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Abstract. Let C ⊆ N
p be an integer cone. A C-semigroup S ⊆ C is an affine

semigroup such that the set C\S is finite. Such C-semigroups are central
to our study. We develop new algorithms for computing C-semigroups
with specified invariants, including genus, Frobenius element, and their
combinations, among other invariants. To achieve this, we introduce a
new class of C-semigroups, termed B-semigroups. By fixing the degree
lexicographic order, we also research the embedding dimension for both
ordinary and mult-embedded N

2-semigroups. These results are applied to
test some generalizations of Wilf’s conjecture.
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Introduction

Let N be the set of natural numbers. We consider an affine semigroup S to
be a finitely generated commutative additive submonoid of Np (for a positive
integer p) such that the zero element belongs to S. For convenience, we use
0 instead of (0, 0, . . . , 0) ∈ N

p whenever it is unambiguous. It is well known
that any affine semigroup S admits a unique minimal system of generators,
denoted by msg(S) (see [22]), and the cardinality of the minimal generating
set, called the embedding dimension, is represented by e(S). Let C ⊆ N

p be
an affine (integer) cone. A submonoid S ⊆ C is a C-semigroup if the set C\S
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is finite; this structure was introduced in [17]. When C = N
p, S is referred to

as a generalized numerical semigroup, first defined in [14]. In the special case
where p = 1, the C-semigroup S is known as a numerical semigroup. Note that
the structures of C-semigroups and generalized numerical semigroups naturally
extend the notion of numerical semigroups to higher dimensions.

Most of the invariants analysed in the study of numerical semigroups
can be generalized to C-semigroups. In addition to the embedding dimension,
the set H(S) = C\S is called the set of gaps of S, and the genus, g(S), is the
cardinality of H(S). Following the notation given in [19], let {τ1, . . . , τt} be the
set of extremal rays of C. For each i ∈ {1, . . . , t}, the i-multiplicity of S, denoted
by multi(S), is the minimum element in τi∩S under the componentwise partial
order in N

p. To extend certain invariants to C-semigroups, it is necessary to
define a total order on N

p, which is an order relation � on N
p that is compatible

with addition and satisfies 0 � x for any x ∈ N
p (see [10]). Once a total order

� is fixed on N
p, for instance, the Frobenius element of S, Fb(S), is defined

as max�(C\S). By convention, if S = C, then Fb(S) = (−1,−1, . . . ,−1). The
conductor of S, denoted by c(S), is the minimum element x ∈ S such that
Fb(S) ≺ x. An element s of S is said to be a small element if s ≺ Fb(S).
The set of all small elements is denoted by N(S), and its cardinality by n(S).
Additionally, the smallest non-zero element of S with respect to the total order
� is called the multiplicity of S, denoted by m(S). For any element f of C, let
N (f) the cardinality of the set {x ∈ C\{0} | x � f}. In particular, when f is
the Frobenius element of S, N (Fb(S)) is referred to as the Frobenius number
of S. In the case of numerical semigroups, note that N (Fb(S)) = Fb(S).

Although the study of C-semigroups and generalized numerical semigroup
is relatively recent, much research has focused on examining these struc-
tures through their invariants. For instance, [7] and [14] include algorithms
for computing all possible N

p-semigroups with a fixed genus. A recent study
on the unbounded behaviour of certain invariants, such as the conductor, in
C-semigroups can be found in [1]. Moreover, [16] provides a method to com-
pute the set of all C-semigroups with a fixed Frobenius element, defined as
C(Fb = f) = {S is a C-semigroup | Fb(S) = f}, we provide an alternative
procedure for computing it.

In this work, we contribute to this ongoing research by developing and de-
scribing several algorithms to compute all possible C-semigroups with specified
invariants, including the small elements and the genus, the Frobenius element,
the genus, and the combination thereof, i.e., we focus on C(gen = g, se = n)
which corresponds to C-semigroups with a fixed genus and a number of small
elements, C(Fb = f, gen = g) for a fixed Frobenius element and genus, and
C(gen = g) denotes the set of all C-semigroups with genus g. Additionally, we
develop a new class of C-semigroups based on their invariants, which we call
B-semigroups. We provide a graphical classification of these semigroups and
show how the study of B-semigroups is a tool for computing the set C(Fb = f).
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In 1978, Wilf conjectured that for any numerical semigroup S, the in-
equality e(S)n(S) ≥ Fb(S) + 1 holds (see [25]). Although the general case of
this conjecture remains unsolved, specific cases have been addressed (see, for
instance, [12,13] and [15]). A detailed discussion of this topic can be found in
[11] and the references therein. The suggestion to extend Wilf’s conjecture to
higher dimensional structures was proposed in [14], leading to several contri-
butions, such as the Generalized Wilf Conjecture (see [6]) and the Extended
Wilf Conjecture (see [17]).

Following the analysis of invariants, another objective of this work is to
discuss the embedding dimension and the set of minimal generators of two
specific classes of N2-semigroups: ordinary N

2-semigroups and mult-embedded
N

2-semigroups. Given a total order �, an ordinary C-semigroup is defined as a
semigroup Sc = {0} ∪ {x ∈ C | x 	 c} for some c ∈ C. Note that our definition
of an ordinary semigroup differs from the one given in [5]. In the context of
numerical semigroups, it is also known as half-lines (see [23]). In contrast, a
mult-embedded C-semigroup is defined as S = {m, 2m, . . . , (k − 1)m} 
 Skm,
where m is a non-zero element of C. For C = N

2, studying the embedding
dimension of these classes of semigroups ordered by the graded lexicographic
order allows us to test the Generalized and the Extended Wilf Conjecture for
N

2-semigroups.
The content of this work is organized as follows: In Sect. 1, we study the

sets C(Fb = f, gen = g) and C(gen = g). We show some bounds for computing
the mentioned invariants. Section 2 is devoted to study B-semigroups. Besides,
some procedures are given to compute the sets of all B-semigroups with a
fixed genus, a fixed Frobenius element, and both fixed genus and Frobenius
element. In Sect. 3, we provide an algorithm to compute the set C(Fb = f) by
using B-semigroups. In the last sections (Sects. 4 and 5), we prove that ordi-
nary and mult-embedded N

2-semigroups ordered by the graded lexicographic
order satisfy the Generalized and the Extended Wilf Conjecture. The results
introduced throughout are not only theoretical but also provide computational
methods, which are illustrated through examples. To this aim, we have used
third-party software (Normaliz [3]) and some libraries developed by the au-
thors in Mathematica [26].

1. C-Semigroups with Fixed Frobenius Element and Genus, and
Fixed Genus

Given A a non-empty subset of Rp
≥, with R≥ denoting the set of non-negative

real numbers, the real cone determined by A is

L(A) =

{
h∑

i=1

λiai | h ∈ N, λ1, . . . , λh ∈ R≥, a1, . . . , ah ∈ A

}
,
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and the integer cone determined by A is the set L(A) ∩N
p. In general, a non-

degenerated real (or integer) cone is the set of real (or integer) points belonging
to the convex hull of finitely many half lines in R

p
≥ emanating from the origin.

An integer cone C ⊆ N
p is affine, that is, it is finitely generated, if there

is a finite subset A of C such that C = L(A) ∩ N
p. In [2, Chapter 2] is proved

that a cone C ⊆ N
p is affine if and only if it has a rational point in each of

its extremal rays. Moreover, any subsemigroup of C is finitely generated if and
only if there exists an element in the subsemigroup in each extremal ray of C.
We assume that any integer cone considered in this work is affine.

Fix an integer cone C, and a total order � on N
p. Recall that

C(Fb = f, gen = g) = {S is a C-semigroup | Fb(S) = f, g(S) = g}.

In this section, we have two main goals. The objectives are to describe an algo-
rithm for the computation of C(Fb = f, gen = g) and to provide a procedure
to compute those C-semigroups with a fixed genus. We consider some bounds
to the genus and the Frobenius number of the semigroups to achieve these.

Using the terminology from [18], a C-semigroup is called irreducible if
it cannot be expressed as the intersection of two C-semigroups that properly
contain it. For any x, y ∈ L ⊆ N

p, consider the partial order x ≤L y if y − x ∈
L. The following proposition establishes an irreducible C-semigroup from an
existing C-semigroup, we provide the most general case applying any total
order.

Proposition 1 [16, Lemma 12]. Let C be an integer cone and let f ∈ C\{0}.
Then, the set

Δ(C, f) =
(

C\{f}
)

\
{

x ∈ C\{0} | x ≤C f, and x � f

2

}
is an irreducible C-semigroup, with Frobenius element f .

The next proposition combines Corollaries 8 and 9 in [16]. We denote by
B(f) the set {x ∈ C | x ≤C f} with f ∈ C\{0}. From now on, �· denotes the
ceiling function, which rounds up to the nearest integer, and for any set A,
the symbol � denotes the cardinality of the set A. Besides, using the notation
from [20], for any two natural numbers a and b, with a ≤ b, the set �a, b� =
{r ∈ N | a ≤ r ≤ b}. If a = 0, instead of �0, b�, we use �b� for short.

Proposition 2. Let S be a C-semigroup with Frobenius element f . Then, S is

irreducible if and only if g(S) = � �B(f)
2

.
In the specific context of N

p-semigroups, the value of the cardinality
of B(f) can be determined explicitly as �B(f) =

∏
i∈�p�(fi + 1) for f =

(f1, . . . , fp) ∈ C\{0}.

Corollary 3 [8, Theorem 5.6 and Theorem 5.7]. Let S be a N
p-semigroup with

Frobenius element f = (f1, . . . , fp). Then, S is irreducible if and only if g(S) =

�
∏

i∈�p�(fi+1)

2 .
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We gather the previous results to obtain the announced result. For any
element f ∈ C, recall that N (f) is the cardinality of the set {x ∈ C\{0} |
x � f}. For this section, we need a total order � such that N (f) is finite. So,
we assume that the fixed total order � satisfies that property. For example, a
graded order can be used (see [10]).

Theorem 4. For any f ∈ C\{0} and any positive integer g, the set C(Fb =
f, gen = g) is non-empty if and only if⌈

�B(f)
2

⌉
≤ g ≤ N (f).

Proof. Assume that C(Fb = f, gen = g) is non-empty, and let S ∈ C(Fb =
f, gen = g). Trivially, g(S) ≤ N (f). To the other inequality, consider X =
B(f) ∩ S and Y = B(f)\S. Define the injective map ϕ : X −→ Y via ϕ(x) =
f − x. Note that ϕ is well-defined, since f − x /∈ S, otherwise f ∈ S, which it
is not possible. Therefore, �X ≤ �Y , and since B(f) equals the disjoint union
of X and Y , then g(S) ≥ �Y ≥ ⌈ �B(f)

2

⌉
.

Conversely, by combining Propositions 1 and 2, we obtain that Δ(C, f) =
(C\{f})\{x ∈ C\{0} | x ≤C f, and x � f

2 } belongs to C
(
Fb = f, gen =⌈ �B(f)

2

⌉)
. Hence, we can define the following sequence: T0 = Δ(C, f), and

Ti+1 = Ti\{m(Ti)} if m(Ti) ≺ f , otherwise Ti+1 = Ti, for every positive integer
i. Note that there exists some natural number i0 such that Ti0 = Ti0+1, and
∪i0

i=0g(Ti) = �
⌈ �B(f)

2

⌉
,N (f)�. �

Since �B(f) equals
∏

i∈�p�(fi + 1) when C = N
p, the previous result can

be specialized to N
p-semigroups.

Corollary 5. For any f ∈ N
p\{0} and any positive integer g, the set C(Fb =

f, gen = g) is non-empty if and only if⌈∏
i∈�p�(fi + 1)

2

⌉
≤ g ≤ N (f).

The last theorem provides an algorithm (Algorithm 1) to compute the
set of all C-semigroups fixed the Frobenius element and the genus. Before
presenting the algorithm, we introduce two definitions. We denote by Δ(f)
the set {x ∈ C | x � f} ∪ {0}. Note that Δ(f) is an ordinary C-semigroup
with Frobenius element f . For any C-semigroup S, we say that x ∈ H(S) is a
special gap of S if x + S\{0} ⊂ S, and 2x ∈ S. The set of all special gaps of
S is denoted by SG(S).

From the argument given in the proof of Theorem 4, it follows that for
any positive integer i, if m(Ti) ≺ f then Ti+1 ∪ {m(Ti)} = Ti. Since Ti is
a C-semigroup, it follows that m(Ti) ∈ SG(Ti+1). This fact, combined with
the definition of Δ(f), ensures that the set B in the following algorithm is
non-empty.
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Algorithm 1: Computing the set C(Fb = f, gen = g).
Input: Let f ∈ C\{0} and a positive integer g.
Output: The set C(Fb = f, gen = g).

1 if g /∈ �
⌈ �B(f)

2

⌉
,N (f)� then

2 return ∅
3 A ← {Δ(f)};
4 for i ∈ [0,N (f) − g) do
5 Y ← ∅;
6 while A �= ∅ do
7 T ← First(A);
8 B ← {x ∈ SG(T )\{f} | x ≺ m(T )};
9 Y ← Y ∪ {T ∪ {x} | x ∈ B};

10 A ← A\{T};

11 A ← Y ;

12 return A

Our work aims not to perform a computational comparison between ex-
isting algorithms and the alternatives we propose. We focus on providing al-
ternative algorithms that offer distinct approaches to the problem at hand. We
illustrate Algorithm 1 with the following example.

Example 6. Consider C = N
2, the degree lexicographic order, and let f = (2, 2)

and g = 5. The C-semigroup Δ(f) is shown in Fig. 1, where the empty circles
are the gaps of Δ(f), the blue squares are the minimal generators of Δ(f),
and the red circles are elements of Δ(f).

By applying Algorithm 1, we obtain that the set C(Fb = (2, 2), gen = 5)
is {

S1 = {(0, 1), (1, 2), (2, 3), (3, 0), (4, 0), (5, 0)} ,

S2 = {(0, 3), (0, 4), (0, 5), (1, 0), (2, 1), (3, 2)} ,

S3 = {(0, 2), (0, 3), (1, 2), (1, 3), (2, 1), (3, 0), (3, 1), (4, 0), (4, 1), (5, 0)} ,

S4 = {(0, 3), (0, 4), (0, 5), (1, 2), (1, 3), (1, 4), (2, 0), (2, 1), (3, 0), (3, 1)} }
,

where Si is the minimal generating set of each N
2-semigroup.

From Theorem 4 (or Corollary 5), we know that fixed the Frobenius
element (2, 2) there exist at least one N

2-semigroup with genus belonging to
�
⌈ �B(f)

2

⌉
,N (f)� = �5, 12�. Table 1 shows the cardinality of C(Fb = (2, 2), gen =

g) for g in �5, 12�.

Motivated by their relationship between the genus and the Frobenius
number, precisely, n(S) + g(S) = N (Fb(S)) + 1, we turn our attention to
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Figure 1. C-semigroup Δ(f)

Table 1. For C = N
2, �C(Fb = (2, 2), gen = g) for all g ∈ �5, 12�

Genus 5 6 7 8 9 10 11 12

Cardinality 4 17 37 49 41 22 7 1

provide a method for computing the set of C-semigroups with a fixed genus
and a fixed number of small elements.

Proposition 7. Let S be a C-semigroup, f ∈ C\{0}, and let g be a positive
integer such that

⌈ �B(f)
2

⌉ ≤ g ≤ N (f). Then, S ∈ C(Fb = f, gen = g) if and
only if n(S) = N (f) + 1 − g and g(S) = g.

If S is a numerical semigroup, then n(S) ≤ g(S). This inequality holds
because for each small element s, Fb(S) − s is a gap of S; otherwise, Fb(S) =
x+s for some x ∈ S\{0}, which contradicts the definition of Fb(S). In contrast,
for C-semigroups, this inequality does not necessarily hold, as illustrated by
the following counterexample.

Example 8. Let S be the N2-semigroup graphically represented in Fig. 2, where
the empty circles are the gaps of S, the blue squares are the minimal generators
of S, and the red circles are elements of S. In this example, we fix the degree
lexicographic order. Note that g(S) = 9, Fb(S) = (5, 1), and n(S) = 18. Hence,
n(S) > g(S).

To achieve the announced method, for any two natural numbers n and g,
recall that C(gen = g, se = n) denotes the set of the C-semigroups with genus g
and n small elements. Since the genus and the number of small elements of any
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Figure 2. A N
2-semigroup S such that n(S) > g(S)

C-semigroups depend on the choice of total order, the set C(gen = g, se = n)
does as well. We deduce the following result as a consequence of Proposition
7.

Corollary 9. If g and n are two positive integers, then

C(gen = g, se = n) = C(Fb = f, gen = g),

where f ∈ C satisfies N (f) = g + n − 1.

Based on Corollary 9, a method to explicitly determine C(gen = g, se = n)
is obtained. The first step of this algorithm is to look for the element f such
that N (f) = g+n−1, and the second one is to apply Algorithm 1 to get C(Fb =
f, gen = g). For example, taking C = N

2, consider the set C(gen = 5, se = 8).
For g = 5, the element f = (2, 2) satisfies that N (f) = 12 = g+n−1 = 5+8−1
(Fig. 1). Thus, C(gen = 5, se = 8) corresponds with C(Fb = (2, 2), gen = 5),
which has already been computed (see Example 6).

Recall that C(gen = g) is the set formed by all the C-semigroups with
genus equals g. We focus on introducing an algorithm to compute C(gen =
g). Note that this set is non-empty since the ordinary C-semigroup Δ(f) ∈
C(gen = g), where f ∈ C\{0} satisfies N (f) = g.

Given g a positive integer, we define F(g) = {Fb(S) | S ∈ C(gen = g)}.
Clearly, C(gen = g) = ∪f∈F(g)C(Fb = f, gen = g). Consequently, to compute
C(gen = g), we proceed as follows. First, we compute the set F(g). Second, for
each f ∈ F(g), we compute C(Fb = f, gen = g). Since Algorithm 1 addresses
the second step, we develop a method to compute F(g) without computing
the set C(gen = g).



A Computational Approach to the Study of Finite-Complement Page 9 of 28    66 

Proposition 10. If g is a positive integer, then

F(g) =
{

f ∈ C |
⌈

�B(f)
2

⌉
≤ g ≤ N (f)

}
.

Proof. Given f ∈ F(g), by applying Theorem 4 there exists at least a C-
semigroup with genus g and Frobenius element f . �

Example 11. Consider C = N
2. Hence, the set F(5) is

{(0, 3), (0, 4), (0, 5), (0, 6), (0, 7), (0, 8), (0, 9), (1, 2), (1, 3),
(1, 4), (2, 0), (2, 1), (2, 2), (3, 0), (3, 1), (4, 0), (4, 1), (5, 0), (6, 0), (7, 0), (8, 0), (9, 0)}.

It is well known that �C(gen = 5) = 210 (see [17, Table 3]).

2. B-Semigroups

Fixed f ∈ C\{0}, and a total order � on N
p, for any C-semigroup S, we consider

O(S) = S∪(C\B(f)), recall that B(f) = {x ∈ C | x ≤C f} with f ∈ C\{0}. It is
straightforward from the definition that O(S) is a C-semigroup. In particular,
if O(S) = S we say that S is a B-semigroup. The set of all B-semigroups with
Frobenius element f is denoted by B(Fb = f).

This section is devoted to discuss B-semigroups. This study is mainly
structured as in Sect. 1. Firstly, we compute the set of B(Fb = f). To achieve
this, we provide an algorithm which additionally allows us to introduce its
associative tree, whose vertex set is B(Fb = f). Secondly, we compute the
set B(Fb = f, gen = g), that is, the set of all B-semigroups with Frobenius
element f and genus g. And finally, we compute the set of all B-semigroups
with genus g, denoted by B(gen = g).

For any C-semigroup S, we consider

α(S) = min
�

{x ∈ S\{0} | x ∈ B(Fb(S))}.

This element can be interpreted as the multiplicity in B(Fb(S)) of S. If S ∩
B(f) = {0}, we consider that α(S) = f .

In this context, for any f ∈ C\{0}, we define the graph G(B(Fb = f)),
whose vertex set is B(Fb = f) and the pair (S, T ) ∈ B2(Fb = f) is an edge if
and only if T = S\{α(S)}. If (S, T ) is an edge, we say that S is a child of T .
A path connecting the vertices S and T of any directed graph is a sequence of
distinct edges of the form (S0, S1), (S1, S2), . . . , (Sn−1, Sn) where S0 = S and
Sn = T .

Theorem 12. If f ∈ C\{0}, then G(B(Fb = f)) is a tree with root (C\B(f)) ∪
{0}. Furthermore, the set of children of any T ∈ B(Fb = f) is the set {T∪{x} |
x ∈ SG(T ) and x ≺ α(T )}.
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Proof. Let S ∈ B(Fb = f). We define recursively the following sequence:

S0 = S,

Si+1 =
{

Si\{α(Si)} if Si �= (C\B(f)) ∪ {0},
Si otherwise.

Since the set B(f) is finite, the above sequence becomes stationary. Thus, any
S ∈ B(Fb = f) is connected by a path to (C\B(f)) ∪ {0}, and the uniqueness
of the path is deduced from the uniqueness of α(S). If S is a child of T , then
T = S\{α(S)}, and therefore S = T ∪ {α(S)} is a C-semigroup, which implies
that α(S) ∈ SG(T ) and α(S) ≺ α(T ). Conversely, if x ∈ SG(T ) and x ≺ α(T ),
then S = T ∪ {x} which ensures S is a C-semigroup with α(S) = x. Thus, S
is indeed a child of T . �

With the theoretical foundation established, we introduce Algorithm 2
for computing B(Fb = f). Example 13 illustrates it and shows the graph
G(B(Fb = f)) obtained.

Algorithm 2: Computing the set B(Fb = f).
Input: Let f ∈ C\{0}.
Output: The set B(Fb = f).

1 A ← {(C\B(f)) ∪ {0}};
2 X ← A;
3 while A �= ∅ do
4 Y ← ∅;
5 B ← A;
6 while B �= ∅ do
7 T ← First(B);
8 C ← {x ∈ SG(T ) | x ≺ α(T )};
9 if C �= ∅ then

10 Y ← Y ∪ {T ∪ {x} | x ∈ C};

11 B ← B\{T};

12 X ← X ∪ Y ;
13 A ← Y ;

14 return X

Example 13. Consider C = N
2. Fixed f = (2, 2) ∈ C and the degree lexico-

graphic order, the C-semigroup (C\B(f)) ∪ {0} is shown in Fig. 3. The blue
squares are the minimal generators, specifically,

msg ((C\B(f)) ∪ {0}) = {(0, 3), (0, 4), (0, 5), (1, 3), (1, 4), (1, 5), (2, 3),

(2, 4), (3, 0), (3, 1), (3, 2), (4, 0), (4, 1), (4, 2), (5, 0), (5, 1), (2, 5), (5, 2)}.

The empty circles represent the set B(f) and the red circles are elements of
C\B(f).
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Figure 3. Example of (C\B(f)) ∪ {0}

Figure 4. G(B(Fb = (2, 2))) with the degree lexicographic order

For this example, Fig. 4 illustrates the 4-level tree G(B(Fb = f)) defined
in Theorem 12. Its root is the C-semigroup (C\B(f)) ∪ {0}, and each node
represents a C-semigroup in B(Fb = f). For example, the rightmost node
{2, 0} in the last level is the C-semigroup

(C\B(f)
)∪{(2, 1), (1, 2), (2, 0), (0, 0)}.

In each level, some special gaps of each node are joined to obtain its children
(step 10 in Algorithm 2).

Recall that the tree G(B(Fb = f)) depends on the fixed total order. For
example, when the chosen total order is defined as (a, b) ≺ (c, d) if 2a + b <
2c + d, or, in case 2a + b = 2c + d, a < c, the obtained tree is shown in Fig. 5.

We can provide a result equivalent to Theorem 4 for the set B(Fb =
f, gen = g).
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Figure 5. G(B(Fb = (2, 2))) with the total order (a, b) ≺
(c, d) iff 2a + b < 2c + d, or, in case 2a + b = 2c + d, a < c

Proposition 14. For any f ∈ C\{0} and any positive integer g, the set B(Fb =
f, gen = g) is non-empty if and only if⌈

�B(f)
2

⌉
≤ g ≤ �B(f) − 1.

Proof. Consider that B(Fb = f, gen = g) is non-empty, and let S ∈ B(Fb =
f, gen = g), then g(S) ≤ �B(f) − 1. Analogously to the proof of Theorem 4,
g(S) ≥ ⌈ �B(f)

2

⌉
.

Conversely, since Δ(C, f) ∈ B
(
Fb = f, gen =

⌈ �B(f)
2

⌉)
, this set is con-

nected with the root (C\B(f))∪{0} in the tree G(B(Fb = f)) by removing an
element in each level, and (C\B(f))∪{0} ∈ B(Fb = f, gen = �B(f)−1), we can
conclude that B(Fb = f, gen = g) is non-empty for any g ∈ �

⌈ �B(f)
2

⌉
, �B(f) −

1�. �

Assuming C = N
p, we reformulated Corollary 5 as follows.

Corollary 15. For any f ∈ N
p\{0} and any positive integer g, the set B(Fb =

f, gen = g) is non-empty if and only if⌈∏
i∈�p�(fi + 1)

2

⌉
≤ g <

∏
i∈�p�

(fi + 1).

From the previous results, it is established that, for a fixed Frobenius
element, the genus belongs to a bounded interval. Using Algorithm 2 as a basis,
we determine the set B(Fb = f, gen = g) by focusing specifically on the first
�B(f)− g steps. Continuing with the framework established in Sect. 1, we now
address the computation of B(gen = g). Rather than calculating B(gen = g)
directly, according to Proposition 14, we compute the set

FB(g) =
{

f ∈ C |
⌈

�B(f)
2

⌉
≤ g ≤ �B(f) − 1

}
.
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Table 2. For C = N
2, �B(gen = g) for some g ∈ N

g 1 2 3 4 5 6 7 8 9 10

�B(gen = g) 2 6 15 30 58 137 240 457 900 1784

For each f ∈ FB(g), we determine B(Fb = f, gen = g) as mentioned before.
After repeating this procedure for each f ∈ FB(g), we get the set B(gen = g).
The following example provides some computational results of this procedure.

Example 16. Let C = N
2, the set FB(2) is {(0, 2), (0, 3), (1, 0), (1, 1), (2, 0),

(3, 0)}, and B(gen = 2) has also six elements, the B-semigroups with gaps sets
{(0, 1), (0, 2)}, {(0, 1), (0, 3)}, {(1, 0), (1, 1)}, {(0, 1), (1, 1)}, {(1, 0), (2, 0)}, and
{(1, 0), (3, 0)}. For genus five,

FB(5) = {(0, 5), (0, 6), (0, 7), (0, 8), (0, 9), (1, 2), (1, 3), (1, 4), (2, 1),

(2, 2), (3, 1), (4, 1), (5, 0), (6, 0), (7, 0), (8, 0), (9, 0)},

but only 58 out of 210 elements in C(gen = 5) are also B-semigroups.
In general, the computation on C-semigroups is very hard, and few ex-

amples can be constructed. For C = N
2, Table 2 collects the number of B-

semigroups for some genus g.

Computational results seem to suggest that the following conjecture could
be true.

Conjecture 17. For any integer cone C ⊆ N
p, and any non-zero g ∈ N,

�B(gen = g) < �B(gen = g + 1).

3. A Partition of C(Fb = f)

Let us start by introducing some notations. Again, an integer cone C ⊆ N
p and

a total order � on N
p are fixed. Given f ∈ C\{0} and S, T ∈ C(Fb = f), we

define an equivalence relation ∼ such that S ∼ T if and only if O(S) = O(T ),
recall that O(S) = S ∪ (C\B(f)). Equivalently, S ∼ T if and only if S ∩B(f) =
T ∩ B(f). For S ∈ C(Fb = f), the equivalence class of S modulo ∼, called its
∼-class, is defined as [S] = {T ∈ C(Fb = f) | S ∼ T}. The collection of all
∼-classes forms a partition of C(Fb = f), denoted by C(Fb = f)/∼.

This section aims to compute C(Fb = f). To this end, we study the
partition C(Fb = f)/∼ as a tool for the desired computation. We show how
the set [S] can be arranged in a tree for any S ∈ C(Fb = f).

The following proposition establishes the relationship between the parti-
tion C(Fb = f)/∼ and the set B(Fb = f), proving that the set C(Fb = f)/∼
can be determined from the B-semigroups with Frobenius element f .
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Proposition 18. If f ∈ C\{0}, then C(Fb = f)/∼ = {[R] | R ∈ B(Fb = f)}.
Moreover, if R1, R2 ∈ B(Fb = f) such that R1 �= R2, then [R1] ∩ [R2] = ∅.
Proof. To prove the first statement, consider S ∈ C(Fb = f), by definition,
[S] = [R], where R = O(S) ∈ B(Fb = f). For the second statement, assume
R1, R2 ∈ B(Fb = f) such that R1 �= R2, this implies that there is at least
one gap x of Ri such that x ∈ Rj with i, j ∈ {1, 2} and i �= j. Thus R1 �∼ R2,
hence [R1] ∩ [R2] = ∅. �

Let S be a C-semigroup with Frobenius element Fb(S) = f , we define
λ(S) as the maximum element in (C\B(f)) ∩ H(S) with respect to the fixed
total order on N

p. If (C\B(f))∩H(S) = ∅, by convention λ(S) = 0. We deduce
the following result from the maximality of λ(S). Let R ∈ B(Fb = f).

Lemma 19. If S ∈ [R], then S ∪ {λ(S)} ∈ [R].

We define the directed graph G([R]) whose vertex set is the ∼-class [R],
and (S, T ) ∈ [R]2 is directed edge if and only if T = S ∪ {λ(S)}. In particular,
as mentioned before, if (S, T ) is a directed edge, S is usually known as a child
of T .

Theorem 20. The graph G([R]) is a tree with root O(R). Furthermore, the set
of children of any T ∈ [R] is the set

{T\{x} | x ∈ msg(T ), λ(T ) ≺ x ≺ f and x /∈ B(f)}}.
Proof. Let S ∈ [R] such that S �= O(R). We construct the sequence {Si}i∈N ⊆
[R] defined by

S0 = S

Si+1 =
{

Si ∪ {λ(Si)} if Si �= O(R),
Si otherwise.

Since λ(Si) ∈ H(Si), and each time we add λ(Si) to Si, the set of remain-
ing possible λ-values decreases, the above sequence becomes stationary, and
thus the sequence {Si}i∈N defines a path from S to O(R). By the maximal-
ity property of λ(S), we deduce the uniqueness of the path from S to O(R).
Consider S = T\{x} for some x ∈ msg(T )\B(f) such that λ(T ) ≺ x ≺ f .
Therefore, T = S ∪ {x}, and by the properties of x, it follows that λ(S) =
max�

(
(C\B(f))∩(H(T )∪{x})

)
= x, which proves that S is a child of T . Now,

let S be a child of T , then T = S ∪ {λ(S)}, which implies λ(S) is a minimal
generator of T . Finally, note that λ (T\{λ(S)}) = λ(S), which completes the
proof. �

The above results allow us to present Algorithm 3 for computing the
∼-class [S] for any S ∈ C(Fb = f).

Example 21. As in Example 13, consider C = N
2, f = (2, 2) ∈ C and the

degree lexicographic order. Let S ∈ C(Fb = f) be the semigroup minimally
generated by
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Algorithm 3: Computing the ∼-class [S].
Input: A C-semigroup S with Frobenius element f ∈ C\{0}.
Output: The ∼-class [S].

1 A ← {O(S)};
2 B ← A;
3 while A �= ∅ do
4 T ← First(A);
5 C ← {x ∈ msg(T ) | λ(T ) ≺ x ≺ f and x /∈ B(f)};
6 B ← B ∪ {T\{x} | x ∈ C};
7 A ← (A\{T}) ∪ {T\{x} | x ∈ C};

8 return B

Figure 6. Example of O(S)

{(0, 4), (0, 5), (1, 2), (1, 4), (2, 1), (2, 3), (3, 0), (3, 1), (3, 2), (4, 0),
(4, 1), (5, 0), (0, 6), (0, 7), (1, 5)},

with H(S) = {(0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 3), (2, 0), (2, 2)}. The B-sem-
igroup O(S) is represented in Fig. 6, where the empty circles are the gaps of
O(S), the blue squares are the minimal generators of O(S), and the red circles
are elements of O(S).

From O(S), Fig. 7 shows the tree G([S]) containing all the elements in
the ∼-class of S. Its root is O(S), and each node represents a C-semigroup in
C(Fb = f). To ensure more clarity in the figure, each tree vertex is labelled with
the element removed to reach its parent node. For example, the leftmost node
labelled {1, 3} in the last level is the C-semigroup O(S)\{(0, 3), (3, 0), (0, 4),
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Figure 7. G([S]) with the degree lexicographic order

(1, 3)}. In each level, some minimal generators of each node are removed to
obtain its children (step 5 in Algorithm 3).

We have already developed all the necessary background for computing
C(Fb = f): Proposition 18 states that C(Fb = f) can be expressed as the union⋃

S∈B(Fb=f)[S], and Algorithm 3 computes [S]. Thus, by combining these two
ideas, we achieve a procedure for computing all C(Fb = f).

Example 22. Fix the degree lexicographic order and let C = N
2. Figure 4 in

Example 13 contains all the elements in B(Fb = (2, 2)), that is, all the ele-
ments needed to construct the union

⋃
S∈B(Fb=(2,2))[S]. After to compute [S]

(Algorithm 3) for every S ∈ B(Fb = (2, 2)), we concluded that there exists
202 N

2-semigroups with Frobenius element (2, 2) respect to the degree lexico-
graphic order. However, if we consider the total order used to construct Fig. 5,
then there are 500 elements in C(Fb = f). Recall that all these sets are highly
dependent on the total order considered.

4. Ordinary N
2-Semigroups

Fixed a total order �, we say that a C-semigroup S is ordinary if S = {0}∪{x ∈
C | x 	 c} for some c ∈ C, and it is denoted by Sc which depends on the
choice of the order. Equivalently, S is ordinary if the conductor of S equals
the multiplicity of S. Note that an ordinary C-semigroup is a C-semigroup
containing all the C-semigroups determined by the given total order and the
multiplicity.

Our goal in this section is to prove that any ordinary N
2-semigroup or-

dered by the graded lexicographic order satisfies the Generalized Wilf Conjec-
ture and the Extended Wilf Conjecture. We study the minimal generating set
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of any ordinary C-semigroup to achieve this. First, we provide a lower bound
for the embedding dimension of any ordinary C-semigroup.

Proposition 23. Let S be an ordinary C-semigroup. Then g(S) < e(S).

Proof. We fix a total order � and assume that S is an ordinary C-semigroup.
Trivially, if S = C, then e(S) > 0. We proceed by induction on g(S). Sup-
pose that g(S) < e(S), and we show that g(S\{m}) < e(S\{m}) where
m = m(S). Note that g(S\{m}) = g(S) + 1. Consider r = min�(S\{0,m}),
and t = min�(S\{0,m, r}) the second and third minimum elements of S\{0},
respectively. Let z ∈ {2m,m + r,m + t}, if z is not a minimal generator of
S\{m}, then z = a + b, where a and b are two non-zero elements of S\{m}.
Without loss of generality, we deduce a ≺ m, which leads to a contradiction,
since m is the multiplicity of S. So, 2m,m + r,m + t are minimal generators
of S\{m}. From [17, Lemma 3] follows msg(S)\{m} ⊂ msg(S\{m}), hence
e(S\{m}) ≥ e(S) − 1 + 3. By applying the induction hypothesis, g(S\{m}) =
g(S) + 1 < e(S) + 1 < e(S\{m}), which completes the proof. �

The following definitions will be needed throughout the remainder of
the work. Let w = (w1, . . . , wp) ∈ R

p
≥ be a vector, and consider the map

πw : Np → N defined via πw(x) = w ·x, where · denotes the inner product. For
any x, y ∈ N

p, we define x �w y if and only if πw(x) ≤ πw(y). We refer to �w

as the weight order determined by w.
To determine a weight order in general, we choose a primary weight vector

w ∈ R
p
≥. A secondary weight vector u ∈ R

p
≥ is employed to break ties. If ties

persist (i.e., when πw(x) = πw(y) and πu(x) = πu(y)), a third weight vector is
introduced, and so on. Thus, every monomial order � can be obtained through
this finite process of applying weight vectors. From now on, we are interested in
the first weight vector. Hence, we use π� instead of πw. Graphically, it can be
interpreted as the existence of a hyperplane that separates the space into two
regions, one containing x and the other containing y. For a detailed treatment
of monomial orders and their relation to weight orders, consult [10] and [21].
We assume that the vector w defining the fixed order has non-zero entries.

Let S be a C-semigroup with t extremal rays, and minimally generated
by msg(S) = E 
 A with E = ∪i∈�t�\{0}multi(S) = {m1, . . . ,mt}, and A =
{mt+1, . . . ,mr}. The next result states that the minimal system of generators
of an ordinary C-semigroup is bounded.

Lemma 24. Let Sc be an ordinary C-semigroup and x ∈ msg(Sc). Then, π�(x) ≤
π�(m), where m =

∑
i∈�t�\{0} multi(Sc).

Proof. Let x ∈ Sc such that π�(x) > π�(m) we have to show that x /∈
msg(Sc). We assume that x − mi /∈ Sc for any i ∈ �t�\{0}, otherwise it is
easily checked that x is not a minimal generator. We distinguish the following
cases:
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• If there exists j ∈ �t�\{0} such that x−mj ∈ C, then x = mj +h for some
h ∈ H(Sc). Given that π� is a linear map, we have π�(x) = π�(mj) +
π�(h) >

∑
i∈�t�\{0} π�(mi). This implies that π�(h) >

∑
i∈�t�\{0,j}

π�(mi) > π�(c). Since π� is an increasing map, h � c, and thus, h ∈ Sc,
which it is not possible.

• If x − mi /∈ C for any i ∈ �t�\{0}, since x belongs to Sc ⊆ C, there exist
some rational numbers 0 ≤ λ1, . . . , λt < 1 such that x =

∑
i∈�t�\{0} λimi.

So, π�(x) =
∑

i∈�t�\{0} λiπ�(mi) <
∑

i∈�t� π�(mi) = π�(m), in contra-
diction with the hypothesis.

�

Building on this, the following lemma proves a more robust result about
the relationship between some elements in C and the minimal system of gen-
erators of Sc. From now on, we assume that the conductor c is non-zero.

Lemma 25. Let Sc be an ordinary C-semigroup and x ∈ Sc such that π�(x) <
2π�(c), then x ∈ msg(Sc).

Proof. Let x ∈ Sc such that π�(x) < 2π�(c), and suppose that x = s1 +s2 for
some s1, s2 ∈ Sc. Since Sc is an ordinary C-semigroup, π�(s1), π�(s2) ≥ π�(c).
Consequently π�(x) = π�(s1) + π�(s2) ≥ 2π�(c), contradicting the initial
assumption. �

In particular, if Sc is an ordinary N
2-semigroup, and �glex corresponds

to the graded lexicographic order, the set msg(Sc) can be explicitly deter-
mined. Note that in this context, the map π�glex

: N
2 → N is defined via

π�glex
(x1, x2) = x1 + x2. From now on, we use the symbol π instead of π�glex

for short.

Proposition 26. Let Sc be an ordinary N2-semigroup with conductor c = (0, c2),
ordered by �glex. Then, Sc is minimally generated by{

x ∈ N
2 | π(c) ≤ π(x) ≤ 2π(c) − 1

}
.

Therefore, e(Sc) =
c2(3c2 + 1

)
2

.

Proof. Since π(multi(Sc)) = π(c) for each i = 1, 2, and by applying Lemmas
24 and 25, it suffices to show that any element x = (x1, x2) ∈ N

2 satisfying
π(x) ≥ 2π(c) cannot be a minimal generator of Sc. If x1, x2 < c2, then π(x) <
2π(c) which it is impossible by hypothesis. Thus, without loss of generality, we
assume x1 ≥ c2. It follows that x−(c2, 0) ∈ N

2, and since π(x−(c2, 0)) ≥ π(c),
it can be deduced that x − (c2, 0) ∈ Sc. Therefore, x /∈ msg(Sc).

The embedding dimension of Sc is determined by the number of solutions
(x1, x2) ∈ N

2 of c2 ≤ x1+x2 ≤ 2c2−1. Equivalently, it is the number of natural
solutions of the equation of x1+x2 = k, where k ∈ {c2, c2+1, . . . , 2c2−1}. Note
that the above expression involves 2c2 equations. Fixed k, it is straightforward
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to deduce that x1 ∈ {0, 1, . . . , k} and consequently, x2 = k − x1 then, there
exist k + 1 solutions. Thus,

e(Sc) =
2c2−1∑
k=c2

(k + 1) =
c2∑

i=1

(c2 + i) =
c2(3c2 + 1

)
2

.

�

The above result corresponds to a particular case discussed within the
framework of T-stripe generalized numerical semigroups (see [9, Proposition
3.3]). In cases where c1 �= 0, the determination of msg(Sc) has not been ad-
dressed in the literature, as such semigroups do not fall under the classifica-
tion of T-stripe N

2-semigroups. Therefore, we propose the following propo-
sition. For any total order �, let a � b be two elements in C. We denote
the intervals of elements in C between a and b under the order � as fol-
lows: [a, b]�, [a, b)�, (a, b]� and (a, b)� for the closed interval, left-open interval,
right-open interval and open interval, respectively.

Proposition 27. Let Sc be an ordinary N2-semigroup with conductor c = (c1, c2)
such that c1 �= 0, ordered by �glex. Then, Sc is minimally generated by[

c, 2c
)

�glex



[(

0, 2π(c) + 1
)
, c +

(
0, π(c) + 1

))
�glex

(1)

and e(Sc) =
3π2(c) + π(c) + 4c1

2
.

Proof. From direct application of Lemma 24, the set (1) belongs to a system
of generators of Sc, since mult1(Sc) + mult2(Sc) = 2π(c) + 1. Furthermore, by
Lemma 25 it suffices to analyse those x = (x1, x2) such that 2π(c) ≤ π(x) ≤
2π(c) + 1. We distinguish two cases: x �> c and x > c.

If x �> c, where > denotes the component-wise order, then x2 < c2 or
x1 < c1. Suppose that x2 < c2, by hypothesis 2c1 + 2c2 ≤ x1 + x2 < x1 + c2,
hence π(c) + c1 < x1. Consider y = x − (π(c), 0) ∈ N

2. Since π(y) ≥ 2π(c) −
π(c) = π(c), we conclude that x /∈ msg(Sc). Now, assume that x1 < c1, and
suppose that x = s + t for some s, t ∈ Sc. Since x1 < c1 then s1, t1 < c1. By
the linearity of π, we obtain that 2π(c) ≤ π(s) + π(t) ≤ 2π(c) + 1. Without
loss of generality, suppose that π(s) = π(c); otherwise, π(t) = π(c) and the
argument is analogous. By definition of Sc, we have that s /∈ Sc, which is a
contradiction. Therefore, we conclude that the set (1) is contained in msg(Sc).

If x > c, then there exist λ1, λ2 ∈ N such that x = c + (λ1, λ2) and
λ1 + λ2 �= 0. We distinguish two cases. When π(x) = 2π(c), necessarily,
π((λ1, λ2)) = π(c). If λ1 > c1 then (λ1, λ2) ∈ Sc, and thus x /∈ msg(Sc).
If λ1 < c1 then x1 ≤ 2c1. Assuming x = s+ t for some s, t ∈ Sc, and repeating
the mentioned argument, we deduce that π(s) = π(t) = π(c). By definition of
Sc, it follows that s1, t1 > c1, therefore x = s1 + t1 ≥ 2c1, which is a contradic-
tion. Hence, x ∈ msg(Sc). So,

[
c+

(
0, π(c)

)
, 2c

)
�glex

⊂ msg(Sc). Finally, when
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π(x) = 2π(c) + 1, then π(c) + 1 = π((λ1, λ2)), and thus π((λ1, λ2)) > π(c), it
follows that (λ1, λ2) ∈ Sc. Hence, x /∈ msg(Sc). Which finishes the first part of
the proof.

The computation of e(Sc) relies on the cardinality of the following disjoint
sets since the set (1) can be rewritten depending on π as

msg(Sc) = {x ∈ N
2 | π(x) = π(c) and x1 ≥ c1} (2)


 {x ∈ N
2 | π(c) + 1 ≤ π(x) ≤ 2π(c) − 1} (3)


 {x ∈ N
2 | π(x) = 2π(c) and x1 < 2c1} (4)


 {x ∈ N
2 | π(x) = 2π(c) + 1 and x1 < c1}. (5)

The cardinality of the set (2) is determined by the number of solutions (x1, x2) ∈
N

2 of x1 + x2 = π(c) such that x1 ≥ c1, we deduce that x1 ∈ {c1, c1 +
1, . . . , π(c)} and consequently, x2 = π(c) − x1. Therefore, there are c2 + 1 dif-
ferent solutions. For the cardinality of the set (3), by arguing as in the proof
of Proposition 26, is determined by

2π(c)−1∑
k=π(c)+1

(k + 1) =
(π(c) − 1)(3π(c) + 2)

2
.

Regarding sets (4) and (5), their cardinalities correspond to the number of
natural solutions (x1, x2) ∈ N

2 of x1 + x2 = 2π(c) and x1 + x2 = 2π(c) + 1,
respectively, satisfying the conditions x1 < 2c1, and x1 < c1 respectively.
Therefore, the cardinality of (4) is 2c1 and for the set (5) is c1. Consequently,

adding the previous cardinalities, we have e(Sc) =
3π2(c) + π(c) + 4c1

2
. �

Remark 28. From previous results, we observe that the minimal generating set
of an ordinary N

2-semigroup (ordered by �glex) depends on the first coordinate

of its conductor, and that
3π2(c) + π(c) + 4c1

2
equals

c2(3c2 + 1
)

2
for c1 = 0.

This fact simplifies the proof of the Generalized Wilf Conjecture and Extended
Wilf Conjecture hold.

Conjecture 29 [6, Conjecture 2.8]. Let S be a N
p-semigroup. The Generalized

Wilf Conjecture is

ν(S)e(S) ≥ p γ(S), (6)

where ν(S) = �{x ∈ S | x ≤Np h for some h ∈ H(S)}, and γ(S) = �{x ∈ N
p |

x ≤Np h for some h ∈ H(S)}.
Conjecture 30 [17, Conjecture 14]. Let S be a C-semigroup. The Extended Wilf
Conjecture is

n(S)e(S) ≥ N (Fb(S)) + 1. (7)

The following proposition establishes the relation between the Conjec-
tures 29 and 30.
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Proposition 31 [6, Proposition 6.3]. If S ⊆ N
p is a generalized numerical semi-

group that satisfies the Generalized Wilf Conjecture, then S satisfies the Ex-
tended Wilf Conjecture

As a consequence of Propositions 26 and 27, we obtain the desired result.
In [6, Theorem 5.7], the authors prove an equivalent result by using different
techniques.

Corollary 32. Every ordinary N
2-semigroup, ordered by �glex, satisfies the

Generalized Wilf Conjecture and the Extended Wilf Conjecture.

Proof. Applying Proposition 31 suffices to prove inequality (6). If S = N
2, by

convention γ(S) = 0, and the inequality (6) is trivial. Let Sc be an ordinary
N

2-semigroup with non-null conductor c = (c1, c2), ordered by �glex. Clearly
ν(Sc) = 1, and γ(S) = 1 + 2 + · · · + c2 = c2(c2+1)

2 if c1 = 0, thus

e(S)
2

=
c2(3c2 + 1)

4
≥ γ(S).

If c1 �= 0 then γ(S) =
(
1+π(c)

)
π(c)

2 + c1. Therefore, the inequality (6) is equiv-
alent to

e(S)
2

=
3c21 + 6c1c2 + 3c22 + 5c1 + c2

4
≥ c21 + c22 + 2c1c2 + 3c1 + c2

2
,

which is true for all natural numbers c1 and c2. �

To illustrate the results discussed, we provide the following example.

Example 33. Let Sc be an ordinary N
2-semigroup with conductor c = (7, 3),

ordered by �glex. By Proposition 27, we obtain that Sc is minimally generated
by [

(7, 3), (14, 6)
)

�glex



[
(0, 21), (7, 14)

)
�glex

and its embedding dimension is e(Sc) = 2 ·7+ 10·31
2 = 14+155 = 169. Figure 8

gives a graphical representation of Sc. The empty circles are the gaps of Sc, the
blue squares are the minimal generators of Sc, and the red circles are elements
of Sc.

5. Mult-Embedded N
2-Semigroups

Given a total order �, recall that a C-semigroup S is said to be a mult-
embedded C-semigroup if S = {m, 2m, . . . , (k − 1)m} 
 Skm where m is a
non-zero element of C. The name mult-embedded arises from the fact that given
any C-semigroup, we can always find a mult-embedded C-semigroup within it
with the same multiplicity. In particular, in the case where k = 1, an ordinary
C-semigroup is a mult-embedded C-semigroup.
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Figure 8. Ordinary N
2-semigroup Sc

To emphasize the relevance of the mult-embedded C-semigroups, we intro-
duce two families of C-semigroups: arf semigroups and saturated semigroups,
and we prove that any mult-embedded C-semigroup belongs to both families.
Recall that for any positive integer b, we denote the set �b� = {0, 1, 2, . . . , b}.

We say that an affine semigroup S is an arf (affine) semigroup if, for
any x, y, z ∈ S with x ≥C y ≥C z, then x + y − z ∈ S. We say that S is
a saturated (affine) semigroup if s, s1, . . . , sr ∈ S are such that si ≤C s for
all i ∈ �r�\{0} and z1, . . . , zr ∈ Z are such that z1s1 + · · · + zrsr ∈ C then,
s + z1s1 + · · · + zrsr ∈ S. In the case of numerical semigroups, both classes of
semigroups have been studied in the literature (see, for example, [4] and [24]).

The following lemma generalizes Lemma 3.31 in [23] from numerical semi-
groups to affine semigroups.

Lemma 34. Every saturated semigroup is an arf semigroup.

Proof. Let S be a saturated affine semigroup. Take x, y, z ∈ S such that x ≥C
y ≥C z, implying y − z belongs to C. By definition of being saturated, we have
that x + y − z ∈ S. �

Proposition 35. Every mult-embedded C-semigroup is a saturated semigroup.

Proof. Let S = {m, 2m, . . . , (k−1)m}
Skm be a mult-embedded C-semigroup.
Suppose s, s1, . . . , sr ∈ S such that si ≤C s for all i ∈ �r�\{0}, and z1, . . . , zr ∈
Z such that z1s1 + · · · + zrsr ∈ C. We distinguish two cases. If there exists,
at least an element, either s or some si, with i ∈ �r�\{0} belonging in Skm,



A Computational Approach to the Study of Finite-Complement Page 23 of 28    66 

then by hypothesis, it follows that at least s ∈ Skm. Since s is greater than or
equal to the conductor, we have s + t ∈ S, where t = z1s1 + · · · + zrsr ∈ C. If
neither s and nor any si with i ∈ �r�\0 belongs to Skm, then it follows that
s, z1s1 + · · · + zrsr are multiple of m. Since the sum of two multiples of m is
again a multiple of m, we deduce that S is a saturated semigroup. �

Corollary 36. Every ordinary C-semigroup is an arf semigroup.

We continue along the same thread as the previous section. We focus on
the minimal generating set of mult-embedded N

2-semigroups ordered by the
graded lexicographic order. Another contribution of this section is to provide
a formula for its embedding dimension, which allows us to show that the
Generalized Wilf Conjecture and the Extended Wilf Conjecture hold.

We can easily rewrite Lemma 24 for mult-embedded N
2-semigroups or-

dered by the graded lexicographic order. From now on, we assume that the
multiplicity m is not the null vector.

Lemma 37. Let k be a positive integer, m ∈ N
2, and S be the mult-embedded

N
2-semigroup ordered by �glex, which multiplicity is m and conductor equals

km. If x ∈ N
2 satisfies π(x) > π(mult1(S)) + π(mult2(S)), then x is not a

minimal generator.

Proof. Suppose x ∈ N
2 such that π(x) > π(mult1(S)) + π(mult2(S)). By the

Lemma 24, since msg(S) ⊂ msg(Skm) ∪ {m}, it follows that x /∈ msg(Skm),
consequently x /∈ msg(S). �

Remark 38. Note that the bound π(mult1(S)) + π(mult2(S)) introduced in
the previous lemma depends on the multiplicity m = (m1,m2). For the case
m1 = 0, we obtain that π(mult1(S)) + π(mult2(S)) = km2 + m2 = (k +
1)π(m), otherwise π(mult1(S)) + π(mult2(S)) = 2kπ(m) + 1. Hence, for any
minimal generator x of a mult-embedded N

2-semigroup S, it holds that π(x) ≤
2kπ(m) + 1, according to the value of m.

For any x ∈ N
2, we consider that its coordinates are x1, and x2.

Theorem 39. Let k be a positive integer, m = (m1,m2) ∈ N
2, and S be the

mult-embedded N
2-semigroup ordered by �glex with multiplicity m and conduc-

tor km. Then, S is minimally generated by

A = {m} 

(
km, (k + 1)m

)
�glex



{

x ∈ N
2 | (k + 1)π(m) ≤ π(x) ≤ 2kπ(m) − 1 and x2 < m2

}



{
x ∈ N

2 | (k + 1)π(m) + 1 ≤ π(x) ≤ 2kπ(m) + 1 and x1 < m1

}
,

and e(S) =
(4k − 1)π2(m) + π(m) + 4m1

2
.
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Proof. Trivially, m ∈ msg(S). Denote B =
(
km, (k + 1)m

)
�glex

. First, let

us prove that B ⊂ msg(S). Suppose x ∈ B such that x = s + t for some
s, t ∈ S. We distinguish the following two cases. Without loss of generality,
if we consider π(s) ≥ kπ(m), then π(t) < kπ(m), and since, S is a mult-
embedded N

2-semigroup, it follows that t = qm, for some positive integer q.
Then, π(x) = π(s)+π(qm) ≥ kπ(m)+qπ(m) ≥ (k+1)π(m), which contradicts
the initial hypothesis. So, we assume π(s), π(t) < kπ(m), and then we have
that s and t are multiples of m. Consequently, x is a multiple of m. So, x /∈ B
and it leads to a false statement.

Now, let x ∈ N
2 such that (k+1)π(m) ≤ π(x) ≤ 2kπ(m)−1, and x2 < m2.

If x = s + t, for some s = (s1, s2) and t = (t1, t2) belonging to S, then s2, t2 <
m2. It implies that s and t are not multiples of m, and so π(s), π(t) ≥ kπ(m).
Consequently, π(x) ≥ 2kπ(m). Again, we get a contradiction. Therefore, x ∈
msg(S).

Assuming that x ∈ N
2 such that (k+1)π(m)+1 ≤ π(x) ≤ 2kπ(m)+1, and

x1 < m1, and using a similar structure as above, if x = s+ t, for some s, t ∈ S,
then s1, t1 < m1. So, π(s), π(t) ≥ kπ(m) + 1, and thus, π(x) ≥ 2kπ(m) + 2,
which it is not possible. Hence, x ∈ msg(S). Summarizing, we have just proved
that A is a subset of msg(S).

From Remark 38, A is the minimal generating set of S if and only if no
minimal generators belong to the set {x ∈ N

2 | π(x) ≤ 2kπ(m) + 1}\A.
Consider x ∈ N

2 such that x ≥ m and x 	glex (k + 1)m. Trivially,
(k + 1)m /∈ msg(S). So, we assume that x �glex (k + 1)m. Since x ≥ m,
x = m + λ, for some λ ∈ N

2. And thus π(m) + π(λ) ≥ (k + 1)π(m), which
implies that π(λ) ≥ kπ(m). We distinguish two cases depending on the value
of π(λ). If π(λ) > kπ(m), then λ ∈ S. So, we conclude that x /∈ msg(S). If
π(λ) = kπ(m), and as x �glex (k+1)m, then x = ((k+1)m1+ i, (k+1)m2− i)
for some i ∈ �km2�\{0}. Hence, x − m = (km1 + i, km2 − i) ∈ N

2, and
π(x − m) = kπ(m). We deduce that x − m ∈ S, so x /∈ msg(S).

Finally, suppose x ∈ N
2, with x2 < m2 such that π(x) = 2kπ(m) + i

where i ∈ {0, 1}. Note that x1 + m2 > x1 + x2 = π(x) ≥ 2km1 + 2km2, which
implies that x1 > 2kπ(m) − m2. Take s = (kπ(m), 0) ∈ S. Since x − s =
(x1 − kπ(m), x2) ∈ N

2, and π(x − s) = kπ(m) + i ≥ kπ(m), we obtain that
x − s belongs to S. Whence, x is not a minimal generator.

By definition, e(Sc) = �A. Similarly to the proof of Lemma 27,

�A = 1 + km2 +
(k+1)π(m)−1∑
l=kπ(m)+1

(l + 1) + (k + 1)m1

+ m2(k − 1)π(m) + m1

(
(k − 1)π(m) + 1

)
=

(4k − 1)π2(m) + π(m) + 4m1

2
.

�
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Figure 9. Mult-embedded N
2-semigroup

The following corollary is a direct consequence of the Theorem 39.

Corollary 40. Every mult-embedded N
2-semigroup, ordered by �glex, satisfies

the Generalized Wilf Conjecture and Extended Wilf Conjecture.

Proof. Let S be a mult-embedded N
2-semigroup with conductor km = k(m1,

m2), ordered by �glex. Given Proposition 31, it is enough to show that the
inequality (6) holds. Trivially, ν(S) = k, and we assume that k > 1, otherwise,
it has already been proved (Corollary 32). Since γ(S) equals the cardinality of
H(S) ∪ {0,m, 2m. . . , (k − 1)m} we obtain that

γ(S) = k
kπ2(m) + π(m) + 2m1

2
Thus,

ke(S) = k
(4k − 1)π2(m) + π(m) + 4m1

2
≥ k

(
kπ2(m) + π(m) + 2m1

)
which proves the result since (2k − 1)π2(m) ≥ π(m). �

The section concludes with an example to illustrate the concepts and
results discussed.

Example 41. Let S be a mult-embedded N
2-semigroup ordered by �glex, with

multiplicity m = (4, 2), and conductor 3m = (12, 6), which is shown in Fig. 9.
As mentioned earlier, the empty circles are the gaps of S, the blue squares are
the minimal generators of S, and the red circles are elements of S.
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From Theorem 39, we obtain that e(S) = 396+6+16
2 = 209, and

msg(S) = {(4, 2)} 

(
(12, 6), (16, 8)

)
�glex



11⋃

i=0

[
(23 + i, 1), (24 + i, 0)

]
�glex



12⋃

i=0

[
(0, 25 + i), (3, 22 + i)

)
�glex

.

Acknowledgements

All authors thank the referee for her/his useful remarks and comments.

Funding Funding for open access publishing: Universidad de Cádiz/CBUA.
The last author is partially supported by grant PID2022-138906NB-C21 funded
by MICIU/AEI/10.13039/501100011033 and by ERDF/EU. Consejeŕıa de Uni-
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[17] Garćıa-Garćıa, J.I., Maŕın-Aragón, D., Vigneron-Tenorio, A.: An extension of
Wilf’s conjecture to affine semigroups. Semigroup Forum 96, 396–408 (2018)
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[24] Rosales, J.C., Garćıa-Sánchez, P.A., Branco, M.B.: Saturated Numerical Semi-
groups. Houston J. Math. 30, 321–330 (2004)

[25] Wilf, H.S.: A circle-of-lights algortihm for the “money-changing problem. Am.
Math. 85(7), 562–565 (1978)

[26] Wolfram Research, Inc., Mathematica, Version 14.0, available at https://www.
wolfram.com/mathematica

J. C. Rosales
Departamento de Álgebra
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