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 A B S T R A C T

The Dirichlet 𝑝-Laplacian in tubes of arbitrary cross-section along infinite curves in Euclidean 
spaces of arbitrary dimension is investigated. First, it is shown that the gap between the 
lowest point of the generalised spectrum and the essential spectrum is positive whenever the 
cross-section is centrally symmetric and the tube is asymptotically straight, untwisted and non-
trivially bent. Second, a Hardy-type inequality is derived for unbent and non-trivially twisted 
tubes.

. Introduction

The interplay between the geometry and spectrum of Riemannian manifolds constitutes a traditional area of mathematics. 
hysical motivations range from classical vibrational systems to modern nanostructure devices in quantum mechanics. Moreover, 
he study is intrinsically charming due to the emotional impacts geometric shapes have over a person’s perception of the world. The 
pectrum of the Laplacian in any compact manifold is purely discrete. On the other hand, non-compact manifolds typically have an 
ssential spectrum and the existence of eigenvalues is a non-trivial property. For non-complete manifolds, the additional challenge 
n the game is the role of boundary conditions.
The present paper is motivated by an extensive study of the Dirichlet Laplacian in a special case of non-compact non-complete 
anifolds: tubes. We restrict to the simplest non-trivial situation of tubular neighbourhoods of unbounded curves embedded in 
uclidean spaces. Here a strong physical motivation comes from quantum mechanics, where the Laplacian models the Hamiltonian 
f quantum waveguides [22].

ending is attractive
Any straight tube has a purely essential spectrum. Bending it, however, leads to the existence of eigenvalues below the essential 

pectrum of the Dirichlet Laplacian. This astonishing observation goes back to the pioneering paper of Exner and Šeba in two 
imensions from 1989 [23]. Among the multitude of subsequent results, let us highlight the milestones of the generalisation to 
hree-dimensional tubes via a robust variational proof [19,27], arbitrary dimensions [13] and optimal regularity hypotheses [38]. 
elying on the quantum-mechanical motivation, the spectral result can be illustratively interpreted as that an electron in a curved 
uantum waveguide gets trapped.
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Twisting is repulsive
Finding a way how to geometrically eliminate the discrete eigenvalues inspired Ekholm, Kovařík and one of the present authors 

to establish a Hardy inequality for the Dirichlet Laplacian in twisted three-dimensional tubes [20]. A more robust technique to derive 
the geometrically induced Hardy inequalities was later developed in [31,40]. Roughly, twisting the waveguide stabilises quantum 
transport. An alternative application to the heat flow (including the Brownian motion) can be found in [28,40].

1.1. The nonlinear setting

The objective of this paper is to generalise the spectral-geometric properties of tubes to the nonlinear setting of the 𝑝-Laplacian 
−𝛥𝑝 with 𝑝 ∈ (1,∞) formally acting as 

− 𝛥𝑝𝑢 ∶= −div(|∇𝑢|𝑝−2∇𝑢) . (1)

The linear case mentioned above corresponds to 𝑝 = 2, while the purely geometric setting 𝑝 = 1 (the Cheeger problem) is analysed 
in [35,36,43]. Our motivation is not only the mathematical curiosity about the robustness of the effects of bending and twisting, but 
also the relevance of the nonlinear Laplacian in various areas of physics and other natural sciences [6]. Moreover, the generalisation 
is challenging because of the absence of the powerful spectral theory of self-adjoint operators whenever 𝑝 ≠ 2.

Our ‘‘spectral analysis’’ of (1) is notably inspired by the criticality approach of Pinchover et al. [15,17,25,42,47,48,50]. Given 
any open set 𝛺 ⊂ R𝑑 of dimension 𝑑 ≥ 1, we introduce the spectral threshold and the essential spectral threshold by the variational 
formulae 

𝜆1(𝛺) ∶= inf
𝑢∈𝑊 1,𝑝

0 (𝛺)
𝑢≠0

∫𝛺
|∇𝑢(𝑥)|𝑝 𝑑𝑥

∫𝛺
|𝑢(𝑥)|𝑝 𝑑𝑥

and 𝜆∞(𝛺) ∶= sup
𝐾⋐𝛺

𝜆1(𝛺 ⧵𝐾) . (2)

If 𝛺 is bounded, then the infimum is achieved and the Euler–Lagrange equation associated with the minimisation formula is the 
quasilinear eigenvalue problem 

− 𝛥𝑝𝑢 = 𝜆1(𝛺)|𝑢|𝑝−2𝑢 (3)

in 𝛺, subject to Dirichlet boundary conditions 𝑢 = 0 on 𝜕𝛺; moreover, 𝜆∞(𝛺) = ∞. In general, 𝜆1(𝛺) and 𝜆∞(𝛺) extend to 𝑝 ≠ 2 the 
well-known variational characterisations of the lowest point in the spectrum (Rayleigh–Ritz) and the essential spectrum (Persson), 
respectively, of the self-adjoint Dirichlet Laplacian −𝛥2 in 𝐿2(𝛺).

Whenever, the infimum in (2) is achieved by a function 𝑢 ∈ 𝑊 1,𝑝
0 (𝛺), we call it the first eigenfunction (or ground state) of 𝛺. Then 

the spectral threshold 𝜆1(𝛺) is also called the first (or principal) eigenvalue of 𝛺. For unbounded 𝛺, the existence of the ground state 
is a highly non-trivial property. In particular, the positivity of the essential spectral gap 𝜆∞(𝛺) − 𝜆1(𝛺) generalises the existence of 
(discrete) eigenvalues below the essential spectrum of −𝛥2.

The class of domains we are interested in this paper are deformations of the straight tube 𝛺0 ∶= R × 𝜔, where 𝜔 ⊂ R𝑑−1 with 
𝑑 ≥ 2 is an arbitrary bounded open connected set. It is not difficult to see (see Proposition  1 and Theorem  1) that 

𝜆1(𝛺0) = 𝜆1(𝜔) = 𝜆∞(𝛺0) , (4)

so the essential spectral gap is zero in this case. Our goal is to analyse the influence of bending and twisting of 𝛺0 on the spectral 
threshold and the essential spectral threshold.

1.2. The geometric framework

Let 𝛤 ∶ R → R𝑑 be a 𝐶1,1-smooth unit-speed curve. Then 𝑇 ∶= 𝛤 ′ is a unit tangent vector field along 𝛤  and 𝜅 ∶= |𝛤 ′′
| is the 

(locally bounded) curvature function of 𝛤 . There exist (almost everywhere differentiable) unit normal vector fields 𝑁1,… , 𝑁𝑑−1 ∶
R → R𝑑 such that 

⎛

⎜

⎜

⎜

⎜

⎝

𝑇
𝑁1
⋮

𝑁𝑑−1

⎞

⎟

⎟

⎟

⎟

⎠

′

=

⎛

⎜

⎜

⎜

⎜

⎝

0 𝜅1 … 𝜅𝑑−1
−𝜅1 0 … 0
⋮ ⋮ ⋮

−𝜅𝑑−1 0 … 0

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

𝑇
𝑁1
⋮

𝑁𝑑−1

⎞

⎟

⎟

⎟

⎟

⎠

, (5)

where 𝜅1,… , 𝜅𝑑−1 ∶ R → R are (locally bounded) functions such that 𝜅21 +⋯ + 𝜅2𝑑−1 = 𝜅2. Let us consider a one-parametric family 
of rotation matrices

𝑅 ∶ R → 𝖲𝖮(𝑑 − 1) ,

which we assume to be differentiable with 𝑅′ ∈ 𝐿∞
loc(R;R

(𝑑−1)×(𝑑−1)). Rotating the normal vector fields 𝑁1,… , 𝑁𝑑−1 via 𝑅, we obtain 
an arbitrary frame (𝑇 ,𝑅1𝜇𝑁𝜇 ,… , 𝑅𝑑−1𝜇𝑁𝜇) of 𝛤 . Here the Einstein summation convention is adopted, with the range of Greek 
indices being 1,… , 𝑑 − 1. Then a general bent twisted tube about 𝛤  is obtained by 

{ }
𝛺𝜅,𝑅 ∶= 𝛤 (𝑠) + 𝑡𝜇 𝑅𝜇𝜈 (𝑠)𝑁𝜈 ∶ (𝑠, 𝑡) ∈ R × 𝜔 . (6)

2 
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Our standing hypothesis is that 𝛺𝜅,𝑅 does not overlap itself, which particularly involves the necessary condition that 𝜅 ∈ 𝐿∞(R)
and 

𝑎 ‖𝜅‖𝐿∞(R) < 1 (7)

with 𝑎 ∶= sup
𝑡∈𝜔

|𝑡|.
We say that 𝛺𝜅,𝑅 is unbent or untwisted if 𝜅 = 0 or 𝑅′ = 0, respectively. The former implies that 𝛤  is a straight line, while the 

latter means that the cross-section 𝜔 is translated along 𝛤  with respect to a relatively parallel frame (i.e., the normal components 
rotate along 𝛤  only whatever amount is necessary to remain normal, namely, their derivative stays tangential). An unbent untwisted 
tube is straight in the sense that it is congruent to 𝛺0 = 𝛺0,𝐼 , where 𝐼 is the identity matrix.

The terminology is not perfect because straight tubes are considered as a particular situation of bent twisted tubes. For this 
reason, we say that 𝛺𝜅,𝑅 is non-trivially bent if 𝜅 ≠ 0. However, even if 𝑅′ ≠ 0, it might happen that 𝛺0,𝑅 is congruent to 𝛺0. In 
fact, this is the case whenever the cross-section 𝜔 is circular, i.e., 𝜔 is the ball 𝐵𝑎(0) of radius 𝑎 > 0 centred at the origin of R𝑑−1
or 𝜔 = 𝐵𝑎(0) ⧵ 𝐵𝑎0 (0) is a spherical shell of radii 0 < 𝑎0 < 𝑎 centred at the origin (we identify open sets which differ by subsets of 
capacity zero: for instance, the ball centred at the origin with a point removed is still circular). Therefore, the property of a tube 
being non-trivially twisted requires an extra hypothesis about the asymmetry of the cross-section 𝜔 with respect to the rotations 𝑅. 
A discovery of this paper is that, in all dimensions, the right definition reads 

𝑓𝜇𝜕𝑡𝜇𝜙1 ≠ 0 (8)

as an inequality between functions in 𝛺0. Here 𝜙1 is the first eigenfunction of 𝜔 and 𝑓𝜇(𝑠, 𝑡) ∶= 𝑡𝛼𝑅′
𝛼𝛽 (𝑠)𝑅𝜇𝛽 (𝑠).

1.3. The main results

Our first result is about asymptotically straight tubes characterised by the vanishing of bending and twisting at infinity: 

lim
|𝑠|→∞

𝜅(𝑠) = 0 and lim
|𝑠|→∞∫𝜔

|𝑓𝜇(𝑠, 𝑡)𝜕𝑡𝜇𝜙1(𝑡)|
𝑝 𝑑𝑡 = 0 . (9)

Of course, a sufficient condition to ensure the validity of the second limit is that 𝑅′(𝑠) → 0 as |𝑠| → ∞ (in any matrix topology). 

Theorem 1 (Stability of 𝜆∞). If (9) holds, then 𝜆∞(𝛺𝜅,𝑅) = 𝜆1(𝜔).

In particular, the second equality of (4) follows as a very special case.
Our second result is that the spectral threshold diminishes whenever the tube is non-trivially bent and untwisted. Unfortunately, 

we are able to prove it only if the cross-section 𝜔 is centrally symmetric (with respect to the origin), i.e., 𝑡 ∈ 𝜔 implies −𝑡 ∈ 𝜔. 

Theorem 2 (Bending). If 𝑅′ = 0, 𝜅 ≠ 0 and 𝜔 is centrally symmetric, then
𝜆1(𝛺𝜅,𝑅) < 𝜆1(𝜔) .

As a consequence of Theorems  1 and 2, we get the ultimate result about the positivity of the essential spectral gap. 

Corollary 1.  If 𝑅′ = 0, 𝜅 ≠ 0, 𝜔 is centrally symmetric and (9) holds, then
𝜆1(𝛺𝜅,𝑅) < 𝜆∞(𝛺𝜅,𝑅) .

We leave as an open problem (see Remark  3) whether the result holds for arbitrary cross-sections (unless 𝑝 = 2 when the general 
validity is well known).

Finally, for unbent non-trivially twisted tubes we establish a Hardy inequality. 

Theorem 3 (Twisting). If 𝜅 = 0 and (8) holds, then there exists a positive continuous function 𝜌 ∶ 𝛺0,𝑅 → R such that 

∀𝑢 ∈ 𝑊 1,𝑝
0 (𝛺0,𝑅) , ∫𝛺0,𝑅

|∇𝑢|𝑝 𝑑𝑥 − 𝜆1(𝜔)∫𝛺0,𝑅

|𝑢|𝑝 𝑑𝑥 ≥ ∫𝛺0,𝑅

𝜌 |𝑢|𝑝 𝑑𝑥 . (10)

Note that the theorem is void if 𝑑 = 2, because there is no twisting for a two-dimensional strip. If 𝑑 = 3 and 𝑝 = 2, the existence of 
a Hardy inequality is known from [20,31,40], however, a positive weight 𝜌 was established only for compactly supported 𝑅′. Here 
we provide a robust existence of the Hardy inequality under the minimal hypothesis. What is more, we prove the Hardy inequality 
in all dimensions 𝑑 ≥ 3 and 𝑝 ∈ (1,∞). The result is completely new in higher dimensions 𝑑 ≥ 4 even in the linear case 𝑝 = 2.

The result Theorem  3 is highly non-trivial because there is no Hardy inequality in straight tubes 𝛺0. Indeed, the shifted operator 
−𝛥𝑝 − 𝜆1(𝜔) in 𝛺0 is critical in the sense that the spectral threshold of −𝛥𝑝 − 𝜆1(𝜔) + 𝑉  in 𝛺0 is negative whenever the perturbation 
𝑉 ∈ 𝐶∞

0 (𝛺0) is non-positive and non-trivial (yet arbitrarily small), see Proposition  2. Theorem  3 says that −𝛥𝑝 − 𝜆1(𝜔) in 𝛺0,𝑅 is
subcritical whenever 𝛺0,𝑅 is non-trivially twisted, in the sense of the stability that the spectral threshold of −𝛥𝑝 − 𝜆1(𝜔) + 𝑉  in 𝛺0,𝑅
remains zero whenever 𝑉 ∈ 𝐶∞

0 (𝛺0,𝑅) is small. For non-trivially bent untwisted tubes, the operator −𝛥𝑝 − 𝜆1(𝜔) in 𝛺𝜅,𝐼  may be 
understood as supercritical under the hypotheses of Theorem  2, because 𝜆 (𝛺 ) − 𝜆 (𝜔) is negative even if 𝑉 = 0.
1 𝜅,𝐼 1

3 
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1.4. Possible extensions

As an interesting direction of possible future research, let us mention the replacement of the Dirichlet boundary conditions by
Robin boundary conditions in the spirit of [30]. Apart from two-dimensional studies [18,24,32,46,51] or thin-width asymptotics 
[10,16], a detailed spectral-geometric analysis of higher-dimensional Robin waveguides remains open even in the linear case 𝑝 = 2.

Another interesting extension would be to add magnetic fields to the 𝑝-Laplacian [12,37].
The present paper is essentially concerned with the quasi-linear eigenvalue problem (3) (to be properly understood through (2)). 

This is a special (so-called 𝑝-linear) case of the more general problem
−𝛥𝑝𝑢 = 𝜆 |𝑢|𝑞−2𝑢 .

The other cases 𝑞 > 𝑝 and 𝑞 < 𝑝 are known as 𝑝-sublinear and 𝑝-superlinear, respectively. There is an extensive literature on existence 
of solutions both in the variational and non-variational frameworks, including more general operators, see, e.g., [2–4,26,52] and 
references therein. We consider an extension of the present spectral-geometric study to the more general types of nonlinearities as 
yet another interesting future project.

1.5. The organisation

The paper is structured as follows. In Section 2 we comment more on the geometric setting and implement the usual passage to 
the curvilinear ‘‘coordinates’’ (𝑠, 𝑡), which is the main strategy to deal with curved quantum waveguides. Straight tubes are considered 
in Section 3, where we establish the first equality of (4) as well as Proposition  2 about the criticality of 𝛺0. Theorems  1, 2 and 3 
are established in Sections Section 4, 5 and 6, respectively. In the last section concerned with twisted tubes, we also comment more 
on hypothesis (8).

2. Preliminaries

We refer to [38,39] on the geometry of curves under the present minimal hypotheses. The unit-speed hypothesis about 𝛤  means 
that |𝛤 ′(𝑠)| = 1 for every 𝑠 ∈ R, which can be always achieved by a suitable (arc-length) change of parameterisation. Note that 
the relatively parallel adapted frame (𝑇 ,𝑁1,… , 𝑁𝑑−1) differs from the customarily used Frenet frame. The latter requires an extra 
(classically 𝐶𝑑 -smoothness) regularity of 𝛤 , and moreover, curves with vanishing curvature somewhere must be excluded. The 
relatively parallel adapted frame is uniquely defined modulo the choice of initial conditions 𝑁𝑗 (𝑠0) = 𝑁0

𝑗 (𝑠0) ∈ R𝑑 for some 𝑠0 ∈ R, 
which also fixes the curvature functions 𝜅𝑗 , with 𝑗 ∈ {1,… , 𝑑 − 1}. The shape of a bent untwisted tube 𝛺𝜅,𝐼  therefore depends on 
the choice of the relatively parallel adapted frame, unless the cross-section 𝜔 is circular.

For the usual passage to the curvilinear ‘‘coordinates’’ (𝑠, 𝑡) when dealing with curved tubes, we refer to the geometrically oriented 
references [13,34,39]. Let us introduce the mapping L ∶ R × R𝑑−1 → R𝑑 defined by

L (𝑠, 𝑡) ∶= 𝛤 (𝑠) + 𝑡𝜇 𝑅𝜇𝜈 (𝑠)𝑁𝜈 ,

so that 𝛺𝜅,𝑅 = L (𝛺0). It is convenient to think of 𝛺𝜅,𝑅 as the Riemannian manifold 𝛺0 equipped with the induced metric 
𝑔 ∶= (∇L )⋅(∇L )𝑇 , where the dot denotes the matrix multiplication in R𝑑 . Using (5) and the orthogonality of 𝑅, it is straightforward 
to check that the metric reads

𝑔 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑓 2 + 𝑓𝜇𝑓𝜇 𝑓1 𝑓2 … 𝑓𝑑−1
𝑓1 1 0 … 0
𝑓2 0 1 … 0
⋮ ⋮ ⋮ ⋱ ⋮

𝑓𝑑−1 0 0 … 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, det(𝑔) ∶= 𝑓 2 ,

where
𝑓 (𝑠, 𝑡) ∶= 1 − 𝑡𝛼𝑅𝛼𝛽 (𝑠)𝜅𝛽 (𝑠) ,

𝑓𝜇(𝑠, 𝑡) ∶= 𝑡𝛼𝑅
′
𝛼𝛽 (𝑠)𝑅𝜇𝛽 (𝑠) .

Note that (𝑓𝜇𝑓𝜇)(𝑠, 𝑡) = 𝑡𝛼𝑅′
𝛼𝛽 (𝑠)𝑡𝜈𝑅

′
𝜈𝛽 (𝑠) by the orthogonality of 𝑅. From the basic hypothesis (7), it follows that the Jacobian of L

satisfies 
0 < 1 − 𝑎 ‖𝜅‖𝐿∞(R) ≤ 𝑓 (𝑠, 𝑡) ≤ 1 + 𝑎 ‖𝜅‖𝐿∞(R) < ∞ (11)

for every (𝑠, 𝑡) ∈ 𝛺0. Consequently, (𝛺0, 𝑔) is a Riemannian manifold provided that (7) holds. More specifically, L ∶ 𝛺0 → 𝛺𝜅,𝑅
is a local 𝐶0,1-diffeomorphism under the assumption (7) (cf. [39, Prop. 2.2]). To make it a global diffeomorphism, one needs to 
additionally assume that L  is injective (see Remark  1 below on how to relax this hypothesis). The inverse metric is given by

𝑔−1 =

⎛

⎜

⎜

⎜

⎜

⎜

1 −𝑓1 −𝑓2 … −𝑓𝑑−1
−𝑓1 1 + 𝑓 2

1 𝑓1𝑓2 … 𝑓1𝑓𝑑−1
−𝑓2 𝑓2𝑓1 1 + 𝑓 2

2 … 𝑓2𝑓𝑑−1
⋮ ⋮ ⋮ ⋱ ⋮

2

⎞

⎟

⎟

⎟

⎟

⎟

.

⎝
−𝑓𝑑−1 𝑓𝑑−1𝑓1 𝑓𝑑−1𝑓2 … 1 + 𝑓𝑑−1⎠

4 
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Passing to the curvilinear coordinates in the integrals in the variational characterisation (2) by the change of trial function 
𝜓 ∶= 𝑢◦L , it is straightforward to verify that 

𝜆1(𝛺𝜅,𝑅) = inf
𝜓∈𝑊 1,𝑝

0 (𝛺0 ,𝑔)
𝜓≠0

𝑄[𝜓]
‖𝜓‖𝑝

=∶ 𝜆1(𝛺0, 𝑔) , (12)

where 

𝑄[𝜓] ∶= ∫𝛺0

⎛

⎜

⎜

⎝

|

|

|

|

|

(𝜕𝑠 − 𝑓𝜇(𝑠, 𝑡)𝜕𝑡𝜇 )𝜓(𝑠, 𝑡)

𝑓 (𝑠, 𝑡)

|

|

|

|

|

2

+ |∇𝑡𝜓(𝑠, 𝑡)|
2
⎞

⎟

⎟

⎠

𝑝∕2

𝑓 (𝑠, 𝑡) 𝑑𝑠 𝑑𝑡 ,

‖𝜓‖ ∶=

(

∫𝛺0

|𝜓(𝑠, 𝑡)|𝑝 𝑓 (𝑠, 𝑡) 𝑑𝑠 𝑑𝑡

)1∕𝑝

,

(13)

and 𝑊 1,𝑝
0 (𝛺0, 𝑔) denotes the closure of 𝐶∞

0 (𝛺0) with respect to the norm (𝑄[𝜓] + ‖𝜓‖𝑝)1∕𝑝. By virtue of (11), it is straightforward 
to verify that 𝑊 1,𝑝

0 (𝛺0, 𝑔) = 𝑊 1,𝑝
0 (𝛺0) provided that 𝜅 ∈ 𝐿∞(R) (always assumed) and 𝑅′ ∈ 𝐿∞(R;R(𝑑−1)×(𝑑−1)) (not necessarily 

assumed).

Remark 1.  It is evident that (12) is well defined merely under the hypothesis (7). Therefore, if we take (12) as the very definition 
of 𝜆1(𝛺𝜅,𝑅) and abandon the interpretation of 𝛺𝜅,𝑅 as a non-self-intersecting tube, all the results in this paper hold without the extra 
assumption that L  is injective. In this more general approach, the essential spectral threshold should be interpreted as 

𝜆∞(𝛺𝜅,𝑅) = sup
𝐾⋐𝛺0

𝜆1(𝛺0 ⧵𝐾, 𝑔) . (14)

In summary, (7) and L  injective are our standing hypotheses provided that we want (𝛺0, 𝑔) to be an embedded submanifold 
of R𝑑 . Alternatively, considering (𝛺0, 𝑔) as an immersed submanifold only, it is enough to assume (7).

To handle 𝑄[𝜓], the following elementary observation will be widely used. 

Lemma 1.  For any non-negative numbers 𝑎, 𝑏, 𝑞, one has 

(𝑎 + 𝑏)𝑞 ≤ 𝛼𝑞𝑎𝑞 + 𝛽𝑞𝑏𝑞 , (15)

where 𝛼, 𝛽 are any positive numbers satisfying 1𝛼 + 1
𝛽 = 1.

Proof.  If 𝑞 ≤ 1, one has the better inequality (𝑎 + 𝑏)𝑞 ≤ 𝑎𝑞 + 𝑏𝑞 , from which (15) follows by the fact that necessarily 𝛼, 𝛽 > 1. In 
any case, the claim is achieved by arguing that either 𝑎+ 𝑏 ≤ 𝛼𝑎 or 𝑎+ 𝑏 ≤ 𝛽𝑏 holds. This is true since otherwise one would get the 
contradiction that ( 1𝛼 + 1

𝛽 )(𝑎 + 𝑏) > 𝑎 + 𝑏.

3. Straight tubes

If 𝜅 = 0 and 𝑅′ = 0, then 𝛤  is a straight line and the relatively parallel adapted frame is actually parallel (i.e., constant along 𝛤 ). 
Consequently, 𝛺𝜅,𝑅 coincides with 𝛺0 = R × 𝜔 up to congruence. Our goal is to establish the first equality of (4) for any cross-
section 𝜔. Since any straight tube is necessarily asymptotically straight, the proof of the second equality of (4) is postponed to 
Section 4.

First of all, since 𝜔 is assumed to be bounded and connected, it is well known [5,29,44] that 𝜆1(𝜔) is a simple eigenvalue of the 
Dirichlet 𝑝-Laplacian in 𝜔. More specifically, there exists a unique (up to a constant multiple) positive minimiser 𝜙1 ∈ 𝑊 1,𝑝

0 (𝜔) of 
the minimisation problem in (2) (with 𝛺 being replaced by 𝜔). We choose it normalised to 1 in 𝐿𝑝(𝜔), i.e., ∫𝜔 |𝜙1(𝑡)|

𝑝 𝑑𝑡 = 1. The 
variational characterisation of 𝜆1(𝜔) yields the Poincaré inequality 

∀𝜙 ∈ 𝑊 1,𝑝
0 (𝜔) , ∫𝜔

|∇𝜙(𝑡)|𝑝 𝑑𝑡 ≥ 𝜆1(𝜔)∫𝜔
|𝜙(𝑡)|𝑝 𝑑𝑡 . (16)

Note that 𝜆1(𝜔) is necessarily positive. We assume no regularity hypotheses about 𝜔, unless otherwise stated.
The following result is expected due to the product structure 𝛺0 = R × 𝜔 and 𝜆1(R) = 0. Actually it is known in a great 

generality [11, Lem. 2.2]. We provide a proof to make the paper self-contained. 

Proposition 1.  One has
𝜆1(𝛺0) = 𝜆1(𝜔) .
5 



L. Baldelli and D. Krejčiřík Nonlinear Analysis 258 (2025) 113814 
Proof.  If 𝜅 = 0 and 𝑅′ = 0, then 𝑓 = 1 and 𝑓𝜇 = 0. Consequently,

𝑄[𝜓] = ∫𝛺0

(

|𝜕𝑠𝜓|
2 + |∇𝑡𝜓|

2)𝑝∕2 𝑑𝑠 𝑑𝑡

≥ ∫𝛺0

|∇𝑡𝜓|
𝑝 𝑑𝑠 𝑑𝑡

≥ 𝜆1(𝜔)∫𝛺0

|𝜓|𝑝 𝑑𝑠 𝑑𝑡 = 𝜆1(𝜔) ‖𝜓‖𝑝 ,

where the last inequality follows from (16) and the Fubini theorem. (For simplicity, we suppress the arguments of functions in the 
integrals from now on.)

To prove the opposite inequality, it is enough to construct a sequence (𝜓𝑛)∞𝑛=1 ⊂ 𝑊
1,𝑝
0 (𝛺0) such that 

𝑅[𝜓𝑛] ∶=
𝑄[𝜓𝑛] − 𝜆1(𝜔) ‖𝜓𝑛‖𝑝

‖𝜓𝑛‖𝑝
←←←←←←←←←←←←←←←←←←←←←→
𝑛→∞

0 . (17)

To this purpose, let (𝜑𝑛)∞𝑛=1 ⊂ 𝑊
1,𝑝
0 (R) be defined by 

𝜑𝑛(𝑠) ∶=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 if |𝑠| ≤ 𝑛 ,

2 −
|𝑠|
𝑛

if |𝑠| ∈ (𝑛, 2𝑛) ,

0 if |𝑠| ≥ 2𝑛 .

(18)

Note that 𝜑𝑛 → 1 pointwise as 𝑛→ ∞ and 

∫R
|𝜑′
𝑛(𝑠)|

𝜉 𝑑𝑠 = 2
𝑛𝜉−1

←←←←←←←←←←←←←←←←←←←←←→
𝑛→∞

0 (19)

whenever 𝜉 > 1. Set 𝜓𝑛(𝑠, 𝑡) ∶= 𝜑𝑛(𝑠)𝜙1(𝑡). By Lemma  1,

𝑄[𝜓𝑛] ≤ 𝛼𝑝∕2 ∫𝛺0

|𝜕𝑠𝜓𝑛|
𝑝 𝑑𝑠 𝑑𝑡 + 𝛽𝑝∕2 ∫𝛺0

|∇𝑡𝜓𝑛|
𝑝 𝑑𝑠 𝑑𝑡

= 𝛼𝑝∕2 ∫R
|𝜑′
𝑛|
𝑝 𝑑𝑠 + 𝛽𝑝∕2 𝜆1(𝜔)∫R

|𝜑𝑛|
𝑝 𝑑𝑠 ,

where the equality follows by the fact that equality holds in (16) if (and only if) 𝜙 = 𝜙1 and by the normalisation of 𝜙1. At the same 
time, ‖𝜓𝑛‖𝑝 = ∫R |𝜑𝑛|

𝑝 𝑑𝑠. Consequently,

𝑅[𝜓𝑛] ≤ 𝛼𝑝∕2
∫R

|𝜑′
𝑛|
𝑝 𝑑𝑠

∫R
|𝜑𝑛|

𝑝 𝑑𝑠
+ (𝛽𝑝∕2 − 1) 𝜆1(𝜔) .

By (19), it follows that
lim
𝑛→∞

𝑅[𝜓𝑛] ≤ (𝛽𝑝∕2 − 1) 𝜆1(𝜔) ,

where 𝛽 > 1 can be made arbitrarily close to 1.

Straight tubes are critical in the sense of the following instability of −𝛥𝑝 with respect to small perturbations. 

Proposition 2.  Let 𝑉 ∈ 𝐶∞
0 (𝛺0) be non-positive and non-trivial. Then

𝜆𝑉1 (𝛺0) ∶= inf
𝜓∈𝑊 1,𝑝

0 (𝛺0)
𝜓≠0

∫𝛺0

|∇𝜓|𝑝 𝑑𝑠 𝑑𝑡 + ∫𝛺0

𝑉 |𝜓|𝑝 𝑑𝑠 𝑑𝑡

‖𝜓‖𝑝

< inf
𝜓∈𝑊 1,𝑝

0 (𝛺0)
𝜓≠0

∫𝛺0

|∇𝜓|𝑝 𝑑𝑠 𝑑𝑡

‖𝜓‖𝑝
= 𝜆1(𝛺0) = 𝜆1(𝜔)

Proof.  The last but one equality is the definition of 𝜆1(𝛺0), while the last equality is (4) (see Proposition  1). The main claim is the 
strict inequality. To prove it, it is enough to find a (trial) function 𝜓 ∈ 𝑊 1,𝑝

0 (𝛺0) for which

𝑄𝑉1 [𝜓] ∶= |∇𝜓|𝑝 𝑑𝑠 𝑑𝑡 + 𝑉 |𝜓|𝑝 𝑑𝑠 𝑑𝑡 − 𝜆1(𝜔) |𝜓|𝑝 𝑑𝑠 𝑑𝑡 < 0 .
∫𝛺0
∫𝛺0

∫𝛺0

6 
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It is achieved by the trial function 𝜓𝑛(𝑠, 𝑡) ∶= 𝜑𝑛(𝑠)𝜙1(𝑡), where the sequence 𝜑𝑛 is defined in (18). Indeed, if 𝑝 ≤ 2, then

𝑄𝑉1 [𝜓𝑛] ≤ ∫𝛺0

|𝜕𝑠𝜓𝑛|
𝑝 𝑑𝑠 𝑑𝑡 + ∫𝛺0

𝑉 |𝜓𝑛|
𝑝 𝑑𝑠 𝑑𝑡

= ∫𝛺0

|𝜑′
𝑛|
𝑝 𝑑𝑠 + ∫𝛺0

𝑉 |𝜑𝑛|
𝑝
|𝜙1|

𝑝 𝑑𝑠 𝑑𝑡 ←←←←←←←←←←←←←←←←←←←←←→
𝑛→∞ ∫𝛺0

𝑉 (𝑠, 𝑡) |𝜙1(𝑡)|
𝑝 𝑑𝑠 𝑑𝑡 < 0 ,

where we have used that equality holds in (16) if (and only if) 𝜙 = 𝜙1 and the normalisation of 𝜙1. The convergence holds due 
to (19) and since 𝜑𝑛 converges to 1 pointwise. If 𝑝 > 2, Lemma  1 yields

𝑄𝑉1 [𝜓𝑛] ≤ 𝛼𝑝∕2 ∫𝛺0

|𝜕𝑠𝜓𝑛|
𝑝 𝑑𝑠 𝑑𝑡 + (𝛽𝑝∕2 − 1) 𝜆1(𝜔)∫𝛺0

|𝜓𝑛|
𝑝 𝑑𝑠 𝑑𝑡 + ∫𝛺0

𝑉 |𝜓𝑛|
𝑝 𝑑𝑠 𝑑𝑡

= 𝛼𝑝∕2 ∫R
|𝜑′
𝑛|
𝑝 𝑑𝑠 + (𝛽𝑝∕2 − 1) 𝜆1(𝜔)∫R

|𝜑𝑛|
𝑝 𝑑𝑠 + ∫𝛺0

𝑉 |𝜑𝑛|
𝑝
|𝜙1|

𝑝 𝑑𝑠 𝑑𝑡

≤ 2𝛼𝑝∕2 1
𝑛𝑝−1

+ (𝛽𝑝∕2 − 1) 𝜆1(𝜔) 4𝑛 + ∫𝛺0

𝑉 |𝜑𝑛|
𝑝
|𝜙1|

𝑝 𝑑𝑠 𝑑𝑡 ,

where the last inequality employs (19) and the fact that the function 𝜑𝑛 satisfies 0 ≤ 𝜑𝑛 ≤ 1 on (−2𝑛, 2𝑛) and that it is zero elsewhere. 
Choosing 𝑛-dependent 𝛽 (and thus also 𝑛-dependent conjugate 𝛼), for instance (𝑛 ≥ 2), 

𝛽 ∶= 1 + (𝑛 log 𝑛)−1 (which implies 𝛼 = 1 + 𝑛 log 𝑛) (20)

it is straightforward to check that
lim
𝑛→∞

𝑄𝑉1 [𝜓𝑛] ≤ ∫𝛺0

𝑉 (𝑠, 𝑡) |𝜙1(𝑡)|
𝑝 𝑑𝑠 𝑑𝑡 < 0

in this case as well. In summary, there exists a natural number 𝑛0 such that 𝑄𝑉1 [𝜓𝑛] is negative for all 𝑛 ≥ 𝑛0.

4. Asymptotically straight tubes

In this section we establish Theorem  1. To simplify the presentation, we divide the proof into two steps. First, we show that the 
essential spectral threshold satisfies the required lower bound if the tube is merely asymptotically unbent.

Proposition 3.  If lim
|𝑠|→∞

𝜅(𝑠) = 0, then
𝜆∞(𝛺𝜅,𝑅) ≥ 𝜆1(𝜔) .

Proof.  By the definition of 𝜆∞(𝛺𝜅,𝑅) given in (14), one has 𝜆∞(𝛺𝜅,𝑅) ≥ 𝜆1(𝛺0 ⧵ 𝐾, 𝑔) for any ‘‘trial’’ compact subset 𝐾 of 𝛺0. For 
any positive numbers 𝜀 (small) and 𝑙 (large), we set

𝐾 ∶= [−𝑙, 𝑙] × 𝜔𝜀 with 𝜔𝜀 ∶= {𝑡 ∈ 𝜔 ∶ dist(𝑡, 𝜕𝜔) > 𝜀} .

Let 𝜓 ∈ 𝑊 1,𝑝
0 (𝛺0 ⧵𝐾, 𝑔) be arbitrary. Neglecting the ‘‘longitudinal energy’’ of 𝑄[𝜓] in (13) and recalling (11), one has

𝑄[𝜓] ≥ ∫𝛺0

|∇𝑡𝜓|
𝑝 𝑓 𝑑𝑠 𝑑𝑡

= ∫[−𝑙,𝑙] ∫𝜔⧵𝜔𝜀
|∇𝑡𝜓|

𝑝 𝑓 𝑑𝑡 𝑑𝑠 + ∫R⧵[−𝑙,𝑙] ∫𝜔
|∇𝑡𝜓|

𝑝 𝑓 𝑑𝑡 𝑑𝑠

≥ (1 − 𝑎 ‖𝜅‖𝐿∞(R))∫[−𝑙,𝑙] ∫𝜔⧵𝜔𝜀
|∇𝑡𝜓|

𝑝 𝑑𝑡 𝑑𝑠

+ (1 − 𝑎 ‖𝜅‖𝐿∞(R⧵[−𝑙,𝑙]))∫R⧵[−𝑙,𝑙] ∫𝜔
|∇𝑡𝜓|

𝑝 𝑑𝑡 𝑑𝑠

≥ (1 − 𝑎 ‖𝜅‖𝐿∞(R)) 𝜆1(𝜔 ⧵ 𝜔𝜀)∫[−𝑙,𝑙] ∫𝜔⧵𝜔𝜀
|𝜓|𝑝 𝑑𝑡 𝑑𝑠

+ (1 − 𝑎 ‖𝜅‖𝐿∞(R⧵[−𝑙,𝑙])) 𝜆1(𝜔)∫R⧵[−𝑙,𝑙] ∫𝜔
|𝜓|𝑝 𝑑𝑡 𝑑𝑠

≥
1 − 𝑎 ‖𝜅‖𝐿∞(R)

1 + 𝑎 ‖𝜅‖𝐿∞(R)
𝜆1(𝜔 ⧵ 𝜔𝜀)∫[−𝑙,𝑙] ∫𝜔⧵𝜔𝜀

|𝜓|𝑝 𝑓 𝑑𝑡 𝑑𝑠

+
1 − 𝑎 ‖𝜅‖𝐿∞(R⧵[−𝑙,𝑙])

1 + 𝑎 ‖𝜅‖𝐿∞(R⧵[−𝑙,𝑙])
𝜆1(𝜔)∫R⧵[−𝑙,𝑙] ∫𝜔

|𝜓|𝑝 𝑓 𝑑𝑡 𝑑𝑠

≥ min
{ 1 − 𝑎 ‖𝜅‖𝐿∞(R)

1 + 𝑎 ‖𝜅‖
𝜆1(𝜔 ⧵ 𝜔𝜀),

1 − 𝑎 ‖𝜅‖𝐿∞(R⧵[−𝑙,𝑙])

1 + 𝑎 ‖𝜅‖
𝜆1(𝜔)

}

‖𝜓‖𝑝 .

𝐿∞(R) 𝐿∞(R⧵[−𝑙,𝑙])

7 
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Here the third estimate is a version of the Poincaré inequality (16) in 𝜔 ⧵𝜔𝜀 obtained with help of the Fubini theorem and the fact 
that 𝜓(𝑠, ⋅) belongs to 𝑊 1,𝑝

0 (𝜔) for almost every 𝑠 ∈ R. Note that 𝜆1(𝜔 ⧵ 𝜔𝜀) → ∞ as 𝜀 → 0. To see it, one can argue through the 
Faber–Krahn inequality for the Dirichlet 𝑝-Laplacian (see, e.g., [14] and references therein) and the scaling 𝜆1(𝐵𝜖(0)) = 𝜖−𝑝𝜆1(𝐵1(0)). 
Consequently, the minimum equals the second constant for all sufficiently small 𝜀, so we have established the bound

𝜆∞(𝛺𝜅,𝑅) ≥
1 − 𝑎 ‖𝜅‖𝐿∞(R⧵[−𝑙,𝑙])

1 + 𝑎 ‖𝜅‖𝐿∞(R⧵[−𝑙,𝑙])
𝜆1(𝜔) .

Since the fraction tends to 1 as 𝑙 → ∞, the desired lower bound follows.

Now we turn to the upper bound. For simplicity, let us denote

𝑟(𝑠) ∶= ∫𝜔
|𝑓𝜇(𝑠, 𝑡)𝜕𝑡𝜇𝜙1(𝑡)|

𝑝 𝑑𝑡 .

Proposition 4.  If lim
𝑠→∞

𝜅(𝑠) = 0 and lim
𝑠→∞

𝑟(𝑠) = 0, then

𝜆∞(𝛺𝜅,𝑅) ≤ 𝜆1(𝜔) .

Proof.  Fix any 𝐾 ⋐ 𝛺0 and let us define 𝜓𝑛(𝑠, 𝑡) ∶= �̃�𝑛(𝑠)𝜙1(𝑡) with �̃�𝑛(𝑠) ∶= 𝜑𝑛(𝑠 − 𝑛2), where 𝜑𝑛 is the sequence defined in (18). 
As in the proof of Proposition  1, �̃�𝑛 → 1 pointwise as 𝑛 → ∞ and (19) holds for 𝜑𝑛 being replaced by �̃�𝑛 as well. Moreover, �̃�𝑛
is ‘‘localised at ∞’’ meaning that inf supp�̃�𝑛 = 𝑛2 − 2𝑛 → ∞ as 𝑛 → ∞. This, in particular, ensures that 𝜓𝑛 ∈ 𝑊 1,𝑝

0 (𝛺0 ⧵ 𝐾) for all 
sufficiently large 𝑛. Let us abbreviate ‖ ⋅ ‖∞ ∶= ‖ ⋅ ‖𝐿∞(R) and ‖ ⋅ ‖𝑛,∞ ∶= ‖ ⋅ ‖𝐿∞(supp�̃�𝑛). Similarly as in the proof of Proposition  1, we 
use Lemma  1 (twice) to obtain

𝑄[𝜓𝑛] ≤ 𝛼𝑝∕2 ∫𝛺0

�̃�𝑝 |𝜕𝑠𝜓𝑛|
𝑝 + 𝛽𝑝 |𝑓𝜇𝜕𝑡𝜇𝜓𝑛|

𝑝

𝑓 𝑝
𝑓 𝑑𝑠 𝑑𝑡 + 𝛽𝑝∕2 ∫𝛺0

|∇𝑡𝜓𝑛|
𝑝 𝑓 𝑑𝑠 𝑑𝑡

≤ 𝛼𝑝∕2

(1 − 𝑎 ‖𝜅‖𝑛,∞)𝑝−1 ∫𝛺0

(

�̃�𝑝 |𝜕𝑠𝜓𝑛|
𝑝 + 𝛽𝑝 |𝑓𝜇𝜕𝑡𝜇𝜓𝑛|

𝑝
)

𝑑𝑠 𝑑𝑡

+ 𝛽𝑝∕2 (1 + 𝑎 ‖𝜅‖𝑛,∞)∫𝛺0

|∇𝑡𝜓𝑛|
𝑝 𝑑𝑠 𝑑𝑡

= 𝛼𝑝∕2 �̃�𝑝

(1 − 𝑎 ‖𝜅‖𝑛,∞)𝑝−1 ∫R
|𝜑′
𝑛|
𝑝 𝑑𝑠 +

𝛼𝑝∕2 𝛽𝑝

(1 − 𝑎 ‖𝜅‖𝑛,∞)𝑝−1 ∫R
|�̃�𝑛|

𝑝 𝑟 𝑑𝑠

+ 𝛽𝑝∕2 (1 + 𝑎 ‖𝜅‖𝑛,∞) 𝜆1(𝜔)∫R
|𝜑𝑛|

𝑝 𝑑𝑠

≤ 𝛼𝑝∕2 �̃�𝑝

(1 − 𝑎 ‖𝜅‖∞)𝑝−1 ∫R
|𝜑′
𝑛|
𝑝 𝑑𝑠 +

𝛼𝑝∕2 𝛽𝑝 ‖𝑟‖𝑛,∞
(1 − 𝑎 ‖𝜅‖𝑛,∞)𝑝−1 ∫R

|𝜑𝑛|
𝑝 𝑑𝑠

+ 𝛽𝑝∕2 (1 + 𝑎 ‖𝜅‖𝑛,∞) 𝜆1(𝜔)∫R
|𝜑𝑛|

𝑝 𝑑𝑠 .

At the same time,
‖𝜓𝑛‖

𝑝 ≥ (1 − 𝑎 ‖𝜅‖𝑛,∞)∫R
|𝜑𝑛|

𝑝 𝑑𝑠 ≥ (1 − 𝑎 ‖𝜅‖∞)∫R
|𝜑𝑛|

𝑝 𝑑𝑠 .

Consequently,

𝑄[𝜓𝑛]
‖𝜓𝑛‖𝑝

≤ 𝛼𝑝∕2 �̃�𝑝

(1 − 𝑎 ‖𝜅‖∞)𝑝
∫R

|𝜑′
𝑛|
𝑝 𝑑𝑠

∫R
|𝜑𝑛|

𝑝 𝑑𝑠
+
𝛼𝑝∕2 𝛽𝑝 ‖𝑟‖𝑛,∞
(1 − 𝑎 ‖𝜅‖𝑛,∞)𝑝

+ 𝛽𝑝∕2
1 + 𝑎 ‖𝜅‖𝑛,∞
1 − 𝑎 ‖𝜅‖𝑛,∞

𝜆1(𝜔) .

By (19) and the fact that 𝜅(𝑠) → 0 and 𝑟(𝑠) → 0 as 𝑠→ ∞, it follows that

lim
𝑛→∞

𝑄[𝜓𝑛]
‖𝜓𝑛‖𝑝

≤ 𝛽𝑝∕2 𝜆1(𝜔) ,

where 𝛽 > 1 can be made arbitrarily close to 1. In summary, given any 𝐾 ⋐ 𝛺0 and any 𝜀 > 0, we have proved that
𝜆1(𝛺0 ⧵𝐾, 𝑔) ≤ 𝜆1(𝜔) + 𝜀 .

Consequently, 𝜆∞(𝛺𝜅,𝑅) ≤ 𝜆1(𝜔) + 𝜀. Since 𝜀 can be made arbitrarily small, the desired claim follows.

As a consequence of Propositions  3 and 4, we get Theorem  1. In particular, the second equality of (4) follows, too.

Remark 2.  Note that Proposition  4 requires the vanishing of 𝜅(𝑠) and 𝑟(𝑠) as 𝑠 → +∞. It is clear from the proof that its simple 
modification enables one to assume that 𝜅(𝑠) → 0 and 𝑟(𝑠) → 0 as 𝑠 → −∞ to get the upper bound 𝜆∞(𝛺𝜅,𝑅) ≤ 𝜆1(𝜔). On the other 
hand, the lower bound 𝜆 (𝛺 ) ≥ 𝜆 (𝜔) requires that 𝜅(𝑠) → 0 both as 𝑠 → ±∞ (but no condition on 𝑟 is needed).
∞ 𝜅,𝑅 1

8 
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Inspired by [41, Ex. 5.1], untwisted periodically non-trivially bent tubes are an example when 𝜆∞(𝛺𝜅,𝐼 ) < 𝜆1(𝜔). At the same 
time, unbent periodically non-trivially twisted tubes satisfy 𝜆∞(𝛺0,𝑅) > 𝜆1(𝜔). What is more, if 𝑑 = 3 and 𝑝 = 2, it is known [33] 
that 𝜆∞(𝛺0,𝑅) = ∞ whenever 0 ∉ 𝜔 and 𝑟(𝑠) → ∞ as |𝑠| → ∞ (an extension of this result to higher dimensions 𝑑 ≥ 4 and/or arbitrary 
𝑝 ∈ (1,∞) represents and interesting open problem).

5. Bent tubes

In this section we establish Theorem  2 dealing with untwisted bent tubes. The proof has roots in the original variational idea 
of [27], but we rather follow the rigorous implementations due to [13,34,41]. The nonlinear case 𝑝 ≠ 2 requires technically non-
trivial modifications. What is more, the lack of an integration-by-parts argument (cf. Remark  3) leads us to assume that 𝜔 is centrally 
symmetric.

The weak formulation of the eigenvalue equation −𝛥𝑝𝜙1 = 𝜆1(𝜔)|𝜙1|
𝑝−2𝜙1 in 𝜔, subject to Dirichlet boundary conditions 𝜙1 = 0

on 𝜕𝜔, reads 
∀𝜑 ∈ 𝑊 1,𝑝

0 (𝜔) , ∫𝜔
|∇𝜙1|

𝑝−2 ∇𝜙1 ⋅ ∇𝜑𝑑𝑡 = 𝜆1(𝜔)∫𝜔
|𝜙1|

𝑝−2 𝜙1𝜑𝑑𝑡 . (21)

Unless 𝑝 = 2, the eigenvalue 𝜆1(𝜔) and its associated eigenfunction 𝜙1 are not known explicitly, even for balls (the situation is 
somewhat better in one dimension [8]). However, by the positivity and uniqueness of 𝜙1, it is possible to conclude that 𝜙1 is 
centrally symmetric (i.e. 𝜙1(−𝑡) = 𝜙1(𝑡)) in centrally symmetric domains, similarly as it is shown that 𝜙1 is radially symmetric in 
balls and spherical shells (see, e.g., [1,7,9,21,45]). Using this observation, one immediately concludes with the following properties 
that we employ in the proof. 

Lemma 2.  If 𝜔 is centrally symmetric, then

∫𝜔
|𝜙1(𝑡)|

𝑝 𝑡 𝑑𝑡 = 0 = ∫𝜔
|∇𝜙1(𝑡)|

𝑝 𝑡 𝑑𝑡

as identities in R𝑑−1.
Now we are ready to establish Theorem  2.

Proof of Theorem  2.  Without loss of generality (by considering a suitable rotation of the centrally symmetric cross-section 𝜔, 
which is arbitrary in the statement of the theorem), we may restrict to 𝑅 = 𝐼 .

By the definition of 𝜆1(𝛺𝜅,𝐼 ) given in (12), the claim is equivalent to the existence of a (trial) function 𝜓 ∈ 𝑊 1,𝑝
0 (𝛺0) for which 

𝑄1[𝜓] ∶= 𝑄[𝜓] − 𝜆1(𝜔) ‖𝜓‖𝑝 < 0 . (22)

The first step consists in taking a regularisation of (𝑠, 𝑡) ↦ 𝜙1(𝑡), where 𝜙1 is the normalised eigenfunction of the Dirichlet 
𝑝-Laplacian in 𝜔. More specifically, as in the proof of Proposition  2, we define

𝜓𝑛(𝑠, 𝑡) ∶= 𝜑𝑛(𝑠)𝜙1(𝑡) ,

where 𝜑𝑛 is given by (18). By virtue of Lemma  2 (together with the fact that 𝑓 (𝑠, 𝑡) = 1+ a term linear in 𝑡) and the variational 
definition of 𝜆1(𝜔), one has 

𝜆1(𝜔) ‖𝜓𝑛‖𝑝 = 𝜆1(𝜔)∫𝛺0

|𝜓𝑛|
𝑝 𝑓 𝑑𝑠 𝑑𝑡 = 𝜆1(𝜔)∫R

|𝜑𝑛|
𝑝
∫𝜔

|𝜙1|
𝑝 𝑓 𝑑𝑡 𝑑𝑠

= 𝜆1(𝜔)∫R
|𝜑𝑛|

𝑝
∫𝜔

|𝜙1|
𝑝 𝑑𝑡 𝑑𝑠 = ∫R

|𝜑𝑛|
𝑝
∫𝜔

|∇𝑡𝜙1|
𝑝 𝑑𝑡 𝑑𝑠

= ∫R
|𝜑𝑛|

𝑝
∫𝜔

|∇𝑡𝜙1|
𝑝 𝑓 𝑑𝑡 𝑑𝑠 = ∫𝛺0

|∇𝑡𝜓𝑛|
𝑝 𝑓 𝑑𝑠 𝑑𝑡 = ‖∇𝑡𝜓𝑛‖𝑝 .

(23)

Consequently (recall that 𝑓𝜇 = 0 in the present untwisted case),

𝑄1[𝜓𝑛] = ∫𝛺0

(

|

|

|

|

𝜕𝑠𝜓𝑛
𝑓

|

|

|

|

2
+ |∇𝑡𝜓𝑛|

2

)𝑝∕2

𝑓 𝑑𝑠 𝑑𝑡 − ∫𝛺0

|∇𝑡𝜓𝑛|
𝑝 𝑓 𝑑𝑠 𝑑𝑡 .

As in the proof of Proposition  2, we distinguish two cases. If 𝑝 ≤ 2, then

𝑄1[𝜓𝑛] ≤ ∫𝛺0

|

|

|

|

𝜕𝑠𝜓𝑛
𝑓

|

|

|

|

𝑝
𝑓 𝑑𝑠 𝑑𝑡 ≤ 1

(1 − 𝑎 ‖𝜅‖𝐿∞(R))𝑝−1 ∫R
|𝜑′
𝑛|
𝑝 𝑑𝑠 ←←←←←←←←←←←←←←←←←←←←←→

𝑛→∞
0 ,

where the convergence holds due to (19). If 𝑝 > 2, Lemma  1 yields

𝑄1[𝜓𝑛] ≤ 𝛼𝑝∕2 ∫𝛺0

|

|

|

|

𝜕𝑠𝜓𝑛
𝑓

|

|

|

|

𝑝
𝑓 𝑑𝑠 𝑑𝑡 + (𝛽𝑝∕2 − 1)∫𝛺0

|∇𝑡𝜓𝑛|
𝑝 𝑓 𝑑𝑠 𝑑𝑡

≤ 𝛼𝑝∕2

(1 − 𝑎 ‖𝜅‖𝐿∞(R))𝑝−1 ∫R
|𝜑′
𝑛|
𝑝 𝑑𝑠 + (𝛽𝑝∕2 − 1) 𝜆1(𝜔)∫R

|𝜑𝑛|
𝑝 𝑑𝑠

≤ 2𝛼𝑝∕2
𝑝−1

1
𝑝−1

+ (𝛽𝑝∕2 − 1) 𝜆1(𝜔) 4𝑛 ,
(1 − 𝑎 ‖𝜅‖𝐿∞(R)) 𝑛

9 
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where the last inequality employs (19) and the fact that the function 𝜑𝑛 satisfies 0 ≤ 𝜑𝑛 ≤ 1 on (−2𝑛, 2𝑛) and that it is zero elsewhere. 
Choosing 𝑛-dependent 𝛽 as in (20), it is straightforward to check that 𝑄1[𝜓𝑛] → 0 as 𝑛 → ∞ in this case as well. In summary, with 
the choice 𝜓𝑛, we have achieved an asymptotic equality instead of the strict inequality in (22).

In the second step, we perturb 𝜓𝑛 in such a way that the strict inequality is achieved in (22). We define
𝜓𝑛,𝜀 ∶= 𝜓𝑛 + 𝜀𝜙 with 𝜙(𝑠, 𝑡) ∶= 𝑗(𝑠) 𝜉(𝑡)𝜙1(𝑡) ,

where 𝜀 ∈ R and 𝑗 ∈ 𝐶∞
0 (R) and 𝜉 ∈ 𝐿∞(𝜔) are arbitrary real-valued functions. We always consider 𝑛 so large that 𝜑𝑛 = 1 on 

the support of 𝑗. Moreover, we always assume |𝜀| ≤ 𝜀0, where 𝜀0 ∈ R is so small that 𝜀0 ‖𝑗‖𝐿∞(R) ‖𝜉‖𝐿∞(𝜔) < 1; this ensures that 
𝜓𝑛,𝜀(𝑠, 𝑡) = 𝜙1(𝑡)(1 + 𝜀𝑗(𝑠)𝜉(𝑡)) is positive whenever 𝑠 ∈ supp𝑗. Let us write

𝑄1[𝜓𝑛,𝜀] = 𝐼1(𝜀) − 𝜆1(𝜔) 𝐼2(𝜀) =∶ 𝐼(𝜀) with
𝐼1(𝜀) ∶= 𝑄[𝜓𝑛,𝜀] ,

𝐼2(𝜀) ∶= ‖𝜓𝑛,𝜀‖
𝑝 .

Our strategy is to employ the Taylor expansion 
𝐼(𝜀) = 𝐼(0) + 𝐼 ′(0) 𝜀 + 𝑜(𝜀) as 𝜀→ 0 , (24)

where the remainder 𝑜(𝜀) is of Peano type.
Let us start with the derivative of the simpler integral:

𝐼 ′2(𝜀) = 𝑝∫𝛺0

|𝜓𝑛,𝜀|
𝑝−1 𝜙𝑓 𝑑𝑠 𝑑𝑡 .

First of all, observe that it is in fact independent of 𝑛, since 𝜓𝑛,𝜀(𝑠, 𝑡) = 𝜙1(𝑡) + 𝜀𝜙(𝑠, 𝑡) whenever 𝑠 ∈ supp𝑗. Still, we need to argue 
that the interchange of the derivative with respect to 𝜀 and the integration is justified. This follows from the 𝜀-independent bound

|

|

|

|𝜓𝑛,𝜀(𝑠, 𝑡)|
𝑝−1 𝜙(𝑠, 𝑡)||

|

≤ ‖𝑗‖𝐿∞(R) ‖𝜉‖𝐿∞(𝜔) (1 + 𝜀0 ‖𝑗‖𝐿∞(R) ‖𝜉‖𝐿∞(𝜔))𝑝−1 |𝜙1(𝑡)|
𝑝 ,

which is integrable over (𝑠, 𝑡) ∈ 𝛺′
0 ∶= supp𝑗 × 𝜔 (the Jacobian 𝑓 is irrelevant in view of (11)).

As for the derivative of the more complicated integral, we find

𝐼 ′1(𝜀) = ∫𝛺′
0

𝐹 𝑓 𝑑𝑠 𝑑𝑡

with

𝐹 ∶= 𝑝

(

|

|

|

|

|

𝜕𝑠𝜓𝑛,𝜀
𝑓

|

|

|

|

|

2

+ |∇𝑡𝜓𝑛,𝜀|
2

)𝑝∕2−1
( 𝜕𝑠𝜓𝑛,𝜀 𝜕𝑠𝜙

𝑓 2
+ ∇𝑡𝜓𝑛,𝜀 ⋅ ∇𝑡𝜙

)

.

Here the function 𝐹  should be interpreted as zero at the points where both 𝜕𝑠𝜓𝑛,𝜀 and ∇𝑡𝜓𝑛,𝜀 equal zero. Again, 𝐼 ′1(𝜀) is actually 
independent of 𝑛. Indeed, 𝜓𝑛,𝜀 = 𝜙1 + 𝜀𝜙 and 𝜕𝑠𝜓𝑛,𝜀 = 𝜀𝜕𝑠𝜙 on 𝛺′

0. Using the Schwarz inequality, we get the bound

|𝐹 | ≤ 𝑝

(

|

|

|

|

|

𝜕𝑠𝜓𝑛,𝜀
𝑓

|

|

|

|

|

2

+ |∇𝑡𝜓𝑛,𝜀|
2

)(𝑝−1)∕2 (
|

|

|

|

𝜕𝑠𝜙
𝑓

|

|

|

|

2
+ |∇𝑡𝜙|

2

)1∕2

= 𝑝

(

|

|

|

|

𝜀𝜕𝑠𝜙
𝑓

|

|

|

|

2
+ |∇𝑡(𝜙1 + 𝜀𝜙)|

2

)(𝑝−1)∕2 (
|

|

|

|

𝜕𝑠𝜙
𝑓

|

|

|

|

2
+ |∇𝑡𝜙|

2

)1∕2

.

Similarly as above, using additionally that not only 𝜙1 but also ∇𝑡𝜙1 belongs to 𝐿𝑝(𝜔), it is straightforward to estimate this bound 
by an 𝜀-independent bound integrable in 𝛺′

0.
Let us look at the first variation

𝐼 ′(0) = 𝑝∫𝛺0

|∇𝑡𝜙1|
𝑝−2 ∇𝑡𝜙1 ⋅ ∇𝑡𝜙𝑓 𝑑𝑠 𝑑𝑡 − 𝑝 𝜆1(𝜔)∫𝛺0

|𝜙1|
𝑝−2 𝜙1𝜙𝑓 𝑑𝑠 𝑑𝑡 .

Choosing 𝜑 ∶= 𝜙(𝑠, ⋅)𝑓 (𝑠, ⋅) for the test function in (21) and the Fubini theorem yield

𝐼 ′(0) = 𝑝∫𝛺0

|∇𝑡𝜙1|
𝑝−2 𝜙∇𝑡𝜙1 ⋅ ∇𝑡𝑓 𝑑𝑠 𝑑𝑡

= −𝑝∫𝜔
|∇𝑡𝜙1(𝑡)|

𝑝−2 𝜉(𝑡)𝜙1(𝑡) 𝑘 ⋅ ∇𝑡𝜙1(𝑡) 𝑑𝑡

where 𝑘 ∶= (𝑘1,… , 𝑘𝑑−1) is a constant vector composed of 𝑘𝑖 ∶= ∫R 𝑗(𝑠) 𝜅𝑖(𝑠) 𝑑𝑠. By choosing the support of 𝑗 on an interval where 
𝜅 ≠ 0, the vector 𝑘 can be chosen to be non-zero. We claim that there is a choice of 𝜉 which guarantees that 𝐼 ′(0) ≠ 0. By 
contradiction, let us assume that 𝐼 ′(0) = 0 for any choice of 𝜉. Then, recalling that 𝜙1 is positive, necessarily 𝑘 ⋅ ∇𝑡𝜙1 = 0 in 𝜔. 
The fact that a directional derivative of 𝜙1 vanishes identically in 𝜔 is incompatible with the Dirichlet boundary conditions that 𝜙1
satisfies. Hence, 𝐼 ′(0) ≠ 0.

Recall that the derivative 𝐼 ′(𝜀) is 𝑛-independent. It follows that the remainder 𝑜(𝜀) in (24) is 𝑛-independent too.
In summary, we have established (24) with 𝐼(0) = 𝑄1[𝜓𝑛] → 0 as 𝑛 → ∞, 𝑛-independent remainder 𝑜(𝜀) and 𝑛-independent 

non-zero 𝐼 ′(0). By choosing 𝜀 sufficiently small and of suitable sign, it is possible to ensure that 𝐼 ′(0) 𝜀+ 𝑜(𝜀) < 0. Then we choose 𝑛
so large that also 𝐼(𝜀) < 0.
10 
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Remark 3.  Unfortunately, we do not know how to get rid of the hypothesis that 𝜔 is centrally symmetric. This assumption was 
employed in the proof to establish the identity 

∫𝜔
|∇𝜙1(𝑡)|

𝑝 𝑡 𝑑𝑡 = 𝜆1(𝜔)∫𝜔
|𝜙1(𝑡)|

𝑝 𝑡 𝑑𝑡 (25)

in the first part of the proof (cf. (23)). This trivially holds for centrally symmetric domains due to the symmetry (cf. Lemma  2). By 
using the test function 𝜑(𝑡) ∶= 𝑡 𝜙1(𝑡) in (21), the identity (25) is equivalent to the property 

∫𝜔
|∇𝜙1(𝑡)|

𝑝−2 ∇|𝜙1|
2 𝑑𝑡 = 0 . (26)

Integrating by parts, this identity obviously holds for any domain 𝜔 whenever 𝑝 = 2. For arbitrary 𝑝 ∈ (1,∞), instead of assuming 
that 𝜔 is centrally symmetric, the present proof works (and therefore conclusions of Theorem  2 and Corollary  1 hold) for any 
domain 𝜔 satisfying (26).

6. Twisted tubes

In this section we establish Theorem  3 dealing with unbent twisted tubes. We therefore assume that 𝜅 = 0 (so 𝑓 = 1). Under 
the hypothesis (8) that 𝛺0,𝑅 is non-trivially twisted, our goal is to show that there exists a positive continuous function 𝜚 ∶ 𝛺0 → R
such that the Hardy inequality 

∀𝜓 ∈ 𝑊 1,𝑝
0 (𝛺0, 𝑔) , 𝑄[𝜓] − 𝜆1(𝜔) ‖𝜓‖𝑝 ≥ ∫𝛺0

𝜚 |𝜓|𝑝 𝑑𝑠 𝑑𝑡 (27)

holds. Note that (8) necessarily requires that 𝑑 ≥ 3, because the only orthogonal matrix of dimension 1 is the scalar identity (there 
is no twisting for two-dimensional strips).

Following the approach of [31,40], we define 

𝜆𝑁1 (𝛺𝑙
0) ∶= inf

𝜓∈𝑊 1,𝑝
0 (𝛺0)
𝜓≠0

𝑄𝑙[𝜓]
‖𝜓‖𝑙,𝑝

(28)

for any 𝛺𝑙
0 ∶= (−𝑙, 𝑙) × 𝜔 with 𝑙 > 0, where

𝑄𝑙[𝜓] ∶= ∫𝛺𝑙0

(

|

|

|

(

𝜕𝑠 − 𝑓𝜇𝜕𝑡𝜇
)

𝜓||
|

2
+ |∇𝑡𝜓|

2
)𝑝∕2

𝑑𝑠 𝑑𝑡 ,

‖𝜓‖𝑙,𝑝 ∶= ∫𝛺𝑙0
|𝜓|𝑝 𝑑𝑠 𝑑𝑡 .

The minimisation over 𝜓 ∈ 𝑊 1,𝑝
0 (𝛺0) in (28) precisely means that 𝜓 is a restriction of a function from 𝑊 1,𝑝

0 (𝛺0) to 𝛺𝑙
0. Since 𝛺𝑙

0 is 
a bounded subset of 𝛺0, it is equivalent to consider 𝑊 1,𝑝

0 (𝛺0) instead of 𝑊 1,𝑝
0 (𝛺0, 𝑔) in (28). We use the superscript 𝑁 to point out 

that the minimiser 𝜓 of (28) satisfies Neumann boundary conditions (𝜕𝑠 − 𝑓𝜇𝜕𝑡𝜇
)

𝜓 = 0 on {±𝑙} × 𝜔, but we shall not use this fact.
By (16), 𝜆𝑁1 (𝛺𝑙

0) ≥ 𝜆1(𝜔). At the same time, by choosing the trial function 𝜓(𝑠, 𝑡) ∶= 𝜙1(𝑡) in (28), it follows that 𝜆𝑁1 (𝛺𝑙
0) = 𝜆1(𝜔)

if 𝑓𝜇𝜕𝑡𝜇𝜙1 = 0 in 𝛺𝑙
0. The converse result is non-trivial. 

Lemma 3.  One has
𝜆𝑁1 (𝛺𝑙

0) > 𝜆1(𝜔) ⟺ 𝑓𝜇𝜕𝑡𝜇𝜙1 ≠ 0 in 𝛺𝑙
0 .

Proof.  To prove the remaining implication, let us assume that 𝑓𝜇𝜕𝑡𝜇𝜙1 ≠ 0 but 𝜆𝑁1 (𝛺𝑙
0) = 𝜆1(𝜔). By compactness, the infimum (28) 

is indeed achieved by a function 𝜓1 ∈ 𝑊 1,𝑝
0 (𝛺0) ↾ 𝛺𝑙

0. Then

∫𝛺𝑙0

|

|

|

(

𝜕𝑠 − 𝑓𝜇𝜕𝑡𝜇
)

𝜓1
|

|

|

𝑝
𝑑𝑠 𝑑𝑡 = 0 and ∫𝛺𝑙0

|∇𝑡𝜓1|
𝑝 𝑑𝑠 𝑑𝑡 − 𝜆1(𝜔)∫𝛺𝑙0

|𝜓1|
𝑝 = 0 .

By [29], 𝜆𝑁1 (𝛺𝑙
0) is simple. Consequently, the second identity implies that there exists a function 𝜑 ∈ 𝑊 1,𝑝((−𝑙, 𝑙)) such that 

𝜓1(𝑠, 𝑡) = 𝜑(𝑠)𝜙1(𝑡). Substituting this result into the first identity, we get 
0 = 𝜑′𝜙 − 𝜑𝑓𝜇𝜕𝑡𝜇𝜙1 = 𝜑′𝜙 − 𝜑𝜕𝑡𝜇 (𝑓𝜇𝜙1) = div(𝜑𝜙1,−𝜑𝑓𝜇𝜙1) , (29)

where the second equality follows by the orthogonality of 𝑅 (i.e., 𝑅𝜇𝛽𝑅𝜈𝛽 = 𝛿𝜇𝜈):

𝜕𝑡𝜇𝑓𝜇 = 𝑅′
𝜇𝛽𝑅𝜇𝛽 = 1

2 (𝑅𝜇𝛽𝑅𝜇𝛽 )
′ = 0 ,

where the summation is over the index 𝛽 only. By the divergence theorem, it is possible to conclude that 𝜑 is constant; indeed, 
integrating (29) over (𝑠1, 𝑠2) ×𝜔 with −𝑙 ≤ 𝑠1 < 𝑠2 ≤ 𝑙, one obtains 𝜑(𝑠1) = 𝜑(𝑠2). Substituting this result back to (29), it follows that 
𝑓𝜇𝜕𝑡𝜇𝜙1 = 0 in 𝛺𝑙

0, a contradiction.
Now we are ready to establish Theorem  3.
11 
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Proof of Theorem  3.  Given any ∀𝜓 ∈ 𝑊 1,𝑝
0 (𝛺0, 𝑔), one has

𝑄[𝜓] − 𝜆1(𝜔) ‖𝜓‖𝑝 = ∫𝛺0

[

(

|

|

|

(

𝜕𝑠 − 𝑓𝜇𝜕𝑡𝜇
)

𝜓||
|

2
+ |∇𝑡𝜓|

2
)𝑝∕2

− 𝜆1(𝜔) |𝜓|
𝑝

]

𝑑𝑠 𝑑𝑡

≥ ∫𝛺𝑙0

[

(

|

|

|

(

𝜕𝑠 − 𝑓𝜇𝜕𝑡𝜇
)

𝜓||
|

2
+ |∇𝑡𝜓|

2
)𝑝∕2

− 𝜆1(𝜔) |𝜓|
𝑝

]

𝑑𝑠 𝑑𝑡

≥ 𝑐𝑙 ∫𝛺𝑙0
|𝜓|𝑝

for every positive 𝑙, where 𝑐𝑙 ∶= 𝜆𝑁1 (𝛺𝑙
0) −𝜆1(𝜔). Here the first estimate follows by integrating a non-negative function over a subset 

with help of (16). The second estimate is definition (28). By Lemma  3 and hypothesis (8), the constant 𝑐𝑙 is positive for all sufficiently 
large 𝑙. This establishes a ‘‘local’’ Hardy inequality with

𝜚𝑙 ∶= 𝑐𝑙 𝜒𝛺𝑙0
.

We call it local, because the weight 𝜚𝑙 is not positive, albeit it is non-negative and non-trivial. However, there exists a general 
procedure how to deduce a ‘‘global’’ Hardy inequality (i.e., with a positive 𝜚) from the local one. It is based on a standard argument 
of partition of unity subordinated to a finitely local covering, see [49, Lem. 3.1]. In detail, given any natural number 𝑗 ≥ 1, let us 
write

2−𝑗
(

𝑄[𝜓] − 𝜆1(𝜔) ‖𝜓‖𝑝
)

≥ 2−𝑗 𝑐𝑙+𝑗 ∫𝛺𝑙+𝑗0

|𝜓|𝑝 𝑑𝑠 𝑑𝑡

≥ 2−𝑗 min{𝑐𝑙+𝑗 , 1}∫𝛺0

𝜒𝛺𝑙+𝑗0
|𝜓|𝑝 𝑑𝑠 𝑑𝑡 .

Summing over all 𝑗 ≥ 1 and interchanging the order of summation and integration, we get (27) with

𝜚(𝑠, 𝑡) ∶=
∞
∑

𝑗=1
2−𝑗 min{𝑐𝑙+𝑗 , 1}𝜒[−(𝑙+𝑗),𝑙+𝑗](𝑠) .

Since this Hardy weight is independent of 𝑡, one gets (10) with 𝜌(𝑠, 𝑡) ∶= 𝜚(𝑠, 𝑡).

Finally, let us comment on hypothesis (8). 

Remark 4 (𝑑 = 3). In three dimensions, one has a convenient parameterisation

𝑅(𝑠) =
(

cos 𝜃(𝑠) − sin 𝜃(𝑠)
sin 𝜃(𝑠) cos 𝜃(𝑠)

)

,

where 𝜃 ∶ R → R is a differentiable function with locally bounded derivative. Then condition (8) is equivalent to a simultaneous 
validity of the following two requirements:

𝜃′ ≠ 0 and 𝜔 is not circular .
This is clear from the identity 𝑓𝜇𝜕𝜇 = 𝜃′ 𝜕𝜏 , where 𝜕𝜏 ∶= 𝑡2𝜕𝑡1 − 𝑡1𝜕𝑡2  is the angular derivative.

Remark 5 (𝑑 ≥ 4). In higher dimensions, the situation is more complicated because we cannot separate the ‘‘longitudinal’’ and 
‘‘transverse’’ variables from the condition (which is natural in view of a more complicated structure of rotations in the higher 
dimensions). Anyway, we have the following sufficient condition:

𝑅′ ≠ 0

∀tangential 𝜎 ∈ R𝑑−1, 𝜎 ≠ 0, 𝜕𝜎𝜙1 ≠ 0

}

⟹ (8) holds .

(By a ‘‘tangential’’ vector in R𝑑−1 we mean any vector perpendicular to the radial vector 𝑡 ∈ R𝑑−1.) The implication is clear from 
the identity (employing the orthogonality condition 𝑅𝑅𝑇 = 𝐼)

𝑓𝜇𝑡𝜇 = 𝑡𝛼𝑅
′
𝛼𝛽𝑅𝜇𝛽 𝑡𝜇 = −𝑡𝛼𝑅𝛼𝛽𝑅′

𝜇𝛽 𝑡𝜇 = −𝑡𝜇𝑓𝜇 ,

which shows that (𝑓1(𝑠),… , 𝑓𝑑−1(𝑠)) is tangential for every 𝑠 ∈ R. In particular, another sufficient condition follows:
𝑅′ ≠ 0

0 ∉ 𝜔

}

⟹ (8) holds .

Acknowledgments

The authors are grateful to Jan Lang for the observation that the conclusion of Lemma  2 holds under the weaker hypothesis 
that the cross-section is centrally symmetric instead of being circular, the latter being assumed in a previous version of this paper. 
D.K. was supported by the EXPRO grant No.  20-17749X of the Czech Science Foundation. This work has been partially carried out 
12 



L. Baldelli and D. Krejčiřík Nonlinear Analysis 258 (2025) 113814 
during a stay of L.B. in Prague at the Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical 
University in Prague. She would like to express her deep gratitude to this prestigious institution for its support and warm hospitality. 
L.B. is member of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale 
di Alta Matematica (INdAM). L.B. was partially supported by National Science Centre, Poland (Grant No. 2020/37/B/ST1/02742), 
by INdAM-GNAMPA Project 2023 titled Problemi ellittici e parabolici con termini di reazione singolari e convettivi (E53C22001930001) 
and by the IMAG-Maria de Maeztu Excellence Grant CEX2020-001105-M funded by MICINN/AEI.

Data availability

No data was used for the research described in the article.

References

[1] T.V. Anoop, V. Bobkov, S. Sasi, On the strict monotonicity of the first eigenvalue of the 𝑝-Laplacian on annuli, Trans. Amer. Math. Soc. 370 (2018) 
7181–7199.

[2] G. Autuori, P. Pucci, Existence of entire solutions for a class of quasilinear elliptic equations, NoDEA Nonlinear Differential Equations Appl. 20 (2013) 
977–1009.

[3] L. Baldelli, V. Brizi, R. Filippucci, Existence and nonexistence of positive radial solutions of a quasilinear Dirichlet problem with diffusion, J. Differential 
Equations 359 (2023) 107–151.

[4] L. Baldelli, R. Filippucci, Singular quasilinear critical Schrödinger equations in R𝑁 , Comm. Pure Appl. Anal. 21 (2022) 2561–2586.
[5] M. Belloni, B. Kawohl, A direct uniqueness proof for equations involving the 𝑝-Laplace operator, Manuscripta Math. 109 (2002) 229–231.
[6] J. Benedikt, P. Girg, L. Kotrla, P. Takáč, Origin of the 𝑝-Laplacian and A. Missbach, Electron. J. Differ. Equ. 2018 (2018) 1–17.
[7] T. Bhattacharya, Radial symmetry of the first eigenfunction for the 𝑝-Laplacian in the ball, Proc. Amer. Math. Soc. 104 (1988) 169–174.
[8] P. Binding, L. Boulton, J. Čepička, Drábek, P. Girg, Basis properties of eigenfunctions of the 𝑝-Laplacian, Proc. Amer. Math. Soc. 134 (2006) 3487–3494.
[9] V. Bobkov, P. Drábek, On some unexpected properties of radial and symmetric eigenvalues and eigenfunctions of the 𝑝-Laplacian on a disk, J. Differential 

Equations 263 (2017) 1755–1772.
[10] G. Bouchitté, M.L. Mascarenhas, L. Trabucho, Thin waveguides with robin boundary conditions, J. Math. Phys. 53 (2012) 123517.
[11] L. Brasco, On principal frequencies and inradius in convex sets, Bruno Pini Math. Anal. Semin. 9 (2018) 78–101.
[12] C. Cazacu, D. Krejčiřík, N. Lam, A. Laptev, Hardy inequalities for magnetic 𝑝-Laplacians, Nonlinearity 37 (2024) 035004.
[13] B. Chenaud, P. Duclos, P. Freitas, D. Krejčiřík, Geometrically induced discrete spectrum in curved tubes, Differential Geom. Appl. 23 (2005) 95–105.
[14] A.M.H. Chorwadwala, R. Mahadevan, F. Toledo, On the Faber–Krahn inequality for the Dirichlet 𝑝-Laplacian, ESAIM: COCV 21 (2015) 60–72.
[15] U. Das, Y. Pinchover, B. Devyver, On existence of minimizers for weighted 𝐿𝑝-Hardy inequalities on 𝐶1,𝛾 -domains with compact boundary, preprint on 

arXiv:2303.03527.
[16] C.R. de Oliveira, A.F. Rossini, Effective operators for Robin Laplacian in thin two- and three-dimensional curved waveguides, Comm. Anal. Geom. 30 

(2022) 1227–1268.
[17] B. Devyver, Y. Pinchover, Optimal 𝐿𝑝 Hardy-type inequalities, Ann. Inst. H. Poincare. Anal. Non Lineaire 33 (2016) 93–118.
[18] J. Dittrich, J. Kříž, Curved planar quantum wires with Dirichlet and Neumann boundary conditions, J. Phys. A 35 (2002) L269–275.
[19] P. Duclos, P. Exner, Curvature-induced bound states in quantum waveguides in two and three dimensions, Rev. Math. Phys. 7 (1995) 73–102.
[20] T. Ekholm, H. Kovařík, D. Krejčiřík, A Hardy inequality in twisted waveguides, Arch. Ration. Mech. Anal. 188 (2008) 245–264.
[21] G. Ercole, J.C. do Espírito Santo, E.M. Martins, Computing the first eigenpair of the 𝑝-Laplacian in annuli, J. Math. Anal. Appl. 422 (2015) 1277–1307.
[22] P. Exner, H. Kovařík, Quantum Waveguides, Springer, 2015.
[23] P. Exner, P. Šeba, Bound states in curved quantum waveguides, J. Math. Phys. 30 (1989) 2574–2580.
[24] P. Freitas, D. Krejčiřík, Waveguides with combined Dirichlet and Robin boundary conditions, Math. Phys. Anal. Geom. 9 (4) (2006) 335–352.
[25] D. Ganguly, Y. Pinchover, Some new aspects of perturbation theory of positive solutions of second-order linear elliptic equations, Pure Appl. Funct. Anal. 

5 (2020) 295–319, Special issue dedicated to the memory of A.I. Volpert.
[26] J.P. García Azorero, I. Peral Alonso, Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term, Trans. Amer. Math. 

Soc. 323 (1991) 877–895.
[27] J. Goldstone, R.L. Jaffe, Bound states in twisting tubes, Phys. Rev. B 45 (1992) 14100–14107.
[28] G. Grillo, H. Kovařík, Y. Pinchover, Sharp two-sided heat kernel estimates of twisted tubes and applications, Arch. Ration. Mech. Anal. 213 (2014) 215–243.
[29] B. Kawohl, P. Lindqvist, Positive eigenfunctions for the 𝑝-Laplace operator revisited, Analysis 26 (2006) 545–550.
[30] H. Kovařík, K. Pankrashkin, On the 𝑝-Laplacian with Robin boundary conditions and boundary trace theorems, Calc. Var. Partial Differential Equations 56 

(2017) 29.
[31] D. Krejčiřík, Twisting versus bending in quantum waveguides, in: P. Exner, et al. (Eds.), Analysis on Graphs and its Applications, Cambridge, 2007, in: 

Proc. Sympos. Pure Math., vol. 77, Amer. Math. Soc., Providence, RI, 2008, pp. 617–636, See arXiv:0712.3371v2 [math–ph] (2009) for a corrected version.
[32] D. Krejčiřík, Spectrum of the Laplacian in a narrow curved strip with combined Dirichlet and Neumann boundary conditions, ESAIM Control Optim. Calc. 

Var. 15 (2009) 555–568.
[33] D. Krejčiřík, Waveguides with asymptotically diverging twisting, Appl. Math. Lett. 46 (2015) 7–10.
[34] D. Krejčiřík, Spectral geometry of tubes, 2023, lecture notes (Mini-courses in Mathematical Analysis, Padova, Italy, 19–23 2023) on https://hal.science/hal-

04159525.
[35] D. Krejčiřík, G.P. Leonardi, P. Vlachopulos, The Cheeger constant of curved tubes, Arch. Math. 112 (2019) 429–436.
[36] D. Krejčiřík, A. Pratelli, The Cheeger constant of curved strips, Pacific J. Math. 254 (2011) 309–333.
[37] D. Krejčiřík, N. Raymond, Magnetic effects in curved quantum waveguides, Ann. Henri Poincare 15 (2014) 1993–2024.
[38] D. Krejčiřík, H. Šediváková, The effective Hamiltonian in curved quantum waveguides under mild regularity assumptions, Rev. Math. Phys. 24 (2012) 

1250018.
[39] D. Krejčiřík, K. Zahradová, Quantum strips in higher dimensions, Oper. Matrices 14 (2020) 635–665.
[40] D. Krejčiřík, E. Zuazua, The Hardy inequality and the heat equation in twisted tubes, J. Math. Pures Appl. 94 (2010) 277–303.
[41] D. Krejčiřík, J. Kříž, On the spectrum of curved planar waveguides, Publ. RIMS 41 (3) (2005) 757–791.
[42] P.D. Lamberti, Y. Pinchover, 𝐿𝑝 Hardy inequality on 𝐶1,𝛼 domains, Ann. Sc. Norm. Super. Pisa Cl. Sci. 5 (19) (2019) 1135–1159.
[43] G.P. Leonardi, A. Pratelli, On the Cheeger sets in strips and non-convex domains, Calc. Var. Partial Differential Equations 55 (2016) 1–28.
[44] P. Lindqvist, On the equation div(|∇𝑢|𝑝−2∇𝑢) + 𝜆|𝑢|𝑝−2𝑢 = 0, Proc. Amer. Math. Soc. 109 (1990) 157–164.
[45] A.I. Nazarov, The one-dimensional character of an extremum point of the Friedrichs inequality in spherical and plane layers, J. Math. Sci. 102 (2000) 

4473–4486.
13 

http://refhub.elsevier.com/S0362-546X(25)00068-9/sb1
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb1
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb1
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb2
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb2
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb2
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb3
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb3
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb3
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb4
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb5
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb6
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb7
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb8
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb9
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb9
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb9
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb10
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb11
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb12
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb13
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb14
http://arxiv.org/abs/2303.03527
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb16
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb16
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb16
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb17
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb18
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb19
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb20
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb21
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb22
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb23
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb24
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb25
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb25
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb25
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb26
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb26
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb26
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb27
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb28
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb29
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb30
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb30
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb30
http://arxiv.org/abs/0712.3371v2
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb32
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb32
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb32
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb33
https://hal.science/hal-04159525
https://hal.science/hal-04159525
https://hal.science/hal-04159525
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb35
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb36
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb37
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb38
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb38
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb38
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb39
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb40
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb41
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb42
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb43
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb44
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb45
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb45
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb45


L. Baldelli and D. Krejčiřík Nonlinear Analysis 258 (2025) 113814 
[46] R. Novák, Bound states in waveguides with complex Robin boundary conditions, Asympt. Anal. 96 (2016) 251–281.
[47] Y. Pinchover, Topics in the theory of positive solutions of second-order elliptic and parabolic partial differential equations, in: F. Gesztesy, et al. (Eds.), 

Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon’s 60th Birthday, in: Proc. Sympos. Pure Math., vol. 76, Amer. Math. 
Soc., Providence, RI, 2007, pp. 329–356.

[48] Y. Pinchover, N. Regev, Criticality theory of half-linear equations with the (𝑝, 𝐴)-Laplacian, Nonlinear Anal. 119 (2015) 295–314.
[49] Y. Pinchover, K. Tintarev, Ground state alternative for 𝑝-Laplacian with potential term, Calc. Var. Partial Differential Equations 28 (2007) 179–201.
[50] Y. Pinchover, K. Tintarev, On positive solutions of 𝑝-Laplacian-type equations, in: A. Cialdea, et al. (Eds.), Analysis, Partial Differential Equations and 

Applications – The Vladimir Maz’ya Anniversary Volume (Basel), in: Operator Theory: Advances and Applications, vol. 193, Birkauser Verlag, 2009, pp. 
245–268.

[51] A.F. Rossini, On the spectrum of Robin Laplacian in a planar waveguide, Czechoslovak Math. J. 69 (2019) 485–501.
[52] D. Ruiz, A priori estimates and existence of positive solutions for strongly nonlinear problems, J. Differential Equations 199 (2004) 96–114.
14 

http://refhub.elsevier.com/S0362-546X(25)00068-9/sb46
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb47
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb47
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb47
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb47
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb47
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb48
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb49
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb50
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb50
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb50
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb50
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb50
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb51
http://refhub.elsevier.com/S0362-546X(25)00068-9/sb52

	Curved nonlinear waveguides
	Introduction
	Bending is attractive
	Twisting is repulsive
	The nonlinear setting
	The geometric framework
	The main results
	Possible extensions
	The organisation

	Preliminaries
	Straight tubes
	Asymptotically straight tubes
	Bent tubes
	Twisted tubes
	Acknowledgments
	Data availability
	References


