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Abstract: Gait analysis is a branch of biomechanics where its purpose is the study of mechanical laws
relating to the way the body moves from one place to another. In most cases, the data sets for human
gait analysis consist of continuous recordings of multiple physical activities, including kinematics and
muscle performance. Despite the registered data being functions, the most common practice to detect
any anomalies among experimental conditions consists of analyzing the vector of discrete observations
or even summary measures of the curves. This fact causes an important information loss since the
continuous nature of the data is being ignored. A suitable solution is to apply functional data analysis
for analyzing continuous biomechanical data as functions, revealing the true nature of movement and
allowing us to model and forecast the data with more precision. In the current paper, a new functional
methodology for the analysis of variance with repeated measures was introduced. In particular, since
functional data variability can be summarized by their first principal component scores, we proposed
to turn the functional model into a multivariate one for the response of the most explicative principal
components, and then, considered a semi-parametric approach to overcome the restrictive assumptions
required in the classic repeated measures design. The motivation of this research was to contrast the
differences in gait patterns of elementary school students when walking to school, depending on the
type of bag they use to carry their school materials. The analysis reveals that gait joint movement is
influenced by sex and the type of schoolbag, regardless of the load carried.
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1. Introduction

In numerous fields of science, we find magnitudes (spectrums, signals, images, etc.) characterized
by the evolution of a continuous random variable. These variables have been historically examined
through multivariate techniques or time series analysis over a vector of discrete observations at
different time points. By way of motivation, data characterizing human motion in biomechanical
studies are usually waveform curves that represent joint measures such as flexion angles, velocity, or
linear acceleration, among others. A common practice in this area is to analyze discrete summaries of
sample curves [1–3]. In other words, the information of each curve is represented by a single scalar
measure (mean, maximum, minimum, etc.) of the discrete observations instead of using a magnitude
evaluated completely in the whole domain. This approach not only leads to biased results but also
causes a significant loss of information such as the continuity or smoothness of curves. Moreover, it is
common to have high-dimensional data where the number of variables exceeds the number of
sampled individuals, so that traditional statistical methods are not appropriate.

In response to the growing need to develop a comprehensive approach encompassing multivariate
statistical methods to model functions (generally curves) depending on time or another continuous
argument, functional data analysis (FDA) is gaining momentum in the last three decades, also
motivated by the technological progress (see [4–8] to get global and structured knowledge of the basic
theory, applications, and computational aspects in FDA). Taking its characteristics and good
performance into account, FDA can be used for analyzing biomechanical data in a continuous way,
revealing the true nature of the movement [9], detecting the location and magnitude of differences
within the observed functions [10], and providing more consistent [11] and discriminative [12]
results. A more general systematic review about the importance and benefits of conducting FDA in
biomechanical studies can be found in [13, 14].

The current work aims to analyze how the type of schoolbag affects the gait patterns of primary
school students when walking to school. The details of the experimental study are provided later. In
particular, we are interested in detecting significant differences among the joint rotation angle in each
axis direction for several types of schoolbags. Given the underlying theoretical framework in this study,
a new functional analysis of variance approach with repeated measures (FANOVA-RM) is performed.
This technique tests the equality of mean curves of a functional variable observed on the same sample
individuals under various experimental conditions. The majority of the previous works are focused
on the independent measures design (see [15] for an exhaustive analysis of the key elements in the
FANOVA problem and [16] for a wide review of different tests for the one-way layout). However, the
literature for the repeated measures design is sparse. For example, the initial testing strategy for the
pairwise case was suggested in [17]. Nevertheless, only the variability between groups was considered
in this procedure. In order to heed the variability within groups, two new statistics were proposed
in [18] which were subsequently extended in [19] by assuming a basis expansion of sample curves.
In a similar way, two different basis expansion estimation approaches for the FANOVA-RM model
were proposed and compared in [20]. However, the inherent problem of this proposal was the high
multicollinearity caused by the own basis coefficients, as well as the need of having a moderate sample
size in order to guarantee the power of the hypothesis tests.

Functional principal component analysis (FPCA) is a powerful tool in FDA that can help to reduce
the infinite dimension of functional data and to solve the limitations in the estimation of functional
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statistical learning models. FPCA has already been considered in biomechanical studies to explain the
variability structure of data making use of a small set of uncorrelated principal components both for
the univariate scenario [21, 22] and for the case of having more than one functional variable [23, 24].
In broad terms, FPCA is a technique for reducing the dimensionality of such datasets, increasing
interpretability but at the same time minimizing information loss [25–28]. Moving from an infinite-
dimension space to a finite-dimension one generated by a reduced set of principal components is a
common practice that provides good results. Different unsupervised functional classification models
have been developed, for example, clustering [29, 30] and random forest [31, 32]. On the other hand,
several functional logistic regression approaches for supervised classification of curves were developed
in [33, 34]. A regularization approach for function-on-function principal component regression based
on the merge of functional data analysis with group Lasso was introduced in [35]. The case of function-
on-scalar regression was studied in [36] where a functional mixed regression model was considered
with application to positron emission tomography (PET) data. In addition, FPCA has been used by
[19, 37] within the FANOVA model with independent measures for the univariate and multivariate
functional framework, respectively.

Assuming that curves variability can be summarized by the first principal component scores, in this
work we propose that the FANOVA-RM model can be reduced to a multivariate analysis of variance
with repeated measures (MANOVA-RM) for the multivariate response vector of the most explicative
principal components. There are multiple procedures for estimating the MANOVA-RM model. The
multivariate mixed model and the doubly multivariate model were the first approaches proposed in
the literature to include the within-subject effect (the schoolbag type in our case) in the analysis [38–
40]. These parametric approaches assume multivariate normality and covariance homogeneity, very
restrictive assumptions from an applied viewpoint. A more flexible option is a semi-parametric model
that does not require any of these conditions. In particular, we adapt the semi-parametric bootstrap
approach proposed by [41, 42], in which a Wald-type statistic (WTS) is computed. This procedure
allows us to evaluate together the interaction effects among variables within subjects and between
subjects with minimal assumptions, and also, the possibility that effects on response variables may
depend on group levels of covariates.

In addition to this introduction, the rest of manuscript is organized as follows. The experimental
study that motivates this work is detailed in Section 2. The theoretical aspects are in Section 3. The
results obtained after applying the methodology are shown in Section 4. Finally, the most important
conclusions are summarized in Section 5.

2. Experimental study

The Sport and Health University Research Institute of the University of Granada (iMUDS, for its
acronym in Spanish) conducted an experimental study on 53 children aged between 8 and 11, including
25 boys and 28 girls. Seven experimental conditions were considered: only walking, walking with a
trolley, and walking with a backpack (see Figure 1(a)) with different loads in the schoolbags: 10,
15, and 20% of their body weight. The technical details about the instrumentation and procedures
employed for the data collection are given in [21]. In summary, a 3D motion capture system (Qualisys
AB, Göteborg, Sweden) was used to record the gait cycle by means of twenty-six reflective markers
and nine infrared high-speed cameras at a capture rate of 250 Hz. Figure 1(b) reveals the position of
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these markers on the children’s bodies.

a) b)
Figure 1. a) Children walking with a trolley and backpack (image generated with ChatGPT).
b) Position of the reflective markers on the children’s bodies to register the gait cycle.

To obtain the experimental data, each child walked three times along a 15-meter platform. In each
gait cycle, the angle for ankle, hip, knee, pelvis, thorax, and foot progress was registered for each
experimental condition described above in each axis direction: X, Y, and Z that represent
flexion/extension, adduction/abduction, and internal/external rotation, respectively. Note that only one
direction was taken for foot progress. Once the three cycles are monitored, the mean curve is
computed and selected as the representative observation of the gait for each child (see Figure 2(a)).
Hence, the sample consists of 53 curves observed in 101 equidistant points for each articulation, axis
direction, and experimental condition. For example, the sample curves together with the mean curves
and pointwise confidence bands distinguishing the subjects by sex for the hip articulation on the Z
axis in the scenario of carrying a trolley with a load of 10% body weight are shown in Figure 2(b). In
addition to the sex and the stochastic evolution of the rotation angle, other demographic and clinical
variables of interest such as the age, back pain, or body mass index were collected as well. However,
these variables will not be considered in the present research.
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Figure 2. a) The three registers (dashed lines) of the gait cycle and the corresponding mean
(solid line) for a subject. b) Sample curves together with the mean curves and the confidence
bands distinguished by sex for the hip articulation on the Z axis considering a load of 10%
body weight in the trolley.

This study aims to find dissimilarities and possible relationships in the rotation angle over each joint
and axis controlling the load’s weight for each type of schoolbag, differentiating the students by sex.
In other words, we want to analyze if the schoolbag prototype has an influence on the gait patterns,
as well as to detect if there are differences depending on gender. From a mathematical viewpoint, this
problem is reduced to comparing the mean curves among the different experimental conditions for each
of the articulations and axes. Historically, different approaches have been considered in the literature to
address the classical ANOVA problems (or simpler models such as the two sample test or two sample
Hotelling’s T2 test) but most of them do not take the whole curves into account. For example, a
common practice is to consider as the response variable the vector of the discrete measures without
taking into account the continuous nature of the data. Other research even chose scalar variables
related to the functional response variable such as velocity, cadence, stride length [2], and stance and
swing phases [43]. On the contrary, a spatiotemporal analysis of these data by using a point-to-point
ANOVA test, without taking into account the temporal dependence, was developed in [44]. Pointwise
analysis approaches ignore the functional nature of the data, which may hinder the ability to find subtle
differences between experimental conditions and/or subject populations. This was warned in [45],
where the use of mixed effects spline smoothing analysis of variance to analyze differences in cyclic
biomechanical data was proposed (see [46] for a better understanding). In this regard, and with the aim
of providing new functional tools that provide rigorous results in practice, a new two-way FANOVA-
RM aproach is proposed and applied in the present paper. By way of clarification, we have a repeated
measures design because each child is exposed to all experimental conditions (seven curves for each
student) and two-way analysis because there are two categorical variables as factors: type of schoolbag
(W: within-subject factor) and sex (B: between-subject factor).

3. Theoretical framework

FDA provides a conceptual framework for the building, treatment, and study of functional objects
both in an individual way and in groups. Currently, the efforts are focused on the paradigm of
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generalized the methods of the supervised and unsupervised statistical/machine learning to the
functional scenario. For example, classical statistical techniques such as regression, classification, and
clustering have been extended to functional data in approaches as diverse as the parametric (see,
e.g., [47]), semi-parametric (see, e.g., [48]), non-parametric (see, e.g., [49]), or Bayesian (see,
e.g., [50]).

Formally, let us consider {Xi jk(t) : i = 1, . . . ,m; j = 1, . . . , J; k = 1, . . . , n j; t ∈ T }, a random sample
of curves related to a functional variable X. That is, Xi jk(t) is the observed value of the response variable
for the k-th subject in the j-th independent group, measured under the i-th experimental condition
at time t in a continuous time interval T. Besides, let us suppose they are realizations of a second-
order and continuous quadratic mean stochastic process X = {X(t) : t ∈ T }, whose sample paths
belong to the Hilbert space L2(T ) of square integrable functions with the usual inner product < f , g >=∫

T
f (t)g(t)dt,∀ f , g ∈ L2(T ).
Functional data are intrinsically of infinite dimension, and therefore their treatment poses serious

complications because of the impossibility of observing the continuum. In practice, we have a set of
discrete observations at different time points that could be unequally spaced and different among the
sample individuals and/or even could be greater than the sample size (high-dimensional data). Unlike
the scalar data, functional data need pre-processing in which several assumptions are required for the
analysis. One of the main assumptions is that functional data belong to a space of functions with certain
analytical and topological characteristics, equivalents to the euclidean spaces in which the classical
statistic has been developed. In this sense, it is common to assume that functional data are elements
of a space generated by a finite basis [4, 5]. With this approach we are transforming the infinite space
into a finite-dimension one generated by a set of scalar variables that represent the curves in a correct
and rigorous way. In particular, the information and characteristics of sample curves are summarized
by the vector of basis coefficients. However, the inherent problem is the high correlation produced by
the basis coefficients, which provides a serious problem of multicollinearity when the functional model
is reduced to a multivariate one based on the matrix of basis coefficients. Despite the good predictive
ability of this procedure, the multicollinearity makes model interpretation more difficult. The most-
studied solutions consist of assuming approaches based on using uncorrelated explicative variables.
For this reason, FPCA plays a fundamental role in the estimation of FDA models not only to solve the
multicollinearity problem but also to reduce dimensionality, which avoids overfitting.

3.1. Functional PCA

FPCA has the same motivation [51] as its multivariate counterpart and it is based on the Karhunen-
Loève expansion, which provides an orthonormal representation of the functional observations in terms
of uncorrelated variables with maximum variance.

The l-th functional principal component is a generalized linear combination of the original
functional variable with maximum variance, that is,

Z(l)
i jk =

∫
T
(Xi jk(t) − µ(t)) fl(t)dt, (3.1)

where µ(t) is the overall mean function and fl(t) is the principal component weight function obtained
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by maximizing the following objective function with the corresponding constraints:{
Var[

∫
T
(Xi jk(t) − µ(t)) f (t)dt]

subject to
∫

T
f (t) f (t)dt = 1 and

∫
T

fr(t) f (t)dt = 0, r = 1, . . . , l − 1.

Then, fl(t) are the solutions to the eigenequation
∫

T
C(t, s) fl(s)ds = λl fl(t) with C(t, s) being the

sample covariance function and λl = Var[Zl] the l-th eigenvalue, respectively. Finally, the process
admits the following orthogonal decomposition known as Karhunen-Loève expansion, which can be
truncated in terms of the first q principal components providing the best linear approximation of the
sample curves in the least squares sense:

Xi jk(t) = µ(t) +
∞∑

l=1

Z(l)
i jk fl(t)→ Xi jk(t) ≈ Xq

i jk(t) = µ(t) +
q∑

l=1

Z(l)
i jk fl(t). (3.2)

There are different rules in the literature to determine the optimal number of principal components
to be selected [52]. A suitable option to choose q when the functional variable is the response variable
in a regression model, as in our case, consists of selecting a cut-off of total variability which is large
enough to obtain an accurate prediction.

3.2. FANOVA-RM

Functional analysis of variance is a fundamental problem in statistical inference with functional
data, aiming to determine differences in the average curves through a hypothesis test of equality of
means as the null hypothesis. This allows us to assess the effect that a given treatment or experimental
condition has on the sample.

According to the characteristics of our experimental design, the FANOVA model can be expressed
as follows:

xi jk(t) = µ(t) + αi(t) + β j(t) + θi j(t) + ϵi jk(t) ∀t ∈ T, (3.3)

where µ(t) is the overall mean function; αi(t) and β j(t) are the i-th and j-th main effects functions
associated with the experimental conditions and the independent groups, respectively; θi j(t) is the
functional interaction parameter, and ϵi jk(t) are independent and identically distributed (i.i.d.) errors.
In our real dataset, the number of experimental conditions (schoolbag type) is m = 3 and the group
effect (sex) has two levels, J = 2.

Since the functional parameters are not uniquely defined, certain constraints must be applied. An
appropriate sequence of positive weights should be considered to define the constraints in the
unbalanced design [15]. The following constraints are assumed in a balanced design:

m∑
i=1

αi(t) =
J∑

j=1

β j(t) =
m∑

i=1

θi j(t) =
J∑

j=1

θi j(t) =
m∑

i=1

J∑
j=1

θi j(t) = 0.

It is interesting to test if the within and between subject effects have an influence on the response
variable, as well as the possible interaction between them (the impact of one factor depends on the level
of the other one). For this purpose, the following null hypotheses are respectively proposed against the
alternative, in each case, that its negation holds:
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H0(W) : αi(t) = 0,∀t ∈ T, i = 1, . . . ,m,
H0(B) : β j(t) = 0,∀t ∈ T, j = 1, . . . , J,
H0(WB) : θi j(t) = 0,∀t ∈ T, i = 1, . . . ,m, j = 1, . . . , J.

(3.4)

Assuming the principal component expansion given by 3.2, we propose to reduce the FANOVA-
RM model to a MANOVA-RM model for the multivariate response defined by the most explicative
functional principal components.

3.3. MANOVA-RM for the principal components

Assuming the principal component expansion given by 3.2, we propose to reduce the FANOVA-RM
model to a MANOVA-RM model for the multivariate response defined by the vector Z of the first q
functional principal components.

As in many statistical studies, our data violate certain assumptions of classical multivariate methods.
In particular, parametric MANOVA-RM models require restrictive assumptions such as multivariate
normality, multivariate sphericity, or equal covariance matrices among groups that are barely fulfilled
in practice. In addition, they cannot be used for small sample sizes. To solve these limitations, we
adapt the methodology in [41, 42] in which none of the above constraints are necessary by applying a
semi-parametric bootstrap approach.

Formally, the MANOVA-RM model for the response vector of the first q principal components,
Z = (Z(l))q

l=1, can be formulated as the following MANOVA model where Z jk is a column vector of
dimension m × q whose components are the values of the selected principal components for the k-th
sample unit in the j-th group under the m-th experimental condition:

Z jk = µ j + ϵ jk; j = 1, . . . , J; k = 1, . . . , n j; and N =
J∑

j=1

n j, (3.5)

with Zjk = ((Z(l)
i jk)

q
l=1)m

i=1,

µ j = ((µ(l)
i j )q

l=1)m
i=1,

ϵ jk = ((ϵ(l)
i jk)

q
l=1)m

i=1,

with i and j representing the subscripts of the within and the between subject factors, respectively, and
µj is the mean vector for the j-th group.

The error terms ϵ jk are independent and identically distributed m × q-dimensional random vectors
with mean E(ϵ jk) = 0, assuming positive definite covariance matrices Cov(ϵ jk) =

∑
j > 0 and finite

fourth moment E(||ϵ jk||
4) < ∞.

The hypothesis defined in 3.5 can be reformulated by means of an adequate contrast hypothesis
matrix T by H0 : Tµ = 0, (3.6)

where the vector µ = (µ′1, . . . ,µ
′
J)′ has dimension J × m × q.

The Wald-type statistic proposed in [41] is defined as

QN(T) = N · Z̄′·T(TV̂NT)+TZ̄·, (3.7)

where ()+ denotes the Moorse-Penrose generalized inverse, Z̄· = (Z̄′1·, . . . , Z̄
′
J·)
′, Z̄ j· =

1
n j

n j∑
k=1

Z jk,
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V̂N = diag
(

N
n j
Σ̂ j : 1, . . . , J

)
,

Σ̂ j =
1

n j − 1

n j∑
k=1

(Z jk − Z̄ j·)(Z jk − Z̄ j·)′.

It can be proved that QN(T) has, as N → ∞, an asymptotic central χ2-distribution with degrees of
freedom equal to the rank of T. However, as this approximation is only valid for large sample sizes, a
resampling approach was proposed in [41, 53] that supports a wide range of design
configurations [42] and can be used for arbitrary semi-parametric designs, even with unequal
covariance matrices among groups and small sample sizes. Given the observations, the idea is to
generate semi-parametric bootstrap samples as

Z∗jk
i.i.d.
∼ N(0, Σ̂ j), j = 1, . . . , J; k = 1, . . . n j,

in order to obtain a more accurate finite sample approximation by recomputing the test statistic 3.7 as

Q∗N(T) = N · (Z̄∗· )
′T(TV̂∗NT)+TZ̄∗· .

The conditional (1 − α)-quantiles from its distribution, c∗N(α), converge to the asymptotic limit
quantile χ2

rank(T;1−α) resulting in the bootstrap test ϕ∗N = 1{QN(T) > c∗N(α)} where 1 is a vector of ones
with appropriate order.

As we have a between-subject factor and a within-subject factor, the contrast matrix T used in 3.6
will be appropriately chosen in the hypotheses for each of the different main effects as

H0(W) :
{(

1
gJg ⊗ Pm

)
µ = 0

}
,

H0(B) :
{(

Pg ⊗
1
mJm

)
µ = 0

}
,

H0(WB) :
{(

Pg ⊗ Pm

)
µ = 0

}
,

where Jg is a g× g matrix of ones and Pg = Ig −
1
gJg is the so-called centering matrix, with Ig being the

identity matrix. We have the same reasoning for Jm and Pm.
When we find significant differences in these contrasts, further analysis is needed to study the reason

for these differences. To do this, we use post-hoc comparisons that could be affected by potential
inflation of the Type I error rate due to the realization of multiple tests. As it was demonstrated through
simulation studies in [42], the semi-parametric procedure used in this paper incorporates adjustments
to mitigate this effect without the need for additional methods such as the Bonferroni correction, false
discovery rate, etc. [54, 55]

4. Results

The objective is to analyze if, conditioning by weight, there are differences in the angle rotation
for each joint in each axis taking as factors the schoolbag type (repeated measures treatments) and
gender (independent groups). Note that the results are obtained for each axis and joint separately
to be compared with other previous investigations in this field. In fact, the literature states that the
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axes are independent from a biomechanical viewpoint. Therefore, as it was stated above, the two-
way FANOVA-RM is reduced to a two-way MANOVA-RM for the multivariate response of the scores
vector of the most explicative principal components. In this sense, the number of principal components
has been selected to explain at least 95% of the total variability in order to guarantee a good explanation
of the gait process. All the results have been obtained through R, a free software environment for
statistical computing. More specifically, the fda [6] package has been considered to perform the FPCA
(assuming, previously, a cubic B-spline basis of dimension 20 for the functional reconstruction of
sample curves) and the MANOVA.RM [56] package to conduct the two-way MANOVA-RM. These
libraries are available in the official repository for R packages.

A summary of the outcomes for the pelvis articulation can be seen in Table 1. The mean curves
for this joint are displayed in Figure 3. The results for the rest of the articulations are available in the
Appendix.

Table 1. P-values associated with the bootstrapped WTSs for the pelvis articulation.

PCs SEX SCHOOLBAG SEX:SCHOOLBAG POST-HOC

X
A

X
IS

(fl
ex

io
n/

ex
te

ns
io

n)

10%
WEIGHT

1 0.043 <0.001 0.748
TRL-BCK 0.003

WALK-BCK 0.000
WALK-TRL 0.013

15%
WEIGHT

1 0.039 <0.001 0.490
TRL-BCK 0.000

WALK-BCK 0.000
WALK-TRL 0.000

20%
WEIGHT

1 0.046 <0.001 0.500
TRL-BCK 0.000

WALK-BCK 0.000
WALK-TRL 0.000

Y
A

X
IS

(a
dd

uc
tio

n/
ab

du
ct

io
n) 10%

WEIGHT
4 0.003 <0.001 0.124

TRL-BCK 0.000
WALK-BCK 0.000
WALK-TRL 0.887

15%
WEIGHT

4 0.004 <0.001 0.331
TRL-BCK 0.000

WALK-BCK 0.000
WALK-TRL 0.989

20%
WEIGHT

4 0.023 <0.001 0.226
TRL-BCK 0.000

WALK-BCK 0.000
WALK-TRL 0.963

Z
A

X
IS

(i
nt

er
na

l/e
xt

er
na

l)

10%
WEIGHT

3 0.645 <0.001 0.708
TRL-BCK 0.000

WALK-BCK 0.000
WALK-TRL 0.806

15%
WEIGHT

3 0.645 <0.001 0.335
TRL-BCK 0.000

WALK-BCK 0.000
WALK-TRL 0.750

20%
WEIGHT

3 0.699 <0.001 0.527
TRL-BCK 0.000

WALK-BCK 0.000
WALK-TRL 1.000
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Figure 3. Mean curves of the rotation angle for the pelvis articulation in each experimental
condition (treatment).

Focusing on the pelvis articulation, significant differences are found in all axes for both factors,
except on the Z axis for sex. Figure 3 reveals how the rotation angle is smaller in boys than in girls
on the X axis, whereas the variation range is wider in girls than in boys on the Y axis. Regarding
the schoolbag type, the three experimental conditions are different from each other on the X axis.
In particular, the rotation angle is arranged in decreasing order as follows: backpack, trolley, and
only walking. On the other hand, there are only significant differences between backpack-trolley and
backpack-walk on the Y and Z axes. Here, the evolution of the rotation angle in the backpack condition
is more constant in comparison with the remainder, especially notable on the Z axis.
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Analyzing the results for the rest of the joints, there are no differences by sex in the advancement
of the foot. Furthermore, in all joints except for the pelvis, gender has a significant effect on the Z axis
where the rotation angle in girls is greater in the ankle and smaller in the hip and knee than in boys. On
the Y axis, we find differences in the hip, knee, and pelvis and, on the X axis, in the pelvis and thorax
where the rotation angle in boys is lower in the hip and higher in the thorax. In relation to the schoolbag
type, we find no significant differences between using a trolley and walking without a schoolbag for
the knee, pelvis, and hip on the Y and Z axes, as well as in the thorax only for the Z axis. However,
there are differences between using the backpack and the other two experimental treatments. Besides,
we also discover dissimilarities for the pelvis and thorax in the three cases on the X axis, whereas only
differences are detected in the hip when walking without a schoolbag is involved.

4.1. Discussion

The American Academy of Pediatrics and the Spanish Association of Pediatrics recommend the use
of a trolley when the weight of the schoolbag exceeds 10% of the corporal weight. In this vein, [44]
suggests that children should avoid loads of more than 10% and 20% of their corporal weight when
carrying a backpack and trolley, respectively. In addition, they highlight the importance of using a
trolley even in light loads, since the differences in comparison with the control treatment (i.e., walking
without anything) are lower with a trolley than with a backpack, independent of the transport load.

Focusing on this research, the results obtained are in line with the findings of other published studies
on this topic. As was concluded in [43], we find a significant increase in pelvis flexion/extension in
relation to the action of only walking, being greater when carrying a backpack. As with the pelvis, the
thorax displays similar results: greater flexion/extension occurs with a backpack than with a trolley; and
both are greater in comparison with only walking. The same diagnosis was made over this articulation
in [44]. In addition, we do not detect that increasing the schoolbag load has an influence on the
differences regarding the control treatment either, which is in agreement with the studies cited above.
Only in the knee articulation when subjects are distinguished by sex, it seems that differences are
significantly reduced as the load increases. However, due to the sample size, this assertion should be
reinforced in future research.

Even so, we have also identified dissimilarities in relation to other research. In particular, no
differences were found in the hip, knee, and ankle for any load in [44]. In contrast, we detect that the
angle rotation is affected in these articulations, independent of the kind of schoolbag, for all axes;
especially in the abduction/adduction axis by carrying a backpack, although for the pair
“trolley-walking”, the differences vanish.

Most of the research hardly ever classify the subjects according to some morphological,
sociological, or anatomical variable to analyze these data; despite the fact that this might arouse a
great deal of interest by revealing multiple patterns depending on some characteristic. For example,
the effect of a school carriage on obese/overweight and healthy-weight children was analyzed in [57].
In this study, we focus on examining the effect of sex, whose interpretation of the results has already
been made above. Therefore, we can conclude that the FDA approach introduced in this paper sheds
new light on this topic.

Finally, we highlight that although the proposed methodology has been carried out through an
application in biomechanics, it is not limited to this field. The FANOVA-RM framework introduced
here is broadly applicable to any scientific discipline where the objective is to analyze the influence
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of one or more factors on a functional response variable when at least one factor represents an intra-
subject condition, i.e., the information from each subject is measured at each level of the intra-subject
factor.

5. Conclusions

In this article, a new estimation approach for two-way functional ANOVA with repeated measures
has been introduced to analyze how the gait patterns are affected by the type of schoolbag under
different weights (within-subject factor) in children of primary education, distinguishing them by sex
(between-subject factor). Assuming that functional data can be explained by their first principal
component scores, we propose to reduce the functional ANOVA model to a multivariate ANOVA
model for the most explicative principal components. The inherent problem is that the repeated
measures multivariate model has very restrictive assumptions such as multivariate normality or equal
covariance matrices across groups. To avoid these limitations, a solution based on a semi-parametric
approach has been considered, whose advantage is providing a rather general and comprehensive
theoretical framework to inference for our data.

In addition to its interpretative advantages, the functional methodology introduced in this paper has
demonstrated statistical robustness, even with small samples. Previous studies have highlighted the
crucial role of sample size in the power of statistical tests, as increased error dispersion tends to make
tests less conservative. However, the combination of parametric and non-parametric methodologies
based on FPCA has proven to be effective even for small sample sizes, regardless of normality
assumptions. Only in extreme scenarios the power of the tests become questionable. Thus, the
semi-parametric approach adopted in this study provides a robust alternative to mitigate these
limitations while preserving statistical reliability. Likewise, the semi-parametric bootstrap strategy
applied in the MANOVA-RM framework has been shown to maintain adequate control of the Type I
error rate without the need for additional corrections, even in complex scenarios. This supports the
confirmatory nature of the present study and reinforces the reliability of the findings in the
biomechanical field.

In broad terms, the results suggest significant effects of the factors of sex and schoolbag prototype
and, on the other hand, a negligible interaction with each other. In particular, the post-hoc analysis
concludes that the rotation angle formed by the joints when students go to school is less altered by
the trolley than by the backpack. These preliminary results reveal important information that might
help governments, official organizations, families, and/or teachers to adopt preventive measures that
guarantee the health of children.
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problem for basis expansion of functional data with applications to resistive memories, Math.
Comput. Simulat., 186 (2021), 41–51. https://doi.org/10.1016/j.matcom.2020.05.018

AIMS Mathematics Volume 10, Issue 4, 8468–8494.

https://dx.doi.org/https://doi.org/10.1016/j.jbiomech.2022.111342
https://dx.doi.org/https://doi.org/10.1002/asm.3150110402
https://dx.doi.org/https://doi.org/10.1111/j.1467-9868.2005.00535.x
https://dx.doi.org/https://doi.org/10.3390/math8112085
https://dx.doi.org/https://doi.org/10.1002/sim.8794
https://dx.doi.org/https://doi.org/10.1007/s11634-013-0158-y
https://dx.doi.org/https://doi.org/10.1007/s11135-018-0724-7
https://dx.doi.org/https://doi.org/10.1016/j.ecolind.2018.03.013
https://dx.doi.org/https://doi.org/10.1002/sim.9353
https://dx.doi.org/https://doi.org/10.1007/s11749-012-0307-1
https://dx.doi.org/https://doi.org/10.1007/s00357-014-9162-y
https://dx.doi.org/https://doi.org/10.1002/env.2852
https://dx.doi.org/https://doi.org/10.1002/sim.9087
https://dx.doi.org/https://doi.org/10.1016/j.matcom.2020.05.018


8484

38. N. H. Timm, 2 Multivariate analysis of variance of repeated measurements, In: Handbook of
Statistics, 1, Elsevier, 1980, 41–87. https://doi.org/10.1016/S0169-7161(80)01004-8

39. R. J. Boik, The mixed model for multivariate repeated measures: Validity conditions and an
approximate test, Psychometrika, 53 (1988), 469–486. https://doi.org/10.1007/BF02294401

40. R. J. Boik, Scheffés mixed model for multivariate repeated measures: A
relative efficiency evaluation, Commun. Stat.-Theory M., 20 (1991), 1233–1255.
https://doi.org/10.1080/03610929108830562

41. F. Konietschke, A. C. Bathke, S. W. Harrar, M. Pauly, Parametric and nonparametric
bootstrap methods for general MANOVA, J. Multivariate Anal., 140 (2015), 291–301.
https://doi.org/10.1016/j.jmva.2015.05.001

42. A. C. Bathke, S. Friedrich, M. Pauly, F. Konietschke, W. Staffen, N. Strobl, et al., Testing mean
differences among groups: Multivariate and repeated measures analysis with minimal assumptions,
Multivar. Behav. Res., 53 (2018), 348–359. https://doi.org/10.1080/00273171.2018.1446320
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Appendix

Table 2. P-values associated with the bootstrapped WTSs for the ankle articulation.

PCs SEX SCHOOLBAG SEX:SCHOOLBAG POST-HOC

X
A

X
IS

(fl
ex

io
n/

ex
te

ns
io

n)

10%
WEIGHT

5 0.384 <0.001 0.343
TRL-BCK 0.371

WALK-BCK 0.030
WALK-TRL 0.432

15%
WEIGHT

5 0.324 <0.001 0.740
TRL-BCK 0.961

WALK-BCK 0.187
WALK-TRL 0.274

20%
WEIGHT

5 0.281 <0.001 0.866
TRL-BCK 0.561

WALK-BCK 1.000
WALK-TRL 0.548

Y
A

X
IS

(a
dd

uc
tio

n/
ab

du
ct

io
n) 10%

WEIGHT
5 0.305 0.008 0.570

TRL-BCK 0.795
WALK-BCK 0.101
WALK-TRL 0.368

15%
WEIGHT

5 0.332 0.002 0.188
TRL-BCK 0.699

WALK-BCK 0.122
WALK-TRL 0.419

20%
WEIGHT

5 0.229 <0.001 0.921
TRL-BCK 0.788

WALK-BCK 0.529
WALK-TRL 0.213

Z
A

X
IS

(i
nt

er
na

l/e
xt

er
na

l)

10%
WEIGHT

5 0.025 <0.001 0.794
TRL-BCK 0.371

WALK-BCK 0.030
WALK-TRL 0.432

15%
WEIGHT

5 0.011 <0.001 0.832
TRL-BCK 0.961

WALK-BCK 0.187
WALK-TRL 0.274

20%
WEIGHT

5 0.019 <0.001 0.882
TRL-BCK 0.561

WALK-BCK 1.000
WALK-TRL 0.548
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Figure 4. Mean curves of the rotation angle for the ankle articulation in each experimental
condition (treatment).
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Table 3. P-values associated with the bootstrapped WTSs for the hip articulation.

PCs SEX SCHOOLBAG SEX:SCHOOLBAG POST-HOC

X
A

X
IS

(fl
ex

io
n/

ex
te

ns
io

n)

10%
WEIGHT

2 0.169 <0.001 0.567
TRL-BCK 0.092

WALK-BCK 0.000
WALK-TRL 0.033

15%
WEIGHT

2 0.227 <0.001 0.687
TRL-BCK 0.217

WALK-BCK 0.000
WALK-TRL 0.001

20%
WEIGHT

2 0.267 <0.001 0.894
TRL-BCK 0.005

WALK-BCK 0.000
WALK-TRL 0.045

Y
A

X
IS

(a
dd

uc
tio

n/
ab

du
ct

io
n) 10%

WEIGHT
5 0.015 <0.001 0.265

TRL-BCK 0.000
WALK-BCK 0.000
WALK-TRL 0.418

15%
WEIGHT

5 0.024 <0.001 0.064
TRL-BCK 0.003

WALK-BCK 0.000
WALK-TRL 0.217

20%
WEIGHT

5 0.004 <0.001 0.136
TRL-BCK 0.000

WALK-BCK 0.000
WALK-TRL 0.278

Z
A

X
IS

(i
nt

er
na

l/e
xt

er
na

l)

10%
WEIGHT

3 <0.001 <0.001 0.093
TRL-BCK 0.124

WALK-BCK 0.167
WALK-TRL 0.978

15%
WEIGHT

3 0.001 <0.001 0.117
TRL-BCK 0.062

WALK-BCK 0.036
WALK-TRL 0.943

20%
WEIGHT

3 <0.001 <0.001 0.108
TRL-BCK 0.000

WALK-BCK 0.003
WALK-TRL 0.718
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Figure 5. Mean curves of the rotation angle for the hip articulation in each experimental
condition (treatment).
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Table 4. P-values associated with the bootstrapped WTSs for the knee articulation.

PCs SEX SCHOOLBAG SEX:SCHOOLBAG POST-HOC

X
A

X
IS

(fl
ex

io
n/

ex
te

ns
io

n)

10%
WEIGHT

5 0.586 <0.001 0.681
TRL-BCK 0.206

WALK-BCK 0.101
WALK-TRL 0.943

15%
WEIGHT

5 0.551 <0.001 0.898
TRL-BCK 0.495

WALK-BCK 0.245
WALK-TRL 0.858

20%
WEIGHT

5 0.564 <0.001 0.896
TRL-BCK 0.427

WALK-BCK 0.964
WALK-TRL 0.584

Y
A

X
IS

(a
dd

uc
tio

n/
ab

du
ct

io
n) 10%

WEIGHT
5 0.003 <0.001 0.043

TRL-BCK 0.003
WALK-BCK 0.000
WALK-TRL 0.674

15%
WEIGHT

5 <0.001 <0.001 0.543
TRL-BCK 0.000

WALK-BCK 0.000
WALK-TRL 0.486

20%
WEIGHT

5 0.005 <0.001 0.651
TRL-BCK 0.019

WALK-BCK 0.000
WALK-TRL 0.082

Z
A

X
IS

(i
nt

er
na

l/e
xt

er
na

l)

10%
WEIGHT

3 0.028 <0.001 0.894
TRL-BCK 0.000

WALK-BCK 0.000
WALK-TRL 0.488

15%
WEIGHT

3 0.065 <0.001 0.597
TRL-BCK 0.000

WALK-BCK 0.000
WALK-TRL 0.977

20%
WEIGHT

3 0.097 <0.001 0.806
TRL-BCK 0.000

WALK-BCK 0.000
WALK-TRL 0.913
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Figure 6. Mean curves of the rotation angle for the knee articulation in each experimental
condition (treatment).
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Table 5. P-values associated with the bootstrapped WTSs for the thorax articulation.

PCs SEX SCHOOLBAG SEX:SCHOOLBAG POST-HOC

X
A

X
IS

(fl
ex

io
n/

ex
te

ns
io

n)

10%
WEIGHT

1 0.009 <0.001 0.903
TRL-BCK 0.000

WALK-BCK 0.000
WALK-TRL 0.000

15%
WEIGHT

1 0.011 <0.001 0.638
TRL-BCK 0.000

WALK-BCK 0.000
WALK-TRL 0.000

20%
WEIGHT

1 0.010 <0.001 0.767
TRL-BCK 0.000

WALK-BCK 0.000
WALK-TRL 0.001

Y
A

X
IS

(a
dd

uc
tio

n/
ab

du
ct

io
n) 10%

WEIGHT
5 0.715 <0.001 0.237

TRL-BCK 0.735
WALK-BCK 0.319
WALK-TRL 0.776

15%
WEIGHT

5 0.901 <0.001 0.585
TRL-BCK 1.000

WALK-BCK 0.263
WALK-TRL 0.292

20%
WEIGHT

5 0.784 <0.001 0.613
TRL-BCK 0.270

WALK-BCK 0.990
WALK-TRL 0.222

Z
A

X
IS

(i
nt

er
na

l/e
xt

er
na

l)

10%
WEIGHT

4 <0.001 <0.001 0.483
TRL-BCK 0.002

WALK-BCK 0.001
WALK-TRL 0.701

15%
WEIGHT

4 <0.001 <0.001 0.467
TRL-BCK 0.000

WALK-BCK 0.000
WALK-TRL 0.695

20%
WEIGHT

4 <0.001 <0.001 0.061
TRL-BCK 0.000

WALK-BCK 0.000
WALK-TRL 0.522
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Figure 7. Mean curves of the rotation angle for the thorax articulation in each experimental
condition (treatment).
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Table 6. P-values associated with the bootstrapped WTSs for the foot progress articulation.

PCs SEX SCHOOLBAG SEX:SCHOOLBAG POST-HOC

X
A

X
IS

(fl
ex

io
n/

ex
te

ns
io

n)

10%
WEIGHT

3 0.821 <0.001 0.701
TRL-BCK 0.921

WALK-BCK 0.368
WALK-TRL 0.186

15%
WEIGHT

3 0.836 <0.001 0.960
TRL-BCK 0.279

WALK-BCK 0.039
WALK-TRL 0.701

20%
WEIGHT

3 0.716 <0.001 0.986
TRL-BCK 0.370

WALK-BCK 0.009
WALK-TRL 0.259
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Figure 8. Mean curves of the rotation angle for the foot progress articulation in each
experimental condition (treatment).
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