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A B S T R A C T

Time and energy efficiency is a highly relevant objective in high-performance computing systems, with high
costs for executing the tasks. Among these tasks, evolutionary algorithms are of consideration due to their
inherent parallel scalability and usually costly fitness evaluation functions. In this respect, several scheduling
strategies for workload balancing in heterogeneous systems have been proposed in the literature, with runtime
and energy consumption reduction as their goals. Our hypothesis is that a dynamic workload distribution can
be fitted with greater precision using metaheuristics, such as genetic algorithms, instead of linear regression.
Therefore, this paper proposes a new mathematical model to predict the energy–time behaviour of applications
based on multi-population genetic algorithms, which dynamically distributes the evaluation of individuals
among the CPU–GPU devices of heterogeneous clusters. An accurate predictor would save time and energy by
selecting the best resource set before running such applications. The estimation of the workload distributed to
each device has been carried out by simulation, while the model parameters have been fitted in a two-phase
run using another genetic algorithm and the experimental energy–time values of the target application as input.
When the new model is analysed and compared with another based on linear regression, the one proposed
in this work significantly improves the baseline approach, showing normalised prediction errors of 0.081 for
runtime and 0.091 for energy consumption, compared to 0.213 and 0.256 shown in the baseline approach.
1. Introduction

To deliver higher performance, modern processors can no longer
rely on increasingly complex designs. In fact, the industry has focused
on creating more efficient alternatives to solve this problem. In this
sense, Instruction Level Parallelism (ILP) is no longer the only resource
available to the designer and a new trend has appeared towards ar-
chitectures that allow Data Level Parallelism (DLP) and Thread Level
Parallelism (TLP) [1]. Nevertheless, these techniques are insufficient,
since the vast amount of data requiring processing nowadays surpasses
the computing capabilities of any parallel architecture. This is why
distributed computing has gained importance for years through the use
of clusters, where multiple computing nodes are grouped to cooperate
in solving a specific problem.
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Another key factor that has motivated the creation of these new
computer architectures is energy consumption, since it has become a
considerable problem in the case of single-core processors [2]. Cur-
rently, in the context of Big Data and High-Performance Computing
(HPC), energy must be minimised to lower service costs and cushion
the environmental impact of massive computing [3–5]. In this sense,
many proposals have been published to address the problem. One of
them is to use heterogeneous clusters, since they offer multiple levels
of parallelism through a set of interconnected nodes which contain mul-
tiple Central Processing Units (CPUs) and accelerators, such as Graphics
Processing Units (GPUs). It has been demonstrated that these platforms
can increase the performance of different applications while reducing
the energy cost [6–8]. One of the most distinctive features of distributed
computing on heterogeneous clusters is workload distribution, as it has
https://doi.org/10.1016/j.future.2025.107753
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the potential to lead to unbalanced workload [9]. Therefore, deciding
which devices the tasks should be assigned at runtime in systems that
include resources with different performance and energy efficiencies is
crucial.

A topic of research in this direction is energy–time modelling. The
heterogeneous clusters with dynamic workload distribution require
dealing with non-linear models to predict their energy–time behaviour
accurately. This subject consists of the definition and evaluation of
mathematical models that estimate the behaviour in performance and
nergy consumption of a given computing platform. Then, the pa-
ameters involved in the resulting model are fitted by regression or
ptimisation methods by using experimental data as input. This allows

us to take advantage of the newly fitted model to study how each
parameter affects performance and energy consumption and, therefore,
to tackle costs because it can help designers optimise the behaviour
f a given application for a specific platform. For this reason, this
aper focuses on building a model to deal with this issue. Specifi-
ally, the proposed model copes with the energy–time modelling of
pplications based on multi-population genetic algorithms that run on
eterogeneous clusters with multiple nodes. Genetic Algorithms (GAs)
lay a fundamental role in dealing with complex problems, such as
hose that frequently appear in Artificial Intelligence (AI) and Data
cience, where, in general, the data is stochastic and high-dimensional.
he traditional optimisation tools fail for such problems due to their
omplexity [10]. GAs, by their nature, require iteratively performing
ultiple operations with large amounts of data, which implies that

hey are easily parallelizable in parallel and distributed architectures.
iven the high computational cost of GAs, it is necessary to adequately
lan the workload distribution between the different computing nodes,
specially when they are heterogeneous. In this way, a trade-off can be
ound between the energy–time performance of the application and the
uality of the solutions to the problem to be solved.

The new model presented here aims to improve a previous model
or the same type of applications, using another genetic algorithm to
ptimise its parameters instead of linear regression. Although there

are numerous optimisation methods in the literature, a specific GA
has been chosen since it offers several significant advantages for the
fitting of mathematical models. GAs are highly effective at handling
non-linear and high-dimensional problems, such as those encountered
in dynamic workload distributions in heterogeneous clusters. This
allows them to fit models where gradient-based methods like Gradient
Descent or Newton–Raphson may struggle due to non-convex or highly
complex cost surfaces. One of the main strengths of GAs is their
independence from gradients, making them useful in scenarios where
the cost function is non-differentiable or computationally expensive
to evaluate. Furthermore, GAs are well-known for their ability to
perform global exploration of the search space, enabling them to avoid
local optima. This is particularly valuable in problems with multiple
local minima, where methods like Bayesian optimisation or Newton–
Raphson may become trapped in suboptimal solutions. Another key
advantage of GAs is their dynamic adaptability, allowing them to adjust
to changes in the problem, such as variations in workload distributions
in heterogeneous clusters. In contrast, more static approaches, like
Grid Search or convex programming, lack this capability. Finally, GAs
provide remarkable flexibility in model structure, which is crucial
when handling parameters with complex constraints and non-linear
dependencies. This type of flexibility is challenging to achieve with
other approaches, such as certain machine learning-specific methods
like Hyperband or Tree-structured Parzen Estimator (TPE), which do
not directly address these issues.

In summary, the main contributions of this work are as follows:

• Propose a new mathematical energy–time model for distributed
multi-population GAs, executed in heterogeneous clusters, which
is compared with another pre-existing model taken as a baseline.
Despite the existence of some previous works on HPC modelling,
2 
those that simultaneously take into account performance and
energy consumption are not common, and even less so for parallel
and distributed GAs. Moreover, although the model developed
here is designed for multi-population applications with specific
features, most bioinspired algorithms share a great similarity in
their structure so that the model could be easily adapted to them.

• Tackle the vital role that dynamic workload represents by mod-
elling the dynamic distribution of subpopulations among CPU–
GPU computing devices.

• Apply a GA to fit the set of parameters comprised in the pro-
posed mathematical model with the objective of handling its
non-linearity. The objective is to demonstrate that the use of
metaheuristics, in this case, a GA, is more suitable than lin-
ear regressions to fit the model parameters in applications with
dynamic workload distributions.

• Successfully validate the proposed model, obtaining more accu-
rate results than the baseline one. Moreover, we also analyse the
weight on time and energy consumption of the components of the
evaluated cluster, while identifying the critical ones.

The rest of the article is structured as follows: Section 2 reviews
different works in the literature related to energy–time modelling and
energy-aware computing in HPC systems; an overview of genetic algo-
rithm is provided in Section 3; the proposed mathematical model and
the non-linear optimisation method used to fit the model are detailed
in Sections 4 and 5, respectively; the description of the modelled
application and the corresponding experimental results are shown in
Section 6; the paper’s conclusions are provided in Section 7. Finally,
Appendix A includes a glossary of the mathematical terms involved in
the proposed model and Appendix B defines the acronyms that appear
throughout this paper.

2. Related work

Given the great importance of a good balance between performance
and energy efficiency in computing, different methods and solutions
have been proposed to address this problem. The works [4,11] com-
pile an extensive list of papers on HPC and categorises them based
n compute device type, optimisation metrics, and energy reduction
ethods. The compatibility of employing techniques for HPC systems,

uch as Dynamic Voltage Scaling (DVS), Dynamic Frequency Scaling
DFS), and Dynamic Voltage and Frequency Scaling (DVFS), to find the
est combination of computing performance and energy consumption
as also been discussed. Studies like [12–17] are well-known examples

following this trend.
As mentioned in Section 1, modelling an application in HPC is

ssential to have control over its energy–time behaviour. In the case
f parallel architectures, these simple but wide-ranging models based
n extensions of Amdahl’s Law serve as a basis for seeing the influ-
nce of task distribution on many-core systems [18,19], and cloud

computing [20]. Other approaches calculate the runtime and energy
onsumption as the weighted sum of the frequency of a set of system

events, which are measured by hardware counters. Since low-level
events such as cache misses, floating-point operations, or interrupts
directly cause a significant effect on performance and energy efficiency,
this alternative approach has become very attractive [21]. Although
such models can be built for a specific application [22], they can
ecome general models for a given set of problems with the correct
odelling. For example, in [23], an estimation of the time consumed

to evaluate an individual of the GA is used to determine the population
size among a heterogeneous cluster without being dependent on the
concrete problem or application.

Regarding models that attempt to predict the energy consumption
of computing architectures, surveys such as [3,24,25], summarise a
substantial set of possible models. Most of them are based on linear
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expressions, while only a few use non-linear models to describe the
hierarchical nature of system components. This is because linear models
generally use linear regression for such a task, while non-linear models
use optimisation methods [26]. Since it is more common to find appli-
cations in HPC systems executed on homogeneous systems with static
workload distributions, linear models have been more widespread. In
a broad sense, linear models have the advantage of interpretability so
that the designer can understand each component’s weight in the HPC
system’s final costs. This allows the developer to tweak the software
to the algorithms to reduce their energy cost and increase perfor-
mance [27]. In contrast, non-linear models, such as those optimised
using metaheuristics, could be less interpretable but more accurate and
can be used on various problems.

One of the main features that affect overall efficiency in distributed
HPC systems is the scheduling and distribution of the workload. De-
ciding where the tasks should be assigned is an important factor in
heterogeneous clusters with different performance and power require-
ments [28,29]. It is important to differentiate between procedures that
plan the distribution of jobs between devices at the operating system
level, considering jobs independent of each other, and procedures
that distribute tasks associated with a specific application and whose
execution must be carried out in a pre-established and synchronised
order. In the latter case, numerous heuristics have been previously
proposed [30,31]. Wang et al. [30] propose an energy-aware task
scheduling framework to minimise the energy consumption of het-
erogeneous and geo-distributed MapReduce clusters. The framework
constructs a reasonable task list, considering deadlines, the number of
assigned task slots, and possible processing times. Tasks are then sched-
uled into promising slots of rack-local servers, cluster–local servers,
and remote servers, which significantly improve data locality. After
task and slot assignment, available slots in clusters are updated to
improve server resource utilisation by fuzzy logic, based on the current
CPU, memory, and bandwidth utilisation. Experimental results showed
that the proposed heuristic reduces energy consumption compared to
existing algorithms by varying the total number of slots.

In the work [31], the authors address the problem of energy effi-
ciency in heterogeneous edge computing systems for a large number
of latency-sensitive applications. Indeed, they present an efficient tech-
nique to minimise the energy overhead of time-constrained applications
modelled by Directed Acyclic Graphs (DAGs). The technique is devel-
oped in three phases: firstly, they design a new method for calculating
task priority and propose an energy-aware scheduling algorithm based
on ant colonies to obtain a preliminary scheduling result; secondly,
aking into consideration the slack time between tasks and their dead-
ines, they propose a proportional downward recovery slack algorithm

to further reduce the energy overhead by using the DVFS technique;
finally, taking into consideration the slack time between tasks exe-
uted on the same processor, they propose a proportional upward

and downward recovery algorithm to reduce the power overhead us-
ing the DVFS technique again. The simulated results indicated that
the presented technique is highly efficient in reducing power over-
head compared to existing techniques using randomly generated and
eal-world benchmarks with different characteristics.

Despite the above, more precise heuristics can be defined when the
tasks are specific or identifiable. For example, in one of our previous
works [32], a model is fitted to predict the energy–time behaviour of
he application, taking into account both the input parameters of the

algorithm, as well as the clock frequencies of the CPU–GPU devices.
ater, in the work [33], the model was extended to allow predicting

the behaviour of a parallel and distributed genetic algorithm when
using heterogeneous clusters to evaluate multiple subpopulations of
individuals. From both works, it is revealed that adequate scheduling
can simultaneously reduce runtime and energy consumption by effi-
ciently distributing the tasks among the different processing elements.
Despite the good results, both models used linear regression to fit
the parameters, which, as discussed above, is not ideal for dynamic
workload distributions.
3 
3. Overview of genetic algorithms

As stated in a recent work [34], GA is one of the most popular
optimisation algorithms currently employed in real-world applications,
ncluding image processing, programming, clustering, software engi-
eering, natural language processing, recommendation systems, and

scheduling tasks. The interest in and importance of this kind of al-
orithm and evolutionary computation has remained strong over the
ears. In the last four years alone, more than 73,000 publications on
A have been included in the Web of Science Platform (Clarivate).

GAs mimic the process of natural selection, where each new gen-
ration is expected to be better than its parents. The goal of these

algorithms is to find a solution to the problem using the individuals
in the population as candidates for the solution. Each of them is rep-
resented by a chromosome that encodes the parameters (genes) of the
problem to be solved. All individuals are evaluated according to a fit-
ness function, obtaining a score related to the quality of their solutions.
The better the score, the greater the degree of approximation to the
optimal solution and the probability of reproduction for that individual.
There are several ways to determine the individuals (parents) that will
generate offspring (children). One of the most common is the binary
tournament, in which some individuals are randomly chosen and the
two best are selected. After that, the crossover and mutation operators
are applied. The crossover operator is responsible for conducting the
search across the solution space by combining genes from the parents
to create new individuals. On the contrary, the mutation is the modifi-
cation of some genes in the children’s chromosomes. For each gene, the
mutation is performed with a fixed probability, usually low, so as not to
excessively alter the natural course of evolution. Nevertheless, its use
provides diversity in the search space and serves as a measure to avoid
falling into local optimum quickly. Finally, the selection operator will
choose which individuals will be part of the next generation based on
the value of the fitness function. All the above steps are repeated over
several generations of individuals (iterations in computational terms)
until a stopping condition is met. The objective after each generation
is to continuously improve the quality of the solutions until converging
on an optimal or near-optimal solution.

A GA can have a more complex structure and involve more op-
erators to improve the search for solutions. For example, there are
multi-population models that allow the evolution of several popula-
ions simultaneously. In fact, the mathematical model proposed in this
ork is focused on this type of GAs. The idea is to divide the total
opulation into several subpopulations, or islands, where each one
volves independently. This scheme allows some GAs the possibility of
xchanging information between subpopulations every certain number
f generations. The process is known as migration, and it is considered
s an exclusive genetic operator of multi-population models. The in-
roduction of migration gives the algorithm the ability to exploit the
ifferences between subpopulations, thus allowing genetic diversity.
owever, the determination of the migration rate and when to migrate

s a sensitive matter since an inappropriate value can cause premature
onvergence. Another concern is the performance. GAs are highly
arallelizable since each individual in the population can be inde-
endently evaluated. However, the multi-population paradigm allows
nother level of parallelism since following the same philosophy, the
ubpopulations evolve independently of each other except at the time
f migration. However, the more levels, the more complexity. One of
hem is the problem of workload balancing: depending on the parallel
pproach, workload imbalances and consequent loss of performance
an occur. Assuming that the time needed to evaluate an individual
s the same in all subpopulations, an example of workload imbalance
ppears when the size of the subpopulations differs. Another imbalance

situation is present in heterogeneous computing because the devices
responsible for evaluating individuals probably have different compu-
tational capabilities. Also the granularity of parallelism must be taken
into account since, depending on its type, the cost of communications
and workload imbalance can be less or greater, so finding a trade-off
between the two is important.
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4. The proposed energy–time model

This section exposes the new mathematical model intended to pre-
dict the energy–time behaviour of multi-population genetic algorithms,
in which a master–worker approach dynamically distributes the evalu-
tion of subpopulations among the CPU–GPU devices of heterogeneous
lusters, and performs migrations between subpopulations every cer-
ain number of generations. We have taken as a baseline model the one
roposed in [33], which we intend to improve. All variables involved

in the definition of the new model are summarised in Appendix A.

4.1. Mathematical formulation

The starting hypothesis to create the new model is based on the
following differences with the baseline model:

1. The new model is based on considering the computing by CPU–
GPU devices instead of by nodes. Modelling a level where the
workload granularity is finer provides more accurate results.

2. In the baseline model, the total workload sent to each device
was assumed to be known. However, this does not capture the
dynamic nature of the application because each device requests
workload on demand, so it cannot be exactly known a priori.

3. The baseline model considered that the number of individuals
to be evaluated within a device in each generation is equal to
the subpopulation size. However, when the genetic algorithm
applies the crossover operator to generate new offspring, the
number of children will usually be smaller due to the influence
of the crossover probability.

It should be noted that although the mutation step modifies the
computational workload by varying the number of selected features,
it is assumed to be negligible due to its low probability (𝛽), so it has
not been included in the new model to simplify its complexity. Taking
all of the above into account, the model is developed as follows: as
the model proposed here starts from the distribution of subpopulations
by devices, the runtime of the 𝑗th device of the 𝑖th node, necessary to
evolve one subpopulation between two migrations, is:
𝑇̂ 1
𝑖,𝑗 =

𝑔
𝑁𝐺 𝑚

⋅
⌈

𝑃𝐸
𝐶𝑖,𝑗

⌉

⋅
𝑊𝑖,𝑗

𝐹𝑖,𝑗
(1)

where 𝑔 is the number of generations and 𝑁𝐺 𝑚 the number of global
igrations. In this way, migration takes place every 𝑔

𝑁𝐺 𝑚 generations.
𝐶𝑖,𝑗 is the number of cores in the device running at a clock frequency
𝐹𝑖,𝑗 . Each subpopulation involves 𝑃𝐸 evaluations of individuals in par-
llel, being 𝑊𝑖,𝑗 , the number of clock cycles necessary to evaluate each.

As the number of individuals to be evaluated in each generation should
e less than the subpopulation size due to the crossover probability, 𝑃𝐸
an be estimated as:

𝑃𝐸 = 𝑆𝑆 𝑝 ⋅ 𝛼 =
(

𝑁
𝑁𝑆 𝑝

)

⋅ 𝛼 (2)

where 𝑆𝑆 𝑝 is the subpopulation size, 𝛼 is the crossover probability, and
and 𝑁𝑆 𝑝 are the number of individuals and subpopulations of the

enetic algorithm, respectively. Extending Eq. (1), the runtime of the
𝑗th device of the 𝑖th node necessary to evolve its 𝑁𝑆 𝑝𝑖,𝑗 subpopulations
s:

𝑇̂𝑖,𝑗 = 𝑁𝑆 𝑝𝑖,𝑗 ⋅ 𝑇̂ 1
𝑖,𝑗 (3)

Finally, the total runtime taken by the cluster to perform the whole
enetic algorithm is modelled as follows:

𝑇̂𝑐 𝑙 𝑢𝑠𝑡𝑒𝑟 = 𝑁𝐺 𝑚 ⋅ (𝑇̂𝑚𝑎𝑠𝑡𝑒𝑟 + 𝑇̂𝑐 𝑜𝑚 + 𝑇̂𝑒𝑣𝑜) (4)

being 𝑇̂𝑚𝑎𝑠𝑡𝑒𝑟 and 𝑇̂𝑐 𝑜𝑚 the time overheads that migration imposes on the
master node and the switch, respectively. The variable 𝑇̂𝑒𝑣𝑜 corresponds
to the time necessary to evolve all 𝑁 subpopulations between two
𝑆 𝑝 d

4 
Algorithm 1: Simulated workload distribution implemented in
he modelled application.
1 Function WorkloadDistribution

(

𝑁𝑆 𝑝, 𝑁𝑊 𝑘, 𝑁𝐷
)

Input : Number of subpopulations, 𝑁𝑆 𝑝
Input : Number of worker nodes in the cluster, 𝑁𝑊 𝑘
Input : List with the number of devices of each node, 𝑁𝐷
Output: Predicted runtime to evolve all subpopulations, 𝑇̂𝑒𝑣𝑜
Output: List with the estimated number of subpopulations

assigned to each device, 𝑁𝑆 𝑝𝑖,𝑗 , ∀𝑖 = 1,… , 𝑁𝑊 𝑘,
∀𝑗 = 1,… , 𝑁𝐷𝑖

2 𝑁𝑆 𝑝𝑖,𝑗 ← 0
3 𝐿 ← Init list with rows of type

[

node,device,total_time = 0]

4 while 𝑁𝑆 𝑝 > 0 do
5 𝑖 ← getColumn (𝐿[0], ‘‘node")
6 𝑗 ← getColumn (𝐿[0], ‘‘device")
7 𝑡 ← getColumn (𝐿[0], ‘‘total_time")
8 setColumn

(

𝐿[0], ‘‘total_time", 𝑡 + 𝑇̂ 1
𝑖,𝑗

)

9 𝐿 ← sortAscendingOrder (𝐿, ‘‘total_time")
10 𝑁𝑆 𝑝 ← 𝑁𝑆 𝑝 − 1
11 𝑁𝑆 𝑝𝑖,𝑗 ← 𝑁𝑆 𝑝𝑖,𝑗 + 1
12 end
13 𝑇̂𝑒𝑣𝑜 ← getColumn (𝐿 [𝑙 𝑒𝑛 (𝐿) − 1] , ‘‘total_time")
14 return

[

𝑇̂𝑒𝑣𝑜, 𝑁𝑆 𝑝𝑖,𝑗
]

5 End

migrations. In the baseline model, 𝑇̂𝑒𝑣𝑜 was modelled as the time
needed by the slowest worker node to evolve its subpopulations:
𝑚𝑎𝑥

(

𝑇̂𝑖; ∀𝑖 = 1,… , 𝑁𝑊 𝑘
)

, being 𝑁𝑊 𝑘 the number of available workers:

𝑇̂𝑐 𝑙 𝑢𝑠𝑡𝑒𝑟 = 𝑁𝐺 𝑚 ⋅
(

𝑇̂𝑚𝑎𝑠𝑡𝑒𝑟 + 𝑇̂𝑐 𝑜𝑚 + 𝑚𝑎𝑥
(

𝑇̂𝑖; ∀𝑖 = 1,… , 𝑁𝑊 𝑘
))

(5)

However, in the new model, parameter 𝑇̂𝑒𝑣𝑜 has been adapted at
the device level to capture the dynamic essence of the algorithm. This
means that the slowest device between migrations will not always be
the same since it depends on the total number of subpopulations it
received. For this reason, 𝑇̂𝑒𝑣𝑜 has been estimated using Algorithm 1
presented in Section 4.2 by accumulating the time costs of each device.

Once the time equations have been obtained, the next step is to
estimate the energy cost. In this sense, Eqs. (3) and (4) are fundamental
in this model since energy consumption corresponds to the product of
instantaneous power and runtime. Thus, the energy consumption of the
𝑗th device of the 𝑖th node between two migrations can be calculated by
adding its consumption when active and idle:

𝐸̂𝑖,𝑗 = 𝑃 𝑜𝑤𝑖,𝑗 ⋅ 𝑇̂𝑖,𝑗 + 𝑃 𝑜𝑤𝑖𝑑 𝑙 𝑒
𝑖,𝑗 ⋅

(

𝑇̂𝑒𝑣𝑜 − 𝑇̂𝑖,𝑗
)

(6)

where 𝑃 𝑜𝑤𝑖,𝑗 and 𝑃 𝑜𝑤𝑖𝑑 𝑙 𝑒
𝑖,𝑗 are the instantaneous power of the device

hen active and idle, respectively. The idle time can be calculated by
ubtracting the time taken by the device, 𝑇̂𝑖,𝑗 , from the total time of

computing all the subpopulations, 𝑇̂𝑒𝑣𝑜. If this subtraction result is zero,
this device is always computing, which causes a bottleneck for the rest
of the devices. Finally, the energy consumption of the entire cluster can
e calculated as the sum of the energy of each device and that caused

by the overhead of the master node and the switch:

𝐸̂𝑐 𝑙 𝑢𝑠𝑡𝑒𝑟 = 𝑁𝐺 𝑚 ⋅

(

𝑃 𝑜𝑤𝑚𝑎𝑠𝑡𝑒𝑟 ⋅ 𝑇̂𝑚𝑎𝑠𝑡𝑒𝑟 + 𝑃 𝑜𝑤𝑠𝑤𝑖𝑡𝑐 ℎ ⋅ 𝑇̂𝑐 𝑜𝑚 +
∑

𝑖,𝑗
𝐸̂𝑖,𝑗

)

(7)

being 𝑃 𝑜𝑤𝑚𝑎𝑠𝑡𝑒𝑟 and 𝑃 𝑜𝑤𝑠𝑤𝑖𝑡𝑐 ℎ the instantaneous power of the master
ode and switch, respectively.

4.2. Workload distribution computation

The model proposed in this work reproduces the dynamic behaviour
f a heterogeneous system. Since the total workload assigned to each
evice, 𝑁 , is dynamic, it is necessary to implement a simulation
𝑆 𝑝𝑖,𝑗
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of the workload distribution within the model to estimate its value
and that of the variable 𝑇̂𝑒𝑣𝑜. For this purpose, Algorithm 1 has been
developed. The algorithm considers a list of tuples, 𝐿, which records for
ach device the accumulated time of evaluating subpopulations (Line

3). The main loop from Lines iterates over the input subpopulations,
ssigning one subpopulation to the device at the top of the list, 𝐿0

(Line 7). The reason is that this device is the one that computes the
least and, therefore, is idle. Then, the runtime 𝑇̂ 1

𝑖,𝑗 necessary to evolve
the subpopulation is added to the accumulated runtime of the device
(Line 8). Next, the list is sorted by the ‘‘total_time’’ column in ascending
rder, and the subpopulation of this iteration is discarded (Line ). After

finishing the loop, 𝑇̂𝑒𝑣𝑜 is obtained from the last element of the list,
𝐿 [𝑙 𝑒𝑛 (𝐿) − 1], since it is the device that has accumulated the maximum
time (Line 13). The algorithm ends in Line 14 by returning 𝑇̂𝑒𝑣𝑜 and the
number of subpopulations computed by each device, 𝑁𝑆 𝑝𝑖,𝑗 .

Although this method covers dynamic behaviour, one crucial fea-
ure appears, namely non-linearity. This is because devices with dif-
erent performances compete to request new tasks in a heterogeneous
luster with a non-static workload distribution. Therefore, although
he energy–time costs can be modelled with near-linear expressions at
he device level, the states of each device (active or idle) are strongly
elated to this distributed competition. In this context, our approach
s not limited to efficiently distribute the workload but also aims to
ccurately understand and predict system behaviour in terms of exe-
ution time and energy consumption. The aforementioned variability
n the computational capabilities of the devices, along with the nature
f genetic algorithms, introduces complexities that a coarse-grain pre-
iction model cannot fully capture. Accurate predictions are essential
o avoid bottlenecks, unbalanced workload, and inefficient allocations
hat could increase energy costs and degrade performance. Thus, the
roposed model offers granular predictions that complement the dy-

namic workload distribution algorithm. This is crucial for designing
ore efficient systems, as it allows fine-tuning of specific aspects such

as node-to-node migrations or the allocation of subpopulations based
n the profile of each device.

5. Model fitting method

A genetic algorithm has been used to fit the model’s parameters due
to its speed in finding acceptable solutions in a reasonable time [35,36].
A total of 22 parameters must be fitted, which are defined as unknowns
and are associated with the cost of different cluster resources. The
only known input variable is the number of subpopulations used in the
evolutionary algorithm, 𝑁𝑆 𝑝. The fitting is divided into two indepen-
dent executions of the GA: first, 2 parameters related to time and 6 to
workload are fitted. Subsequently, the 14 energy parameters are fitted
using the fitted values of the previous step. Each parameter corresponds
to a chromosome gene, which has a variable length since it depends on
he type of fitting run. In addition, the number of genes also depends on
he platform to be modelled, since for each device, its parameters 𝑊𝑖,𝑗 ,
 𝑜𝑤𝑖,𝑗 , and 𝑃 𝑜𝑤𝑖𝑑 𝑙 𝑒

𝑖,𝑗 must be added. The chromosome representation for
ime/workload and energy, 𝑐𝑇 𝑊 and 𝑐𝐸 , respectively, are defined as:

𝑐𝑇 𝑊 =
(

𝑊1,1,… , 𝑊𝑁𝑊 𝑘 ,𝑁𝐷𝑊 𝑘 , 𝑇̂𝑐 𝑜𝑚, 𝑇̂𝑚𝑎𝑠𝑡𝑒𝑟
)

(8)

𝑐𝐸 =

(

𝑃 𝑜𝑤1,1,… , 𝑃 𝑜𝑤𝑁𝑊 𝑘 ,𝑁𝐷𝑊 𝑘 , 𝑃 𝑜𝑤𝑖𝑑 𝑙 𝑒
1,1 ,… , 𝑃 𝑜𝑤𝑖𝑑 𝑙 𝑒

𝑁𝑊 𝑘 ,𝑁𝐷𝑊 𝑘 ,

𝑃 𝑜𝑤𝑚𝑎𝑠𝑡𝑒𝑟, 𝑃 𝑜𝑤𝑠𝑤𝑖𝑡𝑐 ℎ
) (9)

The cost functions for time and energy, 𝑅𝑀 𝑆 𝐸𝑇 and 𝑅𝑀 𝑆 𝐸𝐸 , re-
spectively, are defined as the Root-Mean-Square Error (RMSE) between
the predicted and experimental measurements:

𝑅𝑀 𝑆 𝐸𝑇 =

√

√

√

√

√

1
32

⋅
32
∑

(

𝑇̂𝑐 𝑙 𝑢𝑠𝑡𝑒𝑟 − 𝑇𝑐 𝑙 𝑢𝑠𝑡𝑒𝑟
)2 (10)
𝑁𝑆 𝑝=1

5 
Table 1
Input values of the GA used to fit the model. SBB: Simulated Binary Bounded.

Individuals Number 120
Chromosome representation Real-valued

Evolution Number of generations 100
Inconsistency penalty 109

Crossover Type SBB
Probability 0.7

Mutation Type Polynomial
Probability 0.01

𝑅𝑀 𝑆 𝐸𝐸 =

√

√

√

√

√

1
32

⋅
32
∑

𝑁𝑆 𝑝=1
(

𝐸̂𝑐 𝑙 𝑢𝑠𝑡𝑒𝑟 − 𝐸𝑐 𝑙 𝑢𝑠𝑡𝑒𝑟
)2 (11)

where 𝑇𝑐 𝑙 𝑢𝑠𝑡𝑒𝑟 and 𝐸𝑐 𝑙 𝑢𝑠𝑡𝑒𝑟 corresponds to the measured experimental
ata. In this way, both fittings aim to find a set of parameter values

such that the predictions made with the fitted model are significantly
similar to the real experimental values. To maintain consistency be-
tween solutions, the GA only accepts solutions that meet the following
restrictions:

𝑅1 ∶ 𝑃 𝑜𝑤𝑖𝑑 𝑙 𝑒
𝑖,𝑗 < 𝑃 𝑜𝑤𝑖,𝑗 ≤ 𝑇 𝐷 𝑃𝑖,𝑗 ⋅ 1.5 (12)

2 ∶ 𝑃 𝑜𝑤𝑚𝑎𝑠𝑡𝑒𝑟 ≤ 𝑇 𝐷 𝑃𝑚𝑎𝑠𝑡𝑒𝑟 ⋅ 1.5 (13)

3 ∶ 𝑃 𝑜𝑤𝑠𝑤𝑖𝑡𝑐 ℎ ≤ 𝑇 𝐷 𝑃𝑠𝑤𝑖𝑡𝑐 ℎ ⋅ 1.5 (14)

The 𝑅1 constraint ensures that the instantaneous power of an idle
device is lower than when the device is active. Moreover, all these
restrictions have in common that the instantaneous power of a device
oes not exceed 150% of its Thermal Design Power (TDP). This decision
s due to the fact that the TDP of a device can be exceeded under

certain circumstances. For example, in Intel [37] processors, this value
can be exceeded during Intel® Turbo Boost or certain workload types
such as Intel® Advanced Vector Extensions (Intel® AVX) for a limited
time, until the processor hits a thermal throttle temperature, or until the
processor hits a power delivery limit. However, since manufacturers do
not usually indicate the maximum peak energy consumption of their
devices, a 150% restriction for the TDP has been established since
Hennessy et al. state in [1] that its value could be increased by up to
1.5 times.

Finally, for the sake of reproducibility, the configuration for the GA
can be found in Table 1, which uses a real encoding for the optimised
model parameters.

6. Experimental work

The main tasks addressed in this section are to evaluate the fitting
of the proposed model, to compare it with the one provided in [33],
and to validate it. To make a fair comparison, the application to be

odelled and the energy–time experimental data used in this work to
it the model are the same as those used in the baseline paper. The
ource code of the modelled application can be found in [38].

6.1. Experimental methodology

The evaluation pipeline is as follows, where Points 1 and 2, neces-
sary to obtain the experimental data, were already carried out in [33]:

1. Run the modelled application multiple times, varying the num-
ber of subpopulations from 1 to 32. The rest of the input values
remain constant (see Table 2). All experiments are repeated 20
times to obtain more reliable measurements on the application’s
behaviour.
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Table 2
Input values of the NSGA-II algorithm used in the modelled application.

Individuals Number (𝑁) 3,840
Chromosome representation Binary

Subpopulations Number (𝑁𝑆 𝑝) 1 to 32
Size (𝑆𝑆 𝑝) 𝑁∕𝑁𝑆 𝑝

Evolution Number of generations (𝑔) 150
Global migrations (𝑁𝐺 𝑚) 5

Crossover Type Uniform
Probability (𝛼) 0.75

Mutation Type Bit-flip
Probability (𝛽) 0.0025

2. While the application is running, both the runtime and the en-
ergy consumption of the cluster are measured. Time is measured
as the time taken by the algorithm to finish the evolution of all
the subpopulations after 𝑔 generations, including the recombi-
nation of subpopulations carried out by the master node. Energy
has been measured using a physical wattmeter for each cluster
node.

3. Finally, the experimental energy–time data collected are used by
the GA proposed in Section 5 to fit the model parameters. As in
Point 1, the algorithm is executed 20 times due to its stochastic
behaviour.

6.2. Experimental setup

The cluster used in [33] to obtain the experimental energy–time
data contains four heterogeneous Non-Uniform Memory Access
(NUMA) nodes that execute CentOS (v7.4.1708). The modelled appli-
cation is coded in C++ and has been compiled with the GNU Compiler
Collection (GCC) v4.8.5 and optimisation level -O2. The OpenMPI
library v1.10.7 supports the Message Passing Interface (MPI) v3.0.0.
The procedure evaluates 3840 individuals, distributed between 1 to 32
subpopulations (depending on the run), along 150 generations. During
execution, Node 1 is dedicated to the master process while others act
as workers. The energy consumption was measured for each node and
the switch using a wattmeter that calculates both instantaneous power
(W) and accumulated energy (W ⋅ h) every second. The GA developed
in this work to fit the model with the collected energy–time data has
been developed by using the Distributed Evolutionary Algorithms in
Python (DEAP) library [39]. It is worth mentioning that the versions
of CentOS, MPI and GCC are relatively old. This is because we want to
compare the results under the same experimental conditions as those
used in the baseline paper, several years ago (2019).

6.3. Use case application

As mentioned at the beginning of Section 6, the application used
here to evaluate the new model is the same as the one modelled in [33].
It corresponds to a wrapper approach where a Non-dominated Sorting
Genetic Algorithm (NSGA-II) [40] evolves one or multiple subpopula-
tions of individuals along several generations. The application includes
a parallel master–worker scheduler that dynamically distributes indi-
viduals among the CPU–GPU devices of each computing node. It deals
with an Electroencephalogram (EEG) classification problem in which
the individuals codify different alternatives for feature selection and
are evaluated through 𝐾-means algorithm. As the fitness evaluation is
independent for each individual, the individuals are distributed among
the computing devices according to a master–worker scheme too, which
provides up to four parallelism levels depending on the device used
to perform the task. The different levels of parallelism and workload
distribution are summarised below. For more details, see [33]:
6 
Fig. 1. The use case application. MPI-OpenMP scheme that shows the first and second
parallelism levels.

1. First level: distribution of subpopulations among the cluster
nodes (Fig. 1, bottom). All communications between nodes are
done through message-passing with the MPI standard.

2. Second level: dynamic distribution of subpopulations among
devices of the same node by using OpenMP threads (Fig. 1, top:
fitness evaluation, which is detailed in Fig. 2). If there is only
one subpopulation, the scheduler will distribute its individuals
dynamically to each device. Currently, CPU and GPU devices are
supported.

3. Third level: dynamic distribution of individuals among CPU
cores and the GPU Compute Units (CUs) (Fig. 2). In other
words, each CU/core is in charge of evaluating an individual
through a 𝐾-means algorithm, which has been parallelised with
OpenMP on CPU and OpenCL on GPU. Using OpenMP for CPU
is motivated by the ease of implementation, since with a single
directive, it is possible to distribute the loop that iterates over
the list of individuals.

4. Fourth level: GPU data parallelism in 𝐾-means (Fig. 2). The
Euclidean distances between each point and the centroids are
parallelised by the work-items (threads) of the same CU.

The application works as follows: a master MPI process is respon-
sible for asynchronously distributing subpopulations among nodes and
migrating individuals between subpopulations after a certain number of
generations. In addition to this, the workers perform all the evolution-
ary steps of each subpopulation. After starting the MPI communications
with the master, a worker requests the master as many subpopulations
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Table 3
Mean and Relative Standard Deviation (RSD) of the 22 fitted parameters after repeating the fitting 20 times. Shaded cells denote highly
consistent parameters. Units: 𝐖 (clock cycles); 𝐏𝐨𝐰 (watts); 𝐓 (seconds).
Param 𝐌𝐞𝐚𝐧 ± 𝐑𝐒𝐃 (%) Param 𝐌𝐞𝐚𝐧 ± 𝐑𝐒𝐃 (%) Param 𝐌𝐞𝐚𝐧 ± 𝐑𝐒𝐃 (%) Param 𝐌𝐞𝐚𝐧 ± 𝐑𝐒𝐃 (%)

𝑊1,1 7.41 ⋅ 106 ± 2.57 𝑊2,1 1.03 ⋅ 107 ± 33.65 𝑊3,1 2.25 ⋅ 107 ± 36.57 𝑇𝑐 𝑜𝑚 0.28 ± 148.90
𝑊1,2 8.22 ⋅ 107 ± 2.37 𝑊2,2 1.09 ⋅ 108 ± 3.40 𝑊3,2 1.21 ⋅ 108 ± 28.84 𝑇𝑚𝑎𝑠𝑡𝑒𝑟 4.05 ± 39.08
𝑃 𝑜𝑤1,1 222.85 ± 2.95 𝑃 𝑜𝑤2,1 152.43 ± 56.72 𝑃 𝑜𝑤3,1 165.10 ± 47.31 𝑃 𝑜𝑤𝑚𝑎𝑠𝑡𝑒𝑟 82.18 ± 3.76
𝑃 𝑜𝑤1,2 79.69 ± 1.38 𝑃 𝑜𝑤2,2 84.68 ± 1.65 𝑃 𝑜𝑤3,2 76.97 ± 18.82 𝑃 𝑜𝑤𝑠𝑤𝑖𝑡𝑐 ℎ 4.18 ± 36.75
𝑃 𝑜𝑤𝑖𝑑 𝑙 𝑒

1,1 218.61 ± 6.34 𝑃 𝑜𝑤𝑖𝑑 𝑙 𝑒
2,1 118.92 ± 79.87 𝑃 𝑜𝑤𝑖𝑑 𝑙 𝑒

3,1 85.75 ± 105.69
𝑃 𝑜𝑤𝑖𝑑 𝑙 𝑒

1,2 75.92 ± 9.93 𝑃 𝑜𝑤𝑖𝑑 𝑙 𝑒
2,2 83.04 ± 8.37 𝑃 𝑜𝑤𝑖𝑑 𝑙 𝑒

3,2 15.29 ± 128.31
Fig. 2. The use case application. Evaluation of the fitness in the devices, which
provides the third and fourth parallelism levels.

as devices are present in its node. The purpose of reducing idle states is
to make all nodes busy as soon as possible. However, the worker node
could receive a chunk of subpopulations less than or equal to the one
indicated in the request if there are not enough subpopulations to be
distributed. If this is not the case, once all workers are computing, the
master waits for new requests. As each worker has already assigned
work, a new request involves receiving only one subpopulation and
sending another if available. The loop ends when all subpopulations
have evolved. Then, the master merges all subpopulations to perform
the next subpopulation set.

6.4. Model fitting results

The best fitting is the vector
(

𝑁 𝑅𝑀 𝑆 𝐸𝑇 , 𝑁 𝑅𝑀 𝑆 𝐸𝐸
)

that provides
the smallest Euclidean distance concerning the origin point, (0, 0). Here,
the NRMSE (Normalised Root-Mean-Square Error) for time and energy
is calculated as the RMSE divided by the standard deviation of the
measured values when executing the application varying 𝑁𝑆 𝑝 from 1
to 32 subpopulations:

𝑁 𝑅𝑀 𝑆 𝐸𝑇 =
𝑅𝑀 𝑆 𝐸𝑇

𝑠𝑡𝑑
(

𝑇𝑐 𝑙 𝑢𝑠𝑡𝑒𝑟 ; ∀𝑁𝑆 𝑝 = 1,… , 32
) (15)

𝑁 𝑅𝑀 𝑆 𝐸𝐸 =
𝑅𝑀 𝑆 𝐸𝐸

𝑠𝑡𝑑
(

𝐸𝑐 𝑙 𝑢𝑠𝑡𝑒𝑟 ; ∀𝑁𝑆 𝑝 = 1,… , 32
) (16)

The 20 repetitions of the fitting result in a set of 20 individuals that
report low fitness, with mean and deviation values of 𝑁 𝑅𝑀 𝑆 𝐸𝑇 =
0.089 ± 0.012 and 𝑁 𝑅𝑀 𝑆 𝐸𝐸 = 0.139 ± 0.031. Hence, our method
is capable of overall returning fairly well fitted solutions. Moreover,
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when picking the most accurate solution from the 20 fitted ones, the
best individual achieves fitness values of 𝑁 𝑅𝑀 𝑆 𝐸𝑇 = 0.081 and
𝑁 𝑅𝑀 𝑆 𝐸𝐸 = 0.091. This means that the fitting exceeds greatly that
obtained in the baseline study [33], whose best prediction results were
𝑁 𝑅𝑀 𝑆 𝐸𝑇 = 0.213 and 𝑁 𝑅𝑀 𝑆 𝐸𝐸 = 0.256. Both fittings are visually
compared in Fig. 3. As it can be seen, the values predicted by the new
model closely follow the experimentally measured data for any number
of subpopulations. Although the baseline model fitting has a similar
trend, it does not correctly predict runtime and energy consumption
for subpopulations 18 to 24. From that point on, it also shows an
irregular prediction trend. Therefore, using a genetic algorithm and a
non-linear model is an accurate approach to capture the heterogeneous
behaviour of the cluster. Indeed, we have obtained similar results using
the Particle Swarm Optimisation (PSO) algorithm (𝑁 𝑅𝑀 𝑆 𝐸𝑇 = 0.104
and 𝑁 𝑅𝑀 𝑆 𝐸𝐸 = 0.113). However, in order not to extend this paper
too much, only the analyses related to the GA will be shown from now
on. In summary, our methodology demonstrates its suitability in the
path towards more complex models where features such as dynamic
workload distribution or programs’ hyperparameters play a major role.

6.5. Model validation results

Since the fitting method explores the parameter space scattered, all
fittings have been repeated 20 times. The Relative Standard Deviation
(RSD) for the 𝑝th parameter of a chromosome, 𝑅𝑆 𝐷𝑝, has been used to
measure the dispersion:

𝑅𝑆 𝐷𝑝 =
𝑠𝑡𝑑

(

𝑝𝑟 ; ∀𝑟 = 1,… , 20
)

𝑚𝑒𝑎𝑛
(

𝑝𝑟 ; ∀𝑟 = 1,… , 20
) ⋅ 100 (17)

where 𝑝𝑟 represents the 𝑟th fitting (repetition) of the 𝑝th parameter.
The mean values and RSD of the 22 fitted parameters are displayed
in Table 3. As it can be seen, most of the deviations are acceptable
if the dynamic nature of the cluster is taken into account, except for
𝑃 𝑜𝑤𝑖𝑑 𝑙 𝑒

3,1 , 𝑃 𝑜𝑤𝑖𝑑 𝑙 𝑒
3,2 , and 𝑇𝑐 𝑜𝑚. Nevertheless, these three parameters do not

seem to have an appreciable impact on 𝑁 𝑅𝑀 𝑆 𝐸𝑇 and 𝑁 𝑅𝑀 𝑆 𝐸𝐸 . It
must be considered that the time needed for communication is quite
low. Regarding 𝑃 𝑜𝑤𝑖𝑑 𝑙 𝑒

3,1 and 𝑃 𝑜𝑤𝑖𝑑 𝑙 𝑒
3,2 , they present large deviations. This

means that the values of the parameters are spread out in the solution
search space, and therefore they may have different optimal values:
as the use case application works through a dynamic master–worker
scheme, the devices will always be busy and will only be idle during a
migration, which is done in a short time. Thus, for this particular appli-
cation, it could be stated that the instantaneous powers of the devices
in an idle state are not essential for the model, although they must be
included to obtain the best results. Besides, there is an explanation for
the fact that some active instantaneous powers also have considerable
deviations: the 20 experimental values collected from the cluster, used
to fit the model, present disparate mean values. This could be due to a
combination of the following factors:

1. Between iterations, the workload assigned to a device is variable,
impacting the time the device is active or idle. The crossover
probability, for example, affects the number of individuals to be
evaluated in each generation.



J.J. Escobar et al.

𝑃

Future Generation Computer Systems 167 (2025) 107753 
Fig. 3. Comparison between the energy–time fitting of the baseline model and the one proposed in this work when increasing the number of subpopulations. For most cases, the
proposed model fits the experimental data better than the baseline model [33].
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Fig. 4. Boxplot of 𝑁 𝑅𝑀 𝑆 𝐸𝑇 and 𝑁 𝑅𝑀 𝑆 𝐸𝐸 for the 32 iterations of LOO-CV.

2. It has been observed that the percentage of use of the CPU–GPU
devices when executing the case use application is not always
100%, probably due to the sequential parts of the algorithm.
Since the percentage is variable, so it will be the instantaneous
power.

3. In the GA used to fit the parameters, there is no restriction to
establish a minimum instantaneous power higher than zero. Con-
sequently, the model offers very low power values as solutions
that will never correspond to the real ones. Values close to the
TDP are unrealistic, too. There is no solution to this problem
for now since CPU and GPU manufacturers only report the
maximum consumption (TDP) and rarely indicate the minimum.

Assuming that small deviation values are those less than 10%, the
parameters whose fitted values converge in the same region are: (i)
 𝑜𝑤 , (ii) those related to the devices of Node 1, and (iii) those
𝑚𝑎𝑠𝑡𝑒𝑟
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related to CPU of Node 2. The good fitting of these parameters could
be due to the lack of good solutions in other regions of the search
pace. This hypothesis arose after verifying that in almost all the
xecutions of the NSGA-II, the devices associated with these parameters
ere the fastest in requesting their initial workload. Therefore, they

ould be declared critical for the algorithm since they condition the
ubsequent workload distributions. As the rest of the parameters show
orse fittings, they are considered less critical, which would imply that

ome components’ roles in our context may overlap and vice versa.
onsidering a heterogeneous cluster comprising various configurations
f nodes and devices, measuring the weight of the costs associated
ith the different components is not a trivial task. Moreover, since

he workload distribution here is dynamic and heterogeneous devices
ompete to receive subpopulations, it is very difficult to determine
hich devices are active at any given moment simultaneously. This
roblem may be aggravated by increasing the number of nodes and
evices in the cluster.

Another issue to discuss is the variance of the model. That is, the
sensitivity of the fitting when the input variable 𝑁𝑆 𝑝 changes. For
this purpose, a Leave-One-Out Cross-Validation (LOO-CV) has been
performed with 32 independent fittings, each with a different number
of subpopulations. The results are displayed in Figs. 4 and 5. All nor-
malised errors are around 0.1 except when 𝑁𝑆 𝑝 takes values between
1 and 4, indicating that the model cannot predict the behaviour of the
luster after being fitted with the rest of the experimental data. This
an be explained by the way Algorithm 1 assigns the workload: the
ubpopulations are initially assigned by node and device order, since
t is impossible to know exactly which node will finally receive its

subpopulations. When the number of subpopulations is high, there is no
problem since several devices overlap their runtime. Conversely, when
he number of subpopulations is very low, some devices will be idle. If

the prediction of the model has not coincided with the real execution,
there will be a fairly high prediction error due to the heterogeneity of
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Fig. 5. 𝑁 𝑅𝑀 𝑆 𝐸𝑇 and 𝑁 𝑅𝑀 𝑆 𝐸𝐸 when performing LOO-CV from 1 to 32 subpopulations. The bars for 21 and 28 subpopulations are not visible in the figure because their values

re very low.
the devices. Therefore, since the devices play a crucial role, this would
confirm that the prediction model should be based on the workload
distribution by devices instead of by nodes.

7. Conclusions and future work

By addressing the inherent complexities of dynamic workload dis-
tribution, the proposed model diverges from traditional linear ap-
proaches, resulting in a non-linear framework that enables more ac-
curate modelling of energy consumption and runtime. The high degree
f accuracy shown in the experimental results suggests that the model
ould be adapted to other bioinspired algorithms, given the structural
imilarities in how these algorithms operate across distributed systems.
owever, not all parameters were robustly fitted, as some exhibited a
egree of flexibility, allowing for multiple valid solutions. This vari-
bility highlighted which parameters play a crucial role in determining
he energy–time outcomes, as the final predictions remained largely
naffected by scattered parameter values or outliers. This insight is
aluable for refining the model, as it enables a more targeted approach
o parameter fitting by focusing on those with the most significant
mpact. Another possible improvement would be to focus on individual
evices first before integrating the system as a whole. This approach
ould enhance both the precision and interpretability of the model,
llowing for a clearer understanding of how each device contributes
o the overall system’s performance.

In addition, future extensions of the model could incorporate hard-
ware optimisations such as DVFS and Dynamic Concurrency Throttling
(DCT). These techniques, which adjust the device frequency, voltage
levels, and the number of active cores, represent potential new parame-
ters that could be optimised to minimise energy–time costs. Addressing
ifferent hardware configurations or profiles for each device could also
esolve issues of solution sparsity, as discussed earlier in Section 6.5.

However, expanding the model to account for additional hardware
esources presents its own challenges. The increased dimensionality
f the solution space (chromosome) could complicate the parameter-
itting process, potentially reducing the effectiveness of the model as
he number of devices grows. In our case, each new device entails the
itting of one parameter related to time and two related to energy.

As a result, while hardware optimisations hold promise for improving
energy efficiency, careful consideration must be given to the trade-offs
etween model complexity and practical applicability, especially when

scaling to larger systems involving dozens or even hundreds of devices.
n this sense, a new study is required to know the threshold from which
he model could be inconsistent.
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Appendix A. Glossary of formal variables

1. 𝛼: crossover probability of the NSGA-II.
2. 𝛽: mutation probability of the NSGA-II.
3. 𝐶𝑖,𝑗 : number of cores of the 𝑗th device of the 𝑖th node that are

working in parallel.
4. 𝑐𝐸 : chromosome representation of energy parameters.
5. 𝑐𝑇 𝑊 : chromosome representation of time/workload parameters.

6. 𝐸𝑐 𝑙 𝑢𝑠𝑡𝑒𝑟: measured energy consumption of the cluster to perform
the whole genetic algorithm.

7. 𝐸̂𝑐 𝑙 𝑢𝑠𝑡𝑒𝑟: predicted energy consumption of the cluster to perform
the whole genetic algorithm.

8. 𝐸̂𝑖,𝑗 : predicted energy consumption of the 𝑗th device of the 𝑖th
node to compute 𝑁𝑆 𝑝𝑖,𝑗 subpopulations between two migrations.
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9. 𝐹𝑖,𝑗 : clock frequency of the 𝑗th device of the 𝑖th node.
10. 𝑔: number of generations of the NSGA-II.
11. 𝑁 : number of individuals of the NSGA-II.
12. 𝑁𝐷: list with the number of devices of each worker node.
13. 𝑁𝐷𝑖

: number of devices of the 𝑖th node.
14. 𝑁𝐺 𝑚: number of global migrations of the NSGA-II.
15. 𝑁𝑊 𝑘: number of worker nodes in the cluster.
16. 𝑁𝑆 𝑝: number of subpopulations of the NSGA-II.
17. 𝑁𝑆 𝑝𝑖,𝑗 : list with the predicted number of subpopulations of the

NSGA-II assigned to the 𝑗th device of the 𝑖th node.
18. 𝑁 𝑅𝑀 𝑆 𝐸𝐸 : normalised 𝑅𝑀 𝑆 𝐸𝐸 .
19. 𝑁 𝑅𝑀 𝑆 𝐸𝑇 : normalised 𝑅𝑀 𝑆 𝐸𝑇 .
20. 𝑝𝑟: 𝑟th fitting (repetition) of the 𝑝th parameter of a chromosome.

21. 𝑃𝐸 : number of parallel evaluations of individuals per subpopu-
lation.

22. 𝑃 𝑜𝑤𝑖,𝑗 : instantaneous power of the 𝑗th device of the 𝑖th node.
23. 𝑃 𝑜𝑤𝑖𝑑 𝑙 𝑒

𝑖,𝑗 : instantaneous power in idle of the 𝑗th device of the 𝑖th
node.

24. 𝑃 𝑜𝑤𝑚𝑎𝑠𝑡𝑒𝑟: instantaneous power of the master node.
25. 𝑃 𝑜𝑤𝑠𝑤𝑖𝑡𝑐 ℎ: instantaneous power of the switch.
26. 𝑇𝑐 𝑙 𝑢𝑠𝑡𝑒𝑟: measured runtime of the cluster to perform the whole

genetic algorithm.
27. 𝑇̂𝑐 𝑙 𝑢𝑠𝑡𝑒𝑟: predicted runtime of the cluster to perform the whole

genetic algorithm.
28. 𝑇̂𝑐 𝑜𝑚: predicted runtime for communications between nodes of

the cluster when performing a global migration.
29. 𝑇̂𝑒𝑣𝑜: predicted runtime of the cluster for computing the evolu-

tion of all 𝑁𝑆 𝑝 subpopulations between two migrations.
30. 𝑇̂𝑖,𝑗 : predicted runtime of the 𝑗th device of the 𝑖th node to

compute 𝑁𝑆 𝑝𝑖,𝑗 subpopulations between two migrations.
31. 𝑇̂ 1

𝑖,𝑗 : predicted runtime of the 𝑗th device of the 𝑖th node to
compute one subpopulation between two migrations.

32. 𝑇̂𝑚𝑎𝑠𝑡𝑒𝑟: predicted runtime overhead of the master node when
performing a global migration.

33. 𝑇 𝐷 𝑃𝑖,𝑗 : TDP of the 𝑗th device of the 𝑖th node.
34. 𝑇 𝐷 𝑃𝑚𝑎𝑠𝑡𝑒𝑟: TDP of the master node.
35. 𝑇 𝐷 𝑃𝑠𝑤𝑖𝑡𝑐 ℎ: TDP of the switch.
36. 𝑅1, 𝑅2, 𝑅3: restrictions of the GA used to fit the model.
37. 𝑅𝑀 𝑆 𝐸𝐸 : RMSE between predicted and measured cluster energy

consumption.
38. 𝑅𝑀 𝑆 𝐸𝑇 : RMSE between predicted and measured cluster run-

time.
39. 𝑅𝑆 𝐷𝑝: RSD of the 𝑝th parameter of a chromosome.
40. 𝑆𝑆 𝑝: size of a subpopulation.
41. 𝑆 𝑝: list of subpopulations.
42. 𝑆 𝑝𝑖: 𝑖th subpopulation.
43. 𝑆 𝑝𝑖,𝑗 : 𝑗th individual of the 𝑖th subpopulation.
44. 𝑊𝑖,𝑗 : number of clock cycles taken by the 𝑗th device of the 𝑖th

node to compute one individual.

Appendix B. Glossary of acronyms

1. AI: Artificial Intelligence.
2. AVX: Advanced Vector Extensions.
3. CPU: Central Processing Unit.
4. CU: Compute Unit.
5. DAG: Directed Acyclic Graph.
6. DCT: Dynamic Concurrency Throttling.
7. DEAP: Distributed Evolutionary Algorithms in Python.
8. DFS: Dynamic Frequency Scaling.
9. DLP: Data Level Parallelism.
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10. DVFS: Dynamic Voltage and Frequency Scaling.
11. DVS: Dynamic Voltage Scaling.
12. EEG: Electroencephalogram.
13. GA: Genetic Algorithm.
14. GCC: GNU Compiler Collection.
15. GPU: Graphics Processing Unit.
16. HPC: High-Performance Computing.
17. ILP: Instruction Level Parallelism.
18. LOO-CV: Leave-One-Out Cross-Validation.
19. MPI: Message Passing Interface.
20. NUMA: Non-Uniform Memory Access.
21. NRMSE: Normalised Root-Mean-Square Error.
22. NSGA-II: Non-dominated Sorting Genetic Algorithm.
23. PSO: Particle Swarm Optimisation.
24. RMSE: Root-Mean-Square Error.
25. RSD: Relative Standard Deviation.
26. SBB: Simulated Binary Bounded.
27. TDP: Thermal Design Power.
28. TLP: Thread Level Parallelism.
29. TPE: Tree-structured Parzen Estimator.

Data availability

Data will be made available on request.
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