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Abstract 

Accurate food demand forecasting plays a critical role in optimizing supply chain operations, reducing 

waste, and ensuring effective shelf-life management of perishable goods. Its applications span from 

retail inventory management to large-scale food distribution, enabling businesses to maintain an optimal 

stock of products such as bread, butter, and other perishables. By anticipating demand fluctuations, 

organizations can better align production schedules, reduce overstocking and understocking issues, and 

minimize financial losses. Effective forecasting also supports sustainability by reducing food waste and 

enhancing consumer satisfaction through improved product availability. Traditional demand 

forecasting systems often rely on manual approaches or static statistical methods, which are limited by 

their inability to adapt to dynamic market conditions and complex time-series data. Manual methods, 

in particular, are prone to human error, delays, and inefficiencies, making them unsuitable for high-

stakes decision-making in the supply chain. Furthermore, these approaches struggle to account for 

multiple influencing factors, such as seasonality, market trends, and external disruptions, resulting in 

inaccurate demand predictions and poor shelf-life management. To address these limitations, this paper 

proposes the use of a novel algorithm called the Nonlinear Autoregressive Exogenous Neural Network 

(NARXNN) for food demand forecasting. NARXNN is a recurrent dynamic network characterized by 

feedback connections that encompass multiple layers, enabling it to process complex and nonlinear 

time-series data effectively. Derived from the linear ARX model, NARXNN leverages exogenous 

inputs to enhance its predictive capabilities. By applying NARXNN to supply chain products such as 

bread and butter, the model showcases its potential to optimize demand forecasting, improve inventory 

management, and reduce wastage, thereby setting a new standard for shelf-life management in the food 

industry. 

1. Introduction 

The increasing consumer demand and competitive market forces have driven companies to 

focus on accurate demand forecasting as a means of maintaining profitability. Inaccurate 

demand forecasts can lead to either surplus inventory, resulting in wastage and high operational 

costs, or insufficient inventory, which can cause stockouts and push customers to competitors. 
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The importance of demand forecasting is reflected in its wide application across different 

company departments. The financial department relies on forecasts to estimate costs, profit 

margins, and capital requirements. Marketing teams use forecasts to plan strategies and assess 

the impact of various marketing actions on sales volumes. The purchasing department uses 

forecasts for investment planning, while the operations department manages the procurement 

of raw materials, machinery, and labor based on forecasted demand. As a result, the accuracy 

of demand forecasts can significantly improve logistical management, reduce wastage, and 

enhance overall efficiency. 

2. Literature Survey 

Effective demand forecasting is a critical aspect of supply chain management, significantly influencing 

planning, capacity, and inventory control decisions. Inaccurate demand predictions often lead to higher 

backlog and holding costs, highlighting the importance of precision in inventory control. [1,2,3]. In the 

broader context of supply chain management, accurate demand forecasting is essential for informed 

decision-making, resource allocation, and enhanced operational efficiency. Traditional forecasting 

methodologies face challenges in capturing the complexities of modern supply chains as global markets 

become increasingly interconnected and dynamic. Linear models and time-series analyses, though 

foundational, struggle to predict the nonlinear and intricate relationships that define contemporary 

business environments. Furthermore, traditional approaches are often inadequate for addressing the 

challenges posed by intense competition across industries. Companies are now leveraging advanced 

data science techniques to improve demand forecasting by treating customer demand as a time-series 

prediction problem. However, forecasting demand for components poses unique challenges, including 

sporadic demand patterns, limited visibility into downstream processes, and an incomplete 

understanding of market trends. Addressing these challenges is critical to reducing inventory costs and 

enabling agile decision-making in supply chains. Despite extensive research in supply chain 

management, there has been limited focus on the specific challenges of component demand forecasting. 

Conventional techniques, such as moving averages and the Croston method, are increasingly ineffective 

in managing the volatility and unpredictability of modern supply chains. Demand patterns in the supply 

chain industry are continuously evolving due to factors like technological advancements, globalization, 

and shifting consumer preferences. This dynamic environment poses significant challenges for 

industries reliant on fast-to-market products and market trends, often leading to inefficient inventory 

management and resource allocation [4,5] Linear models, such as linear regression, oversimplify the 

relationships between variables and fail to capture the intricate nature of supply chain data. Time-series 

analysis, while useful for identifying patterns over time, often falls short in accounting for sudden shifts 

and irregularities in demand, resulting in inaccurate forecasts. Recently, artificial neural networks 

(ANNs) have garnered attention for their adaptability and robustness in computational intelligence. 

ANNs excel in decision-making, handling nonlinear systems, adapting to environmental changes, and 

processing data efficiently. [7,8,9,10,11,12]. Machine learning (ML) techniques have demonstrated 

significant improvements in demand forecasting accuracy and customer engagement through predictive 

analytics. ML approaches are particularly adept at capturing complex interdependencies and nonlinear 

relationships, resulting in improved performance across supply chains. Promising results from ML 

applications have been observed in large-scale homogeneous product sales data from platforms like 

[11,18,19]. Amazon, as well as in industries such as foundries and chocolate manufacturing, where 

time-series data share similar characteristics. However, the complexity of ML methods poses a barrier 

to their adoption. Beyond technical challenges, the economic benefits of implementing ML-based 

solutions remain unclear, warranting further research to temper initial enthusiasm and provide clarity 

on their true organizational value. India’s food supply chain exemplifies the pressing need for advanced 
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demand forecasting methods. [16,17]. Inefficiencies in production, transportation, and delivery result 

in significant challenges, with approximately 40% of annual food production wasted—leading to 

economic losses of ₹92,000 crores ($12 billion). As the population is projected to reach 1.6 billion by 

2050, coupled with rapid urbanization, the demand for a robust supply chain to ensure food security 

and sustainability has[13,14,15] become paramount. Traditional methods fail to address issues such as 

demand-supply mismatches, wastage, and logistical delays effectively. Advanced regressor-based time-

series forecasting, powered by AI and ML, offers a transformative solution. These techniques enable 

precise demand prediction, efficient inventory management, and dynamic pricing, paving the way for a 

sustainable and resilient food supply chain. 

3. Proposed System 

Figure 1 shows the proposed system architecture. It includes columns like meal_id (identifying food 

items) and num_orders (the number of orders for each item). The dataset helps analyze and forecast 

future food demand using historical trends. The proposed algorithm, NARXNN, uses time-series data 

to predict demand with high accuracy. 

 

Figure 1  Block Diagram 

The Nonlinear Autoregressive Exogenous Neural Network (NARXN) is a model used for time series 

forecasting, particularly for predicting future values based on past data and external (exogenous) 

variables. NARXN is a hybrid model that combines the strength of autoregressive neural networks with 

exogenous inputs to improve forecasting accuracy. The model uses previous values (autoregressive) 

along with external factors to predict future outcomes, making it highly suitable for dynamic systems 

with complex dependencies. 

NARXN works by leveraging a feedforward neural network architecture where the inputs consist of 

lagged values from the time series and exogenous features that are expected to influence the output. 

The model is trained to minimize the prediction error by adjusting the weights of the neural network. 

The key advantage of NARXN is its ability to model both temporal dependencies (autoregressive) and 

external influences, providing a more comprehensive understanding of the system being modeled. The 

model can handle multiple time series inputs and forecast based on the interactions between the system 

and external variables. 

4. Results and Discussion 

Figure 3 shows that the dataset consists of a total of 456,548 records, which are divided into a training 

set and a testing set. The training set contains 365,238 records (approximately 80% of the total dataset), 

which are used to train the machine learning model by teaching it patterns and relationships in the data. 
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The remaining 91,310 records (about 20%) form the testing set, which is used to evaluate the model's 

performance on unseen data, ensuring that it generalizes well and can make accurate predictions on 

new, unseen instances. This split helps assess the model’s effectiveness and ability to perform in real- 

 

Figure 3: After train-test-split 

 

Figure 4: Metrics of the LGBM of Regressor 

Figure 4 shows that the The LightGBM Regressor model has demonstrated excellent performance with 

an MSE of 7.064e-05, indicating a very small average squared difference between predicted and actual 

values. The MAE of 0.00449 shows that, on average, the model's predictions are very close to the true 

values, while the RMSE of 0.0084 confirms the model's high accuracy with errors in the same unit as 

the target variable. The R² score of 0.9484 reveals that the model explains about 94.84% of the variance 

in the data, highlighting its strong predictive ability and effective fit to the data. Overall, the model 

exhibits outstanding accuracy and generalization. 
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Figure 5: Scatter plot of the LGBM Regressor 

Figure 5 shows that Scatter plot of the LGBM Regressor which is not more shaded to the line. 

 

Figure 6: Actual and predicted comparison 

Figure 6 shows the displays two sets of data points: 

• Truth Data (Train): Represented by blue dots. These are likely the actual values from the 

training dataset. 

• Prediction: Represented by orange dots. These are the predicted values generated by the 

model. 

• X-axis: The x-axis is labeled "week", suggesting that the data represents some quantity 

(possibly "num_orders") over a period of weeks. 

• Y-axis: The y-axis is labeled "num_orders", implying that the quantity being plotted is the 

number of orders 
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• Data Distribution: The blue dots (actual values) exhibit a pattern with peaks and valleys, 

indicating fluctuations in the number of orders over time. The orange dots (predicted values) 

also follow a similar pattern but with some deviations from the actual values. 

 

Figure 7: Scatter plot of NARXNN 

The above figure 7 shows that scatter plot which is more shaded with the line as compare to existing 

algorithm. 

 

Figure 8: Actual and predicted comparison 

Figure 8 shows the Title: Raw Data and Prediction 

Axes: 

• X-axis: "week" - This represents the time dimension, likely indicating the week number. 

• Y-axis: "num_orders" - This represents the number of orders, presumably the target variable 

being predicted. 

Data Points: 

• Blue dots: "Truth Data (Train)" - These represent the actual number of orders observed in the 

training data. 
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• Orange dots: "Prediction" - These represent the predicted number of orders generated by the 

model. 

 

 

 

Figure 8: Metrics of the NARX Regressor 

Figure show that the proposed NARX (Nonlinear AutoRegressive with eXogenous inputs) Regressor 

outperforms the existing LGBM Regressor in terms of prediction accuracy. With a Mean Squared Error 

(MSE) of 6.33e-05, Mean Absolute Error (MAE) of 0.0035, and a Root Mean Squared Error (RMSE) 

of 0.00795, it demonstrates a more precise prediction model. Additionally, the R2 Score of 1.0047 

indicates a near-perfect fit to the data, showcasing its ability to capture underlying patterns with minimal 

error. In contrast, the existing LGBM  Regressor has a higher MSE of 7.06e-05, MAE of 0.0045, and 

RMSE of 0.0084, along with a slightly lower R2 Score of 0.9484. This makes the NARX Regressor a 

more effective and reliable model for the given regression task. 

5. Conclusion 

Accurate food demand forecasting is critical for optimizing supply chain operations, minimizing waste, 

and ensuring effective shelf-life management of perishable goods. Traditional methods, while 

foundational, fall short in addressing the complexities of modern supply chains due to their inability to 

adapt to dynamic market conditions and process nonlinear time-series data. The proposed Nonlinear 

Autoregressive Exogenous Neural Network (NARXNN) model offers a robust solution by leveraging 

its recurrent dynamic network structure and the incorporation of exogenous inputs. Through advanced 

predictive capabilities, NARXNN improves inventory management, reduces overstocking and 

understocking issues, and aligns production schedules with actual demand. This innovation not only 

enhances operational efficiency but also promotes sustainability by minimizing food waste and ensuring 

consistent product availability for consumers. By addressing the limitations of traditional systems, 

NARXNN sets a new benchmark in food demand forecasting, paving the way for smarter and more 

sustainable supply chain practices. 
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