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 A B S T R A C T

Finding the optimal hyperparameters of a neural network is a challenging task, usually done through a trial-
and-error approach. Given the complexity of just training one neural network, particularly those with complex 
architectures and large input sizes, many implementations accelerated with GPU (Graphics Processing Unit) 
and distributed and parallel technologies have come to light over the past decade. However, whenever the 
complexity of the neural network used is simple and the number of features per sample is small, these 
implementations become lackluster and provide almost no benefit from just using the CPU (Central Processing 
Unit). As such, in this paper, we propose a novel parallelized approach that leverages GPU resources to 
simultaneously train multiple neural networks with different hyperparameters, maximizing resource utilization 
for smaller networks. The proposed method is evaluated on energy demand datasets from Spain and Uruguay, 
demonstrating consistent speedups of up to 1164x over TensorFlow and 410x over PyTorch.
1. Introduction

In the last decade, neural networks have become one of the most 
relevant Artificial Intelligence (AI) models of our time, being used with 
astonishing results in a wide range of applications such as computer 
vision (Voulodimos, Doulamis, Doulamis, Protopapadakis, et al., 2018), 
time series forecasting (Hewamalage, Bergmeir, & Bandara, 2021), 
speech recognition (Nassif, Shahin, Attili, Azzeh, & Shaalan, 2019) 
or natural language processing (Alshemali & Kalita, 2020). In the 
energy sector, many neural network architectures have been used to 
forecast energy consumption in households, public buildings and entire 
markets, among others. However, the prevailing trend in recent years 
has been the use of Deep Neural Networks, usually incorporating the 
Long-Short Term Memory (LSTM) architecture in at least one of the 
hidden layers. In fact, this architecture is featured in almost 50% of 
the publications that used a Recurrent Neural Network (RNN) to predict 
energy consumption in buildings (Lu, Li, & Lu, 2022).

Several recent works show that the use of LSTM neural networks 
or hybrid models comprised of at least one LSTM layer usually outper-
forms other machine learning approaches to forecast energy consump-
tion. Kim, Choi, Jeon, and Liu (2019) proposed a hybrid model with 
LSTM and Convolutional Neural Network (CNN) that showed better 
results than ARIMA and a combination of LSTM and Seq2Seq in energy 
demand data from Korea’s electric grid. Another hybrid model was 
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proposed by Yan, Li, Ji, Qi, and Du (2019) to forecast energy consump-
tion in individual households. This hybrid model featured LSTM neural 
networks with a Stationary Wavelet Transform and achieved more 
accurate forecasts than the standalone LSTM, hybrid models combining 
LSTM and CNN, and Support Vector Regression. Torres, Martínez-
Álvarez, and Troncoso (2022) presented a deep LSTM architecture to 
forecast energy demand on the Spanish electric grid. The results showed 
that the deep LSTM neural network outperformed other deep neural 
network architectures and other Machine Learning models. Jin et al. 
(2022) used a hybrid model of Singular Spectrum Analysis and parallel 
LSTMs to forecast energy consumption of multiple UK households at 
different sampling rates. Rick and Berton (2022) presented a different 
hybrid model comprised of CNNs, LSTMs and autoencoders, during 
the same year, to study energy consumption in the grid of a Brazilian 
energy distributor.

In closely related fields, such as power generation forecasting, hy-
brid models featuring the LSTM architecture have also become the state 
of the art. Zhou et al. (2019) evaluated the enhancement provided by 
the inclusion of an attention mechanism in the LSTM architecture to 
forecast photovoltaic power generation. Wan, Chang, AL-Bukhaiti, and 
He (2023) applied a similar idea to simultaneously forecast power and 
heat with a hybrid model that combines CNN, LSTM and attention, 
outperforming other deep learning models.
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Nonetheless, there are also other scenarios where simpler neural 
network architectures are a better fit for the problem, particularly 
in cases where the amount of data available to train the model is 
limited. Manno, Martelli, and Amaldi (2022) showed how a simpler 
feed-forward neural network with one hidden layer could provide 
better hourly forecasts than LSTM and other machine learning models 
in three energy datasets, and Maragkos, Tzelepi, Passalis, Adamakos, 
and Tefas (2022) showed how a simple multilayer perceptron (MLP) 
with two hidden layers could outperform the deep pre-trained model 
ResNetPlus to forecast energy consumption in the Greek market.

Given the large variety of ML models that can be applied to pro-
duce accurate forecasts and the large search space of hyperparameters, 
finding the optimal model for a specific task can be challenging and 
time-consuming, as they are usually evaluated with a trial-and-error 
approach. This can be done either exhaustively over a selected range 
of hyperparameters (‘‘grid search’’) or guided by some optimization 
algorithm (Luo & Oyedele, 2021). This large search space for hyper-
parameters in conjunction with the slow training time of some of the 
most complex models has led to the development of specialized imple-
mentations that leverage specific hardware to accelerate the training 
process.

A noteworthy example of this trend is the prevalent use of Graph-
ics Processing Units (GPUs) for training machine learning models. 
Nowadays, most machine learning models, particularly Artificial Neu-
ral Networks, leverage GPUs for efficient training. Initially, parallel 
implementations were introduced for specific neural network archi-
tectures (Jang, Park, & Jung, 2008; Uetz & Behnke, 2009). However, 
with the advent of user-friendly neural network frameworks such as 
TensorFlow (Abadi et al., 2016) and PyTorch (Paszke et al., 2019), ef-
ficient implementations of the majority of neural network architectures 
have become easily accessible. Furthermore, the significance of AI in 
the GPU landscape has prompted manufacturers to offer libraries with 
tailored primitives for deep learning (Appleyard, Kociský, & Blunsom, 
2016; Chetlur et al., 2014), which these frameworks utilize to optimize 
the training process. This inclination toward GPU utilization extends 
beyond neural networks to include other traditional machine learning 
models. For example, the cuML library (Raschka, Patterson, & Nolet, 
2020), also developed by a GPU manufacturer, facilitates seamless 
GPU-accelerated usage of various classic machine learning models, and 
many recently proposed machine learning models have been released 
with a GPU implementation available (Chen & Guestrin, 2016; Ke et al., 
2017).

However, despite the widespread availability of GPU implementa-
tions for many machine learning models, certain specialized use cases 
still lack efficient implementations. For example, CUDA implementa-
tions of metaheuristic algorithms are not generally available and are 
frequently studied in the AI literature for different purposes (Iruela, 
Ruiz, Pegalajar, & Capel, 2020; Kintsakis, Chrysopoulos, & Mitkas, 
2015; Ting, Ma, Kim, & Huang, 2016; Wang, Zhang, Huang, & Tsui, 
2018; Zhuo, Zhang, Du, & Liu, 2023). In the context of Artificial Neural 
Networks (ANNs), publicly accessible implementations are generally 
tailored to enhance training speed with a large number of features 
or neurons. These implementations often depend on the use of ef-
ficient parallelized General Matrix Multiplications (GEMM), typically 
facilitated by linear algebra libraries provided by the hardware man-
ufacturer, such as cuBLAS (NVIDIA, 2023). Consequently, employing 
these approaches for training small neural networks on GPUs might 
result slower than using the CPU. One potential remedy for this chal-
lenge could involve increasing the batch size during training to operate 
on larger matrices, assuming sufficient data is available. However, it is 
widely recognized that an excessively large batch size can compromise 
accuracy, leading to poorer generalization (Keskar, Mudigere, Nocedal, 
Smelyanskiy, & Tang, 2017).

Another prospective solution could involve leveraging GPU re-
sources to simultaneously train, in parallel, multiple neural networks 
with different hyperparameters, which would provide a better GPU 
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utilization than using the entire computational power of a GPU to train 
a single small neural network. Notably, the application of GPUs under 
these circumstances has not been thoroughly examined in the current 
literature and the implementations provided by the mainstream neural 
network frameworks are limited for this use case, as they are optimized 
to train one large model. Therefore, in this study, we aim to address 
this gap by developing and evaluating an efficient GPU implementation 
capable of training multiple shallow neural networks simultaneously, 
each with different hyperparameters. Our evaluation will focus on 
energy forecasting data, where the number of input features is typically 
relatively low, involving only the previous number of time steps used 
for the forecast and a few exogenous variables like temperature. Thus, 
this paper strives to contribute to the existing body of knowledge and 
addresses the following research questions.

• Is it faster to train simultaneously multiple neural networks in the 
GPU or use the optimized implementation from libraries such as 
TensorFlow or PyTorch to accelerate the training of each neural 
network?

• How do the batch size and complexity of each neural network 
affect the results?

These questions will be solved with a real-case study with energy 
demand data from Spain and Uruguay, comparing the time required to 
find the optimal architecture using our approach with TensorFlow and 
PyTorch.

The remainder of this paper is structured as follows. Section 2 
presents a brief introduction to the CUDA architecture, the neural 
networks used, and an explanation of our approach. Section 3 presents 
and discusses the results obtained. Lastly, Section 4 draws the main 
conclusions from our work.

2. Methodology

2.1. The CUDA architecture

Although Graphics Processing Units (GPUs) were initially created 
to accelerate graphical computation, their massively parallel GPU ar-
chitecture greatly benefited many other general-purpose applications. 
Compute Unified Device Architecture (CUDA) was the first proposal 
of a language for General-Purpose GPU (GPGPU) made by NVIDIA for 
their graphics cards. The creation of this GPGPU language facilitated 
substantially the development of GPGPU applications as previously 
they had to be written through assembly or graphical APIs.

The CUDA language is an extension of the C/C++ language that 
adds additional syntax to indicate the operations the threads of the 
GPU should do. This is mainly done through special functions called 
‘‘kernels’’ executed simultaneously by all threads used. Whenever a 
kernel is launched, the programmer must specify the number of blocks 
and the number of threads on each block that should execute the 
kernel. At a high level of granularity, all threads within the same 
block have additional advantages as they are executed on the same 
streaming multiprocessor. Each streaming multiprocessor has a unique 
set of cores, registers, cache memory, and a scheduler. This allows all 
threads within the same block to cooperate faster through the use of 
a programmed-managed part of the L1 cache memory called ‘‘shared 
memory’’ and a synchronization operation available for all threads 
of the block. If there is not enough work to use an entire streaming 
multiprocessor, the scheduler may run multiple blocks concurrently in 
the same streaming multiprocessor, even from different kernels. On 
the other hand, at the smallest level of granularity, the CUDA cores 
use a Single Instruction Multiple Threads (SIMT) architecture where a 
‘‘warp’’ (32 contiguous threads) will always execute the same instruc-
tion. This means that in any instance in which the kernel code branches 
(e.g., if-else statements), the performance may be worse as it may 
require the entire warp to execute all branches before continuing with 
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Fig. 1. Relationship between the CUDA software-level abstractions and the GPU hardware.
the following instruction and, as such, they should be avoided as long 
as possible. Fig.  1 illustrates the relationship between the abstractions 
utilized by the programmer and the corresponding hardware. When 
launching the kernel, the programmer specifies the grid (number of 
blocks and threads per block), and that grid is executed by an entire 
CUDA-capable GPU device. At a lower granularity level, each of the 
blocks that compose that grid will be executed in one of the Streaming 
Multiprocessors available in that GPU device. At the lowest level of 
granularity, each of the threads within the block will be executed 
on one of the CUDA cores available on the Streaming Multiprocessor 
assigned to its block.

One of the most common bottlenecks in GPU-based applications are 
slow memory accesses. Thus, understanding the GPU memory hierarchy 
is extremely important to ensure peak performance. Fig.  2 presents 
the memory hierarchy of the CUDA-capable GPU device employed 
in our experimentation. The figure is organized to showcase memory 
locations with the slowest access at the top, gradually progressing 
to those with the fastest access as we move downward. The slowest 
access occurs with data stored in the CPU/motherboard RAM, as it 
necessitates traversing the PCIe connection and traversing all memory 
locations within the GPU. Consequently, transfers of data between the 
CPU and GPU are minimized as much as possible. In fact, they are 
done only twice in many applications. The initial transfer occurs from 
the CPU/Motherboard to the GPU, facilitating the loading of all data 
necessary for computations, such as a dataset. The second transfer 
takes place after completing all computations, ensuring that the end 
user receives the computation results. This is essential since the output 
needs to reside in the CPU/Motherboard for the end user to view or 
store the output. The main on-chip memory on the GPU is the ‘‘global 
3 
memory’’, serving as the principal storage location for data within the 
GPU. As such, it has the largest store capacity, but it is the slowest 
location inside the GPU. Data that needs to be exchanged between 
the CPU and the GPU or between multiple Streaming Multiprocessors 
(or blocks), must be stored into global memory. The next level in the 
memory hierarchy is the cache memory. There are two levels of cache 
memory (L1 and L2). The L2 cache is a slightly slower type of cache 
memory that has a larger storage capacity and it is shared across all 
streaming multiprocessors. The L1 cache is the fastest memory location 
besides registers, as it is local to each streaming multiprocessor. Thus, 
data in the L1 cache can only be accessed by threads within the 
same block, making it an ideal location in workflows that require 
shared memory access from multiple threads within the same block. 
In fact, programmers may specify within the kernel the amount of 
shared memory required and directly manage access to this memory 
without having to rely on compiler optimizations. Lastly, the use of 
registers is usually limited to the data that is required for the current 
computation. Nonetheless, the optimizer may select specific variables 
and small arrays local to a thread to store them in registers if sufficient 
space is available, removing the need of memory accesses until all 
computations with that data have finished.

2.2. Artificial neural networks (ANNs)

ANNs are computational models inspired by the human brain. They 
contain many computational nodes denominated ‘‘neurons’’ structured 
in layers. These neurons are interconnected with other neurons and 
each connection is associated with a weight. Each neuron computes the 
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Fig. 2. A simplified representation of the CUDA memory hierarchy for the RTX 6000 
Ada.

weighted sum of the outputs of the previous layers with the weights of 
the connections. Furthermore, a non-linear function is usually applied 
to the output of each neuron, allowing the neural network to learn 
non-linear relationships. During training, the connection weights are 
optimized to minimize a loss function between the outputs of the last 
layer and the desired values.

The Multi-Layer Perceptron (MLP) (Almeida, 1997) is a simple and 
widely used neural network. This architecture has one input layer, one 
or more hidden layers, and one output layer. In this architecture, each 
neuron 𝑗 from a layer performs the weighted sum of the output 𝑥 of 
all neurons from the previous layer 𝑖 weighted by the weight of the 
connection 𝑤(𝑖,𝑗). After that, to obtain the final output, the bias of that 
neuron 𝑏𝑗 is added and the activation function 𝑓 is applied. 

ℎ𝑗 = 𝑓 (
∑

𝑖
𝑤𝑖,𝑗𝑥𝑖 + 𝑏𝑗 ). (1)

The Elman neural network (Elman, 1990) is a Recurrent Neural 
Network (RNN) that includes a new kind of layer: the context layer. 
RNNs are capable of processing sequences of variable length through 
the use of recurrent connections between the neurons. In the Elman 
Neural Network, there will be as many context layers as hidden layers. 
Each context neuron copies the output of each hidden neuron, which 
will be used as additional input to the hidden layer along the context 
weights for the next element of the sequence. Mathematically, this can 
be expressed as follows: 
ℎ𝑗 (𝑡) = 𝑓 (𝑤𝑗𝑥(𝑡) + 𝑢𝑗ℎ(𝑡 − 1) + 𝑏𝑗 ). (2)

where ℎ𝑗 (𝑡) is the output of the hidden neuron 𝑗 for the element in 
position 𝑡 of the sequence, 𝑤𝑗 are the weight between the hidden 
neuron and all neurons of the previous layer, 𝑥(𝑡) are the output of this 
previous layer for the element 𝑡 of the sequence, 𝑢𝑗 are the recurrent 
weights between the context neurons and the neuron 𝑗, ℎ(𝑡−1) are the 
hidden outputs for the previous element of the sequence and 𝑏𝑗 is the 
bias of the hidden neuron.
4 
LSTM neural networks (Hochreiter & Schmidhuber, 1997) are an-
other RNN type that uses special neurons, denominated ‘‘LSTM cells’’ 
instead of hidden neurons. This type of neural network was created 
to solve the vanishing gradient problem in RNN, an issue that arises 
while training the neural network with backpropagation. The vanishing 
gradient occurs because the gradient must be passed through all time 
steps 𝑡 of the sequence and the activation functions will squash the 
outputs to a limited range, usually between 0 and 1 (sigmoid), or 
between −1 and 1 (tanh). Therefore, for a long sequence, the repeated 
multiplication of a value below 1 will lead to a value closer and closer to 
0, thus vanishing the gradient and making the neural network receive 
minimal to no updates in those scenarios. To solve this issue, LSTM 
neural networks incorporate two recurrent states: the hidden state ℎ𝑡
(for short-term memory) and the cell state 𝐶(𝑡) (for long-term memory). 
Alongside both states, the LSTM neural network also incorporates three 
gating mechanisms to regulate the information flow in the cell. The 
input gate 𝑖(𝑡), determines how much information from the current step 
in the sequence can be used to update the states. The forget gate 𝑓 (𝑡)
decides how much information from the previous cell state should be 
forgotten. Lastly, the output gate 𝑜(𝑡) decides how much of the current 
cell state is used to produce the hidden states. All of these gates have 
a set of weights 𝑊𝑖|𝑓 |𝑜 to be learned and use a sigmoid activation 
function, limiting the range of each value of the gate from 0 (blocking 
information) to 1 (allowing all information through). Mathematically, 
an LSTM cell works as follows: 
𝑖𝑡|𝑓𝑡|𝑜𝑡 = 𝜎(𝑊𝑖|𝑓 |𝑜 ⋅ [ℎ(𝑡 − 1), 𝑥(𝑡)] + 𝑏𝑖|𝑓 |𝑜). (3)

𝐶(𝑡) = 𝑡𝑎𝑛ℎ(𝑊𝑐 ⋅ [ℎ(𝑡 − 1), 𝑥(𝑡)] + 𝑏𝑐 ). (4)

𝐶(𝑡) = 𝑓𝑡 ⋅ 𝐶(𝑡 − 1) + 𝑖𝑡 ⋅ 𝐶(𝑡). (5)

ℎ(𝑡) = 𝑜(𝑡) ⋅ 𝑡𝑎𝑛ℎ(𝐶(𝑡)). (6)

2.3. The proposed method

Fig.  3 shows the general idea of how the proposed method will run 
inside a GPU. Since we want to find the optimal hyperparameters, we 
developed one kernel that will train simultaneously multiple neural 
networks at once. The selection of only using one kernel was made 
to avoid the overhead of launching multiple kernels and the limitation 
provided by the fact that the number of concurrent kernels in execution 
may be lower than the number of streaming multiprocessors available. 
Thus, if we were to launch one kernel per neural network, 14 streaming 
multiprocessors would have remained completely idle during the entire 
training process with the GPU we used. In the kernel proposed in our 
method, each block will train a specific neural network, overcoming 
these limitations. Each thread will, for the most part, perform the 
computations related to one hidden neuron. If the number of threads 
per block is smaller than the number of hidden units, the kernel will 
do as many iterations as required to compute all the results from the 
hidden neurons.

Before running the kernel, it is essential to initialize and allocate 
most of the data structures in memory. Since many of these structures 
are accessed by the CPU and undergo storage and retrieval only once, 
they are allocated in global memory. This encompasses weights, biases, 
intermediate outputs, and non-recurrent gradients. Recurrent gradients 
are allocated in local arrays for each hidden neuron or thread, facil-
itating the utilization of registers when the dimension is sufficiently 
low. All these data structures are organized in row-major order and 
have dimensions in the following order: neural network size, batch 
size (for intermediate results data structures only), lags (for recurrent 
neural networks only) and hidden size. This is done to ensure that 
all threads access contiguous positions in memory, since every thread 
within the same block will need to access the same data structure in the 
position corresponding to its hidden neuron. Thus, this configuration 
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Fig. 3. Distribution in blocks and threads of the proposed method.
minimizes the number of memory accesses required to load data from 
other memory locations to the bare minimum.

After allocating these data structures, non-recurrent weights un-
dergo initialization using the Xavier-Glorot method (Glorot & Bengio, 
2010), where each thread handles one element of the data structure at 
the start of the kernel. Recurrent weights, on the other hand, are initial-
ized through the orthogonal method using CuPy’s (Nishino & Loomis, 
2017) implementation of Singular Value Decomposition. Meanwhile, 
biases are initialized to 0, except for those associated with the forget 
gate of LSTMs, which are initialized to 1, following common practices. 
These initialization techniques are the default for TensorFlow and were 
used in all implementations to make the comparison fair.

Afterward, several arrays containing hyperparameters for each neu-
ral network are transmitted from the host to the GPU. In our imple-
mentation, there is an array for hidden sizes, another for learning rates, 
and the last one for activation functions. Each of these arrays will have 
as many values as neural networks need to be trained. Therefore, the 
position 𝑖 in each array will indicate the value of its hyperparameter in 
the 𝑖th neural network. Additionally, an array containing a permutation 
per training epoch of the samples indexes is initialized using CuPy. 
This array is used to avoid having to shuffle the array in memory, thus 
allowing different neural networks to progress at a different pace. Once 
this initialization progress is finished, the kernel will iterate over each 
epoch and each sample of a batch.

In Fig.  4, the workflow of all threads within the same block is 
illustrated, showing the tasks undertaken to process an entire batch. 
First, each thread will do all the computations to compute the hidden 
output of a neuron, storing the results in the corresponding array 
for intermediate values. These computations are the weighted sum 
of the output of the previous layer and the activation function. A 
synchronization barrier is placed afterward to ensure that all hidden 
outputs have been computed before proceeding to the next step. In the 
case of RNNs, this first step is repeated until all lags from the input 
sequence have been computed. Then, after the last synchronization 
is done, the Harris’ (Harris et al., 2007) parallel reduction is used 
with the final hidden states and the weights of the output layer to 
compute each output neuron’s output efficiently. At this step, we start 
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computing the loss for this sample with one thread per time step 
(output neuron) forecast, storing the loss for that sample in an array. 
After a synchronization, each thread computes the loss at the hidden 
layer by backpropagating the loss according to the chain rule with the 
loss of the output layer, the output weights and the activation. Finally, 
in RNNs, this process is repeated for all time steps and the next sample 
inside the batch is processed.

After processing all samples within a batch, the weights and biases 
are updated using the ADAM algorithm (Kingma & Ba, 2015). This 
update is performed with the desired learning rate, using the previously 
computed backpropagated loss and any other required intermediate 
values and weights. During this process, each thread is responsible 
for updating one neuron, and no synchronization is needed since all 
necessary computations have been previously executed and stored, 
mitigating any potential race conditions.

In the case of RNNs, additional local arrays are employed to store 
recurrent gradients. These gradients pertain to the connections between 
a hidden neuron and the context layer in the Elman network and 
between a hidden LSTM unit and all recurrent connections through the 
gates in the LSTM network. This design allows these recurrent gradients 
to potentially be stored in registers if the number of hidden neurons in 
the neural network is small enough.

Upon completing the weight and bias updates, the CUDA block’s 
neural network can proceed to process the next batch without waiting 
for all other neural networks to complete processing the same batch 
since our approach does not require shuffling the samples in memory 
thanks to the use of the data structure with the permuted indexes. The 
source code used for this project can be found at https://github.com/
xkuzz/MultiNNCuda.

3. Results

3.1. Experimental setup

To assess the efficacy of our approach, we conducted a comparative 
analysis against TensorFlow’s and PyTorch’s implementations on two 
energy demand datasets, as outlined in the following subsection.

https://github.com/xkuzz/MultiNNCuda
https://github.com/xkuzz/MultiNNCuda
https://github.com/xkuzz/MultiNNCuda
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Fig. 4. A visual representation of the work done by the threads inside a block to train a neural network.
Table 1
List of hyperparameters considered per ANN architecture in the grid 
search procedure.
 Hyperparameter Range  
 Hidden Neurons/Units {40, 41, 42,… , 127}  
 Learning Rate {0.05, 0.01, 0.001, 0.0001} 

It is worth emphasizing that these frameworks use distinct im-
plementations based on certain constraints and the ANN architecture 
employed. Consequently, we divided our experiments into three dis-
tinct sets, each corresponding to a unique architecture with a specific 
activation function (ReLU for MLP, tanh for Elman and LSTM RNNs). 
These activation functions were selected in a preliminary study done 
with TensorFlow, where we studied which activation function provided 
the best results for each ANN architecture.

In each experiment, 348 ANN configurations were trained during 10 
epochs using a grid search approach, with the hyperparameters speci-
fied in Table  1 in all implementations. These numbers were selected 
to have a reasonable degree of variety in learning rate and number 
of hidden neurons that are still within a reasonable boundary to work 
well. These boundaries were selected to be neither too small nor too 
big for the size of the problem studied based on some preliminary 
studies with TensorFlow. Each experiment with the same 348 ANN 
configuration was repeated per batch size studied (1, 2, 4, 8, 16, 32 
and 64), ANN architecture, implementation and dataset.

The experimental setup used was comprised of a private cloud 
server with two GPU nodes, two Xeon 4310 CPUs and 64 GB of RAM. 
Each GPU node had an NVIDIA RTX A6000 ADA with 48 GB GDDR6 
global memory and 18176 CUDA cores. In the case of our implementa-
tion, a kernel with half of the hyperparameters was sent to each GPU 
and in the case of TensorFlow, we evaluated two different approaches. 
In the first one (from now on, denominated ‘‘TF-A’’), TensorFlow was 
allowed to use the full potential of a GPU to train a neural network 
as fast as possible. Thus, two neural networks were being trained as 
fast as possible at once (one on each GPU). However, since this was 
not fully using all the resources of the GPU, we also evaluated another 
approach (from now on denominated ‘‘TF-B’’), in which we tried to 
train as many neural networks as possible simultaneously. We did this 
by training 14 neural networks simultaneously between both GPUs (7 
6 
on each) in a multi-process approach, as adding more would create a 
bottleneck in RAM memory, significantly slowing the training process. 
This last approach was also used to evaluate the other mainstream 
ANN framework, PyTorch, as it was substantially faster than the other 
approach for the cases studied.

3.2. Datasets description

Two datasets were used to evaluate the proposed method: one 
containing energy consumption data from Spain and another with 
energy demand data from Uruguay.

The Spanish dataset includes energy consumption records from 
January 1, 2007, to the present. This data was scraped from the Spanish 
energy operator, initially with a 10-minute granularity, later updated 
to a 5-minute granularity. While the dataset also provides additional 
information on market prices, emissions, and energy generation, only 
the energy consumption data was utilized, adhering to the preprocess-
ing pipeline outlined in Torres et al. (2022). This pipeline considers 
data up to June 2016, with input sequences comprising 168 lags and a 
forecast horizon of 24 observations.

The Uruguayan dataset provides hourly energy consumption data 
aggregated from several smart meters from January 1, 2007, to De-
cember 31, 2014. In addition to energy consumption, it includes infor-
mation on temperature and holidays. Similar to the Spanish dataset, 
this study focuses exclusively on energy consumption, treating it as 
a univariate time series, as done in Pérez-Chacón, Asencio-Cortés, 
Martínez-Álvarez, and Troncoso (2020).

For both datasets, the data was normalized to the range [0, 1] using 
min–max normalization. The datasets were split into three partitions 
while preserving chronological order. The first 70% of the data was 
allocated for training and validation, with the remaining 30% reserved 
for testing, which was used to generate the results presented in Sec-
tion 3.5. The validation set constituted the last 30% of the training 
partition and was employed to select the best-performing architecture.

3.3. Metrics used

To measure the execution performance of each approach, we mea-
sure the total execution time of each algorithm per experiment (one 
neural network architecture with a specific batch size). Additionally, 
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Table 2
Execution times (in seconds) and speedups between the studied approaches for the Spanish dataset.
 Architecture Batch 

size
Proposed 
approach

TF-A TF-B PyTorch Speedup
vs 
TF-A

Speedup
vs
TF-B

Speedup
vs
PyTorch

 

MLP

64 2.36 1806.79 585.39 188.10 765.70 248.08 79.71  
 32 2.40 3075.54 799.10 275.98 1281.08 332.86 114.96  
 16 2.76 5895.01 1212.89 461.40 2139.24 440.15 167.43  
 8 3.75 11435.87 2065.09 821.46 3051.88 551.11 219.22  
 4 5.96 22626.11 3751.20 1517.55 3794.43 629.08 254.49  
 2 11.19 38171.32 6153.01 2580.76 3411.81 549.96 230.67  
 1 21.39 74304.23 11664.54 4452.37 3474.47 545.43 208.19  
 

Elman

64 147.21 25969.14 4049.37 301.89 176.41 27.51 2.05  
 32 146.36 51806.80 7676.64 493.05 353.98 52.45 3.37  
 16 142.92 103078.45 14977.93 905.34 721.25 104.80 6.33  
 8 139.46 205481.84 29390.57 1686.71 1473.38 210.74 12.09  
 4 127.27 223986.12 58379.09 3205.68 1759.95 458.71 25.19  
 2 117.05 416869.05 69425.95 6192.48 3561.43 593.13 52.90  
 1 121.27 831297.82 138391.29 11718.23 6854.91 1141.18 96.63  
 

LSTM

64 1641.00 5185.25 1666.22 410.44 3.16 1.02 0.25  
 32 1628.41 9809.22 2762.19 680.05 6.02 1.70 0.42  
 16 1629.18 18753.44 4867.63 1214.19 11.51 2.99 0.75  
 8 1629.51 37053.42 8978.58 2260.94 22.74 5.51 1.39  
 4 1638.66 72995.02 17236.88 4332.37 44.55 10.52 2.64  
 2 1646.03 134860.80 31196.69 8379.62 81.93 18.95 5.09  
 1 1657.07 244583.40 44268.82 16130.56 147.60 26.72 9.73  
we measured the speedup obtained between our implementation and 
TensorFlow approaches. Regarding the accuracy metrics, the follow-
ing metrics were used as they are utilized frequently for time series 
forecasting.

The Mean Absolute Error (MAE) measures the average absolute 
difference between the predicted and expected values. 

𝑀𝐴𝐸 = 1
𝑁

𝑁
∑

𝑖=1
|𝑦𝑖 − 𝑦𝑖|. (7)

The Mean Absolute Percentage Error (MAPE) is a measure that 
represents the MAE as a percentage according to the following formula.

𝑀𝐴𝑃𝐸 = 1
𝑁

𝑁
∑

𝑖=1

𝑦𝑖 − 𝑦𝑖
𝑦𝑖

. (8)

Lastly, the Root Mean Squared Error (RMSE) is a metric that gives 
more weight to large errors, punishing harder forecast values far away 
from the expected values, but also making it heavily influenced by 
outliers. 

𝑅𝑀𝑆𝐸 = 1
𝑁

√

√

√

√

𝑁
∑

𝑖=1
(𝑦𝑖 − 𝑦𝑖)2. (9)

For all these metrics, 𝑁 represents the total number of observations 
of all samples, 𝑦̂ represents the predicted value, 𝑦̄ is the average of the 
observations and 𝑦 represents the expected value. For all metrics except 
𝑅2, a lower value indicates a better forecast.

3.4. Speedup analysis

Table  2 presents the time (in seconds) required to train all 348 
ANN configurations across different architectures, batch sizes, and 
implementations. As expected, our approach demonstrated a greater 
speedup with smaller batch sizes.

For the MLP architecture, our approach consistently outperformed 
mainstream frameworks, making it one of the ideal scenarios for its 
use. Due to the simplicity of this ANN architecture, it is difficult to 
fully utilize the GPU’s resources unless an extremely large batch size is 
used, or a large number of neural networks are trained simultaneously. 
Our approach delivered the fastest training times among all implemen-
tations, taking only 2.36 s for a batch size of 64 and 21.39 s for a batch 
size of 1. Depending on the batch size, the speedup ranged from 248 
7 
to 545 times compared to TF-B, and from 79 to 254 times compared to 
PyTorch.

As it could be expected, the use of TF-A, representing the classic 
use of Tensorflow, where each neural network is trained using the full 
potential of 1 GPU, led to extremely slow training regardless of the 
ANN architecture, with a worse performance the lower the batch size, 
as the number of operations that could be done in parallel would be 
even smaller. Additionally, the PyTorch equivalent of TF-B consistently 
outperformed its TensorFlow counterpart, reliably training multiple 
models substantially faster regardless of the ANN architecture.

For the Elman architecture, due to the complex nature of the 
recurrent connection, the time required to train the model with all 
implementations was slower than the ones required to train MLPs, 
as the inclusion of time-step dependencies involves a higher number 
of operations and a mandatory synchronization before processing the 
next time step. In particular, our approach offers a relatively fast 
training time, between 117 and 147 s, while the best approach using 
TensorFlow is between 27 and 1141 times slower, depending on the 
batch size used, and the best approach using PyTorch is between 2 and 
96 times slower.

For the LSTM architecture, PyTorch’s and ours implementation are 
slower than for the Elman architecture, due to its more complex nature. 
However, this is not the case for the TensorFlow implementation, where 
LSTMs are faster than Elman networks. This performance difference is 
due to TensorFlow’s use of a highly optimized CUDNN implementation 
for LSTM networks (provided by GPU manufacturers) as long as certain 
conditions are met, such as using the hyperbolic tangent activation 
function. This same implementation is also used by the PyTorch library 
for the computations of the LSTM layer.

Although one might expect both implementations to have similar 
training times, the differences in how the frameworks operate, such 
as PyTorch’s native support for asynchronous operations, result in Py-
Torch being faster than TensorFlow. It should also be noted that, while 
the optimizations presented in Appleyard et al. (2016) are expected to 
be utilized, the full implementation details are not publicly available. 
Therefore, for this architecture, we observe results that are closer to 
our approach, with some cases involving larger batch sizes where 
our implementation is slower than PyTorch. For this architecture, our 
approach was up to 26.72 time faster than TensorFlow and up to 9.73 
times faster than PyTorch, although it was slower than PyTorch if the 
batch size was 16 or higher.
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Table 3
Detailed breakdown of execution time for the REE dataset.
 Architecture Batch 

size
Data initializa-
tion/Transfer
(s)

Training
(s)

 

MLP

64 0.035 2.31  
 32 0.035 2.35  
 16 0.035 2.76  
 8 0.034 3.71  
 4 0.033 5.90  
 2 0.033 11.13  
 1 0.037 21.46  
 

Elman

64 0.927 144.92  
 32 0.964 144.48  
 16 0.932 141.07  
 8 0.862 134.80  
 4 0.890 124.22  
 2 0.811 114.57  
 1 0.988 119.04  
 

LSTM

64 3.15 1903.00  
 32 3.14 1910.45  
 16 3.18 1910.76  
 8 3.07 1906.01  
 4 3.16 1898.40  
 2 3.39 1918.22  
 1 3.04 1967.17  

In general, as the batch size increases, it is expected that our 
approach will provide lower speedup. This is because, in our approach, 
each element of the batch is processed sequentially, and larger data 
structures are required, leading to more cache misses. Therefore, there 
will be a point where the performance of our approach falls behind 
that of the TensorFlow and PyTorch implementations. This breakpoint 
will be reached as complexity increases, either due to a larger batch 
size or a more complex ANN topology, at which point our approach 
may become slower. Therefore, the GPU specification, datasets, number 
of configurations to evaluate and batch size are crucial factors to 
determine whether our approach or using PyTorch would be more 
effective.

Table  3 provides a detailed breakdown of the time spent on data 
transfer, initialization of data structures, and model training in our 
approach. As expected, the majority of time is devoted to model train-
ing across all architectures, as it is significantly more computationally 
expensive than data initialization and transfer. Notably, the time re-
quired for initialization and data transfer to the GPU remains relatively 
consistent across different batch sizes. However, a substantial differ-
ence emerges between architectures, ranging from 35 ms for the MLP 
architecture to approximately 3.15 s for the LSTM architecture. This 
increase is attributed to the LSTM’s larger and more complex data 
structures, as well as the use of orthogonal initialization. The data in 
this table was collected using the nsys profiling tool, with two nvtx
ranges to separate the initialization and data transfer phases from the 
model training kernel covering the second time the method is run (the 
first is a warm-up round to make sure that the CuPy compilation of the 
kernel does not influence the result). Full profiling dumps are available 
at https://osf.io/r7djh/.

To complement the study presented in the previous tables, Table 
4 shows the same set of experiments conducted on the Uruguayan
dataset, with the exception of TF-A, which was excluded as it is 
consistently slower than TF-B. Although this dataset comprises more 
years, it has only hourly granularity, resulting in fewer samples com-
pared to the previous dataset. Consequently, training times are shorter 
and our approach works slightly better, leading to bigger speedups. 
Nonetheless, all the major conclusions drawn from the Spanish dataset 
still hold true: our approach is consistently faster for MLP and Elman 
architectures, PyTorch is consistently faster than TensorFlow, and for 
the LSTM architecture, PyTorch performs slightly better at the largest 
batch sizes studied, while our approach achieves up to a 10x speedup 
at the lowest batch size.
8 
3.5. Analysis of batch size impact in forecast accuracy

At last, we compare the results in terms of the accuracy of each 
model. A first point of interest is to evaluate the impact the batch 
size has had on each of these architectures, as its optimal size has a 
major impact on the usefulness of each implementation. Fig.  5 shows 
the evolution of all metrics used as the batch size grows on each 
architecture for the Spanish dataset. As it can be observed from this 
figure, regardless of the architecture, the use of a smaller batch size 
leads to the best results, with the best model always obtained through 
the use of a batch size of 1 or 2. The use of larger batch sizes (32 and 
64) led to a less accurate model, particularly in the case of the LSTM, 
where higher batch sizes provided worse models than the simple MLP 
architecture with similar batch size. It should be remarked that, for 
all metrics, the LSTM architecture usually delivered the most accurate 
forecast, closely trailed by the MLP architecture.

Fig.  6 shows the evolution of metrics as batch size increases for the 
Uruguayan dataset. In this case, the results differ slightly. This is pri-
marily because RNNs perform significantly worse on this dataset, likely 
due to the smaller number of available samples. However, the best 
model for the MLP architecture is still achieved with a relatively small 
batch size, although most results are fairly close with the exception of 
the largest batch size with the LSTM network, which performs much 
worse than the others.

3.6. Advantages and limitations of the proposed approach

One of the major advantages of using the proposed approach is 
how much faster we can find the optimal hyperparameters for a neural 
network, as it was shown in Section 3.4. This has many advantages, 
as it allows researchers and practitioners do to a more exhaustive 
search to find the optimal model in the lowest amount of time pos-
sible. Furthermore, depending on the application for which they are 
used, some other advantages may arise. For example, in our energy 
forecasting case study, the training could be done in a cloud service. 
Then, once trained, the models could be sent to edge devices or smart 
meters that can be used for inference purposes without the need to 
train an individual model per smart meter with limited resources and 
facilitating its use in any other advanced analytics provided to the 
customer at the edge (energy disaggregation, demand response, pricing, 
recommender systems, etc.).

However, even though the proposed approach should work greatly 
in a large number of applications, the major drawback of the proposed 
approach is how it scales as the complexity of the datasets and neural 
networks rises. This is mainly due to the fact that more complex 
datasets will usually require neural networks with a larger number of 
trainable parameters (i.e., computer vision problems) and there will 
be a breakpoint where the batch size and the number of trainable 
parameters per layer is large enough that GEMM-based approaches can 
use optimally all the GPU resources or we cannot fit in the GPU memory 
all of the data structures required for our approach. In those cases, the 
highly optimized GEMM-based approaches available in frameworks like 
TensorFlow or PyTorch should be preferred. Nevertheless, there will 
still be some instances in which depending on the data, the number of 
neural networks evaluated and their complexity, it may still be more 
beneficial to use our approach multiple times with a reduced number of 
neural networks trained simultaneously in order to fit them in memory.

4. Conclusion

This paper presented a novel approach to train simultaneously 
multiple neural networks with different hyperparameters in parallel 
with the GPU, allowing researchers and practitioners to quickly find 
the optimal topology for a neural network model. The proposed method 
was evaluated with three different neural network architectures (MLP, 
Elman and LSTM) using energy demand data from Spain and Uruguay. 

https://osf.io/r7djh/
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Table 4
Execution times (in seconds) and speedups between the studied approaches for the Uruguayan dataset.
 Architecture Batch size Proposed approach TF-B PyTorch Speedup

vs
TF-B

Speedup
vs
PyTorch

 

MLP

64 0.64 343.40 133.48 536.56 208.56  
 32 0.35 373.73 143.68 1067.8 410.51  
 16 0.40 430.40 139.83 1076 349.58  
 8 0.54 540.72 183.44 1001.33 339.70  
 4 0.84 762.29 292.63 907.49 348.37  
 2 1.58 1204.38 511.25 762.27 323.58  
 1 2.99 1872.50 678.46 626.25 226.91  
 

Elman

64 21.88 872.61 147.21 39.88 6.73  
 32 20.80 1418.62 157.18 68.20 7.56  
 16 20.43 2434.45 205.57 119.16 10.06  
 8 19.74 4571.34 294.42 231.58 14.91  
 4 18.26 8696.95 517.69 476.28 28.35  
 2 17.03 17317.70 953.76 1016.89 56.00  
 1 17.35 20204.14 1753.18 1164.50 101.04  
 

LSTM

64 231.13 487.29 165.25 2.11 0.71  
 32 230.64 631.06 197.33 2.74 0.85  
 16 230.47 923.17 245.04 4.01 1.06  
 8 230.86 1495.64 386.07 6.48 1.67  
 4 231.45 2618.77 685.38 11.31 2.96  
 2 231.61 4894.78 1274.49 21.13 5.50  
 1 233.94 6483.59 2392.55 27.74 10  
Fig. 5. Evolution of metrics with batch size for the Spanish dataset.
The developed implementation was compared against two mainstream 
ANN frameworks in terms of training time, TensorFlow and PyTorch. 
Furthermore, we evaluated each neural network architecture with dif-
ferent batch sizes, allowing us to study the impact of batch size se-
lection in accuracy metrics and allowing us to see the evolution in 
9 
speedup as the batch size increases. After evaluating the developed 
implementation we have learned that:

• It was faster to train multiple neural networks with our implemen-
tation than using other approaches until reaching a breakpoint in 
which a neural network may be so big that either all resources 
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Fig. 6. Evolution of metrics with batch size for the Uruguay dataset.
of the GPU are already used to train one neural network or the 
data structures for multiple neural networks no longer fit in the 
GPU memory. This interplay between speedup and complexity 
can be seen through the comparison of batch sizes, as a larger 
batch size implies larger data structures and a higher amount of 
computations that can be done in parallel to train just one neural 
network.

• The most accurate models across each neural network architec-
ture were generally achieved with lower batch sizes.

The implementation presented in this paper provided an exceptional 
training speed, yielding results that were up to 3400 times faster than 
conventional methods using TensorFlow. This remarkable advantage 
positions our implementation as an ideal choice for scenarios akin to 
the one examined in this study, where the number of input features is 
relatively modest. This will usually be the case for most tabular datasets 
and many time series applications. However, the main limitation of 
our approach is that it does not scale well in scenarios with larger 
amounts of data. This implies that our implementation may not be 
optimal for applications characterized by a vast amount of data, such 
as those found in Computer Vision or Natural Language Processing. In 
these instances, where one neural network saturates most of the GPU’s 
resources, the TensorFlow implementation excels as it was designed 
specifically for that use case. Consequently, the performance of our 
proposed implementation is contingent on hardware specifics and data 
volume. Thus, the closer we are to using all CUDA cores or all fast 
memory locations with just one neural network, the worse our imple-
mentation will work. Nonetheless, the proposed implementation will 
still be the best choice for a large number of applications that do not 
require processing massive amounts of data simultaneously.
10 
Future works may consider the development and evaluation of 
parallelized algorithms to guide the hyperparameter search (i.e., meta-
heuristic algorithms) or extend the methodology to other neural net-
work architectures.
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