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A B S T R A C T

The urban heat island effect and its disproportionate impact on vulnerable groups is a major challenge for cities.
The aim of this research is to identify heat-risk areas and to examine the effect of vegetation spatial patterns on
heat mitigation. The focus of the study is on Granada, Spain, and its metropolitan area, serving as a relevant case
study due to its status as a medium-sized city within the Mediterranean region, a location particularly vulnerable
to climate change. We used InVEST for urban heat island modelling and calculated heat vulnerability and
exposure indices. We also used Boosted Regression Trees to assess the importance of the spatial composition and
configuration of the vegetation in heat mitigation. We identify priority heat-risk areas for intervention high-
lighting regions where high heat exposure and vulnerability overlap. Our results show that the combination of
green cover above 35 % and mean patch size above 200 m2 maximized heat mitigation. However, because most
of the priority areas are located in densely populated and built-up areas, the suggested approach could be on
creating interconnections between smaller green infrastructures to increase their cooling capacity. We highlight
the need for urban planning strategies that prioritize heat-vulnerable populations, while optimizing the spatial
configuration of green infrastructure by focusing on Nature-based Solutions.

1. Introduction

How urbanization affects the climate is a well-known topic in sci-
entific literature and its effects on rising temperatures have been well
documented (Oke, 1973; Arnfield, 2003; Chakraborty and Qian, 2024).
The Urban Heat Island (UHI), where urban areas are significantly
warmer than the countryside, is one of the most visible aspects of human
impacts and many studies have explored its formation, magnitude,
configuration, consequences and evolution (Peng et al., 2012; Liu et al.,
2022; Ren et al., 2023; Chakraborty and Qian, 2024). UHI results from
the use of surfaces and materials that are impermeable and with low
albedo, which reduce evaporation rate and local evapotranspiration,
altering the radiative balance leading to more heat in urban areas (Oke,
1973; Arnfield, 2003). In addition to impermeability and the materials

used in urban areas, UHI is related to anthropogenic heat, pollution and
the structure and surface roughness of cities, which can, for example,
alter wind flow and facilitate heat retention (Armfield, 2003). The UHI
operates at different scales (Ren et al., 2023; Chakraborty and Qian,
2024), being correlated with health problems and ecological changes
(Kleerekoper et al., 2012; De Pauw et al., 2024; Iungman et al., 2023)
and worsened by circumstances that are the result of social injustice in
the cities (Jenerette et al., 2011; Rocha et al., 2024).

Higher temperatures in cities put the resident’s quality of life at risk
due to heat extremes, which tend to worsen (Coffel et al., 2017; Tuholske
et al., 2021) along with the intensification of the current climate crisis
scenario, which is projected to particularly increase severe extreme
events in urban areas (Peng et al., 2012; Li and Bou-Zeid, 2013). Heat
stress is already one of the major climate-related causes of human
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premature death in Europe (Romanello et al., 2023), and with heat-
waves becoming more severe and prolonged, more people is expected to
be at risk in the future (Perkins et al., 2012; Russo and Domeisen, 2023).
Health injuries caused by prolonged exposure to high temperatures
ranges from heat exhaustion, heatstroke, and cardiovascular and respi-
ratory diseases (Hess et al., 2023; Romanello et al., 2023). However,
despite a general increase in heat exposure worldwide, this phenomenon
does not occur homogeneously (Tuholske et al., 2021). Some de-
mographic groups are disproportionately more affected by high tem-
peratures and considered vulnerable, including the elderly, children,
low-income communities, and outdoor workers who often lack access
to adequate cooling mechanisms (Schwartz, 2005; Aldrich and Benson,
2007). Furthermore, urban areas with less tree cover and fewer green
spaces, which tend to be the most economically disadvantaged areas of
the city (e.g. Jiao et al., 2021; Pistón et al., 2022), experience intensified
UHI effects, compounding social inequalities in heat exposure and
health outcomes. Thus, the intersectionality of socioeconomic, racial,
age and gender factors add to vulnerability due to the higher risk of
exposure, highlighting the importance of assessing patterns of heat risk
to foster locally tailored adaptation strategies (Chakraborty et al., 2019;
Prosdocimi and Klima, 2020; Hsu et al., 2021; Chen et al., 2023;
Mashhoodi and Kasraian, 2024).

The Fifth Assessment of the IPCC adopted a framework to assess heat
risks as a function of vulnerability, exposure and hazard (see Oppen-
heimer et al., 2014). Recent studies have used this approach to map and
explore the relationship of heat impacts with demographic variables
(Chakraborty et al., 2019; Hsu et al., 2021; Chen et al., 2023). However,
while these studies provide crucial insights into heat vulnerability, they
often overlook the role of urban morphology and land cover charac-
teristics in shaping localized heat exposure (Marando et al., 2022).
Furthermore, most research does not usually address the intrinsic rela-
tionship between the cooling benefits provided by green infrastructures
(GI includes forest, parks, gardens, street trees), and the effects of heat
exposure (Zhou et al., 2021; Iungman et al., 2023; Georgescu et al.,
2024). Recent investigations at fine-scale spatial resolution stand out as
promising for mitigating risks to the population, like addressing in-
equalities in access to urban natural spaces in Shaoxing (Zhou, Chen &
Xu, 2022), investigating how to optimize the implementation of green
roofs in high-density urban areas in Xiamen Island (Dong et al., 2024) or
assessing heat exposure variation through time in US cities (Georgescu
et al., 2024). Given that one of the strategies most suggested is
increasing green infrastructure in cities as a Nature-based Solution
(Iungman et al., 2023), the search for understanding the relationship
between green infrastructures and heat risk locally could be an impor-
tant way of using more effective and equitable adaptive strategies to
reduce the risk (Iungman et al., 2023).

While increasing the percentage of green cover is consistently linked
to temperature reduction, the spatial arrangement of GI can significantly
influence their cooling impact (Li et al., 2011; Chen et al., 2014a,b; Kong
et al., 2014). For example, in over 90 European cities, increasing tree
coverage to 30 % has been shown to result in a temperature decline of
0.4 ◦C on average and to prevent more than 2000 premature deaths
during summer (Iungman et al., 2023). A growing body of literature has
shown that GI effects on temperature stem from different climatic con-
ditions, scale of analysis, and ecological context, along with the inter-
action between all these factors, resulting in a synergistic but variable
influence of landscape configuration (i.e. green cover and how it’s
distributed) on temperature reduction (Zhou et al., 2011; Li et al., 2013;
Li and Bou-Zeid, 2013; Silveira et al., 2024). However, most studies are
still conducted at the city level in Northern Europe, the United States or
Asia, (e.g., Bosch et al., 2021; Hamel et al., 2024; Kadaverugu et al.,
2021; Zawadzka et al., 2021). Despite these advancements, there is a
critical gap in research focusing on Mediterranean cities, where dense
urbanization and limited space for GI implementation require further
attention. Addressing these gaps through high-resolution data and
spatially explicit models can provide more tailored insights for cities

struggling with limited space for new green infrastructure (Marando
et al., 2022; Massaro et al., 2023). The effect of landscape structure and
the organization of GI on temperature mitigation could be considerably
more important in such densely packed cities, where the possibilities for
increasing green infrastructure and other Nature-based Solutions can be
challenging (Haaland and van den Bosch, 2015; Delgado-Capel and
Cariñanos, 2020).

This study applied a framework to identify heat-risk areas and assess
spatial vegetation patterns that will maximize heat mitigation using
high-resolution data and a spatially explicit model. Our main hypothesis
was that vegetation distribution is a determining factor in the mitigation
of the urban heat island. First, we focus on one of the regions most
threatened by desertification in Europe (i.e., Mediterranean region;
Mirzabaev et al., 2019) where studies are still scarce. Second, we widen
the lens from the city focus to the metropolitan area, while maintaining
a very fine spatial scale (2 m) to obtain highly precise results on heat
exposure and vulnerability hotspots that can be further translated into
actions. Thus, using the metropolitan area of Granada, Spain, as a case
study, this work aimed to map and evaluate heat risk indices. Using
biophysical data, like shade, crop coefficient, temperature, evapotrans-
piration and land use and land cover, we modelled the urban heat island
and calculated heat vulnerability and exposure indices to assess the
distribution and degree of people’s exposure and vulnerability to heat,
using the results of the InVEST urban cooling model, a widely used
model (Bosch et al., 2021; Hamel et al., 2024; Kadaverugu et al., 2021;
Zawadzka et al., 2021). We also quantified the relationship between
vegetation spatial patterns and heat mitigation using Boosted Regression
Trees. Identifying priority heat-risk exposure and vulnerability areas,
along with the optimal vegetation patterns to maximize cooling, is
crucial for urban stakeholders to prioritize areas for developing climate
adaptation and resilience strategies.

2. Methods

2.1. Study area

We considered the city of Granada as an excellent model because: 1)
it is in the Mediterranean basin, a place where climate impact is
particularly evident, 2) it is one of the Spanish cities with the highest
levels of atmospheric pollution, 3) it is a city with a medium-sized urban
area (about 200,000 inhabitants), surrounded by a belt of nearby towns
that approximately accumulate the same amount of population, forming
a metropolitan area of a size and structure very similar to many other
cities in the world. Specifically, the study includes municipalities within
the “plan for urban agglomeration of Granada” that we will call the “La
Vega de Granada Belt”, in southern Spain. La Vega de Granada Belt is
located at the foot of the Sierra Nevada, in a vast flood plain and close to
the Mediterranean coast. The study area includes 31 municipalities in
addition to the city of Granada itself. Since 1975, Granada (680 m.a.s.l.)
has been among the Spanish cities most affected by heat waves
(Delgado-Capel et al., 2023). The region has an altitude range up to
3100 m and a transitional climate between cold semi-arid climate (Bsk)
and the Mediterranean (Csa) due to its proximity to the coast and to the
vast mountain system of Sierra Nevada (Hidalgo-García and Arco-Díaz,
2022).

2.2. InVEST urban cooling model

The Integrated Valuation of Ecosystem Services and Tradeoffs soft-
ware (InVEST) provides spatially explicit models suitable to study
ecosystem services supply and their impact on our quality of life. Spe-
cifically, the spatial distribution of heat islands is modelled based on the
land use and land cover (LULC) of location (Natural Capital Project,
2024). The InVEST urban cooling model was designed and created as an
open-source tool to aid urban management and planning, adapted to
different data availability contexts, being able to spatially estimate air
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temperature through computer simulations (Hamel et al., 2021). In
addition to simplifying the assessment, with the urban cooling model it
is possible to evaluate the cooling capacity and evaluate scenarios with
different land use arrangements, which can directly help to assess, for
example, the effects of different green zone implementation strategies.
InVEST urban cooling model has been proposed as an alternative to
those models that require many parameters and are complex to use
(Hamel et al., 2021), however, there are still few studies evaluating its
performance (Bosch et al., 2021; Hamel et al., 2024; Kadaverugu et al.,
2021; Zawadzka et al., 2021), as well as extending the application of its
results to the construction of heat risk indices as a tool to aid city
decision-making. The model considers both local cooling contributions
and the influence of larger urban parks that extend their cooling effects
beyond their boundaries. It builds upon the methodology for estimating
the cooling capacity (CC; Eq. 1) of green infrastructure, in accordance
with Zardo et al. (2017), while incorporating additional parameters such
as albedo:

CCi = 0.6× shade+ 0.2× albedo+ 0.2× ETi (1)

CC is calculated by weighting three factors: shading, albedo and
evapotranspiration, the mechanisms used by vegetation to reduce its
surrounding temperature and regulate the radiative balance (Phelan
et al., 2015; Zardo et al., 2017; Natural Capital Project, 2024). Shading
represents tree canopy contributions, with values assigned based on tree
height (>2 m). Albedo captures surface reflectivity, where higher values
indicate greater solar reflectance and reduced heat absorption. ETi (as in
Eq. 2) is derived as the ratio of reference evapotranspiration (ET0) to the
maximum evapotranspiration (ET0max) within the area, where ET0 ac-
counts for land cover-specific evapotranspiration using crop
coefficients.

ETi = kc x ET0/ET0max (2)

To incorporate the heat mitigation effect of large green areas (>2 ha)
on those surrounding them, the model calculates the Heat Mitigation
Index (HMI). For pixels that are not affected by large green areas, HMI is
equivalent to CC. For pixels within the influence zone of large green
areas, the HMI is determined as a distance-weighted average (dcool) of
the cooling values of the green areas and the pixel, reflecting the
attenuation of cooling effects with distance. The model estimates land
use and cover effects on air temperature using LULC data and biophys-
ical data (Table 1). To estimate heat mitigation, the model incorporates
the urban heat island magnitude. The air temperature (Eq. 3) for each
pixel without mixing is calculated as:

Tairnomix = Tair, ref + (1 − HMI) × UHImax (3)

where the reference temperature is Tair,ref, and the maximum UHI ef-
fect is UHImax, defined as the difference between Tair,ref and the
highest observed temperature in the city. The modelled air temperature,
accounting for mixing Tair, is derived from Tairnomix by applying a
Gaussian smoothing function.

The InVEST urban cooling model is an open-source tool for urban
management and planning which is used to spatially estimate air tem-
perature through computer simulations (Hamel et al., 2021). The cool-
ing capacity of different land use arrangements and scenarios can be
assessed helping to predict the impacts of different green zone imple-
mentation strategies. It serves as an alternative to models that require
many parameters and are complex to use (Hamel et al., 2021). However,
there are still a few studies evaluating its performance (Bosch et al.,
2021; Hamel et al., 2024; Kadaverugu et al., 2021; Zawadzka et al.,
2021), as well as the suitability of its results as a trustworthy tool to
support city decision-making.

2.2.1. Model input variables and parameters
The INVEST urban cooling model requires three sets of inputs: a land

cover map, a table of biophysical properties, and rasters of climatic

Table 1
Summary of the datasets and parameters used in our study with their respective
references fromwhich data was retrieved. The names of datasets and parameters
follow the nomenclature provided by the InVEST Urban Cooling Model (see
Natural Capital Project, 2024). All data used in this work are available in Silveira
et al. (2025).

Dataset Description Source Resolution

SIPNA Land
use and
Land Cover
*

SIPNA Land Use and Land
Cover vector map of 2020
for the study area

Sistema de
Información sobre el
Patrimonio Natural de
Andalucía (SIPNA) (
REDIAM, 2023a)

1:10000

Buildings* The 2023 Base
Topográfica Nacional de
España vector dataset to
extract buildings to build
the LULC raster

Instituto Geográfico
Nacional (2023)

1:2000

Vegetation* 2020–2021 RGBlr
orthophotography to
derive green
infrastructure to build the
LULC raster

Plan Nacional de
Ortofotografía Aérea (
PNOA, 2020a)

0.25 m/
pixel

Height* LiDAR point-cloud dataset
for 2020 to assign height
values to buildings and
vegetation classes to build
the LULC raster

Plan Nacional de
Ortofotografía Aérea (
PNOA, 2020b)

0.5 point/
m

LST Raster of Land Surface
Temperature mean values
for 2020 retrieved from
Landsat 8 TIR bands

Google Earth Engine 30 m

ET0 Raster map of mean
reference
evapotranspiration values
for 2020

REDIAM (2023b) 500 m/
pixel

Tref Average air temperature
for 2020 in a non-urban
reference area (where
urban heat island effect is
not observed)

Agencia Española de
Meteorología
(AEMET) (https://ope
ndata.aemet.es/centr
odedescargas/inicio)

-

UHImax Magnitude of the heat
island. It was obtained
from the difference
between highest average
temperature from
climatological station
record and Tref

Red del Servicio de
Calidad Ambiental
(CMAOT)

-

Kc* Crop coefficient; indicates
the evapotranspiration
rate for plant organisms

Allen et al. (1998);
Grimmond & Oke
(1999)

-

Green area* * Indicates whether or not a
LULC class is considered a
green area (1 or 0)

Zawadzka et al.
(2021)

-

Shade* * Proportion of tree
vegetation cover (at least
2 m high)

Zawadzka et al.
(2021)

-

Albedo* * Proportion of solar
radiation that is reflected
by a surface.

Taha et al. (1988) -

dcool Cooling Distance.
Distance in meters where
GI greater than 2 ha has a
cooling effect

Natural Capital
Project (2024)

-

r Air mixing radius in
meters

Natural Capital
Project (2024)

-

Relative
weight

Shade, evapotranspiration
and albedo parameters
relative weight values
applied while calculating
the cooling capacity
index.

Natural Capital
Project (2024)

-

Population
density

Number of people per
census tract in 2020

Instituto de
Estadística y
Cartografía de
Andalucía (2020a)

-

Elderly
population

Proportion of people > 65
per census tract in 2020

Instituto de
Estadística y

-

(continued on next page)
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variables (Natural Capital Project, 2024). In this work, we built the
LULC raster required for the calculation of the HMI by fusing four
different datasets in QGIS 3.16 software (see Table 1): i) the 2020 SIPNA
land use and land cover vector dataset (scale 1:10000; REDIAM, 2023a)
to differentiate the built-up, crop, and non-crop vegetation classes from
other classes; ii) the 2023 Base Topográfica Nacional de España vector
dataset (scale 1:2000; Instituto Geográfico Nacional, 2023) to extract
buildings; iii) the 2020 RGBlr orthophotography (0.25 m/pixel; PNOA,
2020a) to derive green infrastructure (i.e., vegetation) and, iv) the 2020
LiDAR point-cloud dataset (0.5 points/m; PNOA, 2020b) to assign
height values to buildings and vegetation classes. In this study, the NDVI
was computed from Eq. (4), with NIR and R being spectral radiance
measurements in Near Infrared and red regions, respectively. Height
outliers such as undesired returns from birds, dust or other elements, or
sensor errors were removed using LAStools v180520. The combination
of LiDAR and NDVI data allowed us to differentiate the green infra-
structure into two classes: tree and shrub-herbaceous.

NDVI = NIR+ red/NIR − red (4)

For the biophysical table (Table 2), each LULC class was assigned
values of evapotranspiration coefficient (Kc), albedo, and shading, as
well as if it was considered as green infrastructure or not. The Kc
assigned to each LULC class was approximated from existing studies on
evapotranspiration for different vegetation types and on evaporation for
building areas (Allen et al., 1998; Grimmond and Oke, 1999). We ob-
tained albedo values from Taha et al. (1988), and shading variables and
green areas were based on the considerations of Zawadzka et al. (2021),
which includes vegetation and water bodies as green areas.

Lastly, the urban cooling model requires the potential evapotrans-
piration raster and temperature data to calculate the cooling effects and
simulate air temperature. We used 2020 evapotranspiration raster

derived from the Thornwhite method (500 m/pixel, REDIAM, 2023b).
This raster served as an input for the InVEST, quantifying the cooling
effect of vegetation via evapotranspirative processes. For reference
temperature (Tref), we used the annual mean temperature for the year
2020 in the Granada airport weather station (Agencia Estatal de, 2023),
a reference area outside the city with no urban heat island effect, as
recommended by Hidalgo-García and Arco-Díaz (2022). UHImax was
calculated with the difference between Tref and mean annual temper-
ature of a weather station in the central urban area of Granada (Red del
Servicio de Calidad Ambiental-CMAOT, 2020) (Fig. 1). All data used in
this work are available in Silveira et al. (2025).

2.2.2. InVEST validation
Validation is a crucial step in assessing the reliability of models,

especially as their use for decision-making grows. Despite InVEST
widespread application, few studies have validated the urban cooling
model (Bosch et al., 2021; Hamel et al., 2024; Kadaverugu et al., 2021;
Zawadzka et al., 2021), limiting our understanding of its applicability
across different urban contexts. Increasing validation efforts can help
refine the model’s assumptions and improve its predictive capabilities.
Furthermore, the validation process is a crucial step not only for
ensuring the robustness of our results but also for guiding the selection
of the most appropriate InVEST air temperature output for the subse-
quent heat risk index analyses conducted in this work.

To validate our urban cooling model, we performed a Pearson cor-
relation analysis at two levels: grid resolution (raster pixels) and census
tract level, the latter representing a scale pertinent to urban manage-
ment and policy decision-making. For grid resolution we have compared
the 2 m/pixel air temperature output grid from InVEST and the monthly
mean Land Surface Temperature (LST) values in 2020 at 30 m resolu-
tion, retrieved from Landsat 8 imagery obtained from Google Earth
Engine. For a fair comparison, we followed Zawadzka et al. (2020; 2021)
and reproduced for the air temperature output grid the processing using
Landsat 8 TIR bands at 100 m resolution, but then resampled to
30 m/pixel. Thus, our first step was to upscale the 2 m InVEST results to
100 m and then downscale them to the final 30 m resolution to be
comparable with the LST. For the census tract-level analysis, we
aggregated both the InVEST-modeled air temperature and the LST
values by averaging the data within each census tract. This aggregation
allowed us to compare the temperature estimates at a scale relevant to
urban planning and decision-making (Zawadzka et al., 2021). After
transforming the data to the same resolution, an overall validation was
performed using Pearson correlation to test the relationship between the
air temperature model results and the LST temperature values for all
levels. Additionally, we calculated heat indices based on the
InVEST-modeled temperature (HEinvest) and LST (HElst) and tested
their correlation. Finally, we conducted a Moran’s I analysis to evaluate
spatial autocorrelation in the results.

2.3. Heat Indexes and heat-risk areas

We focus on heat risk integrating exposure, vulnerability, sensitivity,
and adaptability. We have followed the framework proposed by globally
recognized reports from the IPCC, 2012 and ESPON Climate, 2022, as
well as other case studies like Wang et al. (2023) and Ye and Yang
(2025). Thus, we ensure consistency and which allows for an overall
comparison. Heat Vulnerability (HV) is related to sensitivity and
adaptability, and it measures "the propensity of a person or group that
influences their ability to anticipate, cope with, resist and recover from
the adverse effects of physical events" (IPCC, 2012). HV is calculated by
the following formula (Eq. 5):

HV = S − A (5)

Where S is sensitivity and A is adaptability. HV values were normalised
ranging from 0 to 1, using the maximum difference normalisation

Table 1 (continued )

Dataset Description Source Resolution

Cartografía de
Andalucía (2020a)

Medical
facilities

Number of medical
facilities, disregarding
dental clinics for 2023

Instituto de
Estadística y
Cartografía de
Andalucía (2020b)

-

Income Average family income
per census tract in 2020

Instituto Nacional de
Estadística (2020a)

-

Poverty Class of households with
an income of less than
60 % per census tract in
2020

Instituto Nacional de
Estadística (2020b)

-

* Datasets used to build final LULC raster map to run InVEST Urban Cooling
Model.
* * Values presented in the biophysical table and corresponding to each LULC

class.

Table 2
Biophysical data referring to land use and land cover classes. The “green area”
column describes whether the class will be considered (1) or not (0) as a green
area. Kc refers to the crop coefficient value to each LULC class. The albedo
column describes the proportion of solar radiation associated with each LULC
class.

LULC
code

LULC classes Shade Kc Albedo Green
Area

1 Grass/Shrubs 0 1 0.18 1
2 Trees 1 0.97 0.16 1
3 Build-up 0 0.25 0.14 0
4 Wetlands 0 0.65 0.09 0
5 Bare and sparse

vegetation
0 0.4 0.30 0

6 Buildings 0 0.01 0.20 0
7 Tree crops 1 1.4 0.20 1
8 Croplands 0 1.45 0.20 1

C. Silveira et al.
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method, and then categorised into five levels, i.e., very low (0–0.2), low
(0.2–0.4), moderate (0.4–0.6), high (0.6–0.8) and very high (0.8–1).
Adaptability (A) means "the potential of a system or population to
modify its features and behavior so as to better cope with existing and
anticipated stresses" (IPCC, 2012) and is measured as the availability of
medical resources and household income (Eq. 6):

A = 0.5Z(med) + 0.5Z(income) (6)

Where the number of medical facilities is Z(med), the household income
is Z(income) and 0.5 is the predefined multiplication factor. The other
component of HV, Sensitivity (S), is understood as "the capacity to be
harmed by extreme heat in terms of one’s health and physical well-
being" (IPCC, 2012). S depends on the proportion of the population
aged over 65 (> 65) and a measure of poverty (Eq. 7):

S = 0.5y(elderly) + 0.5y(poverty) (7)

Where y(elderly), is the proportion of persons aged > 65, and y(poverty)
is the class of households living below 60 % of the poverty threshold. 0.5
is a predefined multiplication factor used by Wang et al. (2023).

Furthermore, to assess the rate of population that inherently are
exposed to heat, we calculated the Heat Exposure (HE) index, meaning
"the presence of people that were exposed in high temperature and
thereby could suffer adverse impact by heat" (IPCC, 2012). This index
can be described by the equation (Eq. 8):

HE = 0.5× (po) + 0.5x(t) (8)

The HE index is a function of population density x(po) and temper-
ature, x(t). To validate InVEST air temperature results, we calculated HE
using two types of temperature: air modelled temperature by InVEST
(HEinvest) and LST (HElst).

Finally, we assessed the results generated by the InVEST model and
its applicability for mapping priority heat-risk areas. Priority areas are
considered targets for future intervention and were defined as the areas
where the most vulnerable and heat-exposed populations are located.
These priority areas were identified based on overlapping the 25 %
upper quartile values for heat vulnerability and both, HEinvest and
HElst (Herreros-Cantis et al., 2024). All the data used to calculate the
indexes were gathered from the sources detailed in Table 1.

2.4. The influence of green infrastructure spatial patterns on heat
mitigation

To assess the role of the spatial configuration and landscape structure
of green infrastructure on the mitigation of the heat island effect, six
landscape metrics were assessed. These metrics are usually categorized
as: configuration metrics, which characterize their spatial arrangement
(e.g., mean patch area, patch density, number of patches, clumpiness,
and edge density) and composition metrics, which quantify the abun-
dance of specific landscape elements (e.g., percentage of vegetation
cover; Table 3). These metrics were selected for their ability to capture
the distribution, fragmentation, size, and coverage of the green infra-
structure, as well as for their widespread use, interpretability, and low
redundancy (Zhou et al., 2011; Wang et al., 2014; Chen et al., 2014a).
We calculated the metrics using the landscapemetrics package
(Hesselbarth et al., 2019) in R v. 4.3.3.

To evaluate the influence of landscape metrics and their combined
effects on heat mitigation, we employed Boosted Regression Trees
(BRTs), a method that combines regression trees with a boosting tech-
nique to enhance predictive accuracy. BRTs offer several advantages,
such as identifying key variables, handling nonlinear relationships and
interactions, and accommodating various explanatory variables without

Fig. 1. Land use/land cover map (LULC) showing the LULC used in the modeling (A). Detail of the land use classes (B) and the location of the Granada metropolitan
area (C).
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needing data transformation or outlier removal (Elith et al., 2008). We
used heat mitigation as the response variable and landscape metrics as
explanatory variables. BRT’s strength lies in its capacity to capture in-
teractions based on tree size by sequentially summing numerous
regression trees (Elith et al., 2008). We fixed tree complexity (tc) to 20,
to test the improvement of the model’s predictive capacity, and tested
different combinations of bag fraction (bf), learning rate (lr) and step
size during the model’s parametrization process. These parameters
determine the contribution of each tree, the data added at each stage,
the number of trees that are generated, and the amount of nodes per tree
(Elith et al., 2008). Selection for bf, lr, and step size parameters is based
on the greatest explained deviation and at least 1000 trees (Table S1).
We then iteratively calibrated tc, testing values from 1 to 20, running
100 simulations for each tc value to estimate confidence intervals. The
model’s predictive power was measured by the R² and the significance of
the explanatory variables. We averaged the 100 R² values to assess
model performance and estimate the relative importance of predictors
(Pistón et al., 2019). The selection of the optimal tc value was done using
an ANOVA with R² as the response variable and tc as the explanatory
variable. Optimum tc was identified as first values not significantly
different from subsequent values, indicating a performance plateau
(Pistón et al., 2019). We also used the optimal tc and the function gbm.
interactions to assess if interactions among explanatory variables were
modelled. To interpret the bivariate relationship between heat mitiga-
tion and the predictor variables, Partial Dependence Plots were used.
The full BRT methodology is described in Pistón et al. (2019). Analyses
were conducted with the dismo (Hijmans et al., 2017) and multcomp
packages (Hothorn et al., 2008) in R v. 4.3.3.

3. Results

3.1. Urban cooling model validation

A positive relationship was found between modelled air temperature
and LST that varied from weak to moderate, depending on whether the
relationship was tested on a pixel-by-pixel basis or aggregated by census
tract (with r values between 0.21 and 0.45; Fig. S1). The highest cor-
relation coefficient was observed in the relationship between LST and
modelled air temperature that included air mixing, which accounts for
the influence of wind in redistributing heat and reducing temperature
variability (r = 0.45; Fig. S1a).

3.2. Patterns of heat vulnerability and exposure

We found a high degree of heterogeneity in the distribution of HV in
our study area with highest levels occurring in the city center and north
and south parts of Granada and the north of Armilla city, with most
census tracts (42 %) showing intermediate values of vulnerability
(Fig. 2A). For HElst and HEinvest, the two indices showed a very narrow
distribution of values, with most census tracts showing intermediate
values of heat exposure for the study area (around 40 % for HEinvest
and 46 % for HElst). Nevertheless, for both indices, there is a spatial
concentration of higher heat exposure values in the central region of the
study area, equivalent to the urban core of the city of Granada (Fig. 2B;
2 C).

We found a significant and high correlation between HElst and
HEinvest (r = 0.85; Fig. S2). Spatially, using the Moran’s I index, the
results show a significant and highly similar cluster formation for both
HElst and HEinvest, that is, clusters with high values of HE tend to be
surrounded by other clusters with high HE values (Fig. S3). We found a
tendency for greater exposure in the central region of Granada, where
the old town and the highest population density is located, forming a
high exposure cluster. There are also cluster regions of low temperature
around Granada, far from the central area. In both cases, clusters with a
very similar spatial distribution for extreme values are identified, even
though the HEinvest appears to overestimate all clusters, which can be
attributed to the simplistic way in which the model considers the effect
of air mixing.

3.3. Identification of priority areas for implementing heat mitigation
strategies

Both HElst and HEinvest yield very similar results identifying around
10 % of the study area as priority areas for heat mitigation (Fig. 3;
Fig. S4). This result highlights the overlap between the most vulnerable
populations and those most exposed to heat in the metropolitan area of

Table 3
Landscape metrics used to study the effects of green infrastructure (GI) spatial
patterns on heat mitigation.

Categories Landscape
metrics

Description Unit

Composition Green cover Proportion of the GI per sampling unit %
Configuration Mean patch

area
The average area of GI per sampling unit ha

 Patch density The number of GI per 100 ha per
sampling unit

GI/
ha

 Edge density Total perimeter of GI per ha per
sampling unit

m/
ha

 Number of
patches

Total number of GI per sampling unit n

 Clumpiness Measure of organization of the GI in
relation to the aggregation of fragments.
Ranges from − 1 (disaggregated) to + 1
(aggregated)

-

Fig. 2. Spatial distribution of (A) heat vulnerability, (B) heat exposure calculated with land surface temperature (HElst) and, (C) heat exposure calculated with
InVEST air modeled temperature (HEinvest). Area inside the red square panels shows the urban core area of the city of Granada.
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Granada. In particular, four main regions could be defined as priority
areas for heat mitigation strategies with three being inside Granada city,
i.e., part of the south and north area and the city center, and one outside,
the north of Armilla city. Other areas have only high vulnerability or
high exposure (Fig. 3; Fig. S4).

3.4. The combined effect of green cover and mean patch area maximizes
heat mitigation

To assess the role of vegetation composition and configuration for
heat mitigation (Fig. S5), we first selected the BRT model parameters, i.
e., lr= 0.001; bf= 0.75, step size= 0.50 and tc= 14 (Table S1; Fig. S6).
BRT results showed that the proportion of green cover was the most
important predictor of heat mitigation (90.7 % of relative influence;
Fig. 4). However, we found a combined effect of percentage of green
cover with both, mean patch area, and patch density on heat mitigation
(Fig. 5; Table S2), showing that the higher the green cover, mean patch
area and patch density the greater the heat mitigation. The results of the
Partial Dependence Plots showed that, specially both, we need to take
into account a minimum green cover and green patch area to maximize
the cooling capacity of vegetation in the metropolitan area of Granada.
Although green cover may be the most influential factor, the spatial
arrangement of vegetation (such as patch size) might still offer valuable
insights in specific scenarios. Thus, the maximization was reached with
green cover greater than approximately 35 % and mean area of green
patches higher than 200 m2 (Fig. S7). Heat mitigation did not show a
large variation with edge density, the number of patches, patch density
and clumpiness, being also the predictors with less relative influence on
cooling capacity.

4. Discussion

We employed the INVEST urban cooling model to identify both heat-
risk areas with high vulnerability and exposure in the Granada metro-
politan area and the vegetation spatial patterns that maximize heat
mitigation. The findings from this study emphasize the complexity of
Urban Heat Island (UHI) mitigation and the challenges presented by

vulnerability and exposure to heat in urban areas. Our research high-
lights the importance of exploring biophysical and social data to provide
a deeper understanding of heat risk in cities, focusing on Mediterranean
regions. However, we need to consider some important aspects when
applying the InVEST urban cooling model to assess green in-
frastructure’s impact on heat mitigation. The model’s reliance on a
simplified linear relationship between tree cover and temperature
reduction may not accurately reflect the complex, non-linear in-
teractions observed in empirical studies (Ziter et al., 2019; Silveira et al.,
2024). Additionally, the Mediterranean climate is characterized by hot,

Fig. 3. Map of priority areas for heat mitigation strategies. Exposed, vulnerable and priority areas calculated with land surface temperature (LST) (A) and exposed,
vulnerable and priority areas calculated with modeled air temperature from InVEST (B). Colored areas were defined based on the selection of top (25 %) quartiles
across the study area. Area inside the red square panels shows the urban core area of the city of Granada, where the majority of priority areas were identified.

Fig. 4. Heat mitigation is mostly explained by the percentage cover of green
area. The relative influence was calculated by averaging 100 simulations for the
optimal value of tree complexity (tc = 14) using Boosted Regression Trees. Heat
mitigation was considered as the response variable and landscape metrics as
explanatory variables.
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dry summers and mild, wet winters, leading to significant seasonal
variations in the urban heat island (UHI) effect (Hidalgo-García and
Arco-Díaz, 2022; Delgado-Capel et al., 2023). We used the 500 m res-
olution Thornthwaite’s evapotranspiration raster data as it was readily
available. However, there may be alternative evapotranspiration
methods more suitable for our study area such as the Penman-Monteith
method, although these tend to be more complex and labor-intensive.
Future studies should use other evapotranspiration methods and data
with more refined resolution that could offer more precise estimates,
while balancing model complexity and data availability. Our focus on
average annual temperatures may overlook these seasonal dynamics,
potentially underestimating the seasonal effectiveness of green infra-
structure. To address this, future studies could incorporate data from
multiple seasons in the model to capture a more accurate representation
of the heat mitigation process throughout the year, particularly during
the dry and hot summers. Moreover, themodel does not fully account for
the specific vegetation types and water requirements suited to arid
conditions prevalent in Mediterranean regions, which are crucial for
sustainable green infrastructure planning (Shashua-Bar et al., 2011).
Therefore, incorporating local climate characteristics, seasonal varia-
tions, and appropriate vegetation selection into the model is essential to
enhance its applicability and accuracy in Mediterranean urban areas.

The relationship between LST and air temperature observed at a
broader spatial scale is in line with the results of other studies that have
validated the InVEST urban cooling model in different cities. (Coutts
et al., 2016; Hamel et al., 2024; Kadaverugu et al., 2021; Zawadzka
et al., 2021). The moderate correlation between LST and InVEST
average air temperature can be partially attributed to the inherent dif-
ferences between the two datasets. The lack of sufficient meteorological
station data in the study region rendered this comparison unavoidable,
and it should be noted that discrepancies could be expected. Despite
that, it is important to highlight that the model was still able to identify
nearly identical areas of vulnerability when compared with LST data.
This alignment demonstrates the model’s effectiveness in identifying
priority areas at the spatial scale used in our study.

Moreover, the strong correlation between Heat Exposure calculated
with modelled air temperature and LST (r = 0.82), supports the appli-
cability of the InVEST urban cooling model to identify priority areas for
heat-related intervention (Hamel et al., 2024; Silveira et al., 2024;
Zawadzka et al., 2021). While the diurnal urban cooling model has
inherent limitations in simulating absolute air temperatures (Hamel
et al., 2024; Zawadzka et al., 2021), our validation confirms its reli-
ability in capturing spatial patterns of heat exposure. These findings

underscore InVEST’s broader applicability across diverse urban con-
texts, positioning it as a valuable tool for city management and gover-
nance. Furthermore, our results highlight its potential to inform and
support the widespread implementation of nature-based solutions and
heat adaptation strategies, contributing to more climate-resilient urban
environments.

Our results show that in the metropolitan area of Granada, vulner-
able groups, including elderly and low-income groups, are more likely to
be exposed to higher levels of heat, a finding that is consistent with
previous studies that emphasize the disproportionate impact of climate
risks on marginalized groups (Chakraborty et al., 2019; Hsu et al.,
2021). Addressing such social inequalities should be a priority in city
management and climate adaptation strategies. The identification of
priority areas for heat-risk mitigation is consistent with studies that
highlight densely populated, urbanized areas as UHI hotspots (Peng
et al., 2012; Kleerekoper et al., 2012). These regions, which are char-
acterized by both high heat vulnerability and high heat exposure, should
be the focus of urban policies aimed at mitigating and adapting to the
UHI effect. Green infrastructure, including parks, forests and urban and
peri-urban agricultural areas, has been consistently cited as a key
adaptation strategy (Iungman et al., 2023; Prado et al., 2024; Zhou et al.,
2022). Our findings reinforce this idea, demonstrating that green cover,
particularly when greater than 35 %, and mean patch size above
200 m2, is a critical factor in heat mitigation (as shown in Fig. 5).
Interestingly, our results show a weak but significant negative rela-
tionship between vulnerability and heat mitigation, indicating that the
most vulnerable areas also have the lowest amount of green infra-
structure to mitigate heat. This reflects social injustice where vulnerable
populations often lack access to green infrastructures and could not even
afford electricity prices of refrigeration equipment (Jenerette et al.,
2011; Rocha et al., 2024). This finding suggests that targeted in-
vestments in green infrastructure should be made in these
high-vulnerability areas to reduce their exposure to heat, named as
priority areas in Fig. 3.

In dry climates like the Mediterranean, characterized by hot and dry
summers, green cover becomes especially crucial for cooling (Grilo
et al., 2020; Maggiotto et al., 2021). The significant role of the per-
centage of green cover in reducing heat is well-documented, largely due
to shading and evapotranspiration, which lowers surrounding air tem-
peratures (Bowler et al., 2010; Zhou et al., 2017). The particular dry
summer conditions of the Granada region make it necessary to rely on
drought-resistant species to achieve sustainable cooling effects through
green infrastructure. These species, typically well-adapted to seasonal

Fig. 5. Interaction plot between green cover and patch mean area (left panel) and green cover and patch density (right panel). The color bar indicates brighter and
darker tones representing high and low adjusted values for heat mitigation, respectively. The maximization of heat mitigation was reached with the percentage of
green cover greater than approximately 35 % and mean area of patches higher than 200 m2. Patch density did not have a relevant effect.
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water shortages, particularly xerophytic species or deep-rooted trees,
can maintain significant evapotranspiration rates helping reduce local
temperatures without straining water resources, even in harsh, dry
conditions (Shashua-Bar et al., 2004; Leotta et al., 2023). However, it
was not only the green cover that played a major role in maximizing the
cooling effects of vegetation, but also the combination of large patch
areas. This insight could inform urban planners on how to optimize
green infrastructure in cities to maximize heat mitigation (Li et al., 2013;
Silveira et al., 2024). However, in densely populated and built-up areas,
like Granada city or other Mediterranean cities, we suggest that in-
terventions could be developed connecting green infrastructures thus
increasing their green cover and patch area, and ultimately their cooling
capacity (see also Kleerekoper et al., 2012; Ziter et al., 2019; Delga-
do-Capel et al., 2023; Iungman et al., 2023). Our findings underscore the
need for city management strategies that prioritize heat-vulnerable
populations while optimizing green infrastructure’s spatial configura-
tion by focusing on Nature-based Solutions.

5. Conclusion

This study highlights the intricate links between the urban heat is-
land, social vulnerability, and green infrastructure, demonstrating that
urban heat risk is influenced by both physical and social aspects. The
InVEST Urban Cooling model proved to be a practical and reliable tool
for mapping urban heat islands, quantifying cooling ecosystem services,
and assessing heat stress at a scale relevant to urban management. By
integrating heat indicators into our framework, we extend the meth-
odological application of the model, effectively bridging ecosystem
service assessments with human vulnerability analysis. In a Mediterra-
nean city with serious environmental problems, such as Granada, green
cover, when greater than 35 %, and mean patch size above 200 m2,
maximized heat mitigation indicating that both are determining factors
to be considered in the design of Nature-based Solutions. However,
planning green infrastructures must also consider social-economic as-
pects, such as age and poverty, so that their benefits reach the whole
population. Our findings provide targeted areas for urban planning in-
terventions that prioritize highly vulnerable and exposed populations to
heat and recommendations to optimize the spatial configuration of
green infrastructure for effective heat mitigation.
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Ministerio de Transportes, Gobierno de España: Madrid, España. 〈https://centrodede
scargas.cnig.es/CentroDescargas/buscadorCatalogo.do?codFamilia=LIDAR〉.

Prosdocimi, D., Klima, K., 2020. Health effects of heat vulnerability in Rio de Janeiro: A
validation model for policy applications. SN Appl. Sci. 2 (12), 1948. https://doi.org/
10.1007/s42452-020-03750-7.

REDIAM, 2023a. Portal Ambiental de Andalucía. Consejería de Sostenibilidad, Medio
Ambiente y Economía Azul de la Junta de Andalucía. 〈https://portalrediam.cica.es
/descargas?path= %2F01_CARACTERIZACION_TERRITORIO%2F08_SIPNA%2FSI
PNA_Pub2023_01〉.

REDIAM, 2023b. Portal Ambiental de Andalucía. Consejería de Sostenibilidad, Medio
Ambiente y Economía Azul de la Junta de Andalucía. 〈https://portalrediam.cica.es
/descargas?path= %2F04_RECURSOS_NATURALES%2F03_CLIMA%2F02
_CARACTERIZACION_CLIMATICA%2F07_EVAPOTRANSPIRACION〉.

Ren, Y., Lafortezza, R., Giannico, V., Sanesi, G., Zhang, X., Xu, C., 2023. The unrelenting
global expansion of the urban heat island over the last century. Sci. Total Environ.
880, 163276. https://doi.org/10.1016/j.scitotenv.2023.163276.

Rocha, A.D., Vulova, S., Förster, M., Gioli, B., Matthews, B., Helfter, C., Meier, F.,
Steeneveld, G.-J., Barlow, J.F., Järvi, L., Chrysoulakis, N., Nicolini, G.,
Kleinschmit, B., 2024. Unprivileged groups are less served by green cooling services
in major European urban areas. Nat. Cities 1 (6), 424–435. https://doi.org/10.1038/
s44284-024-00077-x.

Romanello, M., Napoli, C. di, Green, C., Kennard, H., Lampard, P., Scamman, D.,
Walawender, M., Ali, Z., Ameli, N., Ayeb-Karlsson, S., Beggs, P.J., Belesova, K.,
Ford, L.B., Bowen, K., Cai, W., Callaghan, M., Campbell-Lendrum, D., Chambers, J.,
Cross, T.J., Costello, A., 2023. The 2023 report of the Lancet Countdown on health
and climate change: The imperative for a health-centred response in a world facing
irreversible harms. Lancet 402 (10419), 2346–2394. https://doi.org/10.1016/
S0140-6736(23)01859-7.

Russo, E., Domeisen, D.I.V., 2023. Increasing intensity of extreme heatwaves: the crucial
role of metrics. Geophys. Res. Lett. 50 (14), e2023GL103540. https://doi.org/
10.1029/2023GL103540.

Schwartz, J., 2005. Who is sensitive to extremes of temperature?: a case-only analysis.
Epidemiology 16 (1), 67. https://doi.org/10.1097/01.ede.0000147114.25957.71.

Shashua-Bar, L., Tzamir, Y., Hoffman, M.E., 2004. Thermal effects of building geometry
and spacing on the urban canopy layer microclimate in a hot-humid climate in
summer. Int. J. Climatol. 24 (13), 1729–1742. https://doi.org/10.1002/joc.1092.

Shashua-Bar, L., Pearlmutter, D., Erell, E., 2011. The influence of trees and grass on
outdoor thermal comfort in a hot-arid environment. Int. J. Climatol. 31 (10),
1498–1506. https://doi.org/10.1002/joc.2177.

Silveira, C., Dias, A.T.C., Amaral, F.G., de Gois, G., Pistón, N., 2024. The importance of
private gardens and their spatial composition and configuration to urban heat island
mitigation. Sustain. Cities Soc. 112, 105589. https://doi.org/10.1016/j.
scs.2024.1055.

Silveira, C., Pistón, N., Martínez-López, J., Alcaraz-Segura, D., Postma, T., López-
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