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S1. DETAILS OF THE MODEL

TABLE S1: Interactions, in units of ε0, for the non-bonded interaction potential.a

Bead i M1 M1 M2 M1 M1 M2 M2 M M M ND1 ND1 ND2 NR NR NR NR

Bead j M1 M2 M2 ND
(1)
J ND

(2)
J ND

(1)
J ND

(2)
J ND1 ND2 NR ND1 ND2 ND2 NDJ ND1 ND2 NR

εij/ε0 1.0 2.5 1.0 0.1 1.0 1.0 0.1 1.0 0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.5

a M1 is the homopolymer bead as well as one of the two block-copolymer beads, the other being M2. M

is used for both polymer beads indistinctly. ND1 and ND2 are the beads of the homogeneous nanodimers.

The upperscript in ND
(1)
J and ND

(2)
J distinguishes between the beads of each Janus nanodimer when such

distinction is needed. NR represents the generic beads of nanorods.

The non-bonded interaction energies between each bead in our coarse-grained simulation

are listed in Tab. S1. As stated in Tab. I of the main text, ND-PNCs contain 40 NDs; using

the coarse-grained bead masses given at Tab. S2, that corresponds to exactly 5.027 wt.%

concentration. NR-PNCs contain 66 NRs, resulting in a 5.042 wt.% concentration. The

concentration of nanoparticles in NDk/NR-PNCs, which includes 40 NRs and 40 NDs, is

7.843 wt.%. The densities of monomers and NDs are fixed to the density of a polyethylene

bead,1 of mass mM = 44.07 g mol−1 and diameter σM = 0.42 nm. Consequently, NDs are

considered organic particles, as is the polymer. The density of NRs is exactly 3.33 times

the polymer’s bulk density (ρorg = 851 kg m−3, as reported by Everaers1), resulting in

ρNR = 2833.83 kg m−3, which corresponds to metallic or silica-like NRs.

The bonding distance between lobes of a ND shown in Tab. S2 is obtained using the

criteria found in the work of J.J. Burgos-Mármol and A. Patti.2 We set exclusions between

the two lobes to prevent the repulsive non-bonded interaction from disrupting the bonding

distance. For NRs, the bonding distance is related to their rugosity, which is set to ξ = 0.1, or

10 %. The bonding distance between monomers inside the polymer chain can be determined

numerically by finding the minimum in a combination of the WCA and FENE potentials.

In our whole system, bead movement is stochastic, following Langevin dynamics. It is

expressed in the following equations of motion:

mi
d2ri
dt2

= Fi − ζimi
dri
dt

+Ni . (1)
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Fi = −∇V total
i represents the conservative forces acting on particle i, driven by the total

potential that it is subject to. Ni is a noise process dependent on temperature T , which

can be interpreted as a thermal force. This noise is described by the autocorrelator at two

different times t1 and t2 as ⟨Ni(t1)Nj(t2)⟩ = 2ζimikBTδ(t1 − t2)δij where δ(t
′) a Dirac delta

for a given t′ and δij a Kronecker delta. The parameter ζi of the thermal noise introduces

velocity-dependent term in the equation of motion, Eq. (1), serving as a friction parameter.

We derive the friction parameter for each bead using the self-interaction energy of each bead

εii by first defining a self-relaxation time τi,

τi ≡ σi

√
mi/εii , ζi ≡ βimi/τi , (2)

with βi = 0.5 for polymers, following the Kremer-Grest model,3,4 and βi = 1 for the rest

of the particles. The values of ζi for each bead are shown in Tab. S2.

TABLE S2: Parameters employed to construct each coarse-grained bead of the PNCs.a,b

σi (nm) mi (g mol−1) ζi (g mol−1 ps−1)

M 0.42 44.0700 12.433

ND 1.26 1166.3231 42.641

NR 0.63 709.0374, 2 mass sites 26.284, 8 virtual sites

∆ij (nm)

M1-M1 or M2-M2 0.40838, FENE+WCA

M1-M2 0.41961, FENE+WCA

ND(1)-ND(2) 1.05798, harmonic

NR(i)-NR(j) 0.36000, constrained

a M is used for both polymer beads indistinctly, ND represents a nanodimer and NR a nanorod.

b σi denotes diameter, mi is the mass of the bead, ζi is the friction parameter and ∆ij denotes bonding

distance between consecutive beads.
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S2. NANOROD CRYSTAL FORMATION

In various simulations of PNCs that included NRs, we observed their eventual nucleation

into crystal configurations driven by the depletion interaction. The WCA potential exerted a

repulsion between NRs and monomers, prompting the NRs to assemble into these structures.

We can see this evolution in the various snapshots of Fig. S1. This assembly minimizes

their surface contact and enhances the free volume for polymer chains, thereby increasing

the overall entropy of the system by allowing a greater number of configurations that the

polymer chains can explore.

a) b) c)

FIG. S1: Three snapshots showing the nucleation of a crystal in the upper right corner of

an NR-HPNC.

In order to avoid these defects, we switched from a WCA potential, which is a purely

repulsive Lennard-Jones potential, to a standard Lennard-Jones potential. This change

allows the NRs to feel an attraction with the monomers at a certain distance, creating an

effect similar to a soft polymer grafting around them. This acts as if the NRs surrounded

by polymer are attracted to the melt, stabilizing the system and preventing the formation

of defects.
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S3. RADIAL DISTRIBUTION FUNCTIONS
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FIG. S2: RDFs of the monomers M1 and M2 centered on the NDs’ centers of mass. To

highlight and distinguish between overlapping curves, different colors and line widths are

used, as indicated in the legend.
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FIG. S3: RDFs of the monomers M1 and M2 centered on the Janus NDs’ centers of mass.

To highlight and distinguish between overlapping curves, different colors and line widths

are used, as indicated in the legend.

We start discussing the RDFs of monomers around NDs. In Fig. S2, we check that

the monomer distribution around NDs’ centers of mass is indifferent of the monomer type.

Figure S3 illustrates that, due to the Janus ND dual affinity to the different polymeric blocks,

the ND
(1)
J lobe tends to be surrounded by M1 monomers, since their radial distribution is

always greater than 1, g(r) > 1. The same happens for ND
(2)
J lobes and M2 monomers,

and with the same intensity, as the two curves overlap. In fact, one can check on Tab. S1
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FIG. S4: RDFs between the NDs’ and NRs’ centers of mass in NDk/NR-BCPNCs (top

frame) and NDk/NR-HPNCs (bottom frame). Solid lines are guides for the eye.

that these interactions are of the same strength, a value of 0.1ε0. A stronger repulsion of

1.0ε0 is imposed on Mi–ND
(j)
J interactions, for i ̸= j, which notably affects the monomer

distribution, lowering it to g(r) < 1. This is a manifestation of the Janus ND assembly at

the bicontinuous interface, with one lobe positioned on one side and the other lobe on the

opposite. The center of mass curve shows that these curves are exactly complementary.

Turning to the ND-NR RDFs in Fig. S4, we observe that the distribution of NDs around

NRs, and vice versa, is nearly homogeneous. The curves for the various ND types are nearly

identical, showing no influence of ND-monomer interactions on the ND-NR spatial distribu-

tion, and indicating independence from the chosen polymer matrix, as both matrices yield

very similar results. NDk/NR-BCPNCs exhibit a slight deviation from homogeneity due to

their anisotropy, but the resulting curves still reflect a largely homogeneous distribution.
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S4. POLYMER MEAN SQUARED DISPLACEMENT

TABLE S3: Diffusion coefficients (nm2/ns) of the polymer’s center of mass (COM) and of

the monomers (MON). All the errors are under 0.003 nm2/ns.

System DCOM DMON

HP Melt 0.038 0.052

ND1-HPNC 0.033 0.047

NR-HPNC 0.040 0.059

ND1/NR-HPNC 0.032 0.045

BCP Melt Not diff. Not diff.

ND1-BCPNC Not diff. Not diff.

NR-BCPNC 0.010 0.021

ND1/NR-BCPNC 0.007 Not diff.

FIG. S5: Mean squared displacement of the polymer chain from the center of mass (left)

and of the monomers (right) in the different systems. Two red dashed lines indicate the

subdiffusive and diffusive tendencies.
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S5. NON-GAUSSIAN PARAMETER
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FIG. S6: Non-Gaussian parameter of NDs (left panels) and NRs (right panels) in BCPNCs

(top row) and HPNCs (bottom row). NDk-PNCs and NR-PNCs are depicted with empty

symbols, while NDk/NR-PNCs are shown with filled symbols, as indicated in the legend.

Solid and dashed lines serve as visual guides.
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FIG. S7: Non-Gaussian parameter of monomers in BCPNCs (top panel) and HPNCs

(bottom panel). NDk-PNCs and NR-PNCs are represented by empty symbols, while

NDk/NR-PNCs are shown with filled symbols, as indicated in the legend. For comparison,

the curve of pristine polymers is also included (represented by solid diamonds). Solid lines

serve as visual guides.

8



S6. NANOCOMPOSITES UNDER SHEAR

To determine the value of viscosity at a specific shear rate, we employ NEMD simulations

by applying shear to the top part of the simulation box. Initially, the polymer chains oppose

this movement until a threshold is overcome. From that point onwards, the polymer chains

align with the shear, facilitating the movement and thereby reducing the viscosity to a

constant value that is maintained over time—see Fig. S8. A video showing the evolution of

the PNCs under shear is available as a supplementary file titled VideoShearing.mp4.

0 5000 10000 15000 20000 25000

t/τ0

0.25

0.50

0.75

1.00

1.25

1.50

1.75

η
(c

P
)

FIG. S8: Time evolution of the viscosity of a NR-BCP-PNC at an applied shear rate of

γ̇ = 4.3× 10−3 ps−1, showing an initial peak in viscosity that later stabilizes.

S7. ZERO-SHEAR VISCOSITY WITH GREEN-KUBO

The zero-shear viscosity has been determined using the Green-Kubo formalism of in-

tegrating the autocorrelation functions of the off-diagonal components of the shear stress

tensor. For this, we started from an equilibrated configuration and developed 150 ns simu-

lations to test how the sampling affects the Green-Kubo integral, storing the pressure files

each 2 fs. Doing so, we obtain a smooth and reliable curve of the pressure fluctuations, but

it quickly becomes too detailed to be integrated with a reasonable amount of computational

resources. To overcome that problem, we trimmed the stress tensor which contained data for

every 2 fs to 100 fs steps and to 500 fs steps, and then performed the Green-Kubo integral
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FIG. S9: Viscosity curves obtained using the Green-Kubo method for the HP melt system.

Each curve corresponds to different sampling densities of the stress tensor, as indicated in

the legend.

for comparison. We found out that for 100 fs the results are basically equivalent inside the

resulting error bars, and that a skipping step of 500 fs turns out to be too large to recover

the 2 fs statistics, see Fig. S9.

After this, we conducted 7 µs of equilibrium simulations with a 100 fs sampling interval

to determine the viscosity of the studied PNCs. The average Green-Kubo results (planes

XY, XZ and YZ) for the zero-shear viscosity are shown in Fig. S10. Using the same criterion

for all systems, we performed the average calculation over the period from 2 to 7 µs. During

this time, some curves have fully converged, while others still exhibit fluctuations, inevitably

increasing our degree of uncertainty.
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FIG. S10: Evolution of the average Green-Kubo integral with time. Systems with a

homopolymer matrices are shown on the left, and systems with copolymer matrices are

shown on the right.
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