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Abstract 

In the realm of software engineering, ensuring high-quality software products is of paramount 

importance. Traditionally, software quality assurance relied on manual code reviews, testing, and 

debugging processes. Quality assurance teams followed established methodologies like Waterfall or 

Agile to manage the software development lifecycle. However, these methods had limitations in terms 

of predicting and preventing defects early in the development process. Additionally, they often lacked 

the ability to adapt to the rapidly evolving landscape of software technologies and architectures. This 

has led to the exploration of machine learning (ML) methods as a promising solution for predicting 

software quality, identifying defects, and improving overall software development processes. The 

need for an innovative approach to software quality prediction became evident due to the increasing 

complexity of software systems, tight project schedules, and the demand for high-quality products in 

the market. ML methods offered a promising avenue for addressing these challenges by leveraging 

historical data, identifying patterns, and making predictions based on the learned patterns. The need 

for accurate, efficient, and automated software quality prediction techniques became critical for 

organizations striving to deliver reliable software products. Therefore, this research aims to build an 

advanced ML models to improve the estimation accuracy with the usage of relevant features of a large 

dataset. Further, this work aims to bridge the gap between traditional software quality assurance 

methods and the evolving needs of modern software development by employing machine learning 

techniques. By addressing the aforementioned challenges, the research endeavors to enhance the 

overall software development process, leading to higher-quality software products and improved 

customer satisfaction. 

Keywords: Software Quality Assurance, Machine Learning (ML), Software Development Lifecycle, 

Defect Prediction, Software Testing, Code Review 
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1. Introduction 

Software applications may contain defects, originating from requirements analysis, specification and 

other activities conducted in the software development. Therefore, software quality estimation is an 

activity needed at various stages. It may be used for planning the project-based quality assurance 

practices and for benchmarking. In addition, the number of defects per unit is considered one of the 

most important factors that indicate the quality of the software. There are two directly comparable 

studies on software quality prediction using defect quantities in ISBGS dataset. In the first study, the 

two methods (MCLP and MCQP) were experimented with the dataset and the results were compared.  

The history of AI-driven approaches for software quality prediction to enhance estimation accuracy 

traces back to the early 2000s when researchers began exploring the application of machine learning 

techniques in software engineering domains. Initially, efforts primarily focused on simple regression 

models to predict software defects based on code metrics and historical defect data. Over time, as 

computational power and data availability increased, more sophisticated machine learning algorithms 

such as decision trees, random forests, support vector machines, and neural networks were applied to 

tackle the complexity of software quality prediction. 

In the mid-2010s, there was a significant shift towards feature engineering and data preprocessing 

techniques to extract meaningful insights from diverse sources of software project data. Researchers 

started incorporating non-code factors such as team dynamics, development methodologies, and 

external dependencies into predictive models, acknowledging the multifaceted nature of software 

quality. This holistic approach yielded more accurate estimations by capturing the interplay between 

technical and organizational aspects of software development. 

In recent years, there has been a growing emphasis on model interpretability and explainability, 

driven by the need to foster trust and understanding of AI-driven predictions among software 

development stakeholders. Techniques such as feature importance analysis, SHAP (Shapley Additive 

explanations) values, and model-agnostic interpretability methods have emerged to elucidate the 

rationale behind prediction outcomes, facilitating informed decision-making and risk management in 

software projects. 

2. Literature Survey 

Chowdhury, Rajarshi Roy, et al.  [1] proposed device fingerprinting model demonstrates over 99% 

and 95% precisions in distinguishing between known and unknown traffic traces and in identifying 

IoT and non-IoT traffic traces, respectively. 98.49% precision has also been demonstrated on an 

individual device classification task. These results are significant as the model can be utilized to 

effectively secure a resource-constrained IoT network, which despite its rapid growth of usage, is 

more prone to attack, partly due to its dependence on traditional explicit identification methods.  

Kotak, Jaidip , et al.  [2] proposed approach is applicable for any IoT device, regardless of the 

protocol used for communication. As our approach relies on the network communication payload, it is 

also applicable for the IoT devices behind a network address translation (NAT) enabled router. In this 

study, we trained various classifiers on a publicly accessible dataset to identify IoT devices in 

different scenarios, including the identification of known and unknown IoT devices, achieving over 

99% overall average detection accuracy.  

Carson, et al. [3] proposed a Machine-learning-assisted approaches are promising for device 

identification since they can capture dynamic device behaviors and have automation capabilities. 

Supervised machine-learning-assisted techniques demonstrate high accuracies for device 

identification. However, they require a large number of labeled datasets, which can be a challenge. On 
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the other hand, unsupervised machine learning can also reach good accuracies without requiring 

labeled datasets. This paper presents an unsupervised machine-learning approach for IoT device 

identification.  Elngar, Ahmed, et al. [4]  paper implements a methodology for network traffic 

classification using clustering, feature extraction, and variety for the Internet of Things (IoT). Further, 

K-Means is used for network traffic clustering datasets, and feature extraction is performed on 

grouped information. KNN, Naïve Bayes, and Decision Tree classification methods classify network 

traffic because of extracted features, which presents a performance measurement between these 

classification algorithms. The results discuss the best machine learning algorithm for network 

congestion classification.   

Zarzoor, Ahmed et al. [5] proposed model performance is evaluated according to evaluation metrics: 

accuracy, precision, recall and F1-score and energy usage in comparison with two models: ML based 

Support Vector Machine IoT-TCSVM and ML based Deep Neural Network (IoT-TCDNN). The 

evaluations result has been shown that IoT TCSNN consumes less energy in contrast to IoT-TCDNN 

and IoT-TCSVM. Also, it gives high accuracy in comparison with IoT-TCSVM  Elhaloui, et al. [6] 

proposed model performance is evaluated according to evaluation metrics: accuracy, precision, recall 

and F1-score and energy usage in comparison with two models: ML based Support Vector Machine 

IoT-TCSVM and ML based Deep Neural Network (IoT-TCDNN). The evaluations result has been 

shown that IoT TCSNN consumes less energy in contrast to IoT-TCDNN and IoT-TCSVM  

Malathi, et al. [7] proposed goal of this article ability to understand the efficiency of machine learning 

(ML) algorithms in opposing Network-related cyber security Assault, with a focus on Denial of 

Service (DoS) attacks. We also address the difficulties that require to be discussed to implement these 

Machine Learning (ML) security schemes in practical physical object (IoT) systems. In this research, 

our main aim is to provide security by multiple machine-learning (ML) algorithms that are mostly 

used to recognise the interrelated (IoT) network Assault immediately. Unique metadata, BotIoT, is 

accustomed to estimate different recognition algorithms.  Senthil Kumaran, et al. [8] suggested 

approach minimizes the amount of time spent on optimization operations while maintaining the 

predictive performance of the induced uncertain models. We work out the entropy standards of traffic 

characteristics and categorize the uncertain traffic using ML techniques. Our technique successfully 

identifies devices in a variety of uncertain network situations, with consistent performance in all 

scenarios. Our technique is also resistant to unpredictability in network behavior, with abnormalities 

or uncertainties propagating throughout the network.  

Belkadi, et al. [9]  proposed  and showed that the supervised algorithms used (Naive Bayes, SVM 

(SMO), Random Forest, C4.5 (J48)) gave promising results of up to 97% when using the studied 

features and over 95% when using the generated features.  Zhang , et al. [10] proposed simulation 

results show that the proposed NASP-aided MTC method not only can efficiently and accurately 

search the optimal classification model architecture on  dataset and the Egde-IIoTset dataset, but also 

compared with the typical MTC methods it can achieve the optimal classification performance with 

the fewer parameters as well as the floating-point operations (FLOPs).  

Chaganti, et al. [11] proposed evaluation of the proposed model shows that our model effectively 

identifies the attacks and classifies the attack types with an accuracy of  0.971. In addition, various 

visualization methods are shown to understand the dataset’s characteristics and visualize the 

embedding features.  Koirala, et al. [12] proposed behaviour of normal and attack networks on these 

devices, and the prospects of machine learning approaches to improve IoT device security. Overall, 

the study adds to the growing body of knowledge on IoT device security and emphasizes the 

significance of adopting sophisticated strategies for detecting and mitigating network attacks.  



Journal for Educators, Teachers and Trainers JETT, Vol.15(5);ISSN:1989-9572 397 

 

 
 

Vergütz , et al. [13]  Thus, this article introduces IoT ReGuard, an IoT Method to Reveal and Guard 

IoT Network Traffic Features. IoT Reguard aims to explore network traffic features to reveal the most 

relevant ones and hide them to protect users’ privacy. By IoT network feature exploration and data 

instrumentation, IoT ReGuard provides valuable information on network traffic features to mask 

critical features. Results showed that IoTReGuard reduced from 70% to 20% of F1-Score on 

identifying the IoT devices, improving user privacy.  Musleh, et al. [14]  The study presented a 

detailed evaluation of all combined models using the IEEE Dataport dataset. Results showed that 

VGG-16 combined with stacking resulted in the highest accuracy of 98.3%.  Gomez, et al. [15] 

Finally in the phase of online prediction, the algorithm is capable of predicting with high precision the 

type of traffic in terms of the input flow, and updates in a dynamic way the threshold to determine 

whether the traffic is elephant or mice. With this information the network hardware can decide then to 

route the flows according to their characterization. According to the results, the model that best 

generates predictions is the decision tree with a 100% confidence level.  

3. Proposed Methodology 

Step 1: Software Quality Dataset: The first step in the proposed approach involves the collection and 

preparation of a software quality dataset. This dataset typically contains historical data on various 

software metrics such as complexity, coupling, size, and cohesion, along with the associated software 

quality outcomes (e.g., presence or absence of defects). The dataset serves as the foundation for 

training and evaluating machine learning models. Ensuring the dataset is comprehensive and 

representative of different software projects is crucial for building robust models. 

Step 2: Data Preprocessing:  Data preprocessing is a critical step that involves cleaning the dataset to 

handle missing values, normalizing feature values, and transforming categorical variables into 

numerical ones. In this stage, techniques like filling missing values with zero or using the mean/mode, 

normalization to bring all features to a common scale, and encoding categorical features using 

techniques like Label Encoding or One-Hot Encoding are employed. Preprocessing ensures that the 

dataset is in a suitable format for machine learning algorithms to process effectively. 

 

Figure 1: Block Diagram Proposed System architecture. 
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Step 3: Existing Logistic Regression Algorithm: As a baseline, the existing Logistic Regression 

algorithm is used to predict software quality. Logistic Regression is a simple yet effective model for 

binary classification problems, making it a good starting point for comparison. The model is trained 

on the preprocessed dataset, and its performance metrics (accuracy, precision, recall, F1 score) are 

evaluated on a test set. This provides a benchmark to compare against more advanced algorithms. 

Step 4: Proposed XGBoost Algorithm: XGBoost (Extreme Gradient Boosting) is proposed as an 

advanced algorithm to improve software quality prediction. XGBoost is known for its efficiency, 

accuracy, and ability to handle various types of data and features. It works by creating an ensemble of 

weak learners (typically decision trees) and combining their predictions to form a strong learner. The 

model is trained on the same dataset, and its hyperparameters are tuned to optimize performance. 

XGBoost's ability to capture complex patterns in the data makes it well-suited for this task. 

Step 5: Performance Comparison: The next step involves a comprehensive performance comparison 

between the existing Logistic Regression model and the proposed XGBoost model. Various 

performance metrics such as accuracy, precision, recall, and F1 score are calculated for both models. 

Additionally, confusion matrices and ROC curves can be used to provide a more detailed evaluation 

of the models' performances. This comparison highlights the improvements brought by the XGBoost 

algorithm over the baseline model. 

Step 6: Prediction of Output from Test Data with XGBoost Algorithm Trained Model:  The XGBoost 

model, having demonstrated superior performance, is used to predict software quality on unseen test 

data. This step involves deploying the trained model to make predictions on new software projects or 

modules, providing insights into potential quality issues before they manifest in production. The 

predictions can guide quality assurance teams to focus their efforts on the most critical areas, 

improving overall software quality and reducing defect rates. 

3.1 XG Boost Model 

XGBoost is a popular machine learning algorithm that belongs to the supervised learning technique. It 

can be used for both Classification and Regression problems in ML. It is based on the concept of 

ensemble learning, which is a process of combining multiple classifiers to solve a complex problem 

and to improve the performance of the model. As the name suggests, "XGBoost is a classifier that 

contains a number of decision trees on various subsets of the given dataset and takes the average to 

improve the predictive accuracy of that dataset." Instead of relying on one decision tree, the XGBoost 

takes the prediction from each tree and based on the majority votes of predictions, and it predicts the 

final output. The greater number of trees in the forest leads to higher accuracy and prevents the 

problem of overfitting. 
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Figure 2: XGBoost algorithm. 

XGBoost, which stands for "Extreme Gradient Boosting," is a popular and powerful machine learning 

algorithm used for both classification and regression tasks. It is known for its high predictive accuracy 

and efficiency, and it has won numerous data science competitions and is widely used in industry and 

academia. Here are some key characteristics and concepts related to the XGBoost algorithm: 

Gradient Boosting: XGBoost is an ensemble learning method based on the gradient boosting 

framework. It builds a predictive model by combining the predictions of multiple weak learners 

(typically decision trees) into a single, stronger model. 

Tree-based Models: Decision trees are the weak learners used in XGBoost. These are shallow trees, 

often referred to as "stumps" or "shallow trees," which helps prevent overfitting. 

Objective Function: XGBoost uses a specific objective function that needs to be optimized during 

training. The objective function consists of two parts: a loss function that quantifies the error between 

predicted and actual values and a regularization term to control model complexity and prevent 

overfitting. The most common loss functions are for regression (e.g., Mean Squared Error) and 

classification (e.g., Log Loss). 

Gradient Descent Optimization: XGBoost optimizes the objective function using gradient descent. It 

calculates the gradients of the objective function with respect to the model's predictions and updates 

the model iteratively to minimize the loss. 

Regularization: XGBoost provides several regularization techniques, such as L1 (Lasso) and L2 

(Ridge) regularization, to control overfitting. These regularization terms are added to the objective 

function. 

Parallel and Distributed Computing: XGBoost is designed to be highly efficient. It can take advantage 

of parallel processing and distributed computing to train models quickly, making it suitable for large 

datasets. 

Handling Missing Data: XGBoost has built-in capabilities to handle missing data without requiring 

imputation. It does this by finding the optimal split for missing values during tree construction. 
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Feature Importance: XGBoost provides a way to measure the importance of each feature in the model. 

This can help in feature selection and understanding which features contribute the most to the 

predictions. 

Early Stopping: To prevent overfitting, XGBoost supports early stopping, which allows training to 

stop when the model's performance on a validation dataset starts to degrade. 

Scalability: XGBoost is versatile and can be applied to a wide range of machine learning tasks, 

including classification, regression, ranking, and more. 

Python and R Libraries: XGBoost is available through libraries in Python (e.g., xgboost) and R (e.g., 

xgboost), making it accessible and easy to use for data scientists and machine learning practitioners. 

XGBoost, which stands for eXtreme Gradient Boosting, is a popular machine learning algorithm that 

is particularly effective for structured/tabular data and is often used for tasks like classification, 

regression, and ranking. It is an ensemble learning technique based on decision trees.  

4. Results and Discussion 

Figure 3 presents a graphical representation of dataset features, possibly in the form of histograms, bar 

charts, or scatter plots. This visualization aids users in gaining insights into the distribution and 

characteristics of the dataset. Figure 4 displays the uploaded dataset within the GUI. It presents a 

tabular view of the data, allowing users to review and verify the information they have inputted. 

Figure 5 offers a graphical depiction of the values contained in the uploaded dataset. This 

visualization could help users understand the range, variability, and patterns present in the data. 

Figure 6 demonstrates the preprocessing steps applied to the uploaded dataset. This include tasks such 

as handling missing values, encoding categorical variables, and scaling numerical features.  Figure 7 

provides a summary of the total features present in the dataset. This information enables users to 

understand the dimensionality of the data and the complexity of the prediction task. In evaluating 

these machine learning algorithms, there's a trade-off between accuracy and how well they capture 

true positive cases. Bernoulli Naive Bayes, while boasting the highest recall (56.47%) at identifying 

true positives, falls short on overall accuracy (90.91%) and precision (53.39%). Decision Tree 

prioritizes precision (57.07%) but misses out on some true positives (52.75% recall) and has a 

middling accuracy (94.55%). Random Forest shines in accuracy (95.76%) but struggles with both 

precision (48.76%) and recall (50.00%), leading to a lower F1-measure (49.36%) compared to the 

other two. 

 

Figure 3: Graphical representation of Dataset Features. 
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Figure 4: Display Uploaded Dataset in the GUI. 

 

Figure 5: Preprocessing the Uploaded dataset. 
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Figure 6: Data Visualization using Heatmap. 

 

Figure 7: Metrices of the Machine Learning algorithm 

In Figure 8, Proposed Algorithm Performance metrices are presented.  Accuracy is the proportion of 

correct predictions made by the model. In this case, the model made 100% correct predictions. 

Precision is the proportion of positive predictions that were actually correct. In this case, all of the 

positive predictions made by the model were correct. Recall is the proportion of positive cases that 

were identified by the model. In this case, the model identified all of the positive cases. The F1-

Measure is a harmonic mean of precision and recall. It is a way of combining precision and recall into 

a single metric. In this case, the F1-Measure is 100%, which indicates that the model performed 

perfectly on both precision and recall. 

 

Figure 8: Proposed Algorithm Performance metrices. 

5. Conclusion 

In conclusion, integrating machine learning (ML) techniques into software quality prediction 

represents a substantial advancement in software engineering. Traditional quality assurance methods, 
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such as manual code reviews and standard testing procedures, have shown limitations in preemptively 

identifying and mitigating defects, particularly as software systems grow more complex and 

development cycles become shorter. ML adoption offers a transformative approach to these 

challenges by leveraging data-driven insights to forecast potential quality issues before they 

materialize.  Our research demonstrates the effectiveness of advanced ML models in enhancing 

estimation accuracy for software quality. By utilizing extensive datasets, these models can detect 

patterns and relationships that are often imperceptible through manual analysis. This capability not 

only facilitates early defect detection but also supports continuous improvement in the development 

process through iterative learning and adaptation. 
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