλ with respect to λ is
immediate from its definition.

Step 2: The set E = λ > 0 : mλ < 0 is not empty and bounded from above; we denote by
λ∗ its supremum.
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We first show that the E is not empty. Indeed, take any φ ∈ C1
0(ω); it is clear that for

sufficiently large t > 0, we have that:

1

2

∫
ω

|∇x ′(tφ)|2 dx ′ − 1

4

∫
ω

(tφ)4 dx ′ = t2

2

∫
ω

|∇x ′φ|2 dx ′ − t4

4

∫
ω

φ4 dx ′ < −1.

We can take λ > 0 small enough so that λ t6
6

∫
ω

φ6 < 1 to conclude that Iλ(tφ) < 0.

Moreover, by the Poincaré inequality we can estimate Iλ from below as:

Iλ(ψ) ≥
∫
ω

(
Cω

2
ψ2 − 1

4
ψ4 + λ

6
ψ6

)
dx ′. (3.3)

Observe that if λ is sufficiently large, the function t �→ Cω

2 t2 − 1
4 t

4 + λ
6 t

6 is nonnegative,
and hence mλ = 0.

Step 3: (H1) and (H2) are satisfied for λ = λ∗.
We start by pointing out that mλ∗ = 0 by the definition of λ∗. Consider a sequence

(λn)n∈N ⊆ E such that λn → λ∗ as n → +∞. Then there exists (φλn )n∈N ⊆ H1
0 (�) such

that Iλn (φλn ) = mλn < 0 for all n ∈ N. First of all, let us show that, without loss of generality,
we can assume φλn ≥ 0 in ω. Indeed, since

∣∣φλn

∣∣ ∈ H1
0 (ω) and

∣∣∇ ∣∣φλn

∣∣∣∣ = ∣∣∇φλn

∣∣ a.e. in
ω one has

mλn ≤ Iλn (
∣∣φλn

∣∣) = Iλn (φλn ) = mλn ,

proving that we can assume φλn ≥ 0 in ω.
Now, taking into account that λn → λ∗, the inequality (3.2) tells us that ‖φλn‖H1

0 (ω) ≤ C

for some constant C > 0 and for all n ∈ N. Then, up to subsequences, φλn⇀φ∗ weakly in
H1
0 (ω). We now claim that φ∗ 
= 0. Indeed, let us assume, by contradiction, that φ∗ ≡ 0.

In particular, by Sobolev’s embedding theorem, one has φλn → 0 strongly in L2(ω). Now,
it is trivial to see that for all λ > 0 there exists Cλ > 0 such that fλ(t) ≤ Cλ for all t ≥ 0.
In particular fλn (t) ≤ 2Cλ∗ for all t ≥ 0 and for all n ∈ N large enough. Then, if we let
φ̄ ∈ H1

0 (ω) be the solution of {
−�φ̄ = 2Cλ∗ in ω,

φ̄ = 0 on ∂ω,

it is an easy consequence of the maximum principle the fact that 0 ≤ φλn ≤ φ̄ in ω for all
n ∈ N large enough. In particular 0 ≤ φλn ≤ c̄ in ω for all n ∈ N large enough, for some
positive constant c̄ ∈ R. Since φλn are solutions of{

−�x ′φ = fλn (φ) in ω,

φ = 0 on ∂ω,

by classical regularity theory there is a constant C = C(ω) > 0 such that

‖φλn‖H1
0 (ω) ≤ C‖ f (φλn )‖L2(ω) ≤ CLip( f , [0, c̄])‖φλn‖L2(ω) → 0,

as n → +∞, but this is in contrast with the fact that 0 is an isolated, uniformly in n, local
minimizer of Iλn .

Now, since φλn → φ∗ in L2(ω) and φλn is a uniformly bounded sequence, we have that
φλn → φ∗ in L p(ω) for any 1 < p < +∞. In particular, this shows that Iλ∗(φ∗) = 0.
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Furthermore, we have that φ∗ ≥ 0 in ω is a weak solution of the problem:{
−�x ′φ = fλ∗(φ) in ω,

φ = 0 on ∂ω.
(3.4)

By classical regularity theory φ∗ ∈ C2,α(ω). We can rewrite (3.4) as−�x ′φ∗ +q(x ′)φ∗ = 0
in ω, where q is defined as:

q =
{
fλ∗(φ∗)/φ∗ if φ∗ 
= 0,

0 elsewhere.

Since f ∈ C1 and f (0) = 0, q ∈ L∞(ω) and the maximum principle can be applied to show
that φ∗ > 0 in ω and the proof of (H2) is complete.

Finally, (H1) is an immediate consequence of (3.1) and the fact that mλ∗ = 0.
�


Lemma 3.2 Assume that f ∈ C1(R) is such that (H1), (H2) are satisfied. Then, there exists
ϕ ∈ C2,α(ω) a positive solution of (1.3) such that I (ϕ) = 0, and if ψ ∈ H1

0 (ω), ψ > 0,
satisfies I (ψ) = 0, then ϕ ≤ ψ .

Proof The proof is done in two steps.

Step 1: if φ,ψ ∈ H1
0 (ω) satisfy I (φ) = I (ψ) = 0 then one of the following is verified

φ < ψ, or φ ≡ ψ, or ψ > φ,

that is the set of minima of I is totally ordered.
Let us define ξ = min{φ,ψ}, η = max{φ,ψ} ∈ H1

0 (ω). Hence I (ξ) ≥ 0, I (η) ≥ 0 and

0 ≤ I (ξ) + I (η) = I (φ) + I (ψ) = 0.

We can then infer that I (ξ) = I (η) = 0. In particular, ξ is a solution of problem (3.4) and
then by classical regularity theory ξ ∈ C2,α(ω). Let us now consider the function � = φ − ξ

that satisfies {
−�x ′� + q(x ′)� = 0 in ω,

� ≥ 0 in ω,

where

q(x ′) =
{

f (φ(x ′))− f (ξ(x ′))
φ(x ′)−ξ(x ′) , if x ′ ∈ {φ > ψ},

0, if x ′ ∈ {φ ≤ ψ}.
Since q ∈ L∞(ω), we can apply the Maximum Principle for nonnegative solutions to infer
that � > 0 in ω or � ≡ 0 in ω. If the first case occurs we deduce φ > ψ in ω, while if the
second one is verified it follows φ ≤ ψ in ω.

We can argue in the same way with η, to conclude that either φ < ψ in ω or φ ≥ ψ in ω.

Step 2: there exists ϕ ∈ C2,α(ω) such that I (ϕ) = 0, ϕ > 0 in ω and if ψ ∈ H1
0 (ω),

ψ > 0 satisfies I (ψ) = 0 then one of the following is verified

ψ ≡ ϕ, or ψ > ϕ.
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We can now defineM = {ψ ∈ H1
0 (ω) : I (ψ) = 0, ψ > 0}, which is not empty thanks

to (H2), and:

α = inf{‖ψ‖L∞(ω) : ψ ∈ M} ≥ 0.

Take ψn ∈ M with ‖ψn‖L∞ → α. Since ψn is a sequence of uniformly bounded solu-
tions to (1.3), Schauder estimates imply that ψn is uniformly bounded in C2,α(ω). Up to a
subsequence we have that ψn → ϕ in C2,α sense, and I (ϕ) = 0. We claim that ϕ is the
desired minimal solution.

Since 0 is an isolated minimizer by (H1), we conclude that ϕ 
≡ 0, ϕ ≥ 0. We argue again
as before: we can rewrite (3.4) as −�x ′ϕ + q(x ′)ϕ = 0 in ω, where q is defined as:

q =
{
f (ϕ)/ϕ if ϕ 
= 0,

0 elsewhere.

Since f ∈ C1 and f (0) = 0, q ∈ L∞(ω) and the maximum principle can be applied to show
that ϕ > 0 in ω. In other words, ϕ ∈ M.

Take now an arbitrary function ψ ∈ M. By Step 1, we only need to exclude ψ < ϕ. But,
in such case,

‖ψ‖L∞(ω) < ‖ϕ‖L∞(ω) = α,

which is a contradiction with the definition of α.
�


We now show that, to some extent, the assumptions (H1) and (H2) are necessary for
Theorem 1.1 to hold.

Proposition 3.3 Assume that f ∈ C1(R) is so that there exists u ∈ C2,α(�) solution of (1.1)
such that:

(1) lim
xN→−∞ u(·, xN ) = 0 and lim

xN→+∞ u(·, xN ) = ϕ(·), uniformly in x ′ ∈ ω.

(2) u is strictly increasing in xN , that is

∂xN u > 0 in �.

Then, 0 and ϕ are solutions of (1.3) with I (0) = I (ϕ). Moreover, I ′′(0) and I ′′(ϕ) are
semipositive definite forms.

Proof Wemake use of the invariance of the Hamiltonian (Proposition 2.1) to the function u:

H = lim
t→±∞

∫
ω

(
1

2

(|∇x ′u(x ′, t)|2 − (∂xN u(x ′, t))2
) − F(u(x ′, t))

)
dx ′

−→
{
I (0) if t → −∞,

I (ϕ) if t → +∞.

Now, observe that ∂xN u is a positive solution to the problem:{
−�(∂xN u) = f ′(u)∂xN u in �,

∂xN u = 0 on ∂�.

As a consequence (see for instance [10]) u is stable, meaning that:

Q(φ) =
∫
�

(|∇φ|2 − f ′(u)φ2) dx ≥ 0, for all φ ∈ H1
0 (�).
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It is well known (see for instance [8, Lemma 3.1]) that such property is inherited by the
upstream and downstream limits ϕ and 0, respectively. In other words, I ′′(0) and I ′′(ϕ) are
semipositive definite.

�


4 Applications

As we mentioned in the introduction, the initial motivation of our study was to show the
existence of solutions to semilinear elliptic problems without critical points. Indeed, we can
prove the following result.

Theorem 4.1 There exists f : R → R a smooth function and u a bounded smooth solution
to the problem: {

−�u = f (u) in �,

u = 0 on ∂�,
(4.1)

where � ⊆ R
2 is either the strip (0, 1) × R, the half-plane R

+ × R, or the whole plane
� = R

2 (in this last case the boundary condition is void).
Moreover u is not a 1D solution (i.e., some level sets are not formed by straight lines),

∇u ∈ L∞(�)2 and ∇u(x) 
= 0 for all x ∈ �.

Proof For the proof, take ω = (0, 1), and fix �0 = (0, 1) × R. Let f be as given in
Proposition 3.1, so that assumptions (H1) and (H2) hold. By Theorem 1.1, there exists a
bounded solution u0 to the problem:{

−�u0 = f (u0) in �0,

u0 = 0 on ∂�0,

such that ∂x2u0 > 0 in �0. Observe moreover that ∂x1u0 
= 0 on ∂�0 by the Hopf lemma,
since f is smooth and f (0) = 0. As a consequence ∇u0 does not vanish in �0 as claimed.
The L∞ boundedness of∇u0 follows from standard regularity estimates. Furthermore, since
f is of class C∞(R), a bootstrap argument yield that u ∈ C∞(�).
We consider now the case �1 = R

+ ×R. The idea is to extend the definition of u0 to �1

by odd reflection along the x1 axis. Being more specific, we define:

v : (0, 2) × R → R, v(x1, x2) =
{
u0(x1, x2) if 0 ≤ x1 ≤ 1,

−u0(2 − x1, x2) if 1 ≤ x1 ≤ 2,

and

u1 : �1 → R, u1(x1, x2) = v(x1 − 2[x1/2], x2),
where [x] denotes the integer part of x .

Since f : R → R is an odd function, u1 is a solution of (4.1) with � = �1. Obviously
∇u1 ∈ L∞(�1)

2 and ∇u1(x) 
= 0 for all x ∈ �1.
For the case � = R

2, it suffices to define:

u2 : R2 → R, u2(x1, x2) =
{
u1(x1, x2) if x1 ≥ 0,

−u1(−x1, x2) if x1 ≤ 0.
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Again, −�u2 = f (u2) by the oddness of f , ∇u2 ∈ L∞(R2)2 and ∇u2(x) 
= 0 for all
x ∈ R

2.
�


Remarks 4.2

• Obviously we can obtain solutions which are not 1D and without critical points in higher
dimensions, that is, in domains � = (0, 1) × R

N−1, in half-spaces R+ × R
N−1 and in

the whole space RN , by extending the solutions constantly with respect to the remaining
variables.

• Let us notice that the solutions given in Theorem 4.1 satisfy:

inf
�

|∇u| = 0.

Indeed, recall that limxN→−∞ u(x ′, xN ) = 0 in C2,α sense.
• In the case of entire solutions, since ∇u(x) 
= 0 for all x ∈ R

2, we can write ∇u(x) =
ρ(x)eiθ(x), by using complex notation. In such case we have that ([15]):

div(ρ2∇θ) = 0.

Observe that θ(0, x2) = 0, θ(1, x2) = π for all x2 ∈ R; by reflection we obtain that θ

grows linearly in |x |, indeed,

lim sup
|x |→+∞

|θ(x)|
|x | = π.

This is to be compared with the results in [35].

The previous result implies, in particular, the existence of bounded solutions to the 2D
Euler equations without stagnation points which are not shear flows, as shown in the next
corollary.

Corollary 4.3 Let us consider the stationary 2D Euler equations:⎧⎪⎨
⎪⎩
u · ∇u = −∇ p in �,

div u = 0 in �,

u · η = 0 on ∂�,

(4.2)

where � ⊆ R
2 is either the strip (0, 1) × R, the half-plane R

+ × R, or the whole plane
� = R

2 (in this last case the boundary condition is void). There exist smooth solutions to
those problems such that u ∈ L∞(�)2 and u(x) 
= 0 for all x ∈ �, which are not shear
flows.

Proof Let us consider the solution u given in Theorem 4.1. It is well known that the vector
field u = ∇⊥u = (−∂x2u, ∂x1u) satisfies (4.2) in �, with pressure given by

p = −|∇u|2
2

− F(u).

The function u is called the stream function of the flow u. Since u is not 1-dimensional,
u is not a shear flow.

�
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