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Polymer nanocomposites (PNCs) are cutting-edge materials that enhance polymer matrices with nanoparticles
to achieve superior performance. The properties of these composites are significantly influenced by interactions
at the nanoparticle-polymer interface. This study explores how inorganic nanorods (NRs) and various organic
nanodimers (NDs)—differentiated by their interaction with the polymer and including Janus types—impact
the structural, dynamical, and viscosity of PNCs. Through molecular simulations, we reveal how these
nanoparticles interact within block copolymer and homopolymer matrices. Our findings show that ND-
monomer interactions notably affect ND organization and improve barrier properties, while the structuring
of NRs contributes to increased mechanical resistance. Furthermore, different PNCs provide a wide range
of thickening behavior depending on the polymer matrix and the embedded nanoparticles. We observe
increments of up to six times the melt’s viscosity when both nanoparticles are introduced in copolymers. The
viscosity of the systems is evaluated using a non-equilibrium method, the SLLOD algorithm, and the Green-
Kubo relation to obtain both the shear-thinning curve and the zero-shear viscosity value. These results
underscore the importance of nanoparticle interactions and configurations in determining PNC behavior,
providing critical insights for advancing material design and functionality.

I. INTRODUCTION

Polymer nanocomposites (PNCs) are advanced hybrid
materials that integrate nano-sized particles with a poly-
mer matrix. The introduction of nanofillers can signif-
icantly impact the local dynamics and morphology of
polymer chains, as well as the intrinsic properties of
the pristine polymer, leading to changes in its mechani-
cal, thermal, and rheological behavior on a macroscopic
scale. When carefully engineered, PNCs can greatly en-
hance a wide range of industrial applications, including
coatings, paints, electronics, food packaging, and per-
sonal care products.1–9 These enhancements include im-
proved thermal and electrical conductivity,10–13 altered
viscosity,14,15 glass transition temperature16 and other
key properties.17–19 PNCs can also be engineered to re-
spond to environmental changes, such as magnetic20,21

or electric fields.22 These adaptive materials are increas-
ingly used to address advanced technological challenges.
For example, various fillers like carbon nanotubes, carbon
black, and graphene have been explored in the develop-
ment of environmentally friendly high-voltage cables.12
Among these, carbon nanotubes stand out for their ex-
ceptional performance, making them particularly valu-
able in both research and industrial applications.22

The exceptional properties of PNCs compared to pris-
tine polymers are often attributed to the intricate balance
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of enthalpic and entropic forces at the nanoscale between
host polymer and nanoparticles (NPs). The small size
of NPs results in a high surface-to-volume ratio, which
increases the interface between the NPs and the polymer
matrix. This expanded interface allows more polymer
chains to interact with the NPs. Furthermore, the rela-
tive size of the NPs to the polymer chains affects chain
relaxation across various time scales and influences the
polymer’s response to external stimuli. Enthalpic inter-
actions, typically dominant,23 can be adjusted by modi-
fying the NP surface, such as by using grafted polymeric
ligands.24 In contrast, entropic interactions are strongly
influenced by the relative sizes and geometries of the NPs
and polymer chains. However, the impact of these in-
teractions can vary, as different studies have produced
conflicting results regarding their effect on the mobility
of polymer chains and NPs.25,26 Notably, incorporating
NPs instead of microfillers into the mesh leads to a more
continuous distribution of particles, a key feature for im-
proving mechanical properties. Variations in filler size
and NP concentration significantly influence the proper-
ties of PNCs.27,28 The reduced size of nano-sized fillers
enables a lower weight for PNCs, with NP contributions
typically around 5 wt.%. This reduction in weight not
only decreases costs but also enhances interfacial features
across a larger, more filler-populated volume.29

The foundation of a PNC lies in the polymer itself,
which consists of long chains of identical monomers that
can assemble in various configurations, such as rings,30–32
branched structures,33 or linear forms.34 These poly-
mer chains are not always composed of a single type
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of monomer; different monomers can combine to form
copolymers. Copolymers come in diverse configura-
tions, including alternating copolymers35,36 and block
copolymers.37 Block copolymer (BCP) melts are intrigu-
ing materials because of their ability to spontaneously
form highly ordered periodic nanostructures, including
body-centered cubic spheres, hexagonally-packed cylin-
ders and lamellar phases, which result from the inher-
ent heterogeneity of the BCP chains, where chemically
distinct monomers are organized into blocks.38,39 This
characteristic makes BCP melts particularly valuable for
applications requiring precise nanoscale spatial control.
BCPs incorporating NPs are particularly effective for
modulating enthalpic and entropic contributions because
they exhibit microphase-separated domains. This sepa-
ration fosters favorable thermodynamic and geometric in-
teractions between the two species, allowing precise con-
trol over the position and orientation of the NPs and thus
proposing promising applications, for instance, in semi-
conductor lithography.36

Thanks to the proliferation of biosynthetic, chemical,
and physical experimental methods for creating intrigu-
ing anisotropic shapes, research on these systems has ex-
tended from PNCs incorporating spherical NPs15,40,41 to
PNCs with rod-like,42–44 disk-like45,46 or other exotic42,47

NPs. Interactions ranging from attractive to repulsive,
and their effects on particle structure and dynamics have
also been investigated.14,48 Most research in this area re-
mains at an early stage and generally focuses on spheri-
cal NPs with a single interaction site, primarily driven
by theoretical and simulation studies.49–52 Our study
advances the field by developing PNCs incorporating a
novel combination of varied NP geometries, nanorods
(NRs) and nanodimers (NDs). The latter feature two
distinct interaction sites, and the mixture of both NPs
provide new insights into the properties of PNCs tested
in silico. As an additional contribution to the field, we
combine both equilibrium and non-equilibrium simula-
tion techniques to capture the complete viscosity range
of our PNCs, an approach that has rarely been used in
the past and allows us to define the validity range for each
method. Molecular simulations play a crucial role in ad-
vancing our understanding of PNCs by providing detailed
insights into the microscopic interactions at the interface
between polymers and NPs. In fact, these interfacial in-
teractions have a profound impact on the rheological14,15
and dynamical53 properties of the system. For instance,
recent work by Li et al. investigated silane surface mod-
ifications to optimize these interactions between a silica
substrate and cis-1,4-polyisoprene (PI) using atomistic
molecular dynamics, with the aim of enhancing the de-
velopment of future silica-PI nanocomposites.54 Simula-
tions can uncover other microscopic features that would
otherwise be inaccessible, such as the precise orientation
of PNC components,52,55 or provide a detailed local im-
age of strain around NPs.56

In this study, we employ coarse-grained Langevin Dy-
namics (CG-LD) simulations to investigate the transport

properties of PNCs incorporating either single or mul-
tiple types of NPs. We examine how these properties
are influenced by the structural and dynamic charac-
teristics that unfold at the microscopic scale. Coarse-
grained models are particularly well-suited for simulat-
ing large polymeric systems, as they are not constrained
by specific chemical compositions, allowing for the gen-
eralization of many properties across different polymer
species.30,57 Polymer chains are modeled using the bead-
and-spring model developed by Kremer and Grest58,59
for semiflexible chains,60,61 a method recently demon-
strated to accurately replicate certain real-world polymer
properties.62,63 We investigate a matrix of linear diblock
copolymers, well above their entanglement length, and
compare it with a homopolymer (HP) mesh. For NPs, we
assess the effects of polymer-grafted inorganic NRs and
organic NDs, which can be homogeneous or Janus, when
incorporated into the polymer melts. The choice to use
organic and inorganic particles in our study is driven by
their distinct interactions with the polymer matrix and
each other: organic polymers interact broadly with other
organic materials, such as those composing the NDs. The
Janus nature of these NDs aligns with the BCP chain dis-
tinction, allowing for targeted interaction with different
polymer blocks. Also, much of the recent research has
been focusing on silica and metallic NRs in different en-
vironments, which is a key reason for incorporating them
in our PNCs.47,64,65 The paper is structured as follows:
Section II describes the PNC model; Section III details
the simulation methodology and system parameters; Sec-
tion IV presents the simulation findings; and Section V
concludes the study. Additional details on the model are
provided in Appendix A.

II. MODEL

We investigate PNCs composed of melts containing
200 linear HP or BCP chains, referred to as HPNC and
BCPNC, respectively. Each BCP chain is made up of
two blocks of 100 beads each, labeled as M1 and M2,
both with diameter σ0, the system unit length. By con-
trast, an HP chain consists of 200 identical monomers (or
beads), labeled as M; we use M for the polymer beads
when no distinction is required. Additionally, each sys-
tem includes NDs, NRs or a mixture of both species. NDs
consist of two beads that can either have identical inter-
actions with the polymer, with either stronger (ND1) or
weaker (ND2) repulsion parameters, or be heterogeneous,
with two distinct lobes (NDJ, for Janus). Finally, NRs of
length 7.5σ0 are made up of 8 partially overlapping beads
of diameter 1.5σ0, resulting into a length-to-diameter as-
pect ratio of q = 5. All species are schematically reported
in Fig. 1 and the full list of systems studied is summarized
in Table I.

We have developed our polymer model based on the
CG Kremer & Grest (KG) model, which offers high com-
putational efficiency while preserving the essential chem-
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FIG. 1. Schematic representation of the species modeled in
this work.

TABLE I. Summary of homopolymer nanocomposites (HP-
NCs) and block-copolymer nanocomposites (BCPNCs) in-
vestigated in this study, incorporating nanodimers (NDs),
nanorods (NRs), or a combination of both. Homogeneous
NDs are composed of either identical beads with stronger
(ND1) or weaker (ND2) repulsion parameters, while Janus
(J) NDs consist of two distinct lobes.

PNC types Description
ND1-HPNC 200 HP chains and 40 ND1

ND2-HPNC 200 HP chains and 40 ND2

NDJ-HPNC 200 HP chains and 40 NDJ

ND1-BCPNC 200 BCP chains and 40 ND1

ND2-BCPNC 200 BCP chains and 40 ND2

NDJ-BCPNC 200 BCP chains and 40 NDJ

NR-HPNC 200 HP chains and 66 NR
NR-BCPNC 200 BCP chains and 66 NR

ND1/NR-HPNC 200 HP chains, 40 NR and 40 ND1

ND2/NR-HPNC 200 HP chains, 40 NR and 40 ND2

NDJ/NR-HPNC 200 HP chains, 40 NR and 40 NDJ

ND1/NR-BCPNC 200 BCP chains, 40 NR and 40 ND1

ND2/NR-BCPNC 200 BCP chains, 40 NR and 40 ND2

NDJ/NR-BCPNC 200 BCP chains, 40 NR and 40 NDJ

ical details characterizing the behavior and properties of
polymeric materials.58,59 Following the approach of Ev-
eraers et al.,62 we have further refined the KG model
by incorporating a tunable degree of chain stiffness. In
line with the KG model, all non-bonded interactions
are represented by the purely repulsive Weeks-Chandler-
Anderson (WCA) potential, with the exception of those
between NRs and polymers. These interactions are at-
tractive at moderate distances, as typical for polymer-
grafted metallic NPs, and are thus described by the
Lennard-Jones (LJ) potential. This choice also avoids
depletion-driven entropic clustering of NRs into crystals
(see Section S2 of the Supplementary Materials for ad-
ditional details). Consequently, the following potential
describes all non-bonded interactions:

Uαβ(r) = 4εαβ

[(σαβ
r

)12

−
(σαβ
r

)6

+
ψ

4

]
H(rc − r) ,

(1)
where H(r) is the Heaviside step function, εαβ repre-
sents the interaction energy between two generic beads α
and β, r is the distance between their center of mass,
σαβ is the geometric mean of their radii, and ψ is 1
for WCA interactions and 0 for LJ interactions. The
cut-off distance is set to rc = 21/6σαβ for WCA and
to rc = 6σαβ for LJ potentials. The interaction en-
ergy is measured in units of ε0 = kBTNA = 2.475 kJ
mol−1, with kB the Boltzmann constant, T the absolute
temperature, and NA the Avogadro number. The self-
interaction energy for each component of the PNCs is set
to εαα = ε0, except for NRs, where a higher repulsion
is applied, fixed at εNR,NR = 2.5ε0 to prevent cluster-
ing. Cross-component interactions are calculated using
the Lorentz-Berthelot combination rule, εαβ =

√
εαεβ ,

except for NP-M non-bonded interactions, which are ad-
justed according to their type: NR, ND1, ND2 or Janus
ND. In order to mimic the typical BCP microphase sep-
aration, the repulsive interaction between M1 and M2

monomers is obtained by setting εM1,M2
= 2.5ε0. The

complete list of interactions are listed in Table S1 of the
Supplementary Materials. We notice that ND2 beads
interact via a purely repulsive potential, but with sub-
stantially reduced repulsion strength compared to ND1.
This is due to the lower value of the cross interaction be-
tween monomers and ND2 beads, ε2,Mk

/ε0 = 0.1 with
k = {1, 2}, compared to the self-interaction between
ND2 beads, ε2,2/ε0 = 1. In the work of Everaers and
coworkers, many polymer melts are coarse-grained and
parametrized onto the KG model.62 We use CG polyethy-
lene as the basis of our model. According to their study,
each bead of polyethylene is characterized by a value of
σ0 = 0.42 nm and m0 = 44.07 g mol−1, which results in
a time unit of τ0 ≡ σ0

√
m0/ε0 = 3.55 ps. The effective

interaction diameter is also derived using the Lorentz-
Berthelot rule, namely σαβ =

√
σασβ , with σα = σ0,

1.5σ0 and 3σ0 for polymer, NR and ND beads, respec-
tively. We aim to use NP sizes that are smaller than the
individual microdomains found in BCPs. This ensures
that the NPs are small enough to interact with the BCP
structure at a scale that influences its properties, with-
out disrupting the overall domain organization.23 The NP
sizes selected fit this purpose, aligning with those previ-
ously reported in experiments66 and simulations.14,27,64
The mass of the polymer beads is set to m0, whereas
NP beads are significantly heavier. In particular, we
consider NDs to be organic, with the same density as
the monomers, ρND ≈ ρM kg/m3, and for NRs we set
ρNR ≈ 3.3ρND. The former reproduces the typical den-
sity of an organic polymer, whereas the latter is close to
the density of light metals and silica. With these values
of densities, the resulting NP masses read mND ≈ 53m0

and mNR ≈ 32m0, which is in agreement with the typical
range of masses in other studies on PNCs.32,52,67 Finally,
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the number of NDs and NRs is set to obtain a concen-
tration between 5 and 8 wt%.

Following the KG model, bonded interactions between
contiguous polymer beads are described by combining
the Finitely Extensible Nonlinear Elastic (FENE) po-
tential with the LJ potential. Additionally, we incorpo-
rate a bending potential proposed by Faller and Müller-
Plathe,60 resulting in:

Vpol(r, θ) =− 1

2
λ0R

2
0 log

[
1−

(
r

R0

)2
]

+ UMM(r)

+ κθ(1− cos θ),

(2)

where R0 = 1.5σ0 is the maximum bond extension, λ0 =
30ε0σ

−2
0 determines the bond resistance to stretching, θ

is the angle between consecutive bonds, and κθ = 2.156ε0
is the stiffness constant. The value of κθ is the value that
Everaers and coworkers assigned to polyethylene, which
we also adopt here.62 To ensure rigidity between the lobes
of NDs, we employ the following harmonic potential:

VND(r) =
1

2
λND(r − rND)

2 , (3)

where λND ≃ 103ε0σ
−2
0 and rND ≃ 2.5σ0. Because NRs

are significantly longer, maintaining their rigidity with a
simple harmonic potential is impractical, even with ex-
tremely large spring constants. To address this, we use
virtual sites to keep the NR beads fixed in their posi-
tions during the simulation. This method ensures the
desired stiffness without the need for excessive bonding
energy, which can lead to computational difficulties. The
mass is assigned to two massive but non-interacting sites
that provide the essential mass distribution. These mas-
sive sites are kept at a constant distance ℓmass from the
NR center of mass by introducing a distance constraint.
Since NRs are one-dimensional structures, preserving the
center of mass is achieved by assigning half the NR mass
to each of the two massive sites. For rotational move-
ment, the conservation of the inertia tensor requires the
massive sites to be located at:

ℓ2mass/d
2
b =

{
N2

b−1
3 , for Nb even,

1
3 (Nb + 1)(Nb + 2) , for Nb odd.

(4)

where Nb is the number of beads in a NR and db the
distance between the centers of two consecutive beads.
Setting Nb implies ensuring that the volume of our CG
model of a rod-like particle, VNR, does not fall below that
of an equally-long spherocylinder, VSC, by more than a
given threshold value. To fulfill this condition, the num-
ber of beads in a NR is found to be

Nb(ξ, q) ≥ 1 +
(q − 1)3/2√
ξ(3q − 1)

. (5)

where ξ ≡ 1 − VNR/VSC is referred to as coefficient of
rugosity. For q = 5 and ξ = 0.1, we find Nb = 8 (see
Appendix A for details).

III. SIMULATION METHODOLOGY

We perform CG-LD simulations in the canonical
(NV T ) ensemble using GROMACS 2019.4. The tem-
perature is maintained at T = 298 K. The simulation
box is a cube with a side length of L = 35.94σ0 and pe-
riodic boundary conditions. The simulations use a time
step of δt = 2 fs. Starting with an isotropic initial config-
uration of polymers generated using polyply,68 we then
randomly insert the NPs in the quantities specified in Ta-
ble I. For all simulations, the volume is fixed at L3, and
the inclusion of NPs induces a slight increase in poly-
mer density of less than 7%. As we will see, this minor
density variation does not affect the structural and dy-
namical trends, as they remain consistent across all sys-
tems. To characterize our model PNCs, we analyze their
structural, dynamical, and transport properties. For the
structural properties, we calculate the radial distribution
function of the NPs relative to the other beads, exam-
ine the relationship between the radius of gyration Rgyr
and the end-to-end distance Ree of the polymers (as a
measure of ideality), and compute the mean squared in-
ternal distance. The dynamical properties we measure
include the self-part of the van Hove correlation function,
the non-Gaussian parameter, and the mean squared dis-
placement. For the transport properties, we evaluate the
translational diffusion coefficients and viscosity. Starting
with the structural properties, we define a function I to
assess the evolution of ideality, inspired by the relation-
ship between the radius of gyration and the end-to-end
distance for ideal chains:

⟨R2
gyr⟩ = ⟨R2

ee⟩/6 , (6)

I 2 ≡ 6⟨R2
gyr⟩/⟨R2

ee⟩ . (7)

where ⟨·⟩ denotes ensemble average. According to this
definition, ideal chains are expected to yield a value of
I ∼ 1.

Mean squared internal distance. The mean squared
internal distance (MSID) measures the average bonding
distance between monomers in a polymer chain. It is
used to ascertain that the systems are fully relaxed and
free of local strains within the polymer chains:

⟨R2(n)⟩ = 1

Nc

〈
Nc∑
i=1

 1

N − n

N−n∑
j=1

|ri,j − ri,j+n|2
〉 (8)

where Nc is the number of chains, N the number of beads
in a polymer chain, and n the distance between the jth
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bead and the (j + n)th bead along the chain. At equi-
librium, the MSID is related to the end-to-end distance
through the equation:

⟨Ree⟩ ≃
√
(N − 1)⟨R2(n)⟩ . (9)

This arises from the fact that the equilibrated chain
can be modeled as a random walk of N monomers,
each separated by a distance Rn. Consequently, it shall
approach ⟨Ree⟩ ∼ Rn

√
N .

Self van Hove Function. The presence of both slow
and fast-moving polymer chains and NPs, which can give
rise to heterogeneous dynamics, can be quantitatively
assessed using the self-part of the van Hove correlation
function (SVHF). This function provides a probabilistic
distribution of the displacements that polymer chains or
NPs undergo over time. The SVHF is defined as:

Gs(r, t) ≡
1

N

〈
N∑
i=1

δ [r− (ri(t+ t0)− ri(t0))]

〉
, (10)

where δ is the Dirac delta function, N is the number
of particles, and ri(t) is the position of particle i at
time t. The SVHF describes how particles move from
their initial positions ri(t0) at time t0 to new positions
ri(t + t0) after a time interval t. By analyzing Gs(r, t),
one can gain insights into the diffusion processes and
dynamic heterogeneity within the system. This function
helps identify the distribution and likelihood of different
displacements, thus characterizing the movement pat-
terns of slow and fast NPs in PNCs.

Non-Gaussian Parameter. The Non-Gaussian Param-
eter (NGP) is used to quantify deviations from Gaussian
behavior in the displacement distribution of particles in
a system. It is defined as

α2(t) ≡
d

2 + d

〈
∆r(t)4

〉
⟨∆r(t)2⟩2

− 1, (11)

where ∆r(t) is the displacement of a particle during a
time interval t,

〈
∆r(t)2

〉
and

〈
∆r(t)4

〉
are the mean

squared and quartic displacements, respectively, and d is
the dimensionality of the system (e.g., d = 3 for a three-
dimensional system). If the particle displacements follow
a Gaussian distribution, the NGP will be zero, indicating
that there are no non-Gaussian effects. Positive values of
the NGP indicate that some particles experience shorter
or longer displacements than the average, usually due
to, for example, crowded environments, interactions, or
aging effects.

Diffusivity. The translational diffusion coefficients are
determined from the mean squared displacement (MSD)
at equilibrium using the following equation:

D ≡ lim
t→∞

1

2d

d
〈
∆r(t)2

〉
dt

, (12)

where D is the diffusion coefficient and
〈
∆r(t)2

〉
is the

particles’ MSD.

Viscosity. The viscosity of our model PNCs can be
obtained using the off-diagonal components of the stress
tensor through the Green-Kubo relation:

ηij =
V

kBT

∫ ∞

0

dt ⟨Pij(t0)Pij(t+ t0)⟩t0 (i ̸= j) , (13)

where ηij is the shear viscosity in the ij-plane, with
{i, j} = {x, y, z}, V is the volume of the system and
Pij represents the off-diagonal component of the stress
tensor. The integrand ⟨Pij(t0)Pij(t+ t0)⟩t0 is the time
autocorrelation function of the stress tensor, averaged
over the time t0. Using this method, the value of the
zero-shear viscosity is averaged within a range that en-
sures its convergence across the three spatial directions,
assuming an isotropic system. This method cannot how-
ever be applied to estimate the viscosity in the non-linear
regime, where it changes with the shear rate. To this
end, we employ a non-equilibrium method, the SLLOD
method.69,70 In particular, we impose a Couette flow in
the equations of motion by introducing an initial velocity
gradient, which is maintained through shear facilitated
by the Lees-Edwards periodic boundary conditions. As-
suming the imposed motion has a shear rate of γ̇ along
the x-axis, denoted by ex, and acts on particles with
random individual velocities vα, a velocity gradient is
created along the z-axis. Consequently, the equation of
motion for a particle α at position rα = (xα, yα, zα) with
velocity ṙα given by:

ṙα = vα + γ̇zαex . (14)

The shear viscosity obtained is the ratio of the resulting
off-diagonal stress to the applied shear rate:

ηij = −⟨Pij⟩
γ̇

(i ̸= j) . (15)

Here, ⟨Pij⟩ is the average off-diagonal component of
the stress tensor. The SLLOD method facilitates the
generation of a viscosity curve across various shear rates,
ensuring that the viscosity value obtained through the
Green-Kubo formula falls within the expected range—or
at least, providing a lower bound for its value. However,
the SLLOD method can become impractical if the shear-
ing is too slow, necessitating the use of the Green-Kubo
method in such scenarios. Therefore, combining both
methods provides a complete and more comprehensive
understanding of viscosity.
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FIG. 2. Snapshots of various systems at approximately 7.5 µs. Affine polymer and ND beads are shown in lime green and
purple, while NRs in yellow. Top and bottom rows display, respectively, HPNCs and BCPNCs. Left, middle and right columns
feature PNCs including, respectively, NDs, NRs and a mixture of both.

IV. RESULTS

A. Structural properties

Fig. 2 presents illustrative snapshots of the systems
studied, highlighting the distribution of NPs within the
polymer matrix. Achieving a uniform NP distribution is
essential for optimizing the nanocomposite’s properties,
as it prevents defects and aggregation that can compro-
mise the mechanical, thermal, and electrical performance
of the material. A uniform dispersion can, in principle, be
achieved in HPNCs. However, when BCPs are employed,
their tendency to undergo microphase separation leads to
the formation of distinct domains, causing NPs to localize
according to their chemical affinity with the copolymer
blocks. A visual inspection of Fig. 2 reveals that BCP-
NCs form an amorphous bicontinuous phase, primarily
driven by the repulsive interactions between the M1 and
M2 blocks of the copolymer. This phase structure signifi-
cantly influences the spatial distribution of NDs, causing
them to preferentially accumulate at the M1-M2 inter-
face. Additionally, the distribution of NPs within the
polymer matrix is influenced by the degree of relaxation
of the polymer chains. Complete relaxation eliminates
residual local strains and dictates the overall conforma-
tion of the chains, which in turn affects the distribution of
NPs throughout the matrix. To verify that our systems
have achieved a good degree of relaxation, we analyzed
the MSID, which quantifies the average squared distance
between monomers along the polymer chain. Addition-

ally, by comparing the MSID to expected theoretical val-
ues, predicted for an ideal or Gaussian chain, one can
assess whether the polymer chains have reached an equi-
librium state. Deviations from these expected values may
indicate the presence of residual stresses or unrelaxed
configurations, which could affect the overall behavior
and properties of the system.

The MSID reveals a slight delay in relaxation for the
BCPNCs, as depicted in the top frame of Fig. 3. This mi-
nor relaxation delay aligns with previous findings in long
polymer chains, where entangled dynamics, particularly
under conditions of spatial confinement, are known to
slow the relaxation process.71–74 In our simulations, this
delay is likely due to the restricted volume within each
region of the bicontinuous phase, which occupies roughly
half the total volume of the simulation box. In contrast,
the HPNCs, shown in the bottom frame of Fig. 3, ex-
hibit complete relaxation, with the MSID reaching the
expected plateau, indicating that the spatial confinement
unique to BCPNCs is the primary factor behind this
small effect. Despite these differences, all systems are
largely equilibrated. Simulations were run for 5 µs, with
4 µs allocated to equilibration and 1 µs to production.
For viscosity calculations, simulations were extended to
22 µs, using the final 5 µs for production. MSID mea-
surements confirmed that system stability was achieved
within the initial 5 µs and maintained throughout the
extended duration. We observe only minimal deviations
from full relaxation in the BCPNCs and the results are
in very good agreement with theoretical predictions (dot-
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FIG. 3. Mean squared internal distance (MSID) between
polymer beads. The (a) and (b) panels correspond to BCP-
NCs and HPNCs, respectively. For comparison, the MSID of
pristine polymers is also included (represented by solid dia-
monds). The theoretical prediction is depicted with a black
dot-dashed line. NDk-PNCs are shown with empty symbols,
while NDk/NR-PNCs are represented by solid symbols. Solid
and dashed lines are included as visual guides.

dashed lines in both frames). The theoretical estimate
of the MSID for polymer melts composed of semiflexible
chains, assuming no excluded volume effects, is described
by the Freely Rotating Chain model:

⟨R2(n)⟩ = nl2n

[
1 + ⟨cos θ⟩
1− ⟨cos θ⟩ −

2⟨cos θ⟩(1− ⟨cos θ⟩n)
n(1− ⟨cos θ⟩)2

]
,

(16)
with n the number of backbone bonds and ln ≈ 0.41 nm
the average distance between consecutive monomers. A
combination of potentials, collectively denoted as W (θ),
influences the beads and determines the average value of
the bending angle:71

⟨cos θ⟩ =
∫ π

0
dθ cos θ sin θeW (θ)∫ π

0
dθ sin θeW (θ)

(17)

The simplest model with an analytical solution is
W (θ) = κθ(1 − cos θ). Substituting this into Eq. (17)
gives ⟨cos θ⟩ = coth

(
κθ

kBT

)
− kBT

κθ
= 0.563, or equiv-

alently, ⟨θ⟩ = 55.71◦. This value closely approximates
the behavior of HPNCs, as illustrated in Fig. 3b. How-
ever, long polymer chains, such as those in our sys-
tem, are sensitive to this angular average due to cumu-

lative contributions along the chain, leading to an un-
derestimation of MSID values for BCPNCs. The key
difference between these cases is monomer heterogene-
ity. Specifically, M1-M2 repulsion introduces an addi-
tional contribution to W (θ), accounting for the increased
stiffness and, consequently, the larger MSID observed
when the angular amplitude is constrained by a stronger
WCA potential at the M1-M2 separation. By express-
ing this separation as a function of the bond angle,
hθ ≡ |ri+1 − ri−1| = ln

√
2 + 2 cos θ, the W (θ) potential

becomes W (θ) = κθ(1 − cos θ) +
2UM1M2

(hθ)

200 . The fac-
tor 2

200 reflects that, once the microphase separation is
complete, the M1-M2 repulsion affects 2 out of every 200
monomers in each chain. This modified W (θ) for BCP-
NCs yields an average of ⟨cos θ⟩ = 0.584, or ⟨θ⟩ = 54.25◦,
a small but significant adjustment that more accurately
approximates the measured MSID in BCPNCs, as shown
in Fig. 3a.

TABLE II. Average end-to-end distance and radius of gyration
of the PNCs studied.a

⟨Ree⟩ (nm) ⟨Rgyr⟩ (nm)
BCP HP BCP HP

Polymer melts 11.6 11.2 4.7 4.5
NR-PNCs 11.4 11.5 4.6 4.7

NDk-PNCs
ND1 11.9 10.9 4.8 4.4

ND2 11.7 11.0 4.8 4.5

NDJ 11.7 10.9 4.7 4.5

NDk/NR-PNCs
ND1 11.7 11.5 4.8 4.6

ND2 11.8 11.5 4.8 4.6

NDJ 11.8 11.5 4.8 4.5
a Errors for Rgyr are all less than 0.2 nm, and for Ree, they are
below 0.1 nm.

In the equilibrium limit, the MSID should align with
the end-to-end distance, which is closely related to the
polymer chain’s radius of gyration. As shown in Table II,
these two quantities vary only slightly across the systems
studied. In particular, the end-to-end distance is found
to be close to the reference value calculated by Everaers
et al.,62 with a mass-normalized mean-square extension
of ⟨R∗2

ee ⟩/Mc = 1.400 Å2 mol g−1, where Mc = 200m0

is the mass of a polymer chain, yielding an approxi-
mate R∗

ee = 11.1 nm. Furthermore, the ratio described
in Eq. (6) remains consistently close to I = 1 across
all systems, indicating that the polymer chains show-
case a nearly ideal behavior and the deviations observed
are minimal and within expected ranges. This is typi-
cal in concentrated linear melts, where interactions be-
tween chains are screened by neighboring chains.75 The
fact that the characterization of HP chains did not re-
quire a hindering correction, and that non-ideality only
affects 2 out of 200 monomers in BCPs, supports this
observation. This confirms that, although the BCP-
NCs show slight delays in relaxation, the overall struc-
tural integrity and equilibration of the polymer chains are
well-maintained across the systems. Theoretical predic-
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FIG. 4. RDFs centered on NDs’ centers of mass. Left and right columns (frames (a) and (b)) report, respectively, the RDFs for
NDk-PNCs and NDk/NR-PNCs, while top and bottom rows (frames (c) and (d)) refer to BCPNCs and HPNCs, respectively.
Empty and solid symbols refer, respectively, to NDk-NDk and NDk-M RDFs, with k indicated in the legend. The inset in frame
(a) highlights the intercalation of a polymer chain between two NDs. Solid and dashed lines are guides for the eye.

tions from Eqs. (16) and (17) give end-to-end distances
of ⟨Rth

ee(HPNCs)⟩ = 10.9 nm and ⟨Rth
ee(BCPNCs)⟩ =

11.3 nm. Using CG-LD simulations, which confirmed
the systems are ideal, we divided these values by

√
6 to

estimate the gyration radii: ⟨Rth
gyr(HPNCs)⟩ = 4.4 nm

and ⟨Rth
gyr(BCPNCs)⟩ = 4.6 nm. These theoretical re-

sults align well with the measured polymer properties
in Table II. In addition, the random walk approxima-
tion ⟨Ree⟩ ∼ Rn

√
N can be applied, where Rn represents

the average distance between monomers, estimated to be
between

√
3.5σ2

0 and
√
4σ2

0 and N = 200. The approxi-
mation grants values from ⟨Ree⟩ = 11.1 nm to 11.9 nm,
which agrees well with the results given above.

To better quantify the distribution of NPs within the
polymer matrix, we begin by examining the radial dis-
tribution functions (abbreviated as RDFs or g(r)). Fig. 4
presents the RDFs for NDk-NDk pairs across different
PNCs, where k = {1, 2, J}, alongside the RDF of NDk

relative to the polymer beads (indicated by three dashed
curves that basically overlap) for comparison. Similar
RDFs for NRs are shown in Figure 5. A first key observa-
tion is that the primary peak of the NP-M RDF, whether
for NDs or NRs, consistently appears in the range of
1.5 < r/σ0 < 2, while the peak of the NP-NP RDFs is
located approximately at 3.5 < r/σ0 < 4 for NDs and
2.5 < r/σ0 < 3 for NRs. Since the main peak represents
the average distance between nearest neighbors, this dis-
tribution suggests that NDs and NRs are predominantly

surrounded by polymer chains that intercalate between
them, highlighting a strong interaction between the NPs
and the polymer matrix. We stress that, although both
sets of NPs are similarly distributed, NDs and NRs ex-
hibit distinct interactions with the polymer matrix. NDs
interact via a purely repulsive WCA potential, while NRs
through a LJ potential that simulates a soft grafting ef-
fect. The resulting distribution pattern confirms that our
chosen interaction parameters effectively prevent cluster-
ing. The NPs do not aggregate or segregate from the
polymer, but instead integrate seamlessly into the ma-
trix, validating the formation of isotropic PNCs.

As discussed earlier, NPs embedded in BCPNCs are
expected to localize at the interface between the two
copolymer blocks. This is supported by the RDFs of
NDA, NDN, and NDJ relative to M1 and M2 (shown in
Figs. S2 and S3 of the Supplementary Materials). The
nearly identical RDFs for each ND family with respect to
both copolymer blocks strongly suggest that these NPs
are most likely situated at the M1-M2 interface. The
lower polymer density at this interface, compared to the
bulk of each block domain, increases the configuration
entropy of the NPs, resulting in a more thermodynam-
ically favorable distribution.52 For Janus NDs, this dis-
tribution is further enhanced by enthalpic contributions,
as their dual-affinity—experiencing both attraction and
repulsion with different monomers—intensifies their pref-
erence for the M1-M2 boundary. A closer examination
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FIG. 5. RDFs centered on NRs’ centers of mass. Frames (a)
and (b) refer to NR-PNCs and NDk/NR-PNCs, respectively.
Empty circles and squares refer to NR-NR RDFs obtained in
HPNCs and BCPNCs, respectively. Solid circles and squares
refer to NR-M RDFs obtained in HPNCs and BCPNCs, re-
spectively. The inset in frame (b) highlights the intercalation
of a polymer chain between two NRs. Solid and dashed lines
are guides for the eye.

of Fig. 4 reveals two notable aspects of ND distribution.
Firstly, in HPCNs, the distribution is largely structure-
less, with NDk-NDk RDFs resembling those of a highly
dilute fluid, except for a slight peak in the NDN-NDN

RDF at r/σ0 ≃ 4 (empty circles). In contrast, the NDk-
NDk RDFs in BCPNCs display more pronounced primary
peaks, indicating the presence of short-range density cor-
relations that extend over slightly longer distances. Es-
sentially, NPs occupy all available space when dispersed
in HPNCs, but in BCPNCs, they are confined to specific
regions, resulting in closer proximity without leading to
clustering. Secondly, the addition of NRs does not sig-
nificantly affect the distribution of NDs within the poly-
mer (right column of Fig. 4), at least within the concen-
trations explored in this study. To better understand
this observation, we now turn our attention to the NRs’
RDFs, presented in Fig. 5.

In the top frame of Fig. 5, we present the RDFs of
NRs in NR-PNCs. Consistent with previous findings for
NDk-PNCs, the peak of the NR-M RDF occurs at shorter
distances than that of the NR-NR RDF, indicating that
NRs are primarily surrounded by polymer chains, with
no evidence of clustering. A similar pattern is observed in
NDk/NR-PNCs (bottom frame of Fig. 5), mirroring the
earlier results: the presence of NDs does not significantly
alter the dispersion of NRs within the polymer. What

does affect the NRs’ dispersion, however, is the polymer’s
architecture. As noted with NDs, BCPs tend to local-
ize NRs within specific regions, while HPs promote their
dispersion throughout the entire matrix. Finally, mixed
NDk/NR-PNCs exhibit nearly complete homogeneity in
the NR-NDk distribution, as shown in Fig. S4 of the Sup-
plementary Materials. The nearly identical RDFs for
the various types of NDs confirm the earlier observation
from Fig. 5b: ND interactions do not significantly influ-
ence the structuring of NRs. This homogeneity is only
slightly disrupted in BCPNCs due to their inherent space
anisotropy, which, as previously noted, promotes the lo-
calization of NPs within specific regions of the polymer
matrix.

B. Dynamical properties

To assess the mobility of NPs within the polymer ma-
trix, we calculated the MSD for both NDs and NRs.
The MSD analysis reveals three distinct dynamic regimes
across all systems: an initial short-time ballistic regime
of less than 10 ps in duration, a subsequent subdiffusive
regime, and finally, a long-time diffusive regime. The
short-time ballistic regime is characterized by the NPs
moving freely within the polymer matrix, where their dis-
placements are proportional to time. This is followed by
a sub-diffusive regime, where the particles’ movement be-
comes constrained by the surrounding chains temporarily
trapping the NPs, restricting their movement and leading
to a slower, sublinear increase in MSD with time. Finally,
at longer timescales, the particles escape these restric-
tions, and their movement returns to a diffusive regime,
where the MSD once again increases linearly with time.
The MSD of NDs is significantly impacted by the specific
type of ND used, whether it is a ND1, a ND2, or a Janus
NDJ. As illustrated in Fig. 6, the dynamics of HPNCs are
not easily distinguishable when evaluating their MSD.
However, these differences become more pronounced in
BCPNCs, where ND2 exhibits the highest diffusion rate,
NDJ shows the slowest movement, and ND1 occupies an
intermediate spot between the two. The enhanced mo-
bility of ND2 in BCPNCs can be attributed to their in-
distinctive interactions with the two monomer species,
either M1 or M2, facilitating their movement across the
bicontinuous phase. In contrast, the Janus NDJ, expe-
riences more complex interactions with the surrounding
monomers due to its dual-affinity nature, specially un-
der microphase separation. Its slower diffusion princi-
pally arises from the restricted movement caused by its
interactions with the two monomer species, which bind
the NDJ more strongly to the microphase-separated re-
gion. In comparison, NRs exhibit a different behavior.
The attractive interactions between NRs and monomers
render them less sensitive to the specific type of ND or
the polymer matrix. As shown in Fig. 7, the MSD of
NRs across all NR-PNCs and NDk/NR-PNCs systems
are nearly identical, indicating that the NRs’ diffusion
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indicated in the legend. Solid lines are guides for the eye. The diffusive regime is indicated with a dashed red line.
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FIG. 7. Mean squared displacement of NRs in BCPNCs (top,
frame (a)) and HPNCs (bottom, frame (b)) as indicated in
the legend. The diffusive regime is indicated with a dashed
red line.

is not significantly altered by the presence of different
NDs or by the polymer environment, whether it be HP
or BCP. This suggests that the diffusion dynamics of
NRs are primarily governed by their interaction with the
polymer monomers rather than by the composition of

the nanocomposite or the type of NDs present. In order
to quantify these small variations in NR diffusion and
to discuss NDs movement in HPNCs, we rely on other
methods of measuring the dynamics, like their diffusion
coefficients and their SVDFs.

We derived the diffusion coefficients from the NPs’
MSDs using the relation given in Eq. (12). The diffusion
coefficients of the different families of NDs are summa-
rized in Table III, while those for the NRs are detailed
in Table IV. Our analysis reveals that NRs generally ex-
hibit faster diffusion compared to NDs. This enhanced
mobility is attributed to their lower mass—NRs are ap-
proximately 65% lighter than NDs. Additionally, NRs
show less sensitivity to the type of ND or the specifics of
the polymer matrix. As we said earlier, this is in part due
to the LJ interactions that bind NRs to the polymer net-
work, which tend to be less affected by variations in the
ND type. Their diffusion coefficient reveals that NRs ex-
perience more restricted movement in BCP matrices than
in HP matrices, particularly in the presence of ND1 parti-
cles. Despite this, the impact on the diffusion coefficient
is less pronounced than for NDs. This suggests that the
interaction between individual NPs and the polymer has
a more significant effect on diffusion than the presence
of different ND types. Among the NDs, ND2 in HP ma-
trices are observed to be the fastest particles, while NDJ
in BCP matrices are the slowest. We remind the reader
that ND2 particles still interact repulsively with the poly-
mer chains, but to a lesser degree than ND1 and other
NPs. Additionally, we analyzed the polymer MSD and
diffusion coefficients (see Section S4 of the Supplemen-
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(b)) at t1 = 0.1 µs (diamonds) and t2 = 1 µs (crosses).
Dashed lines represent Gaussian fits centered on the peak.

tary Materials) and it revealed that the diffusive regimes
of the polymers and nanoparticles operate on substan-
tially different time scales, a temporal dissociation which

strongly suggests that the polymer diffusion coefficient is
unlikely to correlate significantly with the diffusion be-
havior of the various nanoparticle species. As discussed
in the MSD section, the behavior of the Janus particles
is strongly influenced by the segregation of monomers
into distinct regions, with the key difference being that
we can compare with HP systems now. In HP matrices,
the dynamics of NDJ are intermediate between those of
homogeneous NDs, reflecting their hybrid nature and ev-
idencing the tunability of their properties depending on
the matrix used. In general, Table III reflects that slower
diffusion of NDs is consistent across more complex sys-
tems, such as BCP matrices and ND/NR-PNCs.

TABLE III. Diffusion coefficients of NDs, DND (nm2/ns), in
different systems.a,b

ND1 ND2 NDJ

NDk-HPNCs 0.085 0.131 0.112
NDk/NR-HPNCs 0.075 0.127 0.097

NDk-BCPNCs 0.060 0.120 0.036
NDk/NR-BCPNCs 0.046 0.094 0.029

a All errors are below 0.003 nm2/ns.
b The different PNCs are listed in Table I.

The SVHF offers valuable insights into particle dynam-
ics by quantifying the distribution of individual particle
displacements. This function is instrumental in distin-
guishing between Gaussian and non-Gaussian behaviors
in particle movements, enabling a comparison of the dy-
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TABLE IV. Diffusion coefficients of NRs, DNR (nm2/ns), in
different systems.a,b

NR-PNCs NDk/NR-PNCs
ND1 ND2 NDJ

HP 0.173 0.145 0.184 0.183

BCP 0.151 0.125 0.144 0.144

a All errors are below 0.002 nm2/ns.
b The different PNCs are listed in Table I.

namic properties across different species within the sys-
tem. When analyzing the dynamics of NDs, we find that
they cover distances comparable to those of NRs (Fig. 8),
and both are significantly faster than the polymer beads
(Fig. 9). Both the polymer beads and NPs SVHFs exhibit
similar shifts and broadening, yet these changes occur
over vastly different timescales. While monomers require
approximately 1 µs to achieve a certain displacement,
NPs accomplish the same within just 30 ns, highlighting
that NPs traverse the same distance as monomers but
in only 3% of the time, or in other words, polymers are
approximately 30 times slower. Additionally, the type
of ND and the polymer environment play crucial roles in
ND dynamics. Across all polymer types, the most mobile
NDs are the ND2, whose dynamics remain largely consis-
tent between BCPNCs and HPNCs. The other homoge-
neous ND, ND1, exhibits similar behavior in both poly-
mers, but the presence of NDJ introduces a significant
difference. In HP systems, NDJ dynamics are intermedi-
ate between those of ND1 and ND2, as discussed when
comparing their diffusion coefficients. By contrast, in
BCP systems, the segregation of monomers into distinct
regions considerably slows down NDJ, making them the
least mobile particles with the lowest displacement prob-
ability. Unlike NDs, NRs appear largely indifferent to
the type of polymer, exhibiting similar SVHFs regardless
of whether the environment is HP or BCP. As discussed
earlier in this section, this insensitivity may stem from
the non-selective LJ interactions that NRs have with M1

and M2, which do not differentiate between the two poly-
mers. When approximating the SVHFs with Gaussian
fits (dashed lines in Figs. 8 and 9), the agreement with
the simulation results is good around the peaks of the dis-
tributions, but significantly poorer at both tails, where
the probability of slow and fast particles is respectively
overestimated and underestimated. This results in a non-
Gaussian dynamic behavior for the whole set of PNCs
studied.

Deviations from Gaussianity are typically analyzed us-
ing the NGP, as defined in Eq. (11). The NGPs for our
systems are displayed in Figs. S6 and S7 of the Supple-
mentary Materials for NPs and monomers, respectively.
The parameter statistics are highly sensitive to num-
ber density, leading to smoother curves for monomers,
as they dominate the population within PNCs. These
NGPs show a time-dependent behavior influenced by the
various stages of exclusion at different timescales created

by neighboring chain beads and NPs. Generally, α2 re-
mains close to zero at very short timescales, when the
beads are still near their initial positions and have not
yet been significantly affected by their nearest neighbors.
As time progresses, α2 increases, reaching a peak between
t ≃ 102 and 105 ns for NPs and up to two decades later
for monomers. Deviations from Gaussianity are relatively
small, especially for NDs in HPNCs, a result that is con-
sistent with earlier observations for the HPNCs SVHFs in
Figs. 8 and 9, where the Gaussian fits effectively capture
the peaked region of the distributions, though they fall
short in accurately representing their tails. The evident
boost in non-Gaussianity for NDs in BCPs is a reflec-
tion of their structural features, which favor highly het-
erogeneous dynamical behavior, as NDs that stay close
to the microphase separation move substantially slower
than those moving across the matrix. At sufficiently long
times, the dynamics of all species return to Gaussian be-
havior, leading the NGPs to decay to zero.

All these microscopic variations in diffusion behavior
directly affect the macroscopic properties of the material,
including its viscosity, as we will see in the next section.

C. Viscosity

To better understand the connection between the be-
havior of individual NPs with the overall macroscopic
rheological response of the polymer matrix, we combined
equilibrium and non-equilibrium CG-LD and calculated
the shear viscosity of HPNCs and BCPNCs incorporating
ND1, NRs or a mixture of both. Due to the demanding
computational effort, we have not included PNCs with
Janus or ND2. Microscopically, viscosity measurements
shed light on the complex interplay between the polymer
with itself and with the NPs that may not be immediately
apparent from structural or dynamical analysis alone.
From an applications perspective, viscosity controls pro-
cessability in manufacturing techniques and often corre-
lates with mechanical performance. To this end, we used
the Green-Kubo formalism for the equilibrium method,
as stated in Eq. (13), and for the non-equilibrium method
we used the SLLOD algorithm, which involves applying
shear to the top plane of our system and displace it rela-
tive to the lower plane, as shown in Fig. 10 (Multimedia
available online) and described in Eq. (14). This non-
equilibrium procedure is essential for elucidating how
NPs traverse the polymer and influence the material’s
flow and deformation characteristics.

Using the non-equilibrium method, the shear viscosity
is obtained by calculating the ratio between the shear
rate, γ̇, and the off-diagonal component of the stress
tensor in the plane where shear is applied, as shown in
Eq. (15). In each PNC, we observe a stress threshold that
must be exceeded before the viscosity reaches a plateau.
This initial increase reflects the polymer’s resistance to
align with the direction of movement, which is especially
significant for long and entangled polymer chains like
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FIG. 10. Snapshots showing the shearing process of the PNCs studied to determine viscosity at the same shear rate, γ̇ =
6.67× 10−5 ps−1 (Multimedia available online).

FIG. 11. Shear viscosity η as a function of shear rate γ̇ of homopolymeric systems (left, frame (a)) and copolymeric systems
(right, frame (b)). Some error bars are smaller than the symbols used and might not be visible. The gray shaded regions,
separated by a broken axis (logarithmic scale) and in the insets (linear scale), highlights the zero-shear viscosity obtained by
equilibrium CG-LD simulations using the Green-Kubo relation (filled symbols). Outside this region, viscosity values are derived
from non-equilibrium simulations using the SLLOD algorithm (empty symbols).

ours. After surpassing this threshold, we use the stable
viscosity values to determine the shear viscosity, as illus-
trated in Fig. 11 (see also Section S6 of the Supplemen-
tary Materials for additional details). The shear-thinning
behavior, with the viscosity decreasing with increasing
shear rate, is evident in both the polymer melt and the
PNCs. This non-Newtonian response of the system to

applied shear has been observed in experiments and sim-
ulations, capturing the shear-thinning behavior of poly-
meric materials.69,76,77

While the type of NPs and its interactions with the
polymer may influence viscosity, these effects are subtle
and not easily discernible at the scales and conditions
studied with the non-equilibrium method. Differences
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are observed in BCPNCs, where NRs induce a slight
plasticizing effect at shear rates of around 10−4 ps−1,
decreasing viscosity by approximately 1 cP. At γ̇ ≲ 10−5

ps−1, the viscosity of NR-BCPNC and ND1/NR-BCPNC
converges to that of the pristine polymer, while the vis-
cosity of ND1-BCPNC decreases by approximately 5 cP.
As a general tendency, the viscosity of different HPNCs
does not change significantly at the shear rates inves-
tigated, which are not sufficiently slow to capture dif-
ferences between the systems. At shear rates near the
zero-shear limit, the polymer’s response to deformation
occurs on timescales just slightly shorter than the ap-
plied shear. This allows the polymer to partially recover
from the shear, interfering with the deformation of the
PNCs and resulting in lengthy, unfeasible simulations.
In fact, for HP matrices, the yield shear rate78 is eventu-
ally reached, with η ∼ γ̇−1; beyond this point, changes
in shear no longer affect stress. At these timescales, the
shear-induced changes outpace chain fluctuations, ren-
dering shear effects imperceptible at the individual chain
level. If computable, zero-shear viscosity values become
decisive for characterizing and distinguishing our sys-
tems, as all the shear-thinning curves essentially coin-
cide. To this end, we employed the Green-Kubo equilib-
rium method, which is specifically designed to determine
zero-shear viscosity. This approach involves integrating
the fluctuations in the stress tensor over large simula-
tion times in an equilibrium simulation (see Eq. (13)).
These dense polymeric systems involve highly complex
interactions, and the stress autocorrelation function re-
quires long simulation times to deplete. The interested
reader can find additional details in Section S7 of the
Supplementary Materials. Using the pristine polymer as
a reference, we observe that the inclusion of NRs acts as
a thickening agent when incorporated within BCP ma-
trices, an effect similar to that produced by NDs in HPs.
We notice that both sets of NPs tend to arrange homo-
geneously across the corresponding host polymers melts.

A reduction of chain free volume through particle
inclusion is typically associated with increased viscos-
ity, as predicted theoretically79 and validated through
simulations14,15,80 and experiments65. In particular, NRs
experience uniform attraction to all monomer types due
to effective polymeric grafting modeled by the LJ po-
tential, countering BCP microphase separation and in-
troducing uniformity. Their distinct geometry provides
a structural foundation for copolymer chains, enhanc-
ing the material’s resistance to mechanical deformation.
Their non-Gaussian dynamics, characterized by coexist-
ing slow and fast particles as Fig. 8 indicates, further con-
tribute to the viscosity of the two NR-PNCs by provid-
ing heterogeneous resistance to flow. While adding NRs
significantly increases the viscosity in BCPs but has a
very mild effect on HPs, a different scenario is observed
with NDs. In this case, the effect on viscosity is signif-
icantly more relevant in HPs than in BCPs (see insets
in frames (a) and (b) of Fig. 11). We believe that the
uniform distribution of NDs in HPs, compared to their

preferential location at the interface between microphase-
separated domains in BCPs, increases the material’s re-
sistance to flow and thus their viscosity. Additionally, the
non-Gaussian dynamics of NDs are almost negligible in
HPs but more noticeable in BCPs. These results suggest
that achieving a homogeneous behavior, whether struc-
tural or dynamical, is key to attaining higher viscosity.

The mixed systems containing both ND1 and NRs ex-
hibit notably higher viscosity values, up to 1600 cP in
HPNCs and 4000 cP in BCPNCs. This increase in vis-
cosity can be partially attributed to the higher NP con-
centration in these systems, which contain 7.8 wt% of
NPs compared to 5 wt% in the other systems. However,
the significant rise in viscosity is not solely due to the
higher concentration but also due to a synergistic inter-
action between the different types of nanoparticles and
the specific polymer matrices. In HPNCs, the increase
in viscosity is almost entirely due to the action of NDs.
Both ND1-HPNC and ND1/NR-HPNC exhibit similar
viscosity ranges, indicating that adding NRs does not sig-
nificantly change the viscosity of the melt. This suggests
that NDs are the primary contributors to the viscosity in-
crease in these systems. The uniform distribution of NDs
in the homopolymer matrix enhances the material’s resis-
tance to flow, leading to higher viscosity. In contrast, the
behavior in BCPNCs is different. In these systems, a sub-
stantial increase in viscosity is achieved only when both
NDs and NRs are present. When NDs or NRs are added
individually to BCPs, they have a very mild effect on vis-
cosity. However, when both types of NPs are combined,
their interaction within the block copolymer matrix sig-
nificantly increases viscosity. This synergistic effect likely
arises from the distinct interactions between the nanopar-
ticles and the microphase-separated domains of the block
copolymer. NRs provide a structural foundation for the
copolymer chains, while the NDs disrupt the interface
between microphase-separated domains, creating a more
homogeneous distribution and enhancing the material’s
resistance to flow. Additionally, the non-Gaussian dy-
namics of NDs and NRs play a crucial role in this be-
havior. In BCPNCs, the combination of NDs and NRs
results in a heterogeneous resistance to flow, character-
ized by coexisting slow and fast particles. This hetero-
geneity contributes to the significant increase in viscos-
ity. In summary, the substantial increase in viscosity in
mixed ND1/NR-HPNCs and ND1/NR-BCPNCs is due
to the combined effects of higher nanoparticle concen-
tration, the specific interactions between nanoparticles
and polymer matrices, and the heterogeneous dynamics
introduced by the presence of both NDs and NRs.

V. CONCLUSIONS

In summary, we investigated the effects of incorpo-
rating NDs and/or NRs into PNCs with block BCP or
HP matrices using CG-LD simulations. We focused on
two types of homogeneous NDs with distinct interaction
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strengths with the polymer: stronger repulsion (ND1)
and weaker repulsion (ND2), as well as Janus NDs that
exhibit both interaction types. Our findings reveal that
the inclusion of NPs significantly impacts the PNCs’ be-
havior, with variations driven by the nature of interac-
tions at the polymer-NP interface (weak repulsion, strong
repulsion or Janus) and the geometry of the nanoparti-
cles (dimers or rods). Structural analysis demonstrated
that NDk-M interactions notably affect the organization
of NPs within the polymer matrix. Specifically, Janus
NDs (NDJ) in BCPs preferentially assemble at the in-
terface between segregated polymer chain regions due to
entropic and enthalpic forces. This can result in ther-
mally stable and impermeable materials, with minimal
impact on specific polymer properties such as the radius
of gyration. Dynamical property analysis and diffusion
coefficients indicated that ND2 exhibits enhanced mo-
bility, whereas NDJ shows unique dynamics due to its
dual nature. The self-part of the van Hove distribu-
tions revealed non-Gaussian dynamics and heterogene-
ity in particle movement, with some NPs moving signif-
icantly faster or slower than average. Our simulations
also demonstrated that PNCs exhibit notable resistance
to shearing, especially during the initial stages when the
polymer chains are still organized in a disordered mesh.
As shear is applied over a longer duration at a constant
rate, the polymer chains gradually align with the shear
direction, leading to the surpassing of a viscosity thresh-
old. This stage became practically impossible to reach
using the SLLOD algorithm, as no significant deviations
from the melt were observed, emphasizing the impor-
tance of the Green-Kubo method for identifying differ-
ences in viscosity. In the zero-shear regime, the struc-
tural and geometrical peculiarities of NRs, as well as their
higher heterogeneous dynamics, contribute to an increase
in viscosity, especially in BCPs. Meanwhile, NDs alone
can increase viscosity more noticeably in HPs, where they
distribute uniformly as well. The significance of NDs’
active functionality in BCPs becomes evident when com-
bined with NRs, as the two NPs together cause a sixfold
increase in viscosity compared to the melt alone. These
insights underscore the importance of NP interactions,
geometries and interplay in determining the performance
of PNCs. Future research could explore the impact of
NPs on other transport properties, such as thermal and
electrical conductivity, to further understand the versa-
tility and limitations of these materials.

SUPPLEMENTARY MATERIAL

The supplementary material includes detailed informa-
tion on the PNC model, a discussion on the conditions
leading to the formation of nanocrystals of NRs, addi-
tional radial distribution functions, the polymer’s mean
squared displacement and diffusion coefficients, the non-
Gaussian parameter of nanoparticles and monomers, and
further details on the calculation of the zero-shear viscos-

ity. Additionally, we include a video of PNCs incoporat-
ing ND, NRs and a mixture of both species under shear.
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Appendix A: Rod rugosity

In our CG model, NRs are represented by aligning
multiple beads in a straight line. Due to the overlap-
ping nature of these beads, the resulting NR is not a
perfect spherocylinder but has associated rugosity. To
quantify this, we define the volume of the NR formed by
the overlapping beads as VNR and the volume of an ideal
spherocylinder as VSC. The rugosity is then given by:

https://doi.org/10.5281/zenodo.14975093
https://doi.org/10.5281/zenodo.14975093
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∆V ≡ VSC − VNR . (A1)

To calculate VNR, we consider that the intersections
between two consecutive beads consist of two identical
spherical caps sharing the same base. Let db be the dis-
tance between the centers of two adjacent beads, and Nb

the total number of beads (with Nb − 1 intersections).
The volume occupied by these beads is:

VNR(r, db) =
4πr3

3
+

(
πr2db −

πd3b
12

)
(Nb − 1) . (A2)

Relating this to the volume of a spherocylinder with
length L and two hemispheres at each end, we set L =
db(Nb − 1), leading to:

VSC(r, db) =
4πr3

3
+ πr2(Nb − 1)db . (A3)

Combining these results, we find that the rugosity ∆V
is independent of the sphere radius r, but depends on L
and Nb:

∆V (L,Nb) =
πL3

12(Nb − 1)2
. (A4)

Since ∆V does not have a minimum value, an opti-
mal configuration based on radius, number of beads, or
distance between centers cannot be determined. As ex-
pected, ∆V approaches zero as Nb → ∞. We can sim-
plify the analysis by introducing the aspect ratio q:

q ≡ L+ 2r

2r
= 1 +

(Nb + 1)db
2r

. (A5)

With this aspect ratio, the volume of the spherocylin-
der can be expressed as:

VSC(L, q) =
4π

3

(
L/2

q − 1

)3

+ πL

(
L/2

q − 1

)2

. (A6)

To ensure that the excluded volume due to rugosity is
a given percentage of the rod volume, we use:

Nb(ξ, q) ≥ 1 +
(q − 1)3/2√
ξ(3q − 1)

, (A7)

where ξ is the desired percentage of rugosity relative to
the rod volume. This relationship allows us to determine
the minimum number of beads Nb based solely on the
aspect ratio q and the rugosity parameter ξ.
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