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The decays of the Z boson and CP-even or CP-odd scalar bosons into
quark–antiquark pairs have been calculated at NLO in the framework of
Implicit Regularization (IReg), which operates strictly in the physical di-
mension and complies with the BPHZ procedure. The presence of the γ5
matrix is dealt without the need of gauge symmetry restoring counterterms
and the Kinoshita–Lee–Nauenberg (KLN) theorem is verified. The results
are compared to the ones obtained in the Dimensional Reduction scheme
(DRed).
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1. Introduction

In evaluating Feynman amplitudes to address high-precision scatter-
ing/decay data, regularization and renormalization methods play a major
role. Different frameworks have been developed with the intent to ease the
increasing complexity encountered in conventional dimensional regulariza-
tion in higher-order processes [1, 2].

In the present contribution, Implicit Regularization (IReg) is used to
evaluate the aforementioned decays involving chiral vertices at NLO. Sur-
prisingly, although IReg operates strictly in the physical dimension, the need
for a suitable treatment of the γ5 matrix within divergent integrals stands
out. Formally, a consistent method for IReg is achieved using a specific di-
mensional extension [3] in which {γ5, γµ} ≠ 0. However, in many cases, it
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is possible to operate fully in 4D space, provided adequate steps are under-
taken. When a Dirac trace is involved, it often suffices to symmetrise the
trace, achieved by using the definition γ5 = i

ϵαβδσ

4! γαγβγδγσ, see e.g. [4].
The main objective of the present study is to verify under which circum-

stances the γ5 algebra is maintained for an open fermionic line, rendering
the intermediate calculational steps as simple as possible, while reproducing
the results of more involved schemes. Moreover, in order to show that IReg
complies with the finitude theorem of KLN, the fermions are taken to be
massless [5, 6]. We refer to [7] for details.

1.1. Rules for Implicit Regularisation in a nutshell
— Perform Dirac algebra.
— Use the identity

1

(k ± p)2 − µ2
=

1

k2 − µ2
− p2 ± 2p · k

(k2 − µ2)[(k ± p)2 − µ2]
, (1)

where µ2 plays the role of an infrared regulator, as many times as
necessary to isolate the UV divergent behavior as

Iquad
(
µ2

)
=

∫
1

k2−µ2

d4k

(2π)2
and Ilog

(
µ2

)
=

∫
1

(k2−µ2)2
d4k

(2π)2
.

(2)

— A renormalization group scale λ is introduced as λ2 ∂Ilog(λ
2)

∂λ2 = − i
(4π)2

.
As µ2 → 0, Ilog(µ2) parameterizes the IR divergences and Ilog(λ

2) is
absorbed by renormalization.

— Numerator/denominator consistency and shift invariance are verified
in the process of regularization/renormalization [3].

2. Z0 and (pseudo)scalar calculations

For the following calculations, we will consider the following variables: qµ
and qµ as the momenta of the exiting quark and antiquark respectively; zµ
and z =

√
z2 as the momentum of the decaying Z0 boson and its rest mass

respectively, and for the coupling constants, we use e as the fundamental
electric charge, ω the weak mixing angle, Z± = gV ± γ5gA and gV = I3 −
Q′ sin2(ω), and gA = I3 with I3 being the projection of the third component
of the isospin of the quarks, and Q′ their unitary charge. As for the scalar
and pseudoscalar, we use the Higgs boson and thus the scalar coupling is
ξs =

emq

2 sin(ω)mW
and the pseudoscalar coupling is ξ5 =

eI3mq

sin(ω)mW
with mq

being the mass of the quarks and mW the rest mass of the W bosons.
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In order to calculate the first order Quantum ChromoDynamics (QCD)
corrections to the decay rate of our particles into a quark–antiquark pair we
have to consider the following Feynman diagrams in Fig. 1.
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Fig. 1. Feynman diagrams corresponding to all contributions to the amplitude of
a Z0 or (pseudo)scalar particle into a quark–antiquark pair up to the Next-to-
Leading Order (NLO) in QCD. Mt,Mts/5 correspond to tree level, Mv,Mvs/5 to
virtual contributions, Mr,Mrs/5 to real contributions.

2.1. Tree-level decay rate

At tree level, the well-known results [8] are reproduced

Γt =
e2

(
g2V + g2A

)
z

4π sin2(2ω)
, Γts/5 = ξ2s/5

h

8π
. (3)

2.2. Real NLO contributions

The amplitudes that are relevant to real contributions to the decay rate
of the Z0 and the Higgs (scalar and pseudoscalar decays) are given by the
expressions

Mr = ϵµ(z)ū(q)

[
(−igγαta)

−i

/q + /k

−ieγµZ−
sin(2ω)

+
−ieγµZ−
sin(2ω)

i

/̄q + /k
(−igγαta)

]
v(q̄)ϵ∗α(k) ,

Mrs = ū(q)

[
(−igγαta)

−i

/q + /k
(−iξs)

−iξs
i

/̄q + /k
(−igγαta)

]
v(q̄)ϵ∗α(k) ,

Mr5 = ū(q)

[
(−igγαta)

−i

/q + /k
(−iξ5γ5)

−iξ5γ5
i

/̄q + /k
(−igγαta)

]
v(q̄)ϵ∗α(k) , (4)
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which lead to the decay rate corrections of

Γr = Γt
(ta)2g2

(4π)2
[
2 ln2(µ0)− 2π2 + 6 ln(µ0) + 17

]
,

Γrs/5 = Γts/5
(ta)2g2

(4π)2
[
2 ln2(µ0)− 2π2 + 6 ln(µ0) + 19

]
. (5)

While there are intermediate IR divergences in this result, parameterized
as ln(µ0), with µ0 = µ2

m2
Ω

and with Ω as the decaying particle, they are
expected and will cancel in the total NLO result (10) in conformity with the
KLN theorem.

2.3. Virtual NLO contributions

The amplitudes that are relevant to virtual contributions to the decay
rate of the Z0 and the Higgs (scalar and pseudoscalar decays) are given by
the expressions

Mv = ϵµ(z)

∫
ū(q) (−igγαta)

−i

/q + /k

−ie

sin(2ω)
γµZ−

× i

/̄q − /k

(
−igγβtb

) −igαβδab
k2

v(q̄)
d4k

(2π)4
,

Mvs =

∫
ū(q) (−igγαta)

−i

/q + /k
(−iξs)

i

/̄q − /k

×
(
−igγβtb

) −igαβδab
k2

v(q̄)
d4k

(2π)4
,

Mv5 =

∫
ū(q) (−igγαta)

−i

/q + /k
(−iξ5γ5)

i

/̄q − /k

×
(
−igγβtb

) −igαβδab
k2

v(q̄)
d4k

(2π)4
(6)

leading, after proper regularization, to the corresponding decay rates

Γv = −Γt
(ta)2g2

(4π)2
[
2 ln2(µ0) + 6 ln(µ0) + 14− 2π2

]
,

Γvs/5 = −Γvs/5
(ta)2g2

(4π)2
[
2 ln2(µ0)− 2π2

]
. (7)

While the result for the Z0 here is expected, the results from the Higgs’s
calculations are not. Recall that the Higgs’s couplings are proportional to
the fermion mass, which acquires a contribution at NLO, given by its self-
energy.
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2.3.1. Self-energy corrections

The correction is given by

−iΣ(/p)
(1) =

∫
(−igγαta)

i

/p± /k −m
(−igγαt

a)
−i

k2
d4k

(2π)4
(8)

which modifies the tree-level mass dependence in the coupling, giving rise
to a new virtual term. The final expression is

Γvs/5 = −Γts/5
(tα)2g2

(4π)2
(
2 ln2(µ0)− 2π2 + 2 + 6 ln(µ0)

)
. (9)

2.4. NLO decay rate

Joining terms and using g2

4π = αs and (tα)2 = Cf = 4
3 , one gets

Γ1 = Γt

(
1 +

αs

π

)
, Γ1s/5 = Γts/5

(
1 +

17αs

3π

)
. (10)

Thus, we obtain the well-known results [8, 9] for the first-order corrected
decay rates.

3. Dimensional schemes

3.1. Comparison with FDH (dimensional reduction scheme)

One can map the NLO results from the calculations in dimensional
schemes onto the IReg scheme as: nϵ → 2ϵ followed by any numerator/denom-
inator cancellations; αϵ → αs, 1

ϵ → ln(µ0), and 2
ϵ2

→ ln2(µ0); and finally
setting all remaining terms of ϵ to 0.

3.2. Scalar contributions

The real contributions calculated under FDH are [1]

Γ
(v)
s/5(FDH) = Γ

(t)
s/5(FDH)Cf

[
αs

4π

(
− 4

ϵ2
− 6

ϵ
− 4 + 2π2

)
+

αϵ

4π

(nϵ

ϵ

)]
, (11)

Γ
(r)
s/5(FDH) = Γ

(t)
s/5(FDH)Cf

[
αs

4π

(
4

ϵ2
+

6

ϵ
+ 21− 2π2

)
+

αϵ

4π

(
−nϵ

ϵ

)]
. (12)

3.3. e−e+ → Z0 → qq̄contributions

One can also observe the same for the Z0 contribution [1]

σ
(v)
γ(FDH) = σ(0)Cf

[
αs

4π

(
− 4

ϵ2
− 6

ϵ
− 16 + 2π2

)
+

αϵ

4π

(nϵ

ϵ

)]
, (13)

σ
(r)
γ(FDH) = σ(0)Cf

[
αs

4π

(
4

ϵ2
+

6

ϵ
+ 19− 2π2

)
+

αϵ

4π

(
−nϵ

ϵ

)]
. (14)
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4. Conclusions

— It is verified that the KLN theorem is satisfied in our framework.

— It is not necessary to introduce evanescent fields, see also [10, 11].

— There is a precise matching from dimensional results to IReg at NLO.

— The γ5 right-most-position approach [12] is sufficient to render IReg
a gauge-invariant procedure in this case.
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