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Abstract
In this note we study the inheritance of the slice diameter two property by ultrapower
spaces. Given a Banach space X , we give a characterisation of when (X)U , the ultra-
power of X through a free ultrafilter U , has the slice diameter two property obtaining
that this is the case for many Banach spaces which are known to enjoy the slice diam-
eter two property. We also provide, for every η > 0, an example of a Banach space X
with the Daugavet property such that the unit ball of (X)U contains a slice of diameter
smaller than η for every free ultrafilter U over N. This proves, in particular, that the
slice diameter two property is not in general inherited by taking ultrapower spaces.

Keywords Slice-diameter two property · Ultraproducts · Daugavet property

Mathematics Subject Classification 46B04 · 46B08 · 46B20 · 46M07

1 Introduction

Ultrapowers of Banach spaces have been intensively studied in the literature as they
have proved to be a useful tool in order to study local theory of Banach spaces (as a
matter of fact, ultraproducts are used in [3, Chapter 11] in order to prove that �1 is
finitely representable in X if, and only if, X fails to have type p > 1).

Various topological and geometrical properties have been studied in ultrapowers of
Banach spaces. For topological properties, e.g. reflexivity [14] and weak compactness
of sets [12, 29] have been explored. From the geometrical perspective, properties like
being an L1-predual [16], an almost square Banach space [15], an extreme point or a
strongly exposed point of the unit ball [10, 28], have been investigated
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A classical result about ultrapower spaces is the following: given a Banach space
X and a free ultrafilter U over N, it follows that ((X)U )∗ = (X∗)U if, and only if, X is
superreflexive. Moreover, if X is not superreflexive, there is not a good description of
the topological dual of (X)U . Because of this reason, informally speaking, properties
of Banach spaces which are described using elements of the topological dual may be
difficult to analyse in ultrapower spaces. This is the case, for instance, for properties
which deal with the behaviour of the slices of the unit ball (see Sect. 2 for details), like
the slice diameter two property.

A Banach space X is said to have the slice diameter two property (slice-D2P) if
every slice of BX has diameter exactly two. We refer the interested reader to [2, 5, 25]
and references therein for background on the topic.

This property has been widely studied during the last 25 years but, as far as the
author knows, little is known about when the slice-D2P passes on from a Banach space
to its ultrapowers. Let us point out that, from the study of stronger properties of Banach
spaces, some ultrapower spaces are known to enjoy the slice-D2P. For instance, in [15]
it is shown that (X)U has the slice-D2Pwhenever the space X is locally almost square,
a property which is strictly stronger than the slice-D2P (see Example 3.10 for details).
Moreover, other examples of ultrapowers with the slice-D2P come from ultrapowers
actually satisfying the Daugavet property.

Let us formally introduce the Daugavet property. We say that a Banach space X
has the Daugavet property if, for every slice S of BX , every x ∈ SX and every ε > 0,
there exists y ∈ S satisfying

‖x − y‖ > 2 − ε.

Observe that the above is an equivalent formulation of the original one which has to
do with the equation ‖Id+T ‖ = 1+‖T ‖ for the class of rank-one operators. We refer
the reader to [17, 18, 26, 31] and references therein for background. It is clear from
the definition that Banach spaces with the Daugavet property enjoy the slice-D2P.

The study of the Daugavet property implies to deal with slices of the unit ball (and
consequentlywith elements of X∗) so, at a first glance, one could expect a big difficulty
in the analysis of the Daugavet property in an ultrapower space. However, a complete
characterisation of when an ultrapower space has the Daugavet property was obtained
in [7].

The key idea was to make use of a characterisation of the Daugavet property which
avoids the use of slices: a Hahn-Banach separation argument implies that X has the
Daugavet property if, and only if, BX = conv{y ∈ BX : ‖x − y‖ > 2 − ε} holds for
every x ∈ SX and every ε > 0 (c.f. e.g. [31, Lemma 2.3]).

With this idea in mind, the authors of [7] considered a uniform version of the
Daugavet property, the so called uniform Daugavet property (see [7, p. 59]), and they
characterised those Banach spaces X for which (X)U has the Daugavet property.
They also showed that all the classical examples of Banach spaces with the Daugavet
property actually satisfy its uniform version. In [19], however, the authors constructed
a Banach space X with the Daugavet and the Schur properties such that (X)U fails the
Daugavet property for every free ultrafilter U over N.

123



Slice Diameter Two Property in Ultrapowers Page 3 of 21    62 

In this note our starting point will be a characterisation of the slice-D2P in the spirit
of the above mentioned [31, Lemma 2.3] coming from [13]: a Banach space X has
the slice-D2P if, and only if, BX = conv{ x+y

2 : x, y ∈ BX , ‖x − y‖ > 2 − ε} holds
for every ε > 0.

Using the above, in Theorems 3.1 and 3.2 we completely characterise when, given
a sequence (Xn)n∈N of Banach spaces and a free ultrafilter U over N, the ultraproduct
(Xn)U has the slice-D2P in terms of requiring that all Xn have the slice-D2P “in a
uniform way”. This motivates us to introduce the uniform slice diameter two property
in Definition 3.5, showing that this property is enjoyed by most of the classical spaces
which are known to have the slice-D2P. All this is discussed in Sect. 3.

In Sect. 4 we will have a look at the involved construction from [19] of a Daugavet
space whose ultrapowers fail the Daugavet property. We will make use of the above
example in order to construct, for every η > 0, a Banach space with the Daugavet
property such that the unit ball of (X)U contains slices of diameter smaller than η for
every free ultrafilter U over N. This will show, in particular, that the slice-D2P is not
in general inherited by taking ultrapower spaces.

2 Notation and Preliminary Results

We will consider Banach spaces over the scalar field R or C.
Given a Banach space X then BX (respectively SX ) stands for the closed unit ball

(respectively the unit sphere) of X . We will denote by X∗ the topological dual of X .
Given a subsetC of X , wewill denote by conv(C) the convex hull ofC and by span(C)

the linear span of C . We also denote, given n ∈ N, the set

convn(C) :=
{

n∑
i=1

λi xi : λ1, . . . , λn ∈ [0, 1],
n∑

i=1

λi = 1, x1, . . . , xn ∈ C

}
.

In other words, convn(C) stands for the set of all convex combinations of at most n
elements of C .

If C is a bounded set, by a slice of C we will mean a set of the following form

S(C, f , α) := {x ∈ C : Re f (x) > supRe f (C) − α}

where f ∈ X∗ and α > 0. Notice that a slice is nothing but the nonempty intersection
of a half-space with the bounded (and not necessarily convex) set C .

In [13, Lemma 1] it is proved that a Banach space X has the slice-D2P if, and only
if, BX := conv{ x+y

2 : ‖x − y‖ > 2 − ε} holds for every ε > 0. Indeed, we state here
for future reference the following more general version, which was already observed
in [22, Section 5]. Since the above mentioned [22] deals only with real Banach spaces,
we include a complete proof of the following proposition to cover the complex case
too and for the sake of completeness.

Proposition 2.1 Let X be a Banach space. The following are equivalent:

1. Every slice of BX has diameter at least α.
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2. BX = conv
{ x+y

2 : x, y ∈ BX , ‖x − y‖ � α − ε
}
holds for every ε > 0.

Proof (1)⇒(2). Assume that (2) does not hold. Then there exists ε > 0 and
x0 ∈ BX such that x0 /∈ conv

{ x+y
2 : x, y ∈ BX , ‖x − y‖ � α − ε

}
. Call A :={ x+y

2 : x, y ∈ BX , ‖x − y‖ � α − ε
}
. By the Hahn-Banach theorem we can find a

slice S of BX such that x0 ∈ S and S∩ A = ∅. We claim that if u, v ∈ S it follows that
‖u − v‖ < α − ε. Indeed, if there existed u, v ∈ S with ‖u − v‖ � α − ε, then u+v

2
would belong to S by the convexity of S. Since clearly u+v

2 ∈ A we would get that
S ∩ A �= ∅, which is impossible. This proves that ‖u − v‖ � α − ε holds for every
u, v ∈ S, which proves the negation of (1).

(2)⇒(1). Take a slice S := S(BX , x∗, β), where x∗ ∈ SX∗ and β > 0, and let
ε > 0, and let us prove that there are u, v ∈ S such that ‖u − v‖ � α − ε. The
arbitrariness of ε will imply (1). In order to do so, consider the slice S(BX , x∗, β

2 ).

Since conv
{ x+y

2 : x, y ∈ BX , ‖x − y‖ � α − ε
} = BX we infer that S(BX , x∗, β

2 )∩{ x+y
2 : x, y ∈ BX , ‖x − y‖ � α − ε

} �= ∅ (since the complement in BX of slices are
clearly convex sets). Consequently, we can find u, v ∈ BX with ‖u − v‖ � α − ε

and such that u+v
2 ∈ S

(
BX , x∗, β

2

)
. In order to finish the proof, let us prove that

both u, v ∈ S = S(BX , x∗, β) which means, by definition, that Re x∗(u) > 1−β and
Re x∗(v) > 1−β. To this end observe that, u+v

2 ∈ S(BX , x∗, β
2 )meansRe x∗ ( u+v

2

)
>

1 − β
2 . Now

1 − β

2
<

Re x∗(u) + Re x∗(v)

2
� Re x∗(u) + ‖x∗‖

2
= Re x∗(u) + 1

2
.

This implies Re x∗(u) + 1 > 2 − β, from where Re x∗(u) > 1− β. In a similar way,
it is proved that Re x∗(v) > 1 − β, which means u, v ∈ S, as desired. 	


The above result motivates us to introduce the following notation, which will be
useful throughout the text. Given a Banach space X and α > 0, define

Sα(X) :=
{
x + y

2
: x, y ∈ BX , ‖x − y‖ � α

}
.

Given n ∈ N we denote

Sα
n (X) := convn(S

α(X)).

Finally, given n ∈ N and α > 0, we define

Cα
n (X) := sup

x∈SX
d(x, Sα

n (X)) = sup
x∈SX

inf
y∈Sα

n (X)
‖x − y‖.

From the very definition of Cα
n (X) the following two properties follow:

1. Given 0 < α < β then Cα
n � Cβ

n and,
2. given two natural numbers n � m then Cα

n (X) � Cα
m(X).
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Given a sequence of Banach spaces {Xn : n ∈ N} we denote

�∞(N, (Xn)) :=
{
f : N −→

∏
n∈N

Xn : f (n) ∈ Xn ∀n and sup
n∈N

‖ f (n)‖ < ∞
}

.

Given a free ultrafilter U over N, consider c0,U (N, (Xn)) := { f ∈ �∞(N, (Xn)) :
limU ‖ f (n)‖ = 0}. The ultraproduct of {Xn : n ∈ N} with respect to U is the Banach
space

(Xn)U := �∞(N, (Xn))/c0,U (N, (Xn)).

We will naturally identify a bounded function f : N −→ ∏
n∈N

Xn with the element

( f (n))n∈N. In this way, we denote by (xn)U or simply by (xn), if no confusion is
possible, the coset in (Xn)U given by (xn)n∈N + c0,U (N, (Xn)).

From the definition of the quotient norm, it is not difficult to prove that ‖(xn)‖ =
limU ‖xn‖ holds for every (xn) ∈ (Xn)U .

3 Uniform slice-D2P

Let us start by looking for necessary conditions for an ultraproduct space to enjoy the
slice-D2P. In order to do so, as announced before, we will make use of Proposition 2.1.

Theorem 3.1 Let (Xn) be a sequence of Banach spaces, U be a free ultrafilter over N
and α > 0. Set X := (Xn)U and assume that every slice of BX has diameter at least
α. Then, for every δ > 0 and ε > 0 there exists n ∈ N such that

{k ∈ N : Cα−ε
n (Xk) < δ} ∈ U .

Proof Assume that there exist δ0 > 0, ε0 > 0 such that, for every n ∈ N, we get

{k ∈ N : Cα−ε0
n (Xk) � δ0} ∈ U .

We can select, for every n � 2, a set An ⊆ {k ∈ N : Cα−ε0
n (Xk) � δ0} such that

An ∈ U holds for every n ∈ N,
⋂
n�2

An = ∅ and An+1 ⊆ An holds for n � 2.

Take A1 = N. Observe that {An \ An+1 : n ∈ N} is a partition of N. Moreover,
for every n � 2, for every p ∈ An\An+1 we can find xp ∈ SX p satisfying that

d(xp, S
α−ε0
n (X p)) � δ0

2 . For p ∈ A1 \ A2 select any xp ∈ SX p .

Now x := (xp) ∈ SX . We claim that d((xp), conv(Sα− ε0
2 (X))) � δ0

2 . Once
this is proved, Proposition 2.1 implies that there exists a slice in (Xn)U of diame-
ter smaller than α, which will finish the proof of the theorem. In order to do so, take
z ∈ conv(Sα− ε0

2 (X)), so there is q ∈ N such that z ∈ convq(Sα− ε0
2 (X)).
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By definition we can find λ1, . . . , λq ∈ [0, 1] with ∑q
i=1 λi = 1 and (uin), (v

i
n) ∈

SX with ‖(uin) − (vin)‖ � α − ε0
2 and z = ∑q

i=1 λi
(uin)+(vin)

2 . Let η > 0. Since
‖(xn) − (zn)‖ = limU ‖xn − zn‖, the set

B := {n ∈ N : |‖xn − zn‖ − ‖x − z‖| < η} ∈ U .

On the other hand, given 1 � i � q it follows that limU ‖uin −vin‖ � α− ε0
2 > α−ε0.

This implies that the set

C :=
q⋂

i=1

{
n ∈ N : ‖uin − vin‖ > α − ε0

}
∈ U .

Select any k ∈ Aq ∩ B ∩ C . Then, since k ∈ B, we have

‖(xn) − (zn)‖ � ‖xk − zk‖ − η.

On the other hand, zk = ∑q
i=1 λi

uik+vik
2 with ‖uik − vik‖ � α − ε0 since k ∈ C . Hence,

zk ∈ convq(Sα−ε0(Xk)). Finally, since k ∈ Aq we conclude by the choice of xk that
‖xk − zk‖ � δ0

2 , so

‖(xn) − (zn)‖ � δ0

2
− η.

The arbitrariness of η > 0 and (zk) ∈ conv(Sα− ε0
2 (X)) implies that

d((xn), conv(Sα− ε0
2 (X))) � δ0

2 , as desired. 	

In the following result we establish the converse.

Theorem 3.2 Let (Xn) be a sequence of Banach spaces, 0 < α < 2 and let U be a
free ultrafilter over N. Assume that for every δ > 0 there exists n ∈ N such that

{k ∈ N : Cα
n (Xk) < δ} ∈ U .

Then, every slice of (Xn)U has diameter at least α.

Proof Let (xn) ∈ S(Xn)U and let us prove, in view of Proposition 2.1, that

(xn) ∈ conv

({
(un) + (vn)

2
: (un), (vn) ∈ B(Xn)U , ‖(un) − (vn)‖ � α

})
.

In order to do so take δ > 0. By the assumption there exists n ∈ N such that

A := {k ∈ N : Cα
n (Xk) < δ} ∈ U .
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Consequently, for every k ∈ A there exists
∑n

i=1 λki
uik+vik

2 , where λki ∈ [0, 1] satisfy∑n
i=1 λki = 1, such that

∥∥∥∥∥xk −
n∑

i=1

λki
uik + vik

2

∥∥∥∥∥ < δ

and

‖uik − vik‖ � α

holds for every 1 � i � n.
Define λki = 0 if k /∈ A for every 1 � i � n. Since λki ∈ [0, 1] we can consider

λi := limk,U λki ∈ [0, 1]. It is not difficult to prove that
∑n

i=1 λi = 1. Now, given
1 � i � n define

uik = vik = 0 ∀k /∈ A.

It is immediate that (uik), (v
i
k) ∈ B(Xn)U . Let us start by proving that ‖(uik) − (vik)‖ =

limU ‖uik − vik‖ � α holds for 1 � i � n. In order to do so, fix η > 0 and 1 � i � n.
By definition of limit through U and the definition of the norm of ultraproducts the
set

Bη := {p ∈ N : |‖(uik) − (vik)‖ − ‖uip − vip‖| < η} ∈ U .

Consequently, given p ∈ Bη ∩ A we obtain by the choice of u p
i and v

p
i that

‖(uik) − (uik)‖
p∈Bη

� ‖uip − vip‖ − η
p∈A
� α − η.

The arbitrariness of η > 0 implies ‖(uik) − (vik)‖ � α.
Now it is time to prove that∥∥∥∥∥(xk) −

n∑
i=1

λi
(uik) + (vik)

2

∥∥∥∥∥ � δ.

In order to do so, take ν > 0. Set

Cν :=
{
p ∈ N :

∣∣∣∣∣
∥∥∥∥∥(xk) −

n∑
i=1

λi
(uik) + (vik)

2

∥∥∥∥∥ −
∥∥∥∥∥xp −

n∑
i=1

λi
uip + vip

2

∥∥∥∥∥
∣∣∣∣∣ < ν

}
∈ U .

On the other hand set

D :=
n⋂

i=1

{
p ∈ N : ∣∣λp

i − λi
∣∣ <

ν

n

}
∈ U .
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Now given p ∈ Cν ∩ D ∩ A we get∥∥∥∥∥(xk) −
n∑

i=1

λi
(uik) + (vik)

2

∥∥∥∥∥
p∈Cν

� ν +
∥∥∥∥∥xp −

n∑
i=1

λi
uip + vip

2

∥∥∥∥∥
� ν +

∥∥∥∥∥xp −
n∑

i=1

λ
p
i

uip + vip

2

∥∥∥∥∥ +
n∑

i=1

|λi − λ
p
i |

p∈A
� ν + δ +

n∑
i=1

|λp
i − λi |

p∈D
� 2ν + δ.

The arbitrariness of ν > 0 proves

∥∥∥∥(xn) − ∑n
i=1 λi

(uik )+(vik)

2

∥∥∥∥ � δ, which finishes the

proof. 	

Remark 3.3 Observe that, given a Banach space X and any free ultrafilter U over N,
if we consider X1 = X2 = . . . ,= X , the quantity Cα

n (Xk) is independent of k, and
therefore the condition {k ∈ N : Cα

n (Xk) < δ} ∈ U simply means Cα
n (X) < δ.

Going back to the slice diameter two property in ultrapower spaces, given a Banach
space X we have that, a combination of Theorems 3.1 and 3.2 together with the fact
that (Cα

n (X))n∈N is a decreasing sequence, yield the following corollary.

Corollary 3.4 Let X be a Banach space. The following are equivalent:

1. (X)U has the slice-D2P for every free ultrafilter U over N.
2. For every 0 < α < 2, limn→∞ Cα

n (X) = 0.

Proof (2)⇒(1). Let U be a free ultrafilter over N and 0 < α < 2. Let us prove that
every slice of the unit ball of B(X)U has diameter at least α, for which we will make
use of Theorem 3.2. In order to do so, let δ > 0 and, thanks to Remark 3.3, it is enough
to find n ∈ N such that Cα

n (X) < δ. But this is immediate by the assumption that
limn→∞ Cα

n (X) = 0. The arbitrariness of 0 < α < 2 yields the conclusion.
(1)⇒(2). Take α > 0. In order to prove that limn→∞ Cα

n (X) = 0 select δ > 0 and
let us findm ∈ N such thatCα

n (X) < δ holds for every n � m. To do so, select any free
ultrafilter U over N. Since every slice of the unit ball of (X)U has diameter at least α,
Theorem3.1 andRemark 3.3 imply that there exists somem ∈ N such thatCα

m(X) < δ.
Since (Cα

n (X)) is a decreasing sequence we get that Cα
n (X) � Cα

m(X) < δ holds for
every n � m. The above condition together with the clear fact that Cα

n (X) � 0 holds
for every n ∈ N imply that limn→∞ Cα

n (X) = 0, which finishes the proof. 	

Corollary 3.6 motivates the following definition.

Definition 3.5 Let X be a Banach space. We say that X has the uniform slice diameter
two property (uniform slice-D2P) if, for every 0 < α < 2,

lim
n

Cα
n (X) = 0.
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With the above definition, Corollary 3.4 can be re-written in the following language.

Corollary 3.6 Let X be a Banach space. Then (X)U has the slice-D2P for every free
ultrafilter U over N if, and only if, X has the uniform slice-D2P.

The rest of this section will be devoted to providing examples of Banach spaces
with the uniform slice-D2P.

Example 3.7 Let X = L1(μ). It follows that X has the slice-D2P if, and only if, μ

contains no atom (c.f. e.g. [4, Theorem 2.13 (ii)]). But if μ is an atomless measure it
follows that (X)U has the Daugavet property for every free ultrafilter U [7, Lemma
6.6 and Theorem 6.2]. In particular, (X)U has the slice-D2P for every free ultrafilter
U .

Consequently, an L1 space has the slice-D2P if, and only if, it satisfies the uniform
slice-D2P.

More examples of spaces enjoying the uniform slice-D2P come from ultrapower
spaces with the slice-D2P.

Example 3.8 Let X be a Banach space with the uniform slice-D2P and let U be a free
ultrafilter overN. We claim that (X)U has the uniform slice-D2P. In order to prove this
it is enough to prove that, given any ultrafilter V over N then ((X)U )V has the slice-
D2P. However, this result follows since X has the uniform slice-D2P and ((X)U )V
is isometrically isomorphic to (X)W where W is a free ultrafilter over N. Indeed,
W = U × V (see [27, Proposition 2.1]).

Another class where the slice-D2P and its uniform version are equivalent is the one
of L1-preduals.

Example 3.9 Let X be an L1 predual. Observe that X has the slice-D2P if, and only
if, X is infinite-dimensional (c.f. e.g. [4, Corollary 2.9]). Since the ultrapower of any
L1 predual is again an L1 predual by [16, Proposition 2.1], it follows that (X)U has
the slice-D2P for every free ultrafilter U as soon as X has the slice-D2P, from where
the uniform slice-D2P follows on X .

The following examples will come from [15], for which we need to introduce a bit
of notation. According to [1], a Banach space X is

1. locally almost square (LASQ) if for every x ∈ SX there exists a sequence {yn} in
BX such that ‖x ± yn‖ → 1 and ‖yn‖ → 1.

2. weakly almost square (WASQ) if for every x ∈ SX there exists a sequence {yn} in
BX such that ‖x ± yn‖ → 1, ‖yn‖ → 1 and yn → 0 weakly.

3. almost square (ASQ) if for every x1, . . . , xk ∈ SX there exists a sequence {yn} in
BX such that ‖yn‖ → 1 and ‖xi ± yn‖ → 1 for every i ∈ {1, . . . , k}.
We refer the reader to [1, 11, 24] and references therein for examples of LASQ,

WASQ and ASQ Banach spaces.

Example 3.10 If X is LASQ then X has the uniform slice-D2P. Indeed, if X is LASQ
then (X)U is LASQ for every free ultrafilter overN by [15, Proposition 4.2]. The result
follows since LASQ spaces have the slice-D2P (c.f. e.g. [20, Proposition 2.5]).
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The next result shows that the uniform slice-D2P is inherited by the �∞-sum of
spaces.

Proposition 3.11 Let X be a Banach space with the uniform slice-D2P. Then, for any
non-zero Banach space Y , the space X ⊕∞ Y has the uniform slice-D2P.

Proof It is known that (X ⊕∞ Y )U = (X)U ⊕∞ YU . The result follows from the fact
that slice-D2P is inherited by the �∞-sum if one of the factors has the slice-D2P (c.f.
e.g. [21, Lemma 2.1]). 	


For the �p-sum we have the following result.

Proposition 3.12 Given α > 0 and n ∈ N, the following inequality holds

Cα
n2(X ⊕p Y ) �

(
Cα
n (X)p + Cα

n (Y )p
) 1
p .

In particular, if X and Y have the uniform slice-D2P, then so does X ⊕p Y .

Proof Let (x, y) ∈ SX⊕pY and let r > 0. We can assume up to a density argument
that both x �= 0 and y �= 0. Since x ∈ BX , by definition of Cα

n (X), we can find

u := ∑n
i=1 λi

ui+vi
2 with

∥∥∥ x
‖x‖ − u

∥∥∥ < d
(

x
‖x‖ , Sα

n (X)
)

+ r � Cα
n (X) + r , where

ui , vi ∈ BX satisfy ‖ui − vi‖ � α for every 1 � i � n and λ1, . . . , λn ∈ [0, 1] are
such that

∑n
i=1 λi = 1.

Similarly, since y ∈ BY we can find v := ∑n
i=1 μi

ai+bi
2 with

∥∥∥ y
‖y‖ − v

∥∥∥ <

Cα
n (Y ) + r , where ai , bi ∈ BX satisfy ‖ai − bi‖ � α for every 1 � i � n and

μ1, . . . , μn ∈ [0, 1] are such that
∑n

i=1 μi = 1.

Now (ũ, ṽ) = ∑n
i=1

∑n
j=1 λiμ j

(‖x‖ui ,‖y‖a j )+(‖x‖vi ,‖y‖b j )

2 ∈ Sα
n2

(X⊕p Y ). Indeed,
given i, j ∈ {1, . . . , n} we have

‖(‖x‖ui , ‖y‖a j )‖p = ‖x‖p‖ui‖p + ‖y‖p‖a j‖p � ‖x‖p + ‖y‖p = ‖(x, y)‖p = 1.

In a similar way we obtain that (‖x‖vi , ‖y‖b j ) ∈ BX⊕pY . On the other hand we have

‖(‖x‖ui , ‖y‖a j ) − (‖x‖vi , ‖y‖b j )‖p = ‖x‖p‖ui − vi‖p + ‖y‖p‖a j − b j‖p

� α p(‖x‖p + ‖y‖p) = α p.

Consequently (ũ, ṽ) ∈ Sα
n2

(X ⊕p Y ).
Finally, in order to estimate ‖(x, y) − (ũ, ṽ)‖ observe that ũ = ‖x‖u. Indeed

ũ =
n∑

i=1

n∑
j=1

λiμ j
‖x‖ui + ‖x‖vi

2
=

n∑
i=1

λi

⎛
⎝ n∑

j=1

μ j

⎞
⎠ ‖x‖ui + ‖x‖vi

2

=
n∑

i=1

λi‖x‖ui + vi

2

= ‖x‖
n∑

i=1

λi
ui + vi

2
= ‖x‖u.
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With a similar argument it follows that ṽ = ‖y‖v.
This implies

(Cα
n (X) + r)p + (Cα

n (Y ) + r)p �
∥∥∥∥ x

‖x‖ − u

∥∥∥∥
p

+
∥∥∥∥ y

‖y‖ − v

∥∥∥∥
p

�
∥∥∥∥
(

x

‖x‖ ,
y

‖y‖
)

−
(

ũ

‖x‖ ,
ṽ

‖y‖
)∥∥∥∥

p

= ‖x − ũ‖p

‖x‖p
+ ‖y − ṽ‖p

‖y‖p

� ‖x − ũ‖p + ‖y − ṽ‖p = ‖(x, y) − (ũ, ṽ)‖p

since 0 < ‖x‖p < 1 and 0 < ‖y‖p < 1. The arbitrariness of r > 0 and (x, y) ∈
BX⊕pY proves the result. 	


Let us continue with an example coming from [13] in the context of Lipschitz
function spaces.

Example 3.13 Let M be a metric space with a distinguished point 0 ∈ M and let
Lip0(M) be the space of Lipschitz functions f : M −→ Rwhich vanish at 0 endowed
with the standard Lipschitz norm (see [30] for background).

From the results of [13, Section 2] it follows that if either inf{d(x, y) : x, y ∈
M, x �= y} = 0 or if M is unbounded, then Lip0(M) has the uniform slice-D2P.

Indeed, in [13, Theorems 1 and 2] it is proved that in both the above cases Lip0(M)

satisfies the hypothesis of [13, Lemma 2]. Moreover, in the proof of the above men-
tioned [13, Lemma 2] it is proved that, given any ε > 0 and f ∈ BLip0(M) then, for
every n ∈ N there are Lipschitz functions x1, y1, . . . , xn, yn ∈ (1 + ε)BLip0(M) such
that ‖xk − yk‖ � 2 and

∥∥∥∥∥ f − 1

n

n∑
k=1

xk + yk
2

∥∥∥∥∥ <
4

n
.

If we define x̃k := xk
1+ε

and ỹk := yk
1+ε

then ‖x̃k − ỹk‖ � 2
1+ε

and

∥∥∥∥∥ f − 1

n

n∑
k=1

x̃k + ỹk
2

∥∥∥∥∥ <
4

n
+ ε.

The arbitrariness of f ∈ BLip0(M) reveals that

C
2

1+ε
n (Lip0(M)) � 4

n
+ ε.

From here the uniform slice-D2P of Lip0(M) follows. Indeed, given 0 < α < 2
and δ > 0, find m ∈ N such that 5

n < δ holds for every n � m. Furthermore, we
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can find ε > 0 small enough to guarantee 2
1+ε

> α (consequently Cα
n (Lip0(M)) �

C
2

1+ε
n (Lip0(M)) holds for every n ∈ N) and ε < 1

n . Now, given n � m, we get

Cα
n (Lip0(M)) � C

2
1+ε
n (Lip0(M)) � 4

n
+ ε <

5

m
< δ.

Summarising we have proved that, given any 0 < α < 2 and any δ > 0 there exists
m ∈ N such that Cα

n (Lip0(M)) < δ holds for every n � m. Consequently, Lip0(M)

has the uniform slice-D2P.

Remark 3.14 We want to point out that, in the paper [13], the author considers the
Banach space quotient Lip(M) resulting from considering the space of all the Lipschitz
functions over M when endowed with the classical seminorm

L( f ) := sup
x,y∈M;x �=y

f (x) − f (y)

d(x, y)
.

However, it is well known that Lip(M) and Lip0(M) are isometrically isomorphic
Banach spaces regardless the choice of distinguished point 0 ∈ M (c.f. e.g. [30, p.
36]).

We end the section by exhibiting another example with the uniform slice-D2P.
Throughout the rest of the section we will consider uniform algebras over the scalar
fieldC. Let us introduce some notation used in [23]. Recall that a uniform algebra over
a compact Hausdorff topological space K is a closed subalgebra X ⊆ C(K ), where
C(K ) is the space of all the continuous functions f : K −→ K, which separates the
points of K and contains the constant functions.

Given a uniform algebra on a compact space K , a point x ∈ K is said to be a
strong boundary point if, for every neighbourhood V of x and every δ > 0, there
exists f ∈ SX such that f (x) = 1 and | f | < δ on K\V . The Silov boundary of
X , denoted by ∂X following the notation of [9], is the closure of the set of all strong
boundary points. A fundamental result of the theory of uniform algebras is that X can
be indentified with a uniform algebra on its Silov boundary (see [23]). This fact allows
us to assume, with no loss of generality, that the set of strong boundary points of X is
dense in K .

Now we get the following example.

Example 3.15 Let X be an infinite-dimensional uniform algebra. Then X has the
uniform slice-D2P.

Observe that in the proof of [23, Theorem 1] the following is proved: given f ∈ BX ,
a strong boundary point x0 ∈ K , an open neighbourhood V of x0 in K and δ > 0
there exists g ∈ BX and ϕ ∈ SX such that

1. |g(t)| < δ holds for every t ∈ K\V .
2. h := f (1 − g) satisfies ‖h‖ � 1 + 3δ.
3. ‖h ± ϕ‖ � 1 + 4δ.
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Let us concluye the uniform slice-D2P from the above construction. In order to do so,
let f ∈ BX .

Since X is infinite-dimensional we conclude that K is infinite, so we can take a
sequence of pairwise disjoint open sets {Vn} in K . By the density of the the set of
strong boundary points we can take one such point tn ∈ Vn for every n ∈ N.

Let n ∈ N and δ > 0. Given 1 � k � n consider gk, hk, ϕk (associated to the
strong boundary xk and the open set Vk) as exposed above and define

ak := hk + ϕk

1 + 4δ
; bk := hk − ϕk

1 + 4δ
.

It is clear (by (3)) that ak, bk ∈ BX and, moreover,

‖ak − bk‖ = 2‖ϕk‖
1 + 4δ

= 2

1 + 4δ
.

Hence z := 1
n

∑n
k=1

ak+bk
2 = 1

n

∑n
k=1

hk
1+4δ = 1

n

∑n
k=1 hk

1+4δ ∈ S
2

1+4δ
n (X). Let us estimate

‖ f − z‖, for which we will estimate first ‖ f − (1 + 4δ)z‖. Observe that

f − (1 + 4δ)z = f − 1

n

n∑
k=1

hk = 1

n

n∑
k=1

f − hk = 1

n

n∑
k=1

f − f (1 − gk) = 1

n

n∑
k=1

f gk .

In order to estimate ‖ f − (1+ 4δ)z‖ select t ∈ K . Since Vi ∩ Vj = ∅ if i �= j we get
that t /∈ Vk for all k ∈ N except, at most, for one k0. Anyway, for every k �= k0 we get
t /∈ Vk , which in turn implies |gk(t)| < δ (by (1)). Consequently

| f (t) − (1 + 4δ)z(t)| =
∣∣∣∣∣1n

n∑
k=1

f (t)gk(t)

∣∣∣∣∣ � 1

n

n∑
k=1

| f (t)||gk(t)|

� 1

n

n∑
k=1

|gk(t)| = 1

n

⎛
⎝|gk0(t)| +

∑
k �=k0

|gk(t)|
⎞
⎠

<
1

n
(1 + (n − 1)δ)) � 1

n
+ δ.

The arbitrariness of t ∈ K implies that ‖ f −(1+4δz)‖ � 1
n +δ, so ‖ f −z‖ � 1

n +5δ.
The arbitrariness of f ∈ BX implies that

C
2

1+4δ
n (X) � 1

n
+ 5δ.

A reasoning similar to that of the end of Example 3.13 concludes that X has the
uniform slice-D2P, as desired.
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4 A Daugavet space failing the uniform slice-D2P

The aim of this section is to construct a Banach space X with the Daugavet property
satisfying that (X)U fails the slice-D2P for every free ultrafilter U over N. In order
to do so, we will follow the construction of a Banach space X with the Daugavet
property satisfying that (X)U fails the Daugavet property from [19]. Our example will
be a particular case of this example by a suitable choice of scalar sequence (see below).
The above mentioned construction of [19] is in turn based on a construction of [8]
of a space failing the Radon-Nikodym property but where every uniformly bounded
dyadic martingale converges. We will consider in this section the scalar field R.

In the sequel we will follow word-by-word the construction of [19, Section 2]. We
denote by L1 := L1(�,,μ) over a separable non-atomic measure space, and we
will denote by ‖ ·‖ the canonical norm on L1 throughout the section. We also consider
the topology of convergence in measure, which is the one generated by the metric

dm( f , g) := inf {ε > 0 : μ{t : | f (t) − g(t)| � ε} � ε} .

Observe that, given f , g ∈ L1 it is immediate that dm( f , g) = dm( f − g, 0).
Consequently,

dm( f + g, 0) � dm( f + g, g) + dm(g, 0) = dm( f + g − g, 0) + dm(g, 0)

= dm( f , 0) + dm(g, 0)

and, inductively, d
(∑n

i=1 fi , 0
)

�
∑n

i=1 dm( fi , 0) holds for every f1, . . . , fn ∈
L1. It is also easy to prove that given f ∈ L1 and given λ ∈ [0, 1] it follows that
dm(λ f , 0) � dm( f , 0).

The following result, based on an argument of disjointness of supports of functions
in L1, will be used in the future. For a complete proof we refer to [19, Lemma 2.1].

Lemma 4.1 Let H be a uniformly integrable subset of L1 and ε > 0. Then there exists
δ > 0 such that, if g ∈ H and f ∈ L1 satisfies dm( f , 0) < δ then

‖ f + g‖ � ‖ f ‖ + ‖g‖ − ε.

The following lemma, whose proof can be found in [6, Lemma 5.26], is essential
in the future construction.

Lemma 4.2 Let 0 < ε < 1. Then there exists a function f ∈ L1([0, 1]) such that

1. f � 0, ‖ f ‖ = 1 and ‖ f − 1‖ � 2 − ε.
2. Let { f j } be a sequence of independent random variables with the same distribution

as f . If g ∈ span{ f j } with ‖g‖ � 1 then there exists a constant function c with
dm(g, c) � ε.

3.
∥∥∥ 1
n

∑n
j=1 f j − 1

∥∥∥ → 0 as n → ∞.

In the lemma and in the construction below we consider (�,,μ) as the product
of countably many copies of the measure space [0, 1].
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We say that a subspace X of L1 depends on finitely many coordinates if all f ∈ X
are functions depending on a finite common set of coordinates.

Now we consider the following lemma, which appears in [19] (see [19, Lemma
2.4] for a proof).

Lemma 4.3 Let G be a finite dimensional subspace of L1 that depends on finitely
many coordinates. Let {uk}mk=1 ⊆ SG and ε > 0. Then there exists a finite dimensional
subspace F of L1 containing G and depending on finitely many coordinates and there
exist n ∈ N and functions {vk, j }k�m, j�n such that:

1. ‖u + vk, j‖ � 2 − ε holds for every u ∈ SG and all k � m and j � n,

2.
∥∥∥uk − 1

n

∑n
j=1 vk, j

∥∥∥ � ε for every k,

3. For every ϕ ∈ BF there exists ψ ∈ BG with dm(ϕ, ψ) � ε.

Now we will make the construction of the space. Fix a decreasing sequence (εN )

of positive numbers with
∑∞

j=N+1 ε j < εN for all N ∈ N and select inductively
finite-dimensional subspaces of L1,

span 1 = E1 ⊂ E2 ⊂ E3 ⊂ . . . ,

each of them depending on finitely many coordinates, εN -nets {uN
k }m(N )

k=1 of SEN

and collections of elements {vN
k, j }k�m(N ), j�n(N ) in such a way that the conclusion

of Lemma 4.3 holds with ε = εN , G = EN , F = EN+1, {uk}mk=1 = {uN
k }m(N )

k=1 ,

{vk, j }k�m, j�n = {vN
k, j }k�m(N ), j�n(N ). Denote E :=

∞⋃
N=1

EN .

The above space E satisfies the following properties, obtained from [19, Theorem
2.5].

Theorem 4.4 The space E constructed as above satisfies the following properties:

1. E has the Daugavet property,
2. For every f ∈ BE and every N ∈ N there exists g ∈ BEN satisfying that

dm( f , g) < εN ,
3. E has the Schur property.

In [19, Theorem 3.3] the authors make use of the above space in order to construct
a Banach space X with the Daugavet property such that (X)U fails the Daugavet
property for every free ultrafilter U over N. In the following, we will make use of
many of their ideas in order to prove the following theorem.

Theorem 4.5 Let n ∈ N and η > 0. There exists a Banach space X with the Daugavet
property such that

C2η
n (X) � η

8
.

Proof Select δ > 0 small enough so that

5δ <
η

2
.
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Let X be the space of Theorem 4.4 with ε1 > 0 small enough to satisfy that given any
constant function g ∈ [−2, 2] (i.e. g ∈ E1) and f ∈ L1, the condition dm( f , 0) <

2nε1 implies

‖ f + g‖ � ‖ f ‖ + ‖g‖ − δ. (4.1)

Our aim is to prove that

d
(
1, S2ηn (X)

)
� η

8
. (4.2)

In order to do so take z ∈ S2ηn (X). Then z = ∑n
k=1 λk zk with zk ∈ S2η(X) and

λ1, . . . , λn ∈ [0, 1] with
∑n

k=1 λk = 1. Moreover, since zk ∈ S2η(X) it follows
that zk = uk+vk

2 with uk, vk ∈ BX satisfying that ‖uk − vk‖ � 2η holds for every
1 � k � n. Now given k, the triangle inequality implies

2η � ‖uk − 1 + 1 − vk‖ � ‖1 − uk‖ + ‖1 − vk‖.

The above inequality implies that either ‖1 − uk‖ � η or ‖1 − vk‖ � η. Assume, up
to a relabeling, that ‖1 − uk‖ � η holds for every 1 � k � n.

Now, given 1 � k � n apply (2) of Theorem 4.4 (applied to f = uk and
vk respectively and N = 1) to find constant functions αk, βk ∈ [−1, 1] satisfying
dm(uk, αk) < ε1 and dm(vk, βk) < ε1.

Now, given 1 � k � n, we have

1 � ‖uk‖ = ‖αk + (uk − αk)‖ � |αk | + ‖uk − αk‖ − δ

since αk is a constant function and dm(uk − αk, 0) = dm(uk, αk) < ε1 < 2nε1, so the
inequality (4.1) holds. Now

1 � |αk | + ‖uk − 1 + 1 − αk‖ − δ � |αk | + ‖1 − uk‖ − |1 − αk | − δ

= |αk | + ‖1 − uk‖ − (1 − αk) − δ,

where the last equality follows since αk � 1. Taking into account that ‖1 − uk‖ � η

the above inequality implies

1 � |αk | + η − (1 − αk) − δ = |αk | + αk + η − 1 − δ � 2αk − 1 + η − δ.

Consequently

2αk � 2 − η + δ ⇒ αk � 2 − η

2
+ δ

2
.

Since βk ∈ [−1, 1] holds for every k we get

n∑
k=1

λk
αk + βk

2
�

2−η
2 + δ

2 + 1

2
= 4 − η + δ

4
. (4.3)
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Now

dm

(
z −

n∑
k=1

λk
αk + βk

2
, 0

)
= dm

(
n∑

k=1

λk

2
(uk − αk + vk − βk), 0

)

�
n∑

k=1

dm(uk − αk, 0) + dm(vk − βk, 0) < 2nε1.

If we apply (4.1) to the constant function 1 − ∑n
k=1 λk

αk+βk
2 and the function z −∑n

k=1 λk
αk+βk

2 , which is 2nε1 close to 0 with respect to the distance dm , we obtain

‖1 − z‖ =
∥∥∥∥∥
(
1 −

n∑
k=1

λk
αk + βk

2

)
−

(
z −

n∑
k=1

λk
αk + βk

2

)∥∥∥∥∥
�

∥∥∥∥∥1 −
n∑

k=1

λk
αk + βk

2

∥∥∥∥∥ +
∥∥∥∥∥z −

n∑
k=1

λk
αk + βk

2

∥∥∥∥∥ − δ

�
∥∥∥∥∥1 −

n∑
k=1

λk
αk + βk

2

∥∥∥∥∥ − δ

� 1 −
n∑

k=1

λk
αk + βk

2
− δ

(4.3)
� 1 − 4 − η + δ

4
− δ = η − 5δ

4
>

η

8
.

Now the result follows by the arbitrariness of z ∈ S2ηn (X). 	


Let η > 0 and, for every n ∈ N, consider Xn as the Banach space claimed in
Theorem 4.5, and consider X = (⊕∞

n=1 Xn
)
1. X has the Daugavet property as it is

an �1-sum of Banach spaces with the Daugavet property [32, Theorem 1]. Let r > 0
small enough to guarantee 2r < η and r2

4 + r <
η
8 . We claim that, given n ∈ N, we

get that

d

⎛
⎝(0, 0, 0, . . . , 1︸︷︷︸

n

, 0, 0, . . .), S3ηn (X)

⎞
⎠ � r2

4
.

In order to prove it write x := (0, 0, 0, . . . , 1︸︷︷︸
n

, 0, 0, . . .) and assume by

contradiction that there is z ∈ S3ηn (X) such that ‖x − z‖ <
( r
2

)2. Consequently

‖1 − z(n)‖ = ‖x(n) − z(n)‖ �
∞∑
k=1

‖x(k) − z(k)‖ = ‖x − z‖ <
( r
2

)2
.
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If we write z = ∑n
i=1 λi zi for 0 � λi � 1 with

∑n
i=1 λi = 1 and zi ∈ S3η(X), we

obtain from the above inequality that
∥∥∑n

i=1 λi zi (n)
∥∥ > 1 − ( r

2

)2. Set
G :=

{
i ∈ {1, . . . , n} : ‖zi (n)‖ > 1 − r

2

}
.

We claim that
∑

i /∈G λi < r
2 . Indeed,

1 −
( r
2

)2
<

n∑
i=1

λi‖zi (n)‖ =
∑
i∈G

λi‖zi (n)‖ +
∑
i /∈G

λi‖zi (n)‖

�
∑
i∈G

λi +
∑
i /∈G

λi

(
1 − r

2

)

= 1 − r

2

∑
i /∈G

λi ,

from where
∑

i /∈G λi < r
2 follows.

On the other hand, since zi ∈ S3η(X) then for 1 � i � n there are ui , vi ∈ BX

with zi = ui+vi
2 and ‖ui − vi‖ > 3η. Given i ∈ G we have ‖zi (n)‖ > 1 − r

2 , from
where

1 − r

2
<

‖ui (n) + vi (n)‖
2

� ‖ui (n)‖ + ‖vi (n)‖
2

,

and an easy convexity argument implies ‖ui (n)‖ > 1 − r and ‖vi (n)‖ > 1 − r .
Consequently, given i ∈ G we have

1 − r < ‖ui (n)‖ � ‖ui (n)‖ +
∑
k �=n

‖ui (k)‖ = ‖ui‖ � 1,

from where
∑

k �=n ‖ui (k)‖ < r . Similarly
∑

k �=n ‖vi (k)‖ < r . Since ‖ui − vi‖ > 3η
and 2r < η we obtain

3η < ‖ui (n) − vi (n)‖ +
∑
k �=n

(‖ui (k)‖ + ‖vi (k)‖) � ‖ui (n) − vi (n)‖ + 2r ,

so ‖ui (n) − vi (n)‖ > 3η − 2r > 2η holds for every i ∈ G. Set λ := 1 − ∑
i∈G λi

and set z′ := ∑
i∈G λi zi + λz where z = zi0 for any i0 ∈ G. We clearly get that

z′(n) = ∑
i∈G λi

ui (n)+vi (n)
2 + λ

ui0 (n)+vi0 (n)

2 where ‖ui (n) − vi (n)‖ > 2η holds for

every i ∈ G and ‖ui0(n) − vi0(n)‖ > 2η. This means z′(n) ∈ S2ηn (Xn). By (4.2) we
obtain

‖1 − z′(n)‖ � η

8
.
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Consequently

η

8
� ‖x(n) − z′(n)‖ � ‖x − z′‖ � ‖x − z‖ + ‖z′ − z‖

� r2

4
+

∑
i /∈G

λi

∥∥∥∥zi − ui0 + vi0

2

∥∥∥∥ <
r2

4
+ r <

η

8
,

a contradiction.
This proves that for every n ∈ N it follows

C3η
n (X) � r2

4
.

According to Theorem 3.1 we have proved the following result.

Theorem 4.6 For every ε > 0 there exists a Banach space X with the Daugavet
property such that, for every free ultrafilter U over N, the space (X)U has a slice of
diameter smaller than or equal to ε.

Proof Given ε > 0 select 0 < η < ε
3 , and choose r > 0 small enough to guarantee

2r < η and r2
4 + r <

η
8 . We have proved that there exists a Banach space X such

that C3η
n (X) � r2

4 . According to Theorem 3.1 and Remark 3.3 this means that given
any free ultrafilter U over N there exists a slice of B(X)U of diameter smaller than 3η.
Since 3η < ε the conclusion follows. 	
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