
Expert Systems With Applications 279 (2025) 127386

A
0
n

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

A parallel approach to accelerate neural network hyperparameter selection

for energy forecasting
D. Criado-Ramón a ,∗, L.G.B. Ruiz b , M.C. Pegalajar a
a Department of Computer Science and Artificial Intelligence, University of Granada, Granada, Spain
b Department of Software Engineering, University of Granada, Granada, Spain

A R T I C L E I N F O

Keywords:
Neural networks
Energy
Time series forecasting
Parallel computing
Hyperparameter selection

 A B S T R A C T

Finding the optimal hyperparameters of a neural network is a challenging task, usually done through a trial-
and-error approach. Given the complexity of just training one neural network, particularly those with complex
architectures and large input sizes, many implementations accelerated with GPU (Graphics Processing Unit)
and distributed and parallel technologies have come to light over the past decade. However, whenever the
complexity of the neural network used is simple and the number of features per sample is small, these
implementations become lackluster and provide almost no benefit from just using the CPU (Central Processing
Unit). As such, in this paper, we propose a novel parallelized approach that leverages GPU resources to
simultaneously train multiple neural networks with different hyperparameters, maximizing resource utilization
for smaller networks. The proposed method is evaluated on energy demand datasets from Spain and Uruguay,
demonstrating consistent speedups of up to 1164x over TensorFlow and 410x over PyTorch.
1. Introduction

In the last decade, neural networks have become one of the most
relevant Artificial Intelligence (AI) models of our time, being used with
astonishing results in a wide range of applications such as computer
vision (Voulodimos, Doulamis, Doulamis, Protopapadakis, et al., 2018),
time series forecasting (Hewamalage, Bergmeir, & Bandara, 2021),
speech recognition (Nassif, Shahin, Attili, Azzeh, & Shaalan, 2019)
or natural language processing (Alshemali & Kalita, 2020). In the
energy sector, many neural network architectures have been used to
forecast energy consumption in households, public buildings and entire
markets, among others. However, the prevailing trend in recent years
has been the use of Deep Neural Networks, usually incorporating the
Long-Short Term Memory (LSTM) architecture in at least one of the
hidden layers. In fact, this architecture is featured in almost 50% of
the publications that used a Recurrent Neural Network (RNN) to predict
energy consumption in buildings (Lu, Li, & Lu, 2022).

Several recent works show that the use of LSTM neural networks
or hybrid models comprised of at least one LSTM layer usually outper-
forms other machine learning approaches to forecast energy consump-
tion. Kim, Choi, Jeon, and Liu (2019) proposed a hybrid model with
LSTM and Convolutional Neural Network (CNN) that showed better
results than ARIMA and a combination of LSTM and Seq2Seq in energy
demand data from Korea’s electric grid. Another hybrid model was

∗ Corresponding author at: Department of Software Engineering, University of Granada, Granada, Spain.
E-mail addresses: dcriado@ugr.es (D. Criado-Ramón), bacaruiz@ugr.es (L.G.B. Ruiz), mcarmen@decsai.ugr.es (M.C. Pegalajar).

proposed by Yan, Li, Ji, Qi, and Du (2019) to forecast energy consump-
tion in individual households. This hybrid model featured LSTM neural
networks with a Stationary Wavelet Transform and achieved more
accurate forecasts than the standalone LSTM, hybrid models combining
LSTM and CNN, and Support Vector Regression. Torres, Martínez-
Álvarez, and Troncoso (2022) presented a deep LSTM architecture to
forecast energy demand on the Spanish electric grid. The results showed
that the deep LSTM neural network outperformed other deep neural
network architectures and other Machine Learning models. Jin et al.
(2022) used a hybrid model of Singular Spectrum Analysis and parallel
LSTMs to forecast energy consumption of multiple UK households at
different sampling rates. Rick and Berton (2022) presented a different
hybrid model comprised of CNNs, LSTMs and autoencoders, during
the same year, to study energy consumption in the grid of a Brazilian
energy distributor.

In closely related fields, such as power generation forecasting, hy-
brid models featuring the LSTM architecture have also become the state
of the art. Zhou et al. (2019) evaluated the enhancement provided by
the inclusion of an attention mechanism in the LSTM architecture to
forecast photovoltaic power generation. Wan, Chang, AL-Bukhaiti, and
He (2023) applied a similar idea to simultaneously forecast power and
heat with a hybrid model that combines CNN, LSTM and attention,
outperforming other deep learning models.
https://doi.org/10.1016/j.eswa.2025.127386
Received 25 October 2024; Received in revised form 19 March 2025; Accepted 21
vailable online 31 March 2025
957-4174/© 2025 The Authors. Published by Elsevier Ltd. This is an open access
c/4.0/).
March 2025

article under the CC BY-NC license (http://creativecommons.org/licenses/by-

https://www.elsevier.com/locate/eswa
https://www.elsevier.com/locate/eswa
https://orcid.org/0000-0003-3030-792X
https://orcid.org/0000-0001-6716-5115
https://orcid.org/0000-0001-9408-6770
mailto:dcriado@ugr.es
mailto:bacaruiz@ugr.es
mailto:mcarmen@decsai.ugr.es
https://doi.org/10.1016/j.eswa.2025.127386
https://doi.org/10.1016/j.eswa.2025.127386
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

D. Criado-Ramón et al. Expert Systems With Applications 279 (2025) 127386
Nonetheless, there are also other scenarios where simpler neural
network architectures are a better fit for the problem, particularly
in cases where the amount of data available to train the model is
limited. Manno, Martelli, and Amaldi (2022) showed how a simpler
feed-forward neural network with one hidden layer could provide
better hourly forecasts than LSTM and other machine learning models
in three energy datasets, and Maragkos, Tzelepi, Passalis, Adamakos,
and Tefas (2022) showed how a simple multilayer perceptron (MLP)
with two hidden layers could outperform the deep pre-trained model
ResNetPlus to forecast energy consumption in the Greek market.

Given the large variety of ML models that can be applied to pro-
duce accurate forecasts and the large search space of hyperparameters,
finding the optimal model for a specific task can be challenging and
time-consuming, as they are usually evaluated with a trial-and-error
approach. This can be done either exhaustively over a selected range
of hyperparameters (‘‘grid search’’) or guided by some optimization
algorithm (Luo & Oyedele, 2021). This large search space for hyper-
parameters in conjunction with the slow training time of some of the
most complex models has led to the development of specialized imple-
mentations that leverage specific hardware to accelerate the training
process.

A noteworthy example of this trend is the prevalent use of Graph-
ics Processing Units (GPUs) for training machine learning models.
Nowadays, most machine learning models, particularly Artificial Neu-
ral Networks, leverage GPUs for efficient training. Initially, parallel
implementations were introduced for specific neural network archi-
tectures (Jang, Park, & Jung, 2008; Uetz & Behnke, 2009). However,
with the advent of user-friendly neural network frameworks such as
TensorFlow (Abadi et al., 2016) and PyTorch (Paszke et al., 2019), ef-
ficient implementations of the majority of neural network architectures
have become easily accessible. Furthermore, the significance of AI in
the GPU landscape has prompted manufacturers to offer libraries with
tailored primitives for deep learning (Appleyard, Kociský, & Blunsom,
2016; Chetlur et al., 2014), which these frameworks utilize to optimize
the training process. This inclination toward GPU utilization extends
beyond neural networks to include other traditional machine learning
models. For example, the cuML library (Raschka, Patterson, & Nolet,
2020), also developed by a GPU manufacturer, facilitates seamless
GPU-accelerated usage of various classic machine learning models, and
many recently proposed machine learning models have been released
with a GPU implementation available (Chen & Guestrin, 2016; Ke et al.,
2017).

However, despite the widespread availability of GPU implementa-
tions for many machine learning models, certain specialized use cases
still lack efficient implementations. For example, CUDA implementa-
tions of metaheuristic algorithms are not generally available and are
frequently studied in the AI literature for different purposes (Iruela,
Ruiz, Pegalajar, & Capel, 2020; Kintsakis, Chrysopoulos, & Mitkas,
2015; Ting, Ma, Kim, & Huang, 2016; Wang, Zhang, Huang, & Tsui,
2018; Zhuo, Zhang, Du, & Liu, 2023). In the context of Artificial Neural
Networks (ANNs), publicly accessible implementations are generally
tailored to enhance training speed with a large number of features
or neurons. These implementations often depend on the use of ef-
ficient parallelized General Matrix Multiplications (GEMM), typically
facilitated by linear algebra libraries provided by the hardware man-
ufacturer, such as cuBLAS (NVIDIA, 2023). Consequently, employing
these approaches for training small neural networks on GPUs might
result slower than using the CPU. One potential remedy for this chal-
lenge could involve increasing the batch size during training to operate
on larger matrices, assuming sufficient data is available. However, it is
widely recognized that an excessively large batch size can compromise
accuracy, leading to poorer generalization (Keskar, Mudigere, Nocedal,
Smelyanskiy, & Tang, 2017).

Another prospective solution could involve leveraging GPU re-
sources to simultaneously train, in parallel, multiple neural networks
with different hyperparameters, which would provide a better GPU
2
utilization than using the entire computational power of a GPU to train
a single small neural network. Notably, the application of GPUs under
these circumstances has not been thoroughly examined in the current
literature and the implementations provided by the mainstream neural
network frameworks are limited for this use case, as they are optimized
to train one large model. Therefore, in this study, we aim to address
this gap by developing and evaluating an efficient GPU implementation
capable of training multiple shallow neural networks simultaneously,
each with different hyperparameters. Our evaluation will focus on
energy forecasting data, where the number of input features is typically
relatively low, involving only the previous number of time steps used
for the forecast and a few exogenous variables like temperature. Thus,
this paper strives to contribute to the existing body of knowledge and
addresses the following research questions.

• Is it faster to train simultaneously multiple neural networks in the
GPU or use the optimized implementation from libraries such as
TensorFlow or PyTorch to accelerate the training of each neural
network?

• How do the batch size and complexity of each neural network
affect the results?

These questions will be solved with a real-case study with energy
demand data from Spain and Uruguay, comparing the time required to
find the optimal architecture using our approach with TensorFlow and
PyTorch.

The remainder of this paper is structured as follows. Section 2
presents a brief introduction to the CUDA architecture, the neural
networks used, and an explanation of our approach. Section 3 presents
and discusses the results obtained. Lastly, Section 4 draws the main
conclusions from our work.

2. Methodology

2.1. The CUDA architecture

Although Graphics Processing Units (GPUs) were initially created
to accelerate graphical computation, their massively parallel GPU ar-
chitecture greatly benefited many other general-purpose applications.
Compute Unified Device Architecture (CUDA) was the first proposal
of a language for General-Purpose GPU (GPGPU) made by NVIDIA for
their graphics cards. The creation of this GPGPU language facilitated
substantially the development of GPGPU applications as previously
they had to be written through assembly or graphical APIs.

The CUDA language is an extension of the C/C++ language that
adds additional syntax to indicate the operations the threads of the
GPU should do. This is mainly done through special functions called
‘‘kernels’’ executed simultaneously by all threads used. Whenever a
kernel is launched, the programmer must specify the number of blocks
and the number of threads on each block that should execute the
kernel. At a high level of granularity, all threads within the same
block have additional advantages as they are executed on the same
streaming multiprocessor. Each streaming multiprocessor has a unique
set of cores, registers, cache memory, and a scheduler. This allows all
threads within the same block to cooperate faster through the use of
a programmed-managed part of the L1 cache memory called ‘‘shared
memory’’ and a synchronization operation available for all threads
of the block. If there is not enough work to use an entire streaming
multiprocessor, the scheduler may run multiple blocks concurrently in
the same streaming multiprocessor, even from different kernels. On
the other hand, at the smallest level of granularity, the CUDA cores
use a Single Instruction Multiple Threads (SIMT) architecture where a
‘‘warp’’ (32 contiguous threads) will always execute the same instruc-
tion. This means that in any instance in which the kernel code branches
(e.g., if-else statements), the performance may be worse as it may
require the entire warp to execute all branches before continuing with

D. Criado-Ramón et al. Expert Systems With Applications 279 (2025) 127386
Fig. 1. Relationship between the CUDA software-level abstractions and the GPU hardware.
the following instruction and, as such, they should be avoided as long
as possible. Fig. 1 illustrates the relationship between the abstractions
utilized by the programmer and the corresponding hardware. When
launching the kernel, the programmer specifies the grid (number of
blocks and threads per block), and that grid is executed by an entire
CUDA-capable GPU device. At a lower granularity level, each of the
blocks that compose that grid will be executed in one of the Streaming
Multiprocessors available in that GPU device. At the lowest level of
granularity, each of the threads within the block will be executed
on one of the CUDA cores available on the Streaming Multiprocessor
assigned to its block.

One of the most common bottlenecks in GPU-based applications are
slow memory accesses. Thus, understanding the GPU memory hierarchy
is extremely important to ensure peak performance. Fig. 2 presents
the memory hierarchy of the CUDA-capable GPU device employed
in our experimentation. The figure is organized to showcase memory
locations with the slowest access at the top, gradually progressing
to those with the fastest access as we move downward. The slowest
access occurs with data stored in the CPU/motherboard RAM, as it
necessitates traversing the PCIe connection and traversing all memory
locations within the GPU. Consequently, transfers of data between the
CPU and GPU are minimized as much as possible. In fact, they are
done only twice in many applications. The initial transfer occurs from
the CPU/Motherboard to the GPU, facilitating the loading of all data
necessary for computations, such as a dataset. The second transfer
takes place after completing all computations, ensuring that the end
user receives the computation results. This is essential since the output
needs to reside in the CPU/Motherboard for the end user to view or
store the output. The main on-chip memory on the GPU is the ‘‘global
3
memory’’, serving as the principal storage location for data within the
GPU. As such, it has the largest store capacity, but it is the slowest
location inside the GPU. Data that needs to be exchanged between
the CPU and the GPU or between multiple Streaming Multiprocessors
(or blocks), must be stored into global memory. The next level in the
memory hierarchy is the cache memory. There are two levels of cache
memory (L1 and L2). The L2 cache is a slightly slower type of cache
memory that has a larger storage capacity and it is shared across all
streaming multiprocessors. The L1 cache is the fastest memory location
besides registers, as it is local to each streaming multiprocessor. Thus,
data in the L1 cache can only be accessed by threads within the
same block, making it an ideal location in workflows that require
shared memory access from multiple threads within the same block.
In fact, programmers may specify within the kernel the amount of
shared memory required and directly manage access to this memory
without having to rely on compiler optimizations. Lastly, the use of
registers is usually limited to the data that is required for the current
computation. Nonetheless, the optimizer may select specific variables
and small arrays local to a thread to store them in registers if sufficient
space is available, removing the need of memory accesses until all
computations with that data have finished.

2.2. Artificial neural networks (ANNs)

ANNs are computational models inspired by the human brain. They
contain many computational nodes denominated ‘‘neurons’’ structured
in layers. These neurons are interconnected with other neurons and
each connection is associated with a weight. Each neuron computes the

D. Criado-Ramón et al. Expert Systems With Applications 279 (2025) 127386
Fig. 2. A simplified representation of the CUDA memory hierarchy for the RTX 6000
Ada.

weighted sum of the outputs of the previous layers with the weights of
the connections. Furthermore, a non-linear function is usually applied
to the output of each neuron, allowing the neural network to learn
non-linear relationships. During training, the connection weights are
optimized to minimize a loss function between the outputs of the last
layer and the desired values.

The Multi-Layer Perceptron (MLP) (Almeida, 1997) is a simple and
widely used neural network. This architecture has one input layer, one
or more hidden layers, and one output layer. In this architecture, each
neuron 𝑗 from a layer performs the weighted sum of the output 𝑥 of
all neurons from the previous layer 𝑖 weighted by the weight of the
connection 𝑤(𝑖,𝑗). After that, to obtain the final output, the bias of that
neuron 𝑏𝑗 is added and the activation function 𝑓 is applied.

ℎ𝑗 = 𝑓 (
∑

𝑖
𝑤𝑖,𝑗𝑥𝑖 + 𝑏𝑗). (1)

The Elman neural network (Elman, 1990) is a Recurrent Neural
Network (RNN) that includes a new kind of layer: the context layer.
RNNs are capable of processing sequences of variable length through
the use of recurrent connections between the neurons. In the Elman
Neural Network, there will be as many context layers as hidden layers.
Each context neuron copies the output of each hidden neuron, which
will be used as additional input to the hidden layer along the context
weights for the next element of the sequence. Mathematically, this can
be expressed as follows:
ℎ𝑗 (𝑡) = 𝑓 (𝑤𝑗𝑥(𝑡) + 𝑢𝑗ℎ(𝑡 − 1) + 𝑏𝑗). (2)

where ℎ𝑗 (𝑡) is the output of the hidden neuron 𝑗 for the element in
position 𝑡 of the sequence, 𝑤𝑗 are the weight between the hidden
neuron and all neurons of the previous layer, 𝑥(𝑡) are the output of this
previous layer for the element 𝑡 of the sequence, 𝑢𝑗 are the recurrent
weights between the context neurons and the neuron 𝑗, ℎ(𝑡−1) are the
hidden outputs for the previous element of the sequence and 𝑏𝑗 is the
bias of the hidden neuron.
4
LSTM neural networks (Hochreiter & Schmidhuber, 1997) are an-
other RNN type that uses special neurons, denominated ‘‘LSTM cells’’
instead of hidden neurons. This type of neural network was created
to solve the vanishing gradient problem in RNN, an issue that arises
while training the neural network with backpropagation. The vanishing
gradient occurs because the gradient must be passed through all time
steps 𝑡 of the sequence and the activation functions will squash the
outputs to a limited range, usually between 0 and 1 (sigmoid), or
between −1 and 1 (tanh). Therefore, for a long sequence, the repeated
multiplication of a value below 1 will lead to a value closer and closer to
0, thus vanishing the gradient and making the neural network receive
minimal to no updates in those scenarios. To solve this issue, LSTM
neural networks incorporate two recurrent states: the hidden state ℎ𝑡
(for short-term memory) and the cell state 𝐶(𝑡) (for long-term memory).
Alongside both states, the LSTM neural network also incorporates three
gating mechanisms to regulate the information flow in the cell. The
input gate 𝑖(𝑡), determines how much information from the current step
in the sequence can be used to update the states. The forget gate 𝑓 (𝑡)
decides how much information from the previous cell state should be
forgotten. Lastly, the output gate 𝑜(𝑡) decides how much of the current
cell state is used to produce the hidden states. All of these gates have
a set of weights 𝑊𝑖|𝑓 |𝑜 to be learned and use a sigmoid activation
function, limiting the range of each value of the gate from 0 (blocking
information) to 1 (allowing all information through). Mathematically,
an LSTM cell works as follows:
𝑖𝑡|𝑓𝑡|𝑜𝑡 = 𝜎(𝑊𝑖|𝑓 |𝑜 ⋅ [ℎ(𝑡 − 1), 𝑥(𝑡)] + 𝑏𝑖|𝑓 |𝑜). (3)

𝐶(𝑡) = 𝑡𝑎𝑛ℎ(𝑊𝑐 ⋅ [ℎ(𝑡 − 1), 𝑥(𝑡)] + 𝑏𝑐). (4)

𝐶(𝑡) = 𝑓𝑡 ⋅ 𝐶(𝑡 − 1) + 𝑖𝑡 ⋅ 𝐶(𝑡). (5)

ℎ(𝑡) = 𝑜(𝑡) ⋅ 𝑡𝑎𝑛ℎ(𝐶(𝑡)). (6)

2.3. The proposed method

Fig. 3 shows the general idea of how the proposed method will run
inside a GPU. Since we want to find the optimal hyperparameters, we
developed one kernel that will train simultaneously multiple neural
networks at once. The selection of only using one kernel was made
to avoid the overhead of launching multiple kernels and the limitation
provided by the fact that the number of concurrent kernels in execution
may be lower than the number of streaming multiprocessors available.
Thus, if we were to launch one kernel per neural network, 14 streaming
multiprocessors would have remained completely idle during the entire
training process with the GPU we used. In the kernel proposed in our
method, each block will train a specific neural network, overcoming
these limitations. Each thread will, for the most part, perform the
computations related to one hidden neuron. If the number of threads
per block is smaller than the number of hidden units, the kernel will
do as many iterations as required to compute all the results from the
hidden neurons.

Before running the kernel, it is essential to initialize and allocate
most of the data structures in memory. Since many of these structures
are accessed by the CPU and undergo storage and retrieval only once,
they are allocated in global memory. This encompasses weights, biases,
intermediate outputs, and non-recurrent gradients. Recurrent gradients
are allocated in local arrays for each hidden neuron or thread, facil-
itating the utilization of registers when the dimension is sufficiently
low. All these data structures are organized in row-major order and
have dimensions in the following order: neural network size, batch
size (for intermediate results data structures only), lags (for recurrent
neural networks only) and hidden size. This is done to ensure that
all threads access contiguous positions in memory, since every thread
within the same block will need to access the same data structure in the
position corresponding to its hidden neuron. Thus, this configuration

D. Criado-Ramón et al. Expert Systems With Applications 279 (2025) 127386
Fig. 3. Distribution in blocks and threads of the proposed method.
minimizes the number of memory accesses required to load data from
other memory locations to the bare minimum.

After allocating these data structures, non-recurrent weights un-
dergo initialization using the Xavier-Glorot method (Glorot & Bengio,
2010), where each thread handles one element of the data structure at
the start of the kernel. Recurrent weights, on the other hand, are initial-
ized through the orthogonal method using CuPy’s (Nishino & Loomis,
2017) implementation of Singular Value Decomposition. Meanwhile,
biases are initialized to 0, except for those associated with the forget
gate of LSTMs, which are initialized to 1, following common practices.
These initialization techniques are the default for TensorFlow and were
used in all implementations to make the comparison fair.

Afterward, several arrays containing hyperparameters for each neu-
ral network are transmitted from the host to the GPU. In our imple-
mentation, there is an array for hidden sizes, another for learning rates,
and the last one for activation functions. Each of these arrays will have
as many values as neural networks need to be trained. Therefore, the
position 𝑖 in each array will indicate the value of its hyperparameter in
the 𝑖th neural network. Additionally, an array containing a permutation
per training epoch of the samples indexes is initialized using CuPy.
This array is used to avoid having to shuffle the array in memory, thus
allowing different neural networks to progress at a different pace. Once
this initialization progress is finished, the kernel will iterate over each
epoch and each sample of a batch.

In Fig. 4, the workflow of all threads within the same block is
illustrated, showing the tasks undertaken to process an entire batch.
First, each thread will do all the computations to compute the hidden
output of a neuron, storing the results in the corresponding array
for intermediate values. These computations are the weighted sum
of the output of the previous layer and the activation function. A
synchronization barrier is placed afterward to ensure that all hidden
outputs have been computed before proceeding to the next step. In the
case of RNNs, this first step is repeated until all lags from the input
sequence have been computed. Then, after the last synchronization
is done, the Harris’ (Harris et al., 2007) parallel reduction is used
with the final hidden states and the weights of the output layer to
compute each output neuron’s output efficiently. At this step, we start
5
computing the loss for this sample with one thread per time step
(output neuron) forecast, storing the loss for that sample in an array.
After a synchronization, each thread computes the loss at the hidden
layer by backpropagating the loss according to the chain rule with the
loss of the output layer, the output weights and the activation. Finally,
in RNNs, this process is repeated for all time steps and the next sample
inside the batch is processed.

After processing all samples within a batch, the weights and biases
are updated using the ADAM algorithm (Kingma & Ba, 2015). This
update is performed with the desired learning rate, using the previously
computed backpropagated loss and any other required intermediate
values and weights. During this process, each thread is responsible
for updating one neuron, and no synchronization is needed since all
necessary computations have been previously executed and stored,
mitigating any potential race conditions.

In the case of RNNs, additional local arrays are employed to store
recurrent gradients. These gradients pertain to the connections between
a hidden neuron and the context layer in the Elman network and
between a hidden LSTM unit and all recurrent connections through the
gates in the LSTM network. This design allows these recurrent gradients
to potentially be stored in registers if the number of hidden neurons in
the neural network is small enough.

Upon completing the weight and bias updates, the CUDA block’s
neural network can proceed to process the next batch without waiting
for all other neural networks to complete processing the same batch
since our approach does not require shuffling the samples in memory
thanks to the use of the data structure with the permuted indexes. The
source code used for this project can be found at https://github.com/
xkuzz/MultiNNCuda.

3. Results

3.1. Experimental setup

To assess the efficacy of our approach, we conducted a comparative
analysis against TensorFlow’s and PyTorch’s implementations on two
energy demand datasets, as outlined in the following subsection.

https://github.com/xkuzz/MultiNNCuda
https://github.com/xkuzz/MultiNNCuda
https://github.com/xkuzz/MultiNNCuda

D. Criado-Ramón et al. Expert Systems With Applications 279 (2025) 127386
Fig. 4. A visual representation of the work done by the threads inside a block to train a neural network.
Table 1
List of hyperparameters considered per ANN architecture in the grid
search procedure.
 Hyperparameter Range
 Hidden Neurons/Units {40, 41, 42,… , 127}
 Learning Rate {0.05, 0.01, 0.001, 0.0001}

It is worth emphasizing that these frameworks use distinct im-
plementations based on certain constraints and the ANN architecture
employed. Consequently, we divided our experiments into three dis-
tinct sets, each corresponding to a unique architecture with a specific
activation function (ReLU for MLP, tanh for Elman and LSTM RNNs).
These activation functions were selected in a preliminary study done
with TensorFlow, where we studied which activation function provided
the best results for each ANN architecture.

In each experiment, 348 ANN configurations were trained during 10
epochs using a grid search approach, with the hyperparameters speci-
fied in Table 1 in all implementations. These numbers were selected
to have a reasonable degree of variety in learning rate and number
of hidden neurons that are still within a reasonable boundary to work
well. These boundaries were selected to be neither too small nor too
big for the size of the problem studied based on some preliminary
studies with TensorFlow. Each experiment with the same 348 ANN
configuration was repeated per batch size studied (1, 2, 4, 8, 16, 32
and 64), ANN architecture, implementation and dataset.

The experimental setup used was comprised of a private cloud
server with two GPU nodes, two Xeon 4310 CPUs and 64 GB of RAM.
Each GPU node had an NVIDIA RTX A6000 ADA with 48 GB GDDR6
global memory and 18176 CUDA cores. In the case of our implementa-
tion, a kernel with half of the hyperparameters was sent to each GPU
and in the case of TensorFlow, we evaluated two different approaches.
In the first one (from now on, denominated ‘‘TF-A’’), TensorFlow was
allowed to use the full potential of a GPU to train a neural network
as fast as possible. Thus, two neural networks were being trained as
fast as possible at once (one on each GPU). However, since this was
not fully using all the resources of the GPU, we also evaluated another
approach (from now on denominated ‘‘TF-B’’), in which we tried to
train as many neural networks as possible simultaneously. We did this
by training 14 neural networks simultaneously between both GPUs (7
6
on each) in a multi-process approach, as adding more would create a
bottleneck in RAM memory, significantly slowing the training process.
This last approach was also used to evaluate the other mainstream
ANN framework, PyTorch, as it was substantially faster than the other
approach for the cases studied.

3.2. Datasets description

Two datasets were used to evaluate the proposed method: one
containing energy consumption data from Spain and another with
energy demand data from Uruguay.

The Spanish dataset includes energy consumption records from
January 1, 2007, to the present. This data was scraped from the Spanish
energy operator, initially with a 10-minute granularity, later updated
to a 5-minute granularity. While the dataset also provides additional
information on market prices, emissions, and energy generation, only
the energy consumption data was utilized, adhering to the preprocess-
ing pipeline outlined in Torres et al. (2022). This pipeline considers
data up to June 2016, with input sequences comprising 168 lags and a
forecast horizon of 24 observations.

The Uruguayan dataset provides hourly energy consumption data
aggregated from several smart meters from January 1, 2007, to De-
cember 31, 2014. In addition to energy consumption, it includes infor-
mation on temperature and holidays. Similar to the Spanish dataset,
this study focuses exclusively on energy consumption, treating it as
a univariate time series, as done in Pérez-Chacón, Asencio-Cortés,
Martínez-Álvarez, and Troncoso (2020).

For both datasets, the data was normalized to the range [0, 1] using
min–max normalization. The datasets were split into three partitions
while preserving chronological order. The first 70% of the data was
allocated for training and validation, with the remaining 30% reserved
for testing, which was used to generate the results presented in Sec-
tion 3.5. The validation set constituted the last 30% of the training
partition and was employed to select the best-performing architecture.

3.3. Metrics used

To measure the execution performance of each approach, we mea-
sure the total execution time of each algorithm per experiment (one
neural network architecture with a specific batch size). Additionally,

D. Criado-Ramón et al. Expert Systems With Applications 279 (2025) 127386
Table 2
Execution times (in seconds) and speedups between the studied approaches for the Spanish dataset.
 Architecture Batch

size
Proposed
approach

TF-A TF-B PyTorch Speedup
vs
TF-A

Speedup
vs
TF-B

Speedup
vs
PyTorch

MLP

64 2.36 1806.79 585.39 188.10 765.70 248.08 79.71
 32 2.40 3075.54 799.10 275.98 1281.08 332.86 114.96
 16 2.76 5895.01 1212.89 461.40 2139.24 440.15 167.43
 8 3.75 11435.87 2065.09 821.46 3051.88 551.11 219.22
 4 5.96 22626.11 3751.20 1517.55 3794.43 629.08 254.49
 2 11.19 38171.32 6153.01 2580.76 3411.81 549.96 230.67
 1 21.39 74304.23 11664.54 4452.37 3474.47 545.43 208.19

Elman

64 147.21 25969.14 4049.37 301.89 176.41 27.51 2.05
 32 146.36 51806.80 7676.64 493.05 353.98 52.45 3.37
 16 142.92 103078.45 14977.93 905.34 721.25 104.80 6.33
 8 139.46 205481.84 29390.57 1686.71 1473.38 210.74 12.09
 4 127.27 223986.12 58379.09 3205.68 1759.95 458.71 25.19
 2 117.05 416869.05 69425.95 6192.48 3561.43 593.13 52.90
 1 121.27 831297.82 138391.29 11718.23 6854.91 1141.18 96.63

LSTM

64 1641.00 5185.25 1666.22 410.44 3.16 1.02 0.25
 32 1628.41 9809.22 2762.19 680.05 6.02 1.70 0.42
 16 1629.18 18753.44 4867.63 1214.19 11.51 2.99 0.75
 8 1629.51 37053.42 8978.58 2260.94 22.74 5.51 1.39
 4 1638.66 72995.02 17236.88 4332.37 44.55 10.52 2.64
 2 1646.03 134860.80 31196.69 8379.62 81.93 18.95 5.09
 1 1657.07 244583.40 44268.82 16130.56 147.60 26.72 9.73
we measured the speedup obtained between our implementation and
TensorFlow approaches. Regarding the accuracy metrics, the follow-
ing metrics were used as they are utilized frequently for time series
forecasting.

The Mean Absolute Error (MAE) measures the average absolute
difference between the predicted and expected values.

𝑀𝐴𝐸 = 1
𝑁

𝑁
∑

𝑖=1
|𝑦𝑖 − 𝑦𝑖|. (7)

The Mean Absolute Percentage Error (MAPE) is a measure that
represents the MAE as a percentage according to the following formula.

𝑀𝐴𝑃𝐸 = 1
𝑁

𝑁
∑

𝑖=1

𝑦𝑖 − 𝑦𝑖
𝑦𝑖

. (8)

Lastly, the Root Mean Squared Error (RMSE) is a metric that gives
more weight to large errors, punishing harder forecast values far away
from the expected values, but also making it heavily influenced by
outliers.

𝑅𝑀𝑆𝐸 = 1
𝑁

√

√

√

√

𝑁
∑

𝑖=1
(𝑦𝑖 − 𝑦𝑖)2. (9)

For all these metrics, 𝑁 represents the total number of observations
of all samples, �̂� represents the predicted value, �̄� is the average of the
observations and 𝑦 represents the expected value. For all metrics except
𝑅2, a lower value indicates a better forecast.

3.4. Speedup analysis

Table 2 presents the time (in seconds) required to train all 348
ANN configurations across different architectures, batch sizes, and
implementations. As expected, our approach demonstrated a greater
speedup with smaller batch sizes.

For the MLP architecture, our approach consistently outperformed
mainstream frameworks, making it one of the ideal scenarios for its
use. Due to the simplicity of this ANN architecture, it is difficult to
fully utilize the GPU’s resources unless an extremely large batch size is
used, or a large number of neural networks are trained simultaneously.
Our approach delivered the fastest training times among all implemen-
tations, taking only 2.36 s for a batch size of 64 and 21.39 s for a batch
size of 1. Depending on the batch size, the speedup ranged from 248
7
to 545 times compared to TF-B, and from 79 to 254 times compared to
PyTorch.

As it could be expected, the use of TF-A, representing the classic
use of Tensorflow, where each neural network is trained using the full
potential of 1 GPU, led to extremely slow training regardless of the
ANN architecture, with a worse performance the lower the batch size,
as the number of operations that could be done in parallel would be
even smaller. Additionally, the PyTorch equivalent of TF-B consistently
outperformed its TensorFlow counterpart, reliably training multiple
models substantially faster regardless of the ANN architecture.

For the Elman architecture, due to the complex nature of the
recurrent connection, the time required to train the model with all
implementations was slower than the ones required to train MLPs,
as the inclusion of time-step dependencies involves a higher number
of operations and a mandatory synchronization before processing the
next time step. In particular, our approach offers a relatively fast
training time, between 117 and 147 s, while the best approach using
TensorFlow is between 27 and 1141 times slower, depending on the
batch size used, and the best approach using PyTorch is between 2 and
96 times slower.

For the LSTM architecture, PyTorch’s and ours implementation are
slower than for the Elman architecture, due to its more complex nature.
However, this is not the case for the TensorFlow implementation, where
LSTMs are faster than Elman networks. This performance difference is
due to TensorFlow’s use of a highly optimized CUDNN implementation
for LSTM networks (provided by GPU manufacturers) as long as certain
conditions are met, such as using the hyperbolic tangent activation
function. This same implementation is also used by the PyTorch library
for the computations of the LSTM layer.

Although one might expect both implementations to have similar
training times, the differences in how the frameworks operate, such
as PyTorch’s native support for asynchronous operations, result in Py-
Torch being faster than TensorFlow. It should also be noted that, while
the optimizations presented in Appleyard et al. (2016) are expected to
be utilized, the full implementation details are not publicly available.
Therefore, for this architecture, we observe results that are closer to
our approach, with some cases involving larger batch sizes where
our implementation is slower than PyTorch. For this architecture, our
approach was up to 26.72 time faster than TensorFlow and up to 9.73
times faster than PyTorch, although it was slower than PyTorch if the
batch size was 16 or higher.

D. Criado-Ramón et al. Expert Systems With Applications 279 (2025) 127386
Table 3
Detailed breakdown of execution time for the REE dataset.
 Architecture Batch

size
Data initializa-
tion/Transfer
(s)

Training
(s)

MLP

64 0.035 2.31
 32 0.035 2.35
 16 0.035 2.76
 8 0.034 3.71
 4 0.033 5.90
 2 0.033 11.13
 1 0.037 21.46

Elman

64 0.927 144.92
 32 0.964 144.48
 16 0.932 141.07
 8 0.862 134.80
 4 0.890 124.22
 2 0.811 114.57
 1 0.988 119.04

LSTM

64 3.15 1903.00
 32 3.14 1910.45
 16 3.18 1910.76
 8 3.07 1906.01
 4 3.16 1898.40
 2 3.39 1918.22
 1 3.04 1967.17

In general, as the batch size increases, it is expected that our
approach will provide lower speedup. This is because, in our approach,
each element of the batch is processed sequentially, and larger data
structures are required, leading to more cache misses. Therefore, there
will be a point where the performance of our approach falls behind
that of the TensorFlow and PyTorch implementations. This breakpoint
will be reached as complexity increases, either due to a larger batch
size or a more complex ANN topology, at which point our approach
may become slower. Therefore, the GPU specification, datasets, number
of configurations to evaluate and batch size are crucial factors to
determine whether our approach or using PyTorch would be more
effective.

Table 3 provides a detailed breakdown of the time spent on data
transfer, initialization of data structures, and model training in our
approach. As expected, the majority of time is devoted to model train-
ing across all architectures, as it is significantly more computationally
expensive than data initialization and transfer. Notably, the time re-
quired for initialization and data transfer to the GPU remains relatively
consistent across different batch sizes. However, a substantial differ-
ence emerges between architectures, ranging from 35 ms for the MLP
architecture to approximately 3.15 s for the LSTM architecture. This
increase is attributed to the LSTM’s larger and more complex data
structures, as well as the use of orthogonal initialization. The data in
this table was collected using the nsys profiling tool, with two nvtx
ranges to separate the initialization and data transfer phases from the
model training kernel covering the second time the method is run (the
first is a warm-up round to make sure that the CuPy compilation of the
kernel does not influence the result). Full profiling dumps are available
at https://osf.io/r7djh/.

To complement the study presented in the previous tables, Table
4 shows the same set of experiments conducted on the Uruguayan
dataset, with the exception of TF-A, which was excluded as it is
consistently slower than TF-B. Although this dataset comprises more
years, it has only hourly granularity, resulting in fewer samples com-
pared to the previous dataset. Consequently, training times are shorter
and our approach works slightly better, leading to bigger speedups.
Nonetheless, all the major conclusions drawn from the Spanish dataset
still hold true: our approach is consistently faster for MLP and Elman
architectures, PyTorch is consistently faster than TensorFlow, and for
the LSTM architecture, PyTorch performs slightly better at the largest
batch sizes studied, while our approach achieves up to a 10x speedup
at the lowest batch size.
8
3.5. Analysis of batch size impact in forecast accuracy

At last, we compare the results in terms of the accuracy of each
model. A first point of interest is to evaluate the impact the batch
size has had on each of these architectures, as its optimal size has a
major impact on the usefulness of each implementation. Fig. 5 shows
the evolution of all metrics used as the batch size grows on each
architecture for the Spanish dataset. As it can be observed from this
figure, regardless of the architecture, the use of a smaller batch size
leads to the best results, with the best model always obtained through
the use of a batch size of 1 or 2. The use of larger batch sizes (32 and
64) led to a less accurate model, particularly in the case of the LSTM,
where higher batch sizes provided worse models than the simple MLP
architecture with similar batch size. It should be remarked that, for
all metrics, the LSTM architecture usually delivered the most accurate
forecast, closely trailed by the MLP architecture.

Fig. 6 shows the evolution of metrics as batch size increases for the
Uruguayan dataset. In this case, the results differ slightly. This is pri-
marily because RNNs perform significantly worse on this dataset, likely
due to the smaller number of available samples. However, the best
model for the MLP architecture is still achieved with a relatively small
batch size, although most results are fairly close with the exception of
the largest batch size with the LSTM network, which performs much
worse than the others.

3.6. Advantages and limitations of the proposed approach

One of the major advantages of using the proposed approach is
how much faster we can find the optimal hyperparameters for a neural
network, as it was shown in Section 3.4. This has many advantages,
as it allows researchers and practitioners do to a more exhaustive
search to find the optimal model in the lowest amount of time pos-
sible. Furthermore, depending on the application for which they are
used, some other advantages may arise. For example, in our energy
forecasting case study, the training could be done in a cloud service.
Then, once trained, the models could be sent to edge devices or smart
meters that can be used for inference purposes without the need to
train an individual model per smart meter with limited resources and
facilitating its use in any other advanced analytics provided to the
customer at the edge (energy disaggregation, demand response, pricing,
recommender systems, etc.).

However, even though the proposed approach should work greatly
in a large number of applications, the major drawback of the proposed
approach is how it scales as the complexity of the datasets and neural
networks rises. This is mainly due to the fact that more complex
datasets will usually require neural networks with a larger number of
trainable parameters (i.e., computer vision problems) and there will
be a breakpoint where the batch size and the number of trainable
parameters per layer is large enough that GEMM-based approaches can
use optimally all the GPU resources or we cannot fit in the GPU memory
all of the data structures required for our approach. In those cases, the
highly optimized GEMM-based approaches available in frameworks like
TensorFlow or PyTorch should be preferred. Nevertheless, there will
still be some instances in which depending on the data, the number of
neural networks evaluated and their complexity, it may still be more
beneficial to use our approach multiple times with a reduced number of
neural networks trained simultaneously in order to fit them in memory.

4. Conclusion

This paper presented a novel approach to train simultaneously
multiple neural networks with different hyperparameters in parallel
with the GPU, allowing researchers and practitioners to quickly find
the optimal topology for a neural network model. The proposed method
was evaluated with three different neural network architectures (MLP,
Elman and LSTM) using energy demand data from Spain and Uruguay.

https://osf.io/r7djh/

D. Criado-Ramón et al. Expert Systems With Applications 279 (2025) 127386
Table 4
Execution times (in seconds) and speedups between the studied approaches for the Uruguayan dataset.
 Architecture Batch size Proposed approach TF-B PyTorch Speedup

vs
TF-B

Speedup
vs
PyTorch

MLP

64 0.64 343.40 133.48 536.56 208.56
 32 0.35 373.73 143.68 1067.8 410.51
 16 0.40 430.40 139.83 1076 349.58
 8 0.54 540.72 183.44 1001.33 339.70
 4 0.84 762.29 292.63 907.49 348.37
 2 1.58 1204.38 511.25 762.27 323.58
 1 2.99 1872.50 678.46 626.25 226.91

Elman

64 21.88 872.61 147.21 39.88 6.73
 32 20.80 1418.62 157.18 68.20 7.56
 16 20.43 2434.45 205.57 119.16 10.06
 8 19.74 4571.34 294.42 231.58 14.91
 4 18.26 8696.95 517.69 476.28 28.35
 2 17.03 17317.70 953.76 1016.89 56.00
 1 17.35 20204.14 1753.18 1164.50 101.04

LSTM

64 231.13 487.29 165.25 2.11 0.71
 32 230.64 631.06 197.33 2.74 0.85
 16 230.47 923.17 245.04 4.01 1.06
 8 230.86 1495.64 386.07 6.48 1.67
 4 231.45 2618.77 685.38 11.31 2.96
 2 231.61 4894.78 1274.49 21.13 5.50
 1 233.94 6483.59 2392.55 27.74 10
Fig. 5. Evolution of metrics with batch size for the Spanish dataset.
The developed implementation was compared against two mainstream
ANN frameworks in terms of training time, TensorFlow and PyTorch.
Furthermore, we evaluated each neural network architecture with dif-
ferent batch sizes, allowing us to study the impact of batch size se-
lection in accuracy metrics and allowing us to see the evolution in
9
speedup as the batch size increases. After evaluating the developed
implementation we have learned that:

• It was faster to train multiple neural networks with our implemen-
tation than using other approaches until reaching a breakpoint in
which a neural network may be so big that either all resources

D. Criado-Ramón et al. Expert Systems With Applications 279 (2025) 127386
Fig. 6. Evolution of metrics with batch size for the Uruguay dataset.
of the GPU are already used to train one neural network or the
data structures for multiple neural networks no longer fit in the
GPU memory. This interplay between speedup and complexity
can be seen through the comparison of batch sizes, as a larger
batch size implies larger data structures and a higher amount of
computations that can be done in parallel to train just one neural
network.

• The most accurate models across each neural network architec-
ture were generally achieved with lower batch sizes.

The implementation presented in this paper provided an exceptional
training speed, yielding results that were up to 3400 times faster than
conventional methods using TensorFlow. This remarkable advantage
positions our implementation as an ideal choice for scenarios akin to
the one examined in this study, where the number of input features is
relatively modest. This will usually be the case for most tabular datasets
and many time series applications. However, the main limitation of
our approach is that it does not scale well in scenarios with larger
amounts of data. This implies that our implementation may not be
optimal for applications characterized by a vast amount of data, such
as those found in Computer Vision or Natural Language Processing. In
these instances, where one neural network saturates most of the GPU’s
resources, the TensorFlow implementation excels as it was designed
specifically for that use case. Consequently, the performance of our
proposed implementation is contingent on hardware specifics and data
volume. Thus, the closer we are to using all CUDA cores or all fast
memory locations with just one neural network, the worse our imple-
mentation will work. Nonetheless, the proposed implementation will
still be the best choice for a large number of applications that do not
require processing massive amounts of data simultaneously.
10
Future works may consider the development and evaluation of
parallelized algorithms to guide the hyperparameter search (i.e., meta-
heuristic algorithms) or extend the methodology to other neural net-
work architectures.

Abbreviations

 AI Artificial Intelligence
 ANN Artificial Neural Network
 CNN Convolutional Neural Network
 CUDA Compute Unified Device Architecture
 GPU Graphics Processing Unit
 LSTM Long-Short Term Memory
 MAE Mean Absolute Error
 MAPE Mean Absolute Percentage Error
 ML Machine Learning
 MLP Multi Layer Perceptron
 RMSE Root Mean Squared Error
 RNN Recurrent Neural Network

CRediT authorship contribution statement

D. Criado-Ramón: Conceptualization, Methodology, Software, Val-
idation, Writing – original draft, Writing – review & editing. L.G.B.
Ruiz: Methodology, Writing – original draft, Writing – review & edit-
ing, Supervision. M.C. Pegalajar: Conceptualization, Methodology,
Writing – review & editing, Supervision, Project administration, Fund-
ing acquisition.

D. Criado-Ramón et al. Expert Systems With Applications 279 (2025) 127386
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

We acknowledge financial support from Ministerio de Ciencia e
Innovación (Spain) (Grant PID2020-112495RB-C21 funded by MCIN/
AEI /10.13039/501100011033).

Data availability

Data will be made available on request.

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., et al. (2016).
TensorFlow: Large-scale machine learning on heterogeneous distributed systems.
http://dx.doi.org/10.48550/arXiv.1603.04467, arXiv:1603.04467.

Almeida, L. B. (1997). Multilayer perceptrons. In Handbook of neural computation. IOP
Publishing Ltd and Oxford University Press.

Alshemali, B., & Kalita, J. (2020). Improving the reliability of deep neural networks in
NLP: A review. Knowledge-Based Systems, 191, Article 105210. http://dx.doi.org/
10.1016/j.knosys.2019.105210.

Appleyard, J., Kociský, T., & Blunsom, P. (2016). Optimizing performance of recurrent
neural networks on GPUs. http://dx.doi.org/10.48550/arXiv.1604.01946, CoRR
abs/1604.01946.

Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In Proceedings
of the 22nd ACM SIGKDD international conference on knowledge discovery and data
mining (pp. 785–794). New York, NY, USA: ACM, http://dx.doi.org/10.1145/
2939672.2939785.

Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran, J., Catanzaro, B., et al.
(2014). cuDNN: Efficient primitives for deep learning. http://dx.doi.org/10.48550/
arXiv.1410.0759, CoRR abs/1410.0759.

Elman, J. (1990). Finding structure in time. Cognitive Science, 14, 179–211. http:
//dx.doi.org/10.1016/0364-0213(90)90002-E.

Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feed-
forward neural networks. In Proceedings of the thirteenth international conference on
artificial intelligence and statistics (pp. 249–256). JMLR Workshop and Conference
Proceedings.

Harris, M., et al. (2007). Optimizing parallel reduction in CUDA. Nvidia Developer
Technology, 2(4), 70.

Hewamalage, H., Bergmeir, C., & Bandara, K. (2021). Recurrent neural networks for
time series forecasting: Current status and future directions. International Journal of
Forecasting, 37(1), 388–427. http://dx.doi.org/10.1016/j.ijforecast.2020.06.008.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation,
9, 1735–1780. http://dx.doi.org/10.1162/neco.1997.9.8.1735.

Iruela, J., Ruiz, L., Pegalajar, M., & Capel, M. (2020). A parallel solution with
GPU technology to predict energy consumption in spatially distributed buildings
using evolutionary optimization and artificial neural networks. Energy Conversion
and Management, 207, Article 112535. http://dx.doi.org/10.1016/j.enconman.2020.
112535.

Jang, H., Park, A., & Jung, K. (2008). Neural network implementation using CUDA and
OpenMP. In 2008 digital image computing: techniques and applications (pp. 155–161).
http://dx.doi.org/10.1109/DICTA.2008.82.

Jin, N., Yang, F., Mo, Y., Zeng, Y., Zhou, X., Yan, K., et al. (2022). Highly accurate
energy consumption forecasting model based on parallel LSTM neural networks.
Advanced Engineering Informatics, 51, Article 101442. http://dx.doi.org/10.1016/j.
aei.2021.101442.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., et al. (2017). Lightgbm:
A highly efficient gradient boosting decision tree. Advances in Neural Information
Processing Systems, 30, 3146–3154.

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M., & Tang, P. T. P. (2017).
On large-batch training for deep learning: Generalization gap and sharp minima.
In 5th international conference on learning representations, ICLR 2017, toulon, France,
April 24-26, 2017, conference track proceedings.

Kim, M., Choi, W., Jeon, Y., & Liu, L. (2019). A hybrid neural network model for power
demand forecasting. Energies, 12(5), http://dx.doi.org/10.3390/en12050931.
11
Kingma, D. P., & Ba, J. (2015). Adam: A Method for Stochastic Optimization. In
Y. Bengio, & Y. LeCun (Eds.), 3rd international conference on learning representations,
ICLR 2015, san diego, CA, USA, May 7-9, 2015, conference track proceedings.

Kintsakis, A. M., Chrysopoulos, A., & Mitkas, P. A. (2015). Agent-based short-term load
and price forecasting using a parallel implementation of an adaptive PSO-trained
local linear wavelet neural network. In 2015 12th international conference on the
European energy market (pp. 1–5). http://dx.doi.org/10.1109/EEM.2015.7216611.

Lu, C., Li, S., & Lu, Z. (2022). Building energy prediction using artificial neural
networks: A literature survey. Energy and Buildings, 262, Article 111718. http:
//dx.doi.org/10.1016/j.enbuild.2021.111718.

Luo, X., & Oyedele, L. O. (2021). Forecasting building energy consumption: Adaptive
long-short term memory neural networks driven by genetic algorithm. Advanced
Engineering Informatics, 50, Article 101357. http://dx.doi.org/10.1016/j.aei.2021.
101357.

Manno, A., Martelli, E., & Amaldi, E. (2022). A shallow neural network approach
for the short-term forecast of hourly energy consumption. Energies, 15(3), http:
//dx.doi.org/10.3390/en15030958.

Maragkos, N., Tzelepi, M., Passalis, N., Adamakos, A., & Tefas, A. (2022). Electric load
demand forecasting on greek energy market using lightweight neural networks. In
2022 IEEE 14th image, video, and multidimensional signal processing workshop (pp.
1–5). http://dx.doi.org/10.1109/IVMSP54334.2022.9816189.

Nassif, A. B., Shahin, I., Attili, I., Azzeh, M., & Shaalan, K. (2019). Speech recognition
using deep neural networks: A systematic review. IEEE Access, 7, 19143–19165.
http://dx.doi.org/10.1109/ACCESS.2019.2896880.

Nishino, R., & Loomis, S. H. C. (2017). Cupy: A numpy-compatible library for nvidia
gpu calculations. In 31st Confernce on Neural Information Processing Systems: vol.
151, (no. 7).

NVIDIA (2023). cuBLAS. https://docs.nvidia.com/cuda/cublas/. (Accessed: 01 Nov
2024).

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al. (2019).
PyTorch: An imperative style, high-performance deep learning library. In Advances
in neural information processing systems: vol. 32, (pp. 8024–8035). Curran Associates,
Inc.

Pérez-Chacón, R., Asencio-Cortés, G., Martínez-Álvarez, F., & Troncoso, A. (2020).
Big data time series forecasting based on pattern sequence similarity and
its application to the electricity demand. Information Sciences, 540, 160–174.
http://dx.doi.org/10.1016/j.ins.2020.06.014, URL https://www.sciencedirect.com/
science/article/pii/S0020025520306010.

Raschka, S., Patterson, J., & Nolet, C. (2020). Machine learning in Python: Main
developments and technology trends in data science, machine learning, and
artificial intelligence. Information, 11(4), http://dx.doi.org/10.3390/info11040193.

Rick, R., & Berton, L. (2022). Energy forecasting model based on CNN-LSTM-AE
for many time series with unequal lengths. Engineering Applications of Artifi-
cial Intelligence, 113, Article 104998. http://dx.doi.org/10.1016/j.engappai.2022.
104998.

Ting, T. O., Ma, J., Kim, K. S., & Huang, K. (2016). Multicores and GPU utilization
in parallel swarm algorithm for parameter estimation of photovoltaic cell model.
Applied Soft Computing, 40, 58–63. http://dx.doi.org/10.1016/j.asoc.2015.10.054.

Torres, J., Martínez-Álvarez, F., & Troncoso, A. (2022). A deep LSTM network for
the spanish electricity consumption forecasting. Neural Computing and Applications,
34(13), 10533–10545. http://dx.doi.org/10.1007/s00521-021-06773-2.

Uetz, R., & Behnke, S. (2009). Large-scale object recognition with CUDA-accelerated
hierarchical neural networks. In 2009 IEEE international conference on intelligent
computing and intelligent systems: vol. 1, (pp. 536–541). http://dx.doi.org/10.1109/
ICICISYS.2009.5357786.

Voulodimos, A., Doulamis, N., Doulamis, A., Protopapadakis, E., et al. (2018).
Deep learning for computer vision: A brief review. Computational Intelligence and
Neuroscience, 2018, http://dx.doi.org/10.1155/2018/7068349.

Wan, A., Chang, Q., AL-Bukhaiti, K., & He, J. (2023). Short-term power load forecasting
for combined heat and power using CNN-LSTM enhanced by attention mechanism.
Energy, 282, Article 128274. http://dx.doi.org/10.1016/j.energy.2023.128274.

Wang, L., Zhang, Z., Huang, C., & Tsui, K. L. (2018). A GPU-accelerated parallel jaya
algorithm for efficiently estimating li-ion battery model parameters. Applied Soft
Computing, 65, 12–20. http://dx.doi.org/10.1016/j.asoc.2017.12.041.

Yan, K., Li, W., Ji, Z., Qi, M., & Du, Y. (2019). A hybrid LSTM neural network for energy
consumption forecasting of individual households. IEEE Access, 7, 157633–157642.
http://dx.doi.org/10.1109/ACCESS.2019.2949065.

Zhou, H., Zhang, Y., Yang, L., Liu, Q., Yan, K., & Du, Y. (2019). Short-term
photovoltaic power forecasting based on long short term memory neural network
and attention mechanism. IEEE Access, 7, 78063–78074. http://dx.doi.org/10.1109/
ACCESS.2019.2923006.

Zhuo, Y., Zhang, T., Du, F., & Liu, R. (2023). A parallel particle swarm optimization
algorithm based on GPU/CUDA. Applied Soft Computing, 144, Article 110499.
http://dx.doi.org/10.1016/j.asoc.2023.110499.

http://dx.doi.org/10.48550/arXiv.1603.04467
http://arxiv.org/abs/1603.04467
http://refhub.elsevier.com/S0957-4174(25)01008-5/sb2
http://refhub.elsevier.com/S0957-4174(25)01008-5/sb2
http://refhub.elsevier.com/S0957-4174(25)01008-5/sb2
http://dx.doi.org/10.1016/j.knosys.2019.105210
http://dx.doi.org/10.1016/j.knosys.2019.105210
http://dx.doi.org/10.1016/j.knosys.2019.105210
http://dx.doi.org/10.48550/arXiv.1604.01946
http://dx.doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.48550/arXiv.1410.0759
http://dx.doi.org/10.48550/arXiv.1410.0759
http://dx.doi.org/10.48550/arXiv.1410.0759
http://dx.doi.org/10.1016/0364-0213(90)90002-E
http://dx.doi.org/10.1016/0364-0213(90)90002-E
http://dx.doi.org/10.1016/0364-0213(90)90002-E
http://refhub.elsevier.com/S0957-4174(25)01008-5/sb8
http://refhub.elsevier.com/S0957-4174(25)01008-5/sb8
http://refhub.elsevier.com/S0957-4174(25)01008-5/sb8
http://refhub.elsevier.com/S0957-4174(25)01008-5/sb8
http://refhub.elsevier.com/S0957-4174(25)01008-5/sb8
http://refhub.elsevier.com/S0957-4174(25)01008-5/sb8
http://refhub.elsevier.com/S0957-4174(25)01008-5/sb8
http://refhub.elsevier.com/S0957-4174(25)01008-5/sb9
http://refhub.elsevier.com/S0957-4174(25)01008-5/sb9
http://refhub.elsevier.com/S0957-4174(25)01008-5/sb9
http://dx.doi.org/10.1016/j.ijforecast.2020.06.008
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1016/j.enconman.2020.112535
http://dx.doi.org/10.1016/j.enconman.2020.112535
http://dx.doi.org/10.1016/j.enconman.2020.112535
http://dx.doi.org/10.1109/DICTA.2008.82
http://dx.doi.org/10.1016/j.aei.2021.101442
http://dx.doi.org/10.1016/j.aei.2021.101442
http://dx.doi.org/10.1016/j.aei.2021.101442
http://refhub.elsevier.com/S0957-4174(25)01008-5/sb15
http://refhub.elsevier.com/S0957-4174(25)01008-5/sb15
http://refhub.elsevier.com/S0957-4174(25)01008-5/sb15
http://refhub.elsevier.com/S0957-4174(25)01008-5/sb15
http://refhub.elsevier.com/S0957-4174(25)01008-5/sb15
http://refhub.elsevier.com/S0957-4174(25)01008-5/sb16
http://refhub.elsevier.com/S0957-4174(25)01008-5/sb16
http://refhub.elsevier.com/S0957-4174(25)01008-5/sb16
http://refhub.elsevier.com/S0957-4174(25)01008-5/sb16
http://refhub.elsevier.com/S0957-4174(25)01008-5/sb16
http://refhub.elsevier.com/S0957-4174(25)01008-5/sb16
http://refhub.elsevier.com/S0957-4174(25)01008-5/sb16
http://dx.doi.org/10.3390/en12050931
http://refhub.elsevier.com/S0957-4174(25)01008-5/sb18
http://refhub.elsevier.com/S0957-4174(25)01008-5/sb18
http://refhub.elsevier.com/S0957-4174(25)01008-5/sb18
http://refhub.elsevier.com/S0957-4174(25)01008-5/sb18
http://refhub.elsevier.com/S0957-4174(25)01008-5/sb18
http://dx.doi.org/10.1109/EEM.2015.7216611
http://dx.doi.org/10.1016/j.enbuild.2021.111718
http://dx.doi.org/10.1016/j.enbuild.2021.111718
http://dx.doi.org/10.1016/j.enbuild.2021.111718
http://dx.doi.org/10.1016/j.aei.2021.101357
http://dx.doi.org/10.1016/j.aei.2021.101357
http://dx.doi.org/10.1016/j.aei.2021.101357
http://dx.doi.org/10.3390/en15030958
http://dx.doi.org/10.3390/en15030958
http://dx.doi.org/10.3390/en15030958
http://dx.doi.org/10.1109/IVMSP54334.2022.9816189
http://dx.doi.org/10.1109/ACCESS.2019.2896880
http://refhub.elsevier.com/S0957-4174(25)01008-5/sb25
http://refhub.elsevier.com/S0957-4174(25)01008-5/sb25
http://refhub.elsevier.com/S0957-4174(25)01008-5/sb25
http://refhub.elsevier.com/S0957-4174(25)01008-5/sb25
http://refhub.elsevier.com/S0957-4174(25)01008-5/sb25
https://docs.nvidia.com/cuda/cublas/
http://refhub.elsevier.com/S0957-4174(25)01008-5/sb27
http://refhub.elsevier.com/S0957-4174(25)01008-5/sb27
http://refhub.elsevier.com/S0957-4174(25)01008-5/sb27
http://refhub.elsevier.com/S0957-4174(25)01008-5/sb27
http://refhub.elsevier.com/S0957-4174(25)01008-5/sb27
http://refhub.elsevier.com/S0957-4174(25)01008-5/sb27
http://refhub.elsevier.com/S0957-4174(25)01008-5/sb27
http://dx.doi.org/10.1016/j.ins.2020.06.014
https://www.sciencedirect.com/science/article/pii/S0020025520306010
https://www.sciencedirect.com/science/article/pii/S0020025520306010
https://www.sciencedirect.com/science/article/pii/S0020025520306010
http://dx.doi.org/10.3390/info11040193
http://dx.doi.org/10.1016/j.engappai.2022.104998
http://dx.doi.org/10.1016/j.engappai.2022.104998
http://dx.doi.org/10.1016/j.engappai.2022.104998
http://dx.doi.org/10.1016/j.asoc.2015.10.054
http://dx.doi.org/10.1007/s00521-021-06773-2
http://dx.doi.org/10.1109/ICICISYS.2009.5357786
http://dx.doi.org/10.1109/ICICISYS.2009.5357786
http://dx.doi.org/10.1109/ICICISYS.2009.5357786
http://dx.doi.org/10.1155/2018/7068349
http://dx.doi.org/10.1016/j.energy.2023.128274
http://dx.doi.org/10.1016/j.asoc.2017.12.041
http://dx.doi.org/10.1109/ACCESS.2019.2949065
http://dx.doi.org/10.1109/ACCESS.2019.2923006
http://dx.doi.org/10.1109/ACCESS.2019.2923006
http://dx.doi.org/10.1109/ACCESS.2019.2923006
http://dx.doi.org/10.1016/j.asoc.2023.110499

	A parallel approach to accelerate neural network hyperparameter selection for energy forecasting
	Introduction
	Methodology
	The CUDA architecture
	Artificial Neural Networks (ANNs)
	The proposed method

	Results
	Experimental setup
	Datasets description
	Metrics used
	Speedup analysis
	Analysis of batch size impact in forecast accuracy
	Advantages and limitations of the proposed approach

	Conclusion
	Abbreviations
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References

