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The question is not whether intelligent machines can have any emotions,
but whether machines can be intelligent without any emotions.

Marvin Minsky, 1986
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Abstract
In nature, intelligent living beings have developed emotions to modulate their behavior as a
fundamental evolutionary advantage. However, researchers seeking to endow machines with
this advantage lack a clear theory from cognitive neuroscience describing emotional elicitation
from first principles, namely, from raw observations to concrete affects. As a result, they often
resort to case-specific solutions and arbitrary or hard-coded models that fail to generalize
well to other agents and tasks.

Here we propose that emotions correspond to distinct temporal patterns perceived in crucial
values for living beings in their environment (like recent rewards, expected future rewards
or anticipated world states). Based on this foundation, we introduce a fully self-learning
emotional framework for Artificial Intelligence agents convincingly associating said patterns
to natural emotions documented in the scientific literature.

Applied in a case study, an artificial neural network trained on unlabeled agent’s experiences
successfully learned and identified eight basic emotional patterns that are situationally coherent
and reproduce natural emotional dynamics. Validation through an emotional attribution
study, where human observers rated their pleasure-arousal-dominance dimensions, showed high
statistical agreement, distinguishability, and strong alignment with experimental psychology
accounts, demonstrating that human observers can infer the internal “emotional state” of
artificial agents, aligning closely with the agents’ internal status variables.

We believe that the generality of the framework and the cross-disciplinary language defined,
grounded on first principles from Reinforcement Learning, may lay the foundations for further
research and applications, leading us toward emotional machines that think and act more like
us.
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Resumen
En la naturaleza, los seres vivos dotados de inteligencia han desarrollado emociones para
modular su comportamiento como una ventaja evolutiva fundamental. Sin embargo, en
su aspiración de dotar a las máquinas de esta ventaja, los investigadores carecen de una
teoría clara en la neurociencia cognitiva que describa la elicitación emocional desde principios
fundamentales, es decir, desde observaciones crudas hasta afectos concretos. Como resultado,
se recurre a menudo a soluciones específicas para cada caso y a modelos arbitrarios o codificados
de manera fija que no generalizan bien a otros agentes y tareas.

El presente estudio propone la hipótesis de que las emociones corresponden a distintos
patrones temporales percibidos en valores cruciales para los seres vivos en su entorno (como
recompensas recientes, recompensas futuras esperadas o estados anticipados del mundo).
Sobre esta base, se introduce un marco emocional completamente autoaprendido para agentes
con Inteligencia Artificial que asocia convincentemente dichos patrones con las emociones
naturales documentadas en la literatura científica.

Aplicado a un caso práctico, una red neuronal artificial entrenada con experiencias no
etiquetadas del agente identificó con éxito ocho patrones emocionales básicos que son coherentes
situacionalmente y reproducen dinámicas emocionales naturales. La validación mediante un
estudio de atribución emocional, en el que observadores humanos evaluaron sus dimensiones de
placer-activación-dominancia, demostró un alto nivel de acuerdo estadístico, distinguibilidad
y un fuerte alineamiento con los registros de la psicología experimental, demostrando que los
observadores humanos pueden inferir el “estado emocional” interno de agentes artificiales,
alineándose estrechamente con las variables internas de estado del agente.

Creemos que la generalidad de este marco de trabajo y el lenguaje interdisciplinario que
define, basado en principios fundamentales del Aprendizaje por Refuerzo, pueden sentar las
bases para futuras investigaciones y aplicaciones que conduzcan hacia máquinas emocionales
que piensen y actúen más como nosotros.

Nota: Un resumen más amplio en español de este trabajo se encuentra al final del documento,
como Resumen de la tesis.
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Chapter 1

Introduction

1.1 Emotions in Nature: Biology, Neuroscience and
Psychology

There is no fundamental difference between man and animals in their ability to
feel pleasure and pain, happiness, and misery.

Charles Darwin, The Expression of the Emotions in Man and Animals (1872)

It is difficult to overemphasize the significance of emotions in nature. Indeed, growing evidence
indicates that many living beings, particularly those displaying intelligent behaviors, have
evolved the capacity for emotions of varying complexity as an intrinsic and essential constituent
of their mental processes [1][2]. The reason is well supported by established disciplines
such as neuroscience [3][4][5], psychology [6][7][8], and biology [1][9]: contrary to western
philosophical tradition, which views them as detached from reason and hindering rational
thought, emotions—alongside related phenomena like affects, feelings or sentiments—are
currently understood as an evolutionary advantage, as first-order psychodynamic forces
enhancing an organism’s adaptability to its environment, supporting the ultimate goal of
survival. They play a crucial role in learning and social behavior, and evidence suggests that
damages to emotional components of the brain severely impairs decision making [3].

1.1.1 Origins of the concept
The very etymology of the word emotion, from the Latin emotio (e- (out) and movere (to
move), meaning “a movement or agitation”), reflects an early understanding of emotions as
dynamic forces within our inner selves, driving thought and behavior.

Among the earliest comprehensive accounts, Aristotle’s Rhetoric (around 350 BCE) examines
emotions like anger, calmness, fear, shame, pity, and envy—to which he often referred to
with the term pathē (πάθη), meaning “passions” or “affections”—, detailing their causes and
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effects. He emphasizes their role as powerful forces influencing persuasion and decision-making,
describing them as movements of the soul, associated with pleasure and pain, which aligns
with the later concept of emotio as outward-moving forces.

But interest in emotions appeared early across various cultures. For example, the Li Chi
(Book of Rites), compiled in the first century BCE in China, enumerates emotions such as joy,
anger, sadness, fear, love, disliking, and liking as innate human feelings. Similarly, ancient
Indian texts like the Natyashastra explore emotions in the context of drama and aesthetics.
A more comprehensive historical account falls beyond the scope of this work; for further
exploration, see Lindholm’s An Anthropology of Emotion [10].

One of the most influential voices in the early study of emotions, René Descartes, introduced
the French term émotion as an alternative to passion, whose principal effect was to “move and
dispose the soul to want the things for which they prepare the body.” In his work The Passions
of the Soul (1649), he defined them as perceptions or disturbances of the soul, identifying
six primary passions: wonder, love, hatred, desire, joy, and sadness [11]. Descartes viewed
these as fundamental emotions that shape human experience, emphasizing their role in the
mind-body connection.

Building on Descartes’ foundational work, David Hume emphasized the significance of emotions
in human reasoning, suggesting that our passions drive moral judgments: “Reason alone
can never be a motive to any action of the will” [12]. Immanuel Kant further differentiated
emotions from passions, focusing on their impact on rational decision-making [13]. Later,
William James proposed that emotions are deeply connected to physiological responses [14],
laying the groundwork for modern psychological theories.

1.1.2 Overview of the main emotion theories across fields
These philosophical perspectives set the stage for various influential theories that attempt to
describe emotional phenomena. Despite the absence of a unified model broadly accepted to
clearly and comprehensively describe emotions, numerous theories have been developed across
fields, each capturing significant aspects of emotions and garnering considerable support.

Among the numerous attempts to organize and compare these heterogeneous theories, we
follow here a taxonomy suggested by Fabio Massimo Zennaro in his Theories of Emotion,
probably one of the most lucid and clarifying classifications [15]. In it, theories are classified
by the different aspects of emotions they focus on:

• Anthropological origin of emotions: How emotions evolved in humans, their role in the
development of the human species, and their impact on survival.

• Actual development of emotions: How emotions are experienced in everyday life, what
elicits them, and how they unfold over time.

• Characterization and categorization of emotions: How different emotions can be de-
scribed, differentiated, and classified based on their common and peculiar traits.

• Behavioral and cognitive effects of emotions: How emotions influence human behavior
and cognitive processes, and what the consequences of these emotional experiences are.
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Table 1.1 shows how different types of theories from the fields of biology, neuroscience, and
psychology consider these four aspects. Adaptive theories, rooted in biology, explore the
evolutionary aspects of emotions, emphasizing their role in enhancing biological fitness. Neuro-
scientific theories aim to explain emotions by identifying the brain circuits and neural patterns
underlying emotional responses, thereby providing a bridge between physiological processes
and emotional experiences. In contrast, psychology encompasses a broader range of theories,
including embodiment, discrete, dimensional, appraisal, motivational, and constructivist
theories, each focusing on different aspects and processes of emotional experiences.

Table 1.1: Classification of emotion theories according to the aspects of emotions they focus on (adapted
from Zennaro, 2013).

Field Theory type Anthropological
origins

Actual
development

Characterization
and

categorization

Behavioural
and cognitive

effects

Biology Adaptive
theories ✓

Neuroscience Neuroscientific
theories ✓

Psychology

Embodiment
theories ✓ ✓

Discrete
theories ✓

Dimensional
theories ✓

Appraisal
theories ✓ ✓

Motivational
theories ✓ ✓

Constructivist
theories ✓ ✓

In the following sections, we will delve deeper into these fields, examining the principal theories
and their contributions to our understanding of emotions.

1.1.3 The biological perspective
Pre-empting modern psychology by a century, Charles Darwin’s exploration of emotions in a
biological context marks a pivotal moment in the understanding of emotional expressions.
In his seminal work The Expression of the Emotions in Man and Animals (1872) [1], he
introduced and developed the idea that emotions have evolutionary significance, linking
human and animal emotional expressions forever with painstakingly detailed examples.

Darwin wrote, “The community of certain expressions in distinct though allied species, as in
the movements of the same facial muscles during laughter by man and by various monkeys, is
rendered somewhat more intelligible, if we believe in their descent from a common progenitor.”

Without ever departing from his all-encompassing conception of natural species, he acutely
described thirty six human emotions, or “expressions exhibited by Man under various states
of the mind,” which he classified into eight main groups. Originally conceived as part of On
the Origin of Species, Darwin’s insights in this groundbreaking work laid the foundation for
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a b c

Figure 1.1: Illustrations from Darwin’s The Expression of the Emotions in Man and Animals.
Darwin’s seminal studies on emotions (1872) anticipated foundational ideas of modern psychology, biology and
neuroscience. a, Human in horror. b, Dog in an affectionate frame of mind. c, Chimpanzee disappointed
and sulky.

understanding emotions as biological and adaptive phenomena, significantly influencing later
research in psychology and ethology.

The evolutionary value of emotions is no longer questioned within the field. As Tooby and
Cosmides summarize [9]: “Within an evolutionary framework, it is assumed that emotions
enable individuals to meet specific problems and opportunities that increase their chances of
physical survival, reproduction, and gene replication.”

Building on Darwin’s foundation, contemporary research continues to explore the biological
underpinnings of emotions. For example, Marc Bekoff, in his article Animal Emotions:
Exploring Passionate Natures [2], provides compelling evidence that many animals experience
emotions such as joy, fear, love, despair, and grief, demonstrating that humans are not alone
in their emotional experiences.

1.1.4 The psychological labyrinth
In contrast to the biological perspectives, the field of psychology presents a more convoluted
path, marked by very diverse and often discordant attempts to define and capture the
nature of emotions. As we will show, minimal consensus exists on numerous fundamental
aspects, including what constitutes an emotion, its types or categories, and even the basic
terminology—emotion, affect, sentiment, or feeling [16]. Disagreements extend to the nature
of emotions (discrete [6][17], dimensional [7], or mixed [18]), their triggers and physiological
responses [8], and whether they are universal [6][5] or culturally dependent [19].

However, from the agitations of this historical division, a number of influential theories
have successfully emerged over time, contributing partial but meaningful perspectives to our
understanding of the emotional phenomena. The following represent the most influential and
widely referenced ones:
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• Embodiment theories (late 19th century): Emotions as the sum of physiological changes
inside the body, turning upside-down the traditional conception that emotions cause
these changes.

• Discrete theories (mid-20th century): Emotions as specific instances or combinations of
a few universal core emotions, within a finite and limited dictionary of basic kinds.

• Dimensional or Continuous theories (mid-20th century): Emotions as points in an
n-dimensional space of certain continuous dimensions.

• Appraisal or Cognitivist theories (late 20th century): Emotions as the result of an
unconscious cognitive evaluation of an event.

• Motivational theories (late 20th century): Emotions as related to the goals of a subject,
whose behavior is determined and explained by them.

• Constructivist theories (21st century): Emotions as relative socio-cultural artifacts
shaped by social and cultural processes.

Without attempting a comprehensive comparison of this complex landscape, we briefly describe
below the key contributions of each.

Embodiment Theories

The divergences in the field can be traced back to its very origins, as evidenced by one of
the earliest theories by William James, the founder of the “embodiment theories” [20]. His
hypothesis contradicts the natural conception that the perception of a fact excites mental
affection (emotion), which in turn causes bodily reactions. James argues the opposite: “My
thesis on the contrary is that the bodily changes follow directly the PERCEPTION of the
exciting fact, and that our feeling of the same changes as they occur IS the emotion.” (Emphasis
in the original text.)

This theory was received with widespread disbelief (despite its otherwise correct association
between physiological changes and emotions). Worse yet, far from eventually converging
toward a general consensus, these early disagreements extended over time. As Scherer laments:
“A particularly unfortunate example is William James’s asking the question ‘What is an
emotion?’ when he really meant ‘feeling’, a misnomer that started a debate which is still
ongoing, more than a century later” [21].

Indeed, disagreement rapidly extended to an increasing list of matters, from the most basic
concepts to more intricate psychological dynamics, leading to what Ross Buck described as
“the conceptual and definitional chaos that characterizes this area of research” [22].

Consequently, statements of pessimism and skepticism frequently arise concerning the very
definability or soundness of its core concept. DeLancey comes to fear that “there probably is
no scientifically appropriate class of things referred to by our term emotion. Such disparate
phenomena—fear, guilt, shame, melancholy, and so on—are grouped under this term that it
is dubious that they share anything but a family resemblance” [23]. As ironically summarized
by observers from the specialized media, “the only thing certain in the emotion field is that
no one agrees on how to define emotion” [24].
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Discrete theories

A much higher degree of support has been garnered by the so-called discrete theories of
emotions. One of the most influential theories within the field is due to Paul Ekman, who
posits that several basic emotions, such as happiness, sadness, anger, fear, disgust and surprise
(Fig. 1.2), clearly differing from one another, are biologically universal to all humans, having
evolved from their adaptive value in dealing with “fundamental life tasks” [25]. Ekman
suggests though that these basic emotions combine to form more complex or compound
emotions; for example, smugness (Spanish: “petulancia”) would be a combination of happiness
and contempt.

Figure 1.2: Ekman’s six basic emotions. Prototypical facial expression of Ekman’s six basic emotions
and a neutral face for actor “J. J.”.

Unsurprisingly though, the list of emotions considered “basic” differs sensibly across researchers.
For example, Ekman’s original framework from 1969, “most influenced by Darwin and
Tomkins,” discarded two of Tomkins’ original basic “affects” (shame and dissmell) [26][27],
and substituted enjoyment with happiness [6]. Later on, he discarded interest as well in 1971
(and regularly introduced changes to his own initial lists over different publications [28][29]).

Another reference along the lines of these psychoevolutionary perspectives is Carroll Izard,
whose list emotions include many from Tomkins’ and Ekman’s, but substitutes sadness with
distress, and differentiates two levels of intensity to each (for example, distress / anguish,
anger / rage, etc.) [17].

As a final example of the diversity of approaches across discrete theories, Robert Plutchik
proposed his own eight primary emotions in his “wheel of emotions” (Fig. 1.3), conceptualized
in terms of pairs of polar opposites: joy / sadness, anger / fear, trust / disgust and surprise
/ anticipation [18]. However, his model also introduces the idea of different intensities and
complexities to his basic list, and explores how these emotions combine to form complex
feelings. For this reason, his model is often viewed as a hybrid or “mixed” model, combining
elements of both discrete and dimensional theories, which we discuss next.

Dimensional or Continuous theories

In apparent opposition with the discrete theories, dimensional (or continuous) theories consider
emotions to consist of continuous dimensions, corresponding to fundamental properties and
qualities of human emotions. Thus, the emotion at a certain moment would correspond to a
point in the n-dimensional space defined by the theory, which generally includes a neutral
state to reflect situations where no emotion prevails.
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Figure 1.3: Plutchik’s “wheel of emotions”. Often referred to as a “mixed model”, primary emotions
are defined for different intensities (inner = more intense / basic; outer = less intense / complex), and can
mix into different, more complex emotions.

Their foundational concept can be traced back to Wilhelm Max Wundt [30], whose deeply
influential research proposed three dimensions, spanning between pleasurable versus unplea-
surable (currently known as hedonic valence), arousing versus subduing (or physiological
activation value), and strain versus relaxation (as a temporal aspect of the emotional event).

The most prominent voice in this subfield though is James A. Russell, whose work evolved
significantly from an early three-dimensional model to his later, widely recognized two-
dimensional circumplex model of affect. In his early work with Albert Mehrabian, Russell
proposed a three-factor theory of emotions including three independent and bipolar dimensions
[31], very similar to Wundt’s:

1. Pleasure-Displeasure: Reflecting the valence or positivity/negativity of the emotion.
2. Degree of Arousal: Indicating the level of activation or energy.
3. Dominance-Submissiveness: Representing the degree of perceived control.

The introduction of dominance was justified through two studies providing evidence that “three
independent and bipolar dimensions, pleasure-displeasure, degree of arousal, and dominance-
submissiveness, are both necessary and sufficient to adequately define emotional states.”

However, while the first two dimensions gained and maintained general support over time,
counterarguments have been historically raised against dominance, considered a week predictor
of the variance of affective judgments (by Bradley, Lang, and Cuthbert [32][33]), and strongly
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correlated with valence (by Warriner, Kuperman, and Brysbaert [34]). As a matter of fact,
James Russell himself eventually eliminated it from his model, defining the circumplex model
of affect [7], a robust framework that continues to inform studies on emotional experience
and expression (Fig. 1.4).

Figure 1.4: Russell’s circumplex model. Direct circular scaling coordinates obtained for 28 affect words,
according to the circumplex model of affect.

Appraisal theories

A different perspective to the emotional phenomena focuses on their actual development,
elicitation and temporal dynamics. Appraisal theories propose that emotions result from
people’s interpretation and explanations of their circumstances, even in the absence of
physiological arousal [35]. According to this perspective, emotions complement perceptual
information, coloring our sensations and guiding our decision-making [36].

Two prominent approaches within appraisal theories are the structural model and the process
model. Richard Lazarus’ structural model [8], for instance, emphasizes that different emotions
are elicited based on the relational, motivational, and cognitive aspects of an individual’s
appraisal of a situation. The relational aspect concerns the relationship between a person
and their environment. The motivational aspect involves the assessment of the status of one’s
goals, and the cognitive aspect pertains to the appraisal of the situation’s relevance to one’s
life.

The appraisal process can be divided into primary and secondary appraisals. In the primary
appraisal, individuals evaluate motivational relevance (“How relevant is this situation to my
needs?”), which determines the intensity of the emotion, and motivational congruence (“Is this
situation consistent with my goals?”). The secondary appraisal involves evaluating resources
and options for coping, and determining accountability (“Who should be held accountable?”).

For example, if a situation is motivationally relevant and incongruent with an individual’s
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goals, and another person is held accountable, the resultant emotion is anger. Conversely,
if there is no obvious person to hold accountable, the emotion may be anxiety. Roseman’s
theory of appraisal further elaborates on these aspects by specifying the conditions under
which specific emotions are elicited [37].

Motivational theories

A different group of theories has focused on what moves an individual, namely, their motiva-
tions, which is the core concept to which emotions had been linked from their very definition.
The field of motivational theories explain emotions as responses that arise from the evaluation
of events concerning personal goals, describing how these emotions influence behavior related
to such goals in order to achieve them.

A pivotal figure associated with motivational theories, Bernard Weiner [38], explains how
individuals attribute causes to events and how these attributions influence their emotional
state. For example, if a student attributes their failure in an exam to lack of ability, they will
likely feel hopeless and unmotivated, whereas an attribution to a lack of effort might elicit
feelings of guilt.

Another prominent contributor, Richard Lazarus, broadens these perspectives by integrating
cognitive appraisal and motivational aspects of emotions, to explain how they arise from the
evaluation of personal significance and coping potential in relation to one’s goals [39].

Constructivist theories

Concluding this overview of emotion theories, we turn to the constructivist approach, which
stands in contrast to the evolutionary framework that underpins most theories discussed
thus far. While classic perspectives describe emotions as universal, genetically encoded
biological processes that emerged during evolution as adaptations to environmental challenges
or opportunities, the constructivist approach emphasizes their pronounced differences across
cultures as a proof of their socio-cultural specificity. Thus, constructivist theories define
emotions as relative constructs or forms of discourse that emerge within specific cultural or
social contexts.

Lisa Feldman Barret, the most influential researcher in the field, formulated what is known
as the Theory of Constructed Emotion [19]. She proposes that emotions, including basic
emotions, are prototypical instances of affectively founded, contextually specific, goal-based
concepts that are constructed by the brain to ultimately serve allostasis (or “body budgeting”,
which is the optimal use and distribution of bodily functions for survival and well-being).
From this neuroscientifically-grounded perspective, therefore, emotions are not pre-wired or
universal, but are constructed as situationally-dependent concepts.

Currently, more balanced perspectives affirm that while some aspects of emotions are indeed
universal and biologically grounded, different cultural contexts influence how they are ex-
pressed, experienced, and understood by individuals. As suggested by Matsumoto and Hwang,
the relative contributions of biology and culture may have varying impacts across different
types of emotion [40].
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Emotional Intelligence

Finally, shifting from theories focused on the origins and nature of emotions, we turn to the
framework of Emotional Intelligence (EI), which approaches emotions as essential components
of cognitive and interpersonal skills. Defined by Peter Salovey and John D. Mayer in 1990
[41], EI is described as an individual’s ability to perceive, understand, manage, and use
emotions—both their own and those of others—to facilitate thinking. This model identifies
four essential dimensions:

• Perceiving emotions: The ability to accurately recognize emotions in oneself and others.

• Using emotions to facilitate thought: Leveraging emotions to prioritize and guide
cognitive activities.

• Understanding emotions: Analyzing emotions, their trajectories, and interactions with
other emotions.

• Managing emotions: Regulating emotions effectively to achieve personal and relational
goals.

This framework expands the understanding of emotions beyond reactive phenomena, under-
scoring the functional role emotions play in cognition and decision-making. As a psychological
construct, EI provides a skill-based interpretation of emotionality that has influenced diverse
fields, including education, clinical psychology, and, later, Affective Computing and AI, as we
will see in subsequent sections.

1.1.5 The neuroscience of emotions
The field of affective neuroscience provides the bridge between psychological theories and their
biological underpinnings, or what Jaak Panksepp described as “the view of emotions from
the inside” [42]. This interdisciplinary approach has made significant contributions to our
understanding of the neural mechanisms and brain structures (the neurophysiological substrate)
involved in the emotional processes, offering insights into the complex interconnection among
cognition, physiology, and behavior that characterizes emotional experiences.

Neuroscientific research has identified how key brain areas such as the amygdala, prefrontal
cortex, and hippocampus play pivotal roles in emotional regulation, processing and memory.
For example, LeDoux’s research, in one of the seminal works in affective neuroscience, demon-
strated the crucial role of the amygdala in processing fear-related stimuli and coordinating
fear responses [43].

One of the most relevant contributions to the field is the somatic marker hypothesis, proposed
by Antonio Damásio, which posits that emotional processes guide, or bias, the decision-
making processes through bodily sensations associated with previous experiences that arise
in bioregulatory processes, like emotions and feelings. For example, when deciding about a
financial investment, somatic markers related to past negative experiences may produce a
feeling of unease, prompting a more careful consideration of the outcomes [3].

Providing direct evidence of basic or primordial emotions, Jaak Panksepp has taken our
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understanding of emotions ever closer to their neural foundations. His groundbreaking work
identified seven distinct emotional systems, each characterized not only by differentiated
associated behaviors but, most remarkably, by distinct neural circuits and neurochemicals
within the mammalian brain. These biologically inherited primary affective systems are divided
into positive and negative categories. The positive systems include seeking (expectancy), care
(nurturance), play (social joy), and lust (sexual excitement), while the negative systems consist
of fear (anxiety), rage (anger), and panic/grief (sadness), generated by what he describes as
the “core-self” [44].

Finally, the role of neurotransmitters and neuromodulators in emotional processes, by facili-
tating or inhibiting neuronal activity and influencing learning and memory mechanisms, has
been a significant focus of research in the field. It is now well known that dopamine plays a
critical role in emotions and motivation [45], influencing reward-seeking, reward learning and
decision-making processes, thus guiding animal behavior by reinforcing actions that lead to
rewarding outcomes. Similarly, serotonin has been found to relate to mood regulation and
anxiety [46]. It has also been associated with self-confidence, inner strength, and satisfaction,
highlighting its broad influence on emotional well-being and behavior [47].

The field of neuroscientific research continues to evolve, incorporating and refining technologies
such as functional magnetic resonance imaging (fMRI) to map the neural correlates of emotions,
as well as positron emission tomography (PET) and electroencephalography (EEG), which
have enhanced our ability to visualize brain activity with unprecedented detail. The use of
these advanced techniques provide critical experimental substrates that validate or challenge
psychological and biological theories, bridging gaps between theoretical models and empirical
evidence by providing an increasingly accurate and interpretable view of the very neural basis
of emotions.

1.2 Emotions in AI: Related work in Affective Comput-
ing and Reinforcement Learning

HELENA: But they’re so intelligent.
HALLEMEIER: Immensely, but they’re nothing else. They’ve no will of their own.
No soul. No passion.
HELENA: No love?
HALLEMEIER: No. Absolutely not. Robots don’t love. Not even themselves.

Karel Čapek, R.U.R. (Rossum’s Universal Robots) (1923)

To date, the evolutionary advantages registered and studied by the fields of biology, neuro-
science and psychology, have not been effectively utilized in the field of Artificial Intelligence
(AI), in which the study of emotions and feelings, vigorously developed since the 19th century,
has had limited resonance. This stands in stark contrast to the profound influence exerted on
AI (and vice versa) by breakthroughs from neuroscience [48], such as artificial neural networks
[49][50][51], bioinspired neural architectures [52][53][54], and attention mechanisms [55][56];
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biology, with examples like evolutionary algorithms [57][58], multi-agent systems [59] or swarm
intelligence [60]; and psychology, for example goal-oriented behavior or reinforcement learning
(RL) [61]. Instead, AI research has historically focused on emulating human reasoning, namely,
the rational performance of our natural minds, relegating their emotional dimension to a
second plane, or most frequently neglecting it. The field concentrated in the ascription of
reason, or “cold logic”, to machines [62][63].

Different factors may have influenced this late and slow integration of synthetic emotions in
AI, like the difficulty to define and measure them, historic-cultural hyper-rationalism and
dichotomy of reason and emotion [3], and the early results obtained from classic reason-based
symbolic AI [64]. However, one major deterrent may be the absence of a universally accepted
psychological framework describing how emotions develop from first principles—raw inputs
and prior learning—that specialists can apply or adapt to machines [65], as discussed in
section The psychological labyrinth.

The work presented here, building upon key breakthroughs in these fields, aims to bridge this
gap by defining such a framework from a computational perspective.

1.2.1 Artificial intelligence is born without artificial emotion
The early history of Artificial Intelligence, as the field was first named in 1955 by John
McCarthy [66], has been that of the imitation of the rational, that is, the intellectual,
achievements of the human mind. This focus was heavily influenced by Western hyper-
rationalism and the profound dichotomy of reason and emotion which can be traced back to
Descartes and ancient Greek philosophy. It may be self-revealing that the very name “Artificial
Intelligence” relates to the “intellect” (linked to knowledge, reasoning and understanding),
extirpated from broader natural systems such as the “mind” or the “psyche”, to which the
emotional phenomena had already been associated at the time.

This early departure from the emotional side of natural minds may be justified by the classic
belief that emotions interfere with the desirable rational performance of the mind in these
relevant matters, and should therefore be eradicated from our mental processes [67][68].

In Western philosophy, emotion was often regarded as a less advanced or refined mode of
understanding, in contrast with more elevated and rational forms of thought [69]. As described
by Calhoun and Solomon (1984), “many [great thinkers] neglected it altogether. Some treated
the emotions with disdain, as the ‘lower’ part of the soul” [70].

The origins of this “disdain” can be found in Plato, an early proponent of rationalism who
emphasized reason over emotions and sensory experiences, or in Aristotle, who, despite
acknowledging and studying human emotions, prioritized reason in his ethical and political
philosophy. During the Enlightenment (16th century), René Descartes—the “father of modern
philosophy” and considered the first of the modern rationalists—initiated the epistemological
turn that focused philosophy on the theory of knowledge, asserting that reason is the main
source of knowledge. His prominent dictum “cogito, ergo sum” (“I think, therefore I am”),
from Discourse on the Method, illustrates his view that certain knowledge can be attained
through reason alone [71]. Another central figure from the Enlightenment, Immanuel Kant,
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argued in 1764 that principles lead to consistent and reliable actions, whereas emotions,
despite their role in certain moral feelings, are triggered by specific situations and, therefore,
subject to change, leading to inconsistent behavior [13]. Principles are not easily swayed by
external circumstances, making them more reliable and enduring.

However, not all thinkers accepted this primacy of rationality. David Hume, for instance,
famously argued that “reason is, and ought only to be the slave to the passions,” emphasizing
the role of emotions in human behavior and decision-making [12]. Later, Friedrich Nietzsche
[72] and Arthur Schopenhauer [73] critiqued pure rationalism, arguing for the importance of
will and instinct over pure reason. The supremacy of reason was not universally accepted,
even during the heights of rationalist thought.

Nevertheless, the primacy of rationality over other dimensions of the human mind contin-
ued to inspire progress during the Scientific Revolution (16th-18th centuries), laying the
groundwork for logical positivism in the 20th century, with emphasis on reason and empirical
observation—principles on which modern fields like AI were founded.

Thus, in its early days, the field focused on emulating human reasoning, namely, the desirable
rational performance of our natural minds, aiming to create systems that could solve complex
problems traditionally associated with human intelligence. These included board games
(where chess was referred to as the “drosophila of AI”), medical diagnosis (with systems
like MYCIN, developed in the 1970s), natural language processing (with applications to
translation or summarization), logical reasoning (for theorem proving and formal logic), search
and optimization (for scheduling, navigation, or logistics problems), etc. The field concentrated
on the ascription of reason, or “cold logic”, to machines [62][63], and the emotional dimension
of the mind was relegated to a second plane, or most frequently fully neglected.

1.2.2 Early skepticism about emotion in machines

With AI focused primarily on the cognitive dimension of the mind, many of the first academic
approaches to the emotional phenomenon in machines emerged in mixed forums, encompassing
both psychology and philosophy of science. These discussions revolved around several aspects:
the feasibility of simulating or synthesizing emotions in machines, their potential utility in
intelligent systems, and the broader philosophical and ethical implications of such endeavors.

As early as 1951, British physicist and cybernetician Donald MacKay, one the most lucid
and influential figures in the philosophy of mind and early artificial intelligence, reasoned
in Mindlike Behaviour in Artefacts that “an artefact capable of receiving and acting on
information about the state of its own body can begin to parallel many of the modes of
activity we associate with self-consciousness.” He lamented that “present-day digital computers
are deliberately designed to show as few as possible of the more human characteristics.”
Furthermore, in what might be the earliest formal attempt at designing artificial emotions,
MacKay visionarily introduced “probabilistic reasoning,” suggesting that such a flexible
mechanism could manifest human traits like “continuously-variable (and irregularly excitable)
prejudices, preferences, and other ‘emotional’ effects” through appropriately linked transition
probabilities [74].
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Following MacKay’s early proposals, the notion of machines possessing emotions was histori-
cally met with strong criticism. Michael Scriven, in The Mechanical Concept of Mind (1953),
argued that while machines could imitate human behavior, “no matter how ingenious the
mechanism, how complex the behaviour of a machine [...] it’s no more conscious than a clock.”
He maintained that feelings such as pleasure or self-pity were exclusive to conscious beings,
dismissing the possibility of machines having true emotions—although not addressing their
potential utility [75].

Paul Ziff reinforced this critique in The Feelings of Robots (1959), arguing that machines
could perform actions resembling emotions, but these were merely “performances.” According
to Ziff, “no robot could sensibly be said to feel anything” because robots are mechanisms, not
living beings, and their behavior is entirely programmed. He emphasized that robots have no
individuality or genuine psychological states: “we could make a robot say anything we want it
to say,” but this would be no more meaningful than a “phonograph recording” [76].

This line of critique was extended by Keith Gunderson in Mentality and Machines (1971),
where he questioned whether non-behavioral mental aspects, such as experiencing emotions,
could be simulated by computers. He posed what he called the “simulability question,” which
asks whether phenomena like feeling pain, anxiety, or boredom can be modeled using the same
techniques applied to problem-solving or pattern recognition. Gunderson’s clear conclusion
was negative: “there is a variety of mental phenomena that includes the having of pains,
after-images, feeling anxious, being bored, etc., that are not receptive (or primarily receptive)
to being simulated in the sense that, say, theorem proving is” [62].

But probably the best illustration of the diametrical opposition regarding the role of emotions
in machines within the AI community can be seen in the contrasting views of John McCarthy
and Marvin Minsky, pioneering “fathers” of the field. McCarthy argued in 1983 that while
attributing mental qualities to machines could enhance our understanding of their behavior,
“the anthropomorphism should not include emotions” [77]. In stark contrast, as will be
discussed later, Minsky viewed emotions as essential to human intelligence, proposing that
they could be understood as complex mechanisms, potentially replicable in machines [78].
Beyond a technical debate within AI, this clash underscores a deeper philosophical divide
about the nature of mind and emotion—one that persists to this day.

1.2.3 Increasing interest but little material progress
Despite ongoing criticism and skepticism, the exploration of emotion in machines continued,
with various scholars proposing significant theoretical models and approaches, as well as
supporting arguments. One of the most notable contributions in the early 1960s was the
introduction of “hot cognition.” This concept, championed by psychologist Robert Abelson,
sought to address AI’s narrow focus on “cold” cognition—logical reasoning and problem-
solving devoid of emotional content. His use of the term “hot cognition” referred to cognitive
processes intertwined with emotional significance, contrasting with the emotionally neutral,
“cold” operations that dominated AI research. In his 1963 paper Computer Simulation of “Hot”
Cognition, Abelson laments that “there seems to have been no provision in the computer game
for the study of cognition dealing with affect-laden objects.” He proposed a rule-based model to
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simulate emotional processes such as incredulity, denial, and rationalization when processing
new beliefs or sentences, offering an early attempt to model affect-laden cognitive dynamics
using computer simulations. Abelson argued that human cognition is often shaped by emotions
and suggested that computers could simulate these processes as well. His ideas, presented at
a psychology conference, stood apart from the prevailing engineering-driven research, which
prioritized logical problem-solving, and thus remained largely in the background [79].

Another remarkable approach came from Aaron Sloman and Monica Croucher in 1981, who,
drawing on psychological insights, argued that “the need to cope with a changing and partly
unpredictable world makes it very likely that any intelligent system with multiple motives and
limited powers will have emotions.” They challenged the belief that emotions and intellect
are entirely separate, suggesting instead that emotions are essential for managing competing
goals in intelligent systems. In their paper Why Robots Will Have Emotions, they proposed
a computational architecture where a “central administrative process” controls behavior by
managing motives, resources, goal-directed processes, and perception devices, emphasizing
the importance of emotions in complex decision-making [80].

The work of Marvin Minsky, one of the founders of MIT’s artificial intelligence program, played
a pivotal role in reshaping how emotions are viewed in the context of artificial intelligence,
challenging the traditional separation between emotion and intelligence, and arguing instead
for their interconnectedness. In The Society of Mind (1986), Minsky emphasized the essential
role of emotions in cognitive processes, stating that “the question is not whether intelligent
machines can have any emotions, but whether machines can be intelligent without any
emotions” [78]. He described emotions as a set of learning and coping mechanisms, required
in any comprehensive theory of intelligence. Later, in The Emotion Machine (2006), Minsky
expanded on this idea, arguing that separating intellectual and emotional processes is futile,
as both are “ways of thinking” [81]. For him, emotions are integral to intelligence, arising
from neural network processes in the brain.

Antonio Damásio, one of the most influential figures in neuroscience and philosophy, has
significantly shaped the discourse on the role of emotions in decision-making and intelligence.
On top of his above-mentioned relevant contributions to the field, his research demonstrated
that individuals with damaged emotional centers in the brain struggle with decision-making,
illustrating that emotions are integral to rational thought [3]. Damásio’s work has inspired
key voices in AI and computational intelligence, such as Fulcher, to argue that “instead of
computers becoming more unpredictable and irrational through having emotional intelligence,
they would instead act and behave more rationally and predictably” [82].

In his later work The Strange Order of Things (2018), Damásio describes how our minds
operate in two registers. The first governs perception, movement, memory, reasoning, language
and calculations—a domain of “synaptic signals” that is effectively captured by current AI
and robotics. Then, he insightfully addresses the critical limitations of AI, emphasizing that
“there is a second register that pertains to emotions and feelings that describes the state of life
in our living body and that does not lend itself easily to a computational account. Current AI
and robotics do not address this second register. [83]”

In close parallel with earlier concerns about AI’s overemphasis on “cold logic,” Melanie
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Mitchell argued in her 2021 paper Why AI is Harder Than We Think that the idea of “pure
rationality” in intelligence is fundamentally flawed [84]. She contended that emotions and
so-called “irrational” biases are not barriers to rationality but are deeply intertwined with
human intelligence. Mitchell stressed that no evidence in psychology or neuroscience supports
the notion that rational cognition can be separated from emotions. Instead, she emphasized
that human intelligence is an integrated system, combining emotions, desires, and cultural
biases with cognitive functions, and warned that aiming for emotionless “superintelligent”
machines could lead to unrealistic and dangerous predictions.

1.2.4 The birth of Affective Computing and related fields
The echoes of these early insights led to the first serious attempts to integrate emotions in AI,
which initially focused on simulating their expression during human-computer interactions for
more believable agents [85][86]. For example, Bates (1994) argued that “appropriately timed
and clearly expressed emotion is a central requirement for believable characters,” which led to
his development of “believable agents”—virtual characters capable of human-like emotional
expression. One major breakthrough in his research was the Oz Project, where real-time
interactive creatures were designed using principles from traditional character animation,
inspired by figures like Walt Disney and Chuck Jones (Fig. 1.5). This project, showcased in
Edge of Intention at the AAAI-92 AI-based Arts Exhibition, implemented a behavior-based
architecture for action, coupled with an emotional framework based on the Ortony, Collins,
and Clore (OCC) model—which is discussed further below—to create more authentic and
engaging virtual agents, expressing emotions by changing shape.

Figure 1.5: The Woggles in Edge of Intention. Some of the first “believable agents” were these
self-animating creatures displaying contextually coherent emotions, showed at the AAAI-92.

In parallel with these developments, another critical dimension of affective computing emerged:
the detection and recognition of emotions from human inputs. This evolution, initiated by
Rosalind Picard, the pioneering figure of the field, led to the establishment of affective
computing as a distinct interdisciplinary domain in 1995 [87]. Picard’s work framed the
field as concerned with machines that can detect, interpret, and respond to human emotions
through diverse signals such as text, speech, facial expressions, and physiological data. The
field now spans psychology, cognitive science, and computer science, with continuous and
substantial cross-disciplinary contributions.
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In their review in 2005, for example, Tao and Tan [88] highlighted its reliance on data from
multimodal sensors to model and recognize emotions in real-time, especially in applications
like intelligent interaction systems. They examined the current methods for detecting and
processing emotional states, the interactive feedback loop in human-computer interaction,
and the challenges in making machines that can both interpret and express emotions. By
2024, as reflected by Khare [89], significant advancements had been made, focusing on using
machine learning (deep learning and multimodal AI) to enhance the precision of emotion
recognition across subjects, particularly through physical and physiological signals such
as EEG (electroencephalogram), allowing for accurate cross-subject emotion recognition
[90][91][92] (see Fig. 1.6). Additionally, the use of fuzzy logic or emotion-adaptive control
systems in human-machine interfaces has expanded the capabilities of these systems, allowing
for more nuanced interactions that account for emotional states [93][94].

Figure 1.6: Electroencephalograma (EEG) in Affective Computing. Protocol of an EEG experiment
conducted to elicit and detect emotions in human subjects, by Mai et al. (2021).

Within the field of robotics, an early influential application of emotional processing is exem-
plified by Kismet, a robot developed in the late 1990s by Cynthia Breazeal at MIT’s Artificial
Intelligence Lab [95]. Kismet was designed to interact socially with humans by recognizing
and expressing emotions through a combination of facial expressions, vocalizations, and head
movements (Fig. 1.7). A motivation system regulates and maintains “the robot’s state of ‘well
being’ in the form of homeostatic regulation processes and emotive responses,” eliciting six
basic modeled emotions (anger, disgust, fear, joy, sorrow, and surprise, after Ekman), as well
as arousal-based responses (interest, calm, and boredom). The robot’s multimodal interaction
system used facial recognition and vocal intonation to engage in human-like social behaviors,
pioneering the field of affective robotics toward socially aware interactive machines.

Another major advancement in the application of affective computing to robotics is Pepper,
developed by SoftBank Robotics (formerly Aldebaran Robotics) [96]. Introduced in 2014,
Pepper is a semi-humanoid robot capable of recognizing and interpreting basic human emotions
through facial expressions and voice tones (Fig. 1.8). Optimized for social interaction, it has
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Figure 1.7: Kismet (1998). One of the first social robots, developed at MIT’s AI Lab, was capable of
recognizing and expressing emotions.

been used in various settings, including offices, where it acts as a receptionist by identifying
visitors, sending alerts, and even managing small tasks like taking drink orders or conducting
health and safety briefings. Its ability to autonomously engage in conversations makes it a
versatile tool in environments ranging from customer service to healthcare.

Figure 1.8: Pepper (2014). Capable of various social interactions, this semi-humanoid robot by SoftBank
Robotics could recognize and interpret emotion in voices and faces.

Following this and similar developments, Sophia, an advanced female humanoid robot devel-
oped in 2016 by Hanson Robotics, was designed to engage in conversations involving emotional
intelligence [97]. Equipped with cameras in its eyes, it employs computer vision to track faces,
recognize individuals, and interpret emotional cues such as facial expressions and gestures
(Fig. 1.9). Sophia can also process natural language, allowing it to respond to vocal intonations,
simulating emotional intelligence during interactions. Her ability to generate over 60 lifelike
facial expressions, aided by her advanced skin and AI-driven motors, helps mimic human
emotions, additionally featuring a robust text-to-speech engine for fluid conversation—and
even singing. Despite her sophisticated architecture, which includes symbolic AI, neural
networks, and the OpenCog framework for general reasoning, much of her interaction remains
scripted or semi-autonomous, blending AI with human assistance.
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Figure 1.9: Sophia (2016). Developed by Hanson Robotics, this emotional robot could recognize faces,
express facial emotions, and hold coherent conversations.

More recently, advances in humanoid robotics have focused on enhancing emotional interaction,
with companies like China’s EX-Robots leading the way. At the 2024 World Robot Conference
[98], these robots showcased advanced facial expressions and dexterous hands, enabling
them to foster emotional connections with users in ever more accurate realistic and fashions
(Fig. 1.10).

Figure 1.10: World Robot Conference (2024). A humanoid robot at the World Robot Conference 2024
in Beijing.

The applications of affective computing are extensive and diverse. In health, systems like
those developed by Taylor et al. (2017) use multitask learning to predict mood, stress, and
health [99], while wearable technology enables monitoring of conditions like atrial fibrillation
[100]. Stress detection, as shown by Healey and Picard (2005), has practical uses in tasks
like driving [101]. Educational environments benefit from emotion recognition systems, such
as those created by Miranda Correa et al. (2018), to gauge engagement [102]. Affective
computing is also applied in anti-bullying education, using emotionally aware agents to foster
empathy and positive behavior [103], and interactive entertainment, by enabling virtual and
gaming environments to adapt to users’ emotions in real-time, improving engagement and
immersion in current augmented and virtual reality contexts [104].

In summary, with applications spanning brain-computer interfaces, virtual reality, robotics,
and empathic dialogues [105], the field is clearly making steady progress toward agents that can
both understand and display emotions. In contrast, however, from its very inception, Affective
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Computing has distinctly set itself apart from the goal of creating computers that actually
produce their own emotions. As Rosalind Picard explicitly stated in her foundational 1995
paper, “I am not proposing the pursuit of computerized cingulotomies [a surgical procedure to
aid severely depressed patients] or even into the business of building ‘emotional computers’”
[87]. Although this constraint has not always been strictly observed—as we will discuss
in the next section—for practical, cultural and ethical reasons, the field has traditionally
concentrated on the recognition and expression of human affects. As a result, significantly
less progress has been registered in the complementary field of emotion synthesis, which is
the focus of this research.

1.2.5 Non-learned models of emotion synthesis: State-of-the art
and limitations

Therefore, the fundamental challenge remains: creating AI agents that can elicit emotions
that robustly compare to natural ones, leveraging the evolutionary advantages registered
and studied by the fields of biology, neuroscience and psychology. Most research in this area
is predominantly theoretical [78][81][106][107][108][94], with little practical advancement in
learning, synthesizing, and integrating emotions in AI models and frameworks [84]. Although a
number of proposals have demonstrated some potential, specially in the field of RL, they have
had limited impact, covering a very narrow scope of emotions, or failing to generalize beyond
case-specific solutions and arbitrary or hard-coded emotional models [109][65], with most
using predetermined categories and dynamic characteristics of emotions that are explicitly
pre-programmed by researchers. Innovative exceptions are rare and typically constrained
to small, predefined emotion sets [110], or based on ad-hoc engineered feature variables for
specifically-designed environments or action spaces [111][112].

In this section, we review some of the most relevant non-learned proposals, highlighting
their key contributions and identifying the limitations that may have hindered their broader
adoption. By contrast, the following section (1.2.6) will explore the less mature field of
self-learned emotion models.

Minsky and the “emotion machine”

Marvin Minsky’s influential The Emotion Machine (2006) [81] proposed a theory of mind that
blends emotions, reasoning, and problem-solving, arguing that emotions are simply different
ways the mind thinks. This builds on the concept he had earlier introduced in The society of
mind (1986) [78], where emotions, activated in response to specific problems or situations,
emerged from interactions between the simpler, mindless agents within the global model of
the human mind he proposes.

However, despite the significant theoretical impact of Minsky’s work on AI and robotics, its
practical applications have been relatively limited. This is largely due to the complexity of
implementing these models—which involve coordinating multiple levels of emotional thinking
and common sense—as well as the difficulty of translating them into algorithms—a task not
explicitly addressed in his work. Additionally, the dominance of data-driven AI approaches
over symbolic and cognitive models has further hindered the practical application of his ideas.
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In conclusion, while Minsky’s frameworks have inspired conceptual advances, the full realization
of these ideas in practical systems, beyond the realm of theory, remains a challenge.

The OCC model: A computational framework for emotion synthesis

Named after its creators Ortony, Clore, and Collins, the OCC model is one of the earliest and
most commonly applied computational frameworks for emotion synthesis since its ground-
breaking introduction in 1988 [107]. Introduced as a cognitive appraisal model, it defines
emotions as valenced reactions to specific situations and offers a structured approach to
understanding how emotions are triggered and categorized. The model outlines a fixed set of
22 distinct emotion categories based on cognitive evaluations of three key types of stimuli:
goal-relevant events, actions performed by accountable agents (which may include the self),
and attractive or unattractive objects. Its application to a new problem requires the ad-hoc
definition and programming of these stimuli, which then interact with three predefined value
fields—goals, standards, and attitudes—to determine the type and intensity of the elicited
emotions.

Figure 1.11: The OCC model.

At its core, the OCC model is based on three types of eliciting conditions: events, agents,
and objects. Each of these corresponds to one of the value fields, creating a system in which
the likelihood of an event, the accountability attributed to an agent, or the familiarity and
attractiveness of an object can be assessed to generate emotional responses. The model
provides a structural framework for understanding emotions, emphasizing characterization
over causation. While it offers a detailed structure for emotional variables, it remains adaptable
in its implementation. Primarily descriptive in nature, the model provides a framework for
categorizing emotions without prescribing specific appraisal processes.
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Some real implementations of the OCC model demonstrate its versatility in virtual environ-
ments. One notable example is Elliot’s Affective Reasoner (1992), which integrated all 22
emotional categories of the model to enable agents to communicate their emotions to each
other in a multi-agent system [113]. Another significant implementation is Koda’s Poker
Playing Agent (1996), where the OCC model was employed to express the most dominant
emotional category, although its expressive capabilities were limited by its facial features [114].
These implementations show the range of applications, though they also reveal the challenges
in effectively utilizing the full complexity of the model.

Further real-world uses include Bartneck’s eMuu (2002), an embodied emotional character
developed for the ambient intelligent home, which focused only on the most dominant emotional
category due to expressive limitations [115]. Additionally, Bondarev’s Emotion Management
System for a Home Robot (2002) incorporated the OCC model to manage emotions in the
context of home robotics, addressing interaction with the environment [116].

Despite these examples, and its consideration as the “standard” emotion model for many
years, numerous limitations of the OCC model have been described and discussed in the
field, [117], including its heavy context dependency, inability to adapt to complex real-world
scenarios, reliance on predefined world models, and expressive limitations that prevent all
22 emotional categories from being conveyed convincingly. Additionally, its over-detailed
categorization and requirement for an accurate user model further complicate its practical
application, suggesting the need for simplification or automation to improve its usability.

The TDRL theory of emotion and related approaches

Transcending some of the limitations of models like OCC, the field of Reinforcement Learning
has been the basis of several interesting proposals, associating emotions with value and reward
functions [109]. The simplest ones define emotion as the expected cumulative reward from
taking an action (or state-action value) [118]; as the state value, for example, to detect fear
[119]; as separate positive and negative values, representing hope and fear, respectively [120];
or as the lowest registered value for a given state to indicate fear [121].

The reward signal, as a primary concept in RL, has been the basis of some other proposals: the
ratio between short- and long-term average reward has been linked to valence [122][123][124];
the temporal change in its values is the basis of a four-emotion model (joy, anger, fear and
relief) [125]; the average reward is used to characterize distress and comfort [126]; and the
reward itself is taken as the emotional signal in several other implementations [127].

An alternative line of research draws on the well-documented parallelism between the role of
dopamine in nature and the temporal difference (TD) error, a foundational concept in the
Reinforcement Learning framework. Early studies, drawing on psychology insights, defined
feelings of happiness, intense happiness, or disappointment as responses to actual rewards
that either matched, exceeded, or fell short of an agent’s expectations, respectively [128].
This research trajectory was subsequently advanced by several scholars [129][130], ultimately
leading to the most influential model based on this concept: Broekens’ Temporal Difference
Reinforcement Learning (TDRL) Theory of Emotion (2018) [106][131], on which we will now
focus more closely.
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Built on the hypothesis that “all emotions are manifestations of temporal difference error,”
the TDRL model describes five emotions: joy (positive TD), distress (negative TD), hope
(anticipation of a positive TD), fear (anticipation of a negative TD), and regret (involving
counterfactual thinking, identifying underestimated actions after new reward evidence).

Beyond theoretical analysis and explorations, the TDRL model has been applied in several
practical tests for experimental validation, yielding mixed results. In 2019, Dai and Broekens
conducted a study aimed at verifying the plausibility of simulated fear emotions as perceived
by humans [132]. The experiment was carried out in a basic, fixed 21-state grid-world
environment, where participants were asked to interpret the emotion of fear simulated by
the TDRL model. The findings indicated that humans could indeed recognize simulated fear
emotions based on the TDRL framework. However, the study’s focus was limited to a single
emotion, requiring the validation of six different TDRL calculation methods specifically for
fear, which points to a limitation in the model’s generalizability across other emotional states.

More recently, Lycklama et al. (2023) addressed the issue of lack of transparency in RL
behavior by implementing emotional expressions grounded in the TD model [133]. In their
case study, a human teacher guided a robot in understanding the meaning of three different
colors. Although they successfully integrated emotional expressions into the robot’s learning
process, a practical comparison between conditions with and without visible emotions revealed
“minimal differences” in outcomes, suggesting that for relatively simple tasks, emotional
expressions grounded in RL neither significantly enhance nor impair performance.

Despite its merits, the TDRL model presents several challenges alongside its achievements.
On the positive side, the model effectively describes five crucial emotions—joy, distress, hope,
fear, and regret—grounded in the fundamental values of RL. It captures the agent’s subjective
appraisal of its situation by linking positive or negative temporal difference (TD) errors to
correspondingly valenced emotions. This connection to TD error not only highlights the
agent’s evaluative perspective but also provides a clear framework for understanding emotional
responses based on performance expectations. Furthermore, the model has also demonstrated
its practicality through implementation in controlled experiments, as illustrated above.

However, the TDRL model has notable limitations that constrain its broader applicability. A
primary drawback is its narrow emotional spectrum, limited to just five predefined emotions.
Its potential extensibility is further restricted by definition to emotions directly tied to the
agent’s misjudgments: because the TD error reflects only discrepancies between expected and
actual outcomes, it offers little to no information when events align with predictions. For
example, receiving an expected reward can not elicit satisfaction based on TD, and continued
suffering from correctly anticipated damage fails to elicit suffering or grief.

Another aspect that limits the model’s generalizability is the predefined nature of its emotional
patterns, which are not learned or shaped by the environment, but pre-established through an
arbitrary formulation for each emotion. As a result, their elicitation and interpretation must
be customized and hardcoded for the task, rendering the process more rigid and environment-
dependent. Additionally, the model does not naturally integrate the synthesized emotions with
artificial neural network (ANN)-based policies (such as through vectorization), necessitating
explicit, environment-specific coding of its effect on the agent’s behavior.
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Moreover, the model’s dependence on model-based RL imposes additional constraints on its
application. For the agent to elicit fear and hope, it requires a mental model of its interactions
with the environment that can represent uncertainty and anticipate potential outcomes.

Consequently, despite its conceptual longevity, the application of the TDRL model remains
limited. Its practical use has predominantly been confined to relatively simple RL environments,
such as small grid-worlds with full observability, thereby limiting its applicability to more
complex or dynamic real-world scenarios.

1.2.6 Efforts toward self-learned emotion
As highlighted by Moerland et al. in their comprehensive and illuminating survey about
emotions in Reinforcement Learning [109], a core challenge for the field’s future is to ”integrate
all aspects into one larger system, potentially taking a fully learned approach.”

Indeed, as discussed above, one of the main shortcomings of the approaches examined thus far
is their arbitrary nature. This arbitrariness affects various characteristics of their definition,
including the number and types of emotions covered, the formulation or logic governing their
dynamics (such as elicitation and extinction), their integration within the agent’s policy or
control code, and their association with external environmental elements. Consequently, while
some of these models exhibit certain practical capabilities, they often lack the flexibility
and generality necessary for application to other agents and tasks. Here, we analyze a few
exceptions to this trend, where certain aspects of emotional phenomena are automatically
learned during the process. Similar to our approach with non-learned models, we focus on
their primary contributions while also noting specific challenges that may have limited their
wider application.

The IBIA architecture

In the first exception discussed, an ambitious but mostly theoretical architecture is described
by Bozinovski (2001) for self-learning agents, the integrated biologically-inspired architecture
(IBIA) [94], following the principle of modeling a “complete creature” and based on the theory
of emotion as an internal value judgment and appraisal. The architecture’s goal is to closely
mimic how real-life organisms process emotions and use them as a basis for decision-making
and learning.

The architecture is based on a connectionist model that integrates three components—the
genetic, neural, and hormonal systems—combining emotions as an internal value judgment sys-
tem that guides learning without external reinforcement. From this schema, a specific working
architecture is distilled, known as the Crossbar Adaptive Array, designed to implement both
situation appraisal (evaluation of the state the agent is in) and action tendencies (evaluation
of the behaviors the agent might perform) using a process called emotion backpropagation.

The five interdependent components of the system are very differently parameterized and
learned. The genetic environment sets innate primary emotions and biases, which are
predefined. The emotional learning memory adapts through linear emotion backpropagation
updates, incrementally updating action tendencies based on internal appraisals (without
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external reinforcement). Emotional state evaluation simulates a neurohormonal pathway to
generate signals that modulate the agent’s emotional responses, shaped by feedback from its
neural processes. The personality and motivation system acts as an internal guide, defining
traits like curiosity and sensitivity; while partially predefined, it can adapt in response to
learning. Finally, the action selection mechanism interacts with the environment, initially
guided by genetic predispositions but gradually refining its choices based on learned emotional
evaluations, leading to more goal-directed behaviors.

Unlike most theoretical proposals on synthetic emotions, the architecture effectively outlines
bioinspired mechanisms that are amenable to actual implementation. Nevertheless, its
complexity, model heterogeneity, the diversity of learning paradigms—primarily reliant on
linear learning dynamics detached from the dominant RL domain—and the need for hard-
coding certain components, such as genetic parameters, may have deterred its adoption or
refinement by researchers in the field. Furthermore, the model’s experimental validation was
restricted to a highly simplistic setup (a small graph with predefined discrete states), which
may not readily translate or scale to more realistic settings, such as continuous state spaces,
or larger action or state spaces.

Emotions and the Free-energy principle

A different perspective was provided by Joffily and Coricelli in 2013 where a biologically
plausible computational model of emotional valence is proposed, inspired by the free-energy
principle [110]. In it, the valence of a state visited by an agent at time t is associated with the
negative first time derivative of free-energy at that state −F ′(t), or more simply, the negative
rate of change of free-energy over time. The basic idea is that emotional states reflect changes
in the uncertainty about negative consequences of an agent’s actions, whose dynamics are
associated with six basic forms of emotion by the authors, namely, happiness, unhappiness,
hope, fear, disappointment and relief. Despite emotions not being explicitly learned in the
framework, the authors analytically show how they emerge naturally as a consequence of the
dynamics of the free-energy minimization process.

Notably, this approach reframes the classic dichotomies of opposites, such as reward-loss or
pleasure-pain, typically associated with more valuable or desirable states, as “expected states.”
The authors hypothesize that the emotional valence derived from free-energy dynamics, along
with the associated “emotional states,” enables an agent to adapt its learning rate, enhancing
its decision-making capabilities. Furthermore, the generality of the proposed scheme is
considered high, as “it is not tied to any particular generative model of sensory inputs.”

Unfortunately, the practical demonstrations of this elegantly formalized framework are severely
limited to extremely simple settings, falling short of demonstrating its viability in real-world
scenarios. In their original work, the performance of two agents is compared in a basic slot
machine (one-armed bandit setting) granting $0 or $1 outcomes. One of them explicitly
estimates environmental volatility using a hierarchical Bayesian model, while the other uses
emotional valence to regulate its learning rate dynamically. Although the emotional agent
successfully replicates the adaptive behavior of the Bayesian agent, the experimental setup
remains simplistic, involving only binary outcomes and deterministic transitions.
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More recently, elements of Joffily and Coricelli’s model were incorporated by Yanagisawa
et al. (2021) [134] into their work on a free-energy model of emotion potential, seeking to
incorporate the “arousal” dimension of emotion. In this theoretical extension, a mathematical
framework is proposed that associates free-energy with arousal potential aiming to explain
emotional valence in the context of perception and decision-making. By formulating arousal
as the Kullback-Leibler divergence of the Bayesian posterior, this model sought to provide a
more detailed account of how emotional states might arise from the underlying dynamics of
free-energy minimization. However, no experimental validations were reported in this work.

Similarly, Pattisapu et al. (2024) extended this work by developing a more comprehensive
account of emotional states within the active inference framework [135]. They also proposed
mapping both valence and arousal to specific aspects of free-energy minimization, thereby
creating a two-dimensional model of emotion that aligns with Russell’s Circumplex Model
[7]. Despite this remarkable theoretical achievement, the practical demonstration remained
similarly limited. In this case, the authors tested a simple simulated agent under their formu-
lation in a search task within a 12-state environment. Although they reported “commonsense
variability in emotional states,” the simplicity of the task, much like earlier work, restricts
broader conclusions about the model’s applicability in more complex, real-world settings.

In conclusion, despite the theoretical soundness of the framework and its extensions, the
model remains primarily theoretical, capturing only a limited set of six emotions—happiness,
unhappiness, hope, fear, disappointment, and relief. The association between emotional
dynamics and these emotions is largely arbitrary and has not been validated against human
observers or established psychological and neuroscientific accounts. Furthermore, experimental
validation is very limited, with tests conducted in overly simplified environments that fail to
reflect the complexity and ambiguity of real-world conditions. Consequently, while the model
still serves as a valuable theoretical foundation for understanding the relationship between
emotion, cognition, and learning within the free-energy principle framework, its practical
applicability to more complex scenarios remains largely untested, suggesting challenges in
adapting it to real-world settings.

Learning intrinsic emotion-based rewards

In this alternative approach to integrating learning, Sequeira et al. (2014) propose a method for
reward modification, where an intrinsic reward for the agent is learned as a linear combination
of four predefined emotion-based rewards [111]. These four rewards, inspired by the major
dimensions of emotional appraisal within the Intrinsically Motivated RL framework [136], are:
novelty associated with an action, given the agent’s history; goal relevance of performing the
action; degree of control over the outcome of executing the action; and expected valence of
executing the action. Specific formulae are provided for each of them, analogous to other
hard-coded or predefined models, but in this case their optimal weights with respect to the
overall goal achievement are learned (a brute-force Monte Carlo simulation approach is used,
combined with a grid search over a defined parameter space). Despite this contribution, the
features themselves are not learned, but rather ad-hoc formulated and engineered by the
author. Moreover, their complex nature and high dependence on the task and environment
makes their transfer to other setups very arduous.
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Emotion-driven robotic path planning

More advanced machine learning techniques are proposed by Williams et al. (2015) to learn
and synthesize emotions in a demonstration of adaptive robotic path planning [112]. In this
approach, a Learning Classifier System—specifically the accuracy-based approach XCS—is
trained through reinforcement learning to select the best possible action at each state. The
emotion model is structured as a basic bow-tie structure, with inputs consisting of a set of
primary reinforcers that generate “emotions” as a finite number of alternative (unlabeled)
internal states, which are then connected to a behavioral modifier that adjusts the robot’s
behavior. The authors demonstrate how, through trial and error, the system learns to map
reinforcers to emotions, and emotions to modifiers, effectively modifying its behavior to
maximize the reward, outperforming a non-emotional navigation system.

Despite these promising results, the approach has several notable limitations. A significant
restriction is that the number of emotional nodes must be predefined—and narrowly limited to
two in their case: fear and happiness—which greatly constrains the system’s ability to adapt
to the complexity of other tasks. Additionally, lacking a systematic interpretation method, the
emotional characterization of the two nodes was judged post-learning, based on the learned
behavior. The selection of inputs, or “reinforcers”, also raises concerns. These high-level
assessments (such as novelty, sense of agency, uncertainty, pain and progress) are arbitrarily
chosen from Rolls’ list of primary reinforcers [137] based on their expected utility for robotic
navigation. Consequently, they must be ad hoc selected, formulated and engineered by the
programmer, rather than being learned directly from the actual external sensors (LIDAR,
front and rear bump sensors, and forward facing ultrasonic sensors), requiring a complete
redefinition and implementation for new tasks or environments. In conclusion, while the model
successfully demonstrates the potential for emotion learning and the benefits of emotion-driven
behavior in the targeted task, its low generality limits its applicability to other domains,
which may have severely restricted its use by other researchers in different or more complex
fields.

1.3 Concluding remarks
We have demonstrated how AI’s attention toward the emotional phenomena has been histori-
cally deprioritized, with the notable exception of Affective Computing. However, even in this
flourishing field, the primary focus has been on detecting and expressing emotion in machines,
rather than synthesizing them. As a result, the potential for developing true emotion-driven
AIs remains largely untapped.

Within the initiatives effectively tackling artificial emotions, despite the abundance of theoret-
ical approaches—ranging from abstract dissertations or essays, to more specific frameworks
and architectures—practical implementations are scarce. Among the few exceptions, even
fewer involve systems that can learn emotions autonomously. Additionally, these implementa-
tions commonly suffer from arbitrary or ad-hoc choices in the selection of targeted emotions,
hard-coded models, or overly simplistic environments that restrict the emotional spectrum
and dynamics captured. As a result, these systems fail to generalize well to different agents
or more complex tasks.
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Finally, very little progress has been made to test these models in more complex environments
with continuous state spaces, larger action spaces, or non-stationary conditions, all of which
are crucial for real-world applicability. We have also identified a general absence of verification
against independent sources, such as human observer studies or established psychological and
neuroscientific accounts, further limiting the credibility of these approaches.

In conclusion, the current state of AI research lacks a comprehensive and verifiable framework
for emotions that is both generic and fully learned. There remains a gap in systems capable
of naturally integrating learned emotions into behavioral drives, while credibly displaying the
traits and benefits of natural emotions. Validated implementations that bridge this gap are
essential for advancing the field toward truly emotionally intelligent artificial agents.

1.4 Overview of this work
Motivated by the above reasoning and the possibility that there lies an unrealized potential
in truly emotional AIs, particularly in autonomous agents, this proposal addresses the
origination of basic emotions from primary information in a way akin to natural organisms.
We introduce a generic, fully self-learning emotional framework formalizing emotions as
distinct temporal patterns perceived in crucial values for living beings that artificial agents
can as well spontaneously learn and elicit during environment interactions with analogous,
distinguishable dynamics.

The generic methodology introduced allows any AI agent to automatically learn, elicit
and utilize its own synthetic emotional spectrum, successfully mirroring natural emotions
described in the literature. Based on first principles in RL, it addresses emotion learning in an
unsupervised manner, devoid of any preconceptions and encompassing the entire emotional
spectrum. Indeed, unlike precedent case-specific solutions and arbitrary or hard-coded models,
emotional patterns are learned directly from the agent’s interactions with an environment,
namely from recent rewards, expected future rewards, anticipated world states, etc.

In addition to its generality, our work deviates from the predominant focus in affective
computing and related fields by directly tackling the core concept of “emotions”, their
formalization, elicitation and integration within practical agents, instead of their recognition
through external sensors or their communication to users.

For the human interpretation of the learned emotions, a thorough and generic methodology is
also introduced and tested that can be scaled to more complex scenarios and diverse emotional
spectra. This method relies on predefined emotional reference profiles, each associating an
emotion term with distinct, specific trends in the experienced values. The post-hoc nature of
this process readily allows for iterative refinements to account for individual or cultural biases.

Finally, we demonstrate the framework’s application in a classic RL environment, training an
emotional model that spontaneously identifies and learns eight basic, recognizable emotions
from past experience of the agent in an unsupervised manner. The resulting emotional
spectrum is validated through an emotion attribution survey on new sequences, where the
emotions elicited by the agent, unknown to the participants, convincingly align with human
subjective observations and experimental psychology accounts.
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Chapter 2

Objectives

2.1 Overall objectives and scope of this research

2.1.1 Hypotheses
This research posits and investigates the following interrelated hypotheses concerning artificial
emotions, each building upon the findings of the preceding:

H1: Mathematical describability of emotions. All recognizable basic emotions—such
as anger, satisfaction, or fear—correspond to distinct temporal patterns perceived in
crucial values for a living being, including recent rewards, expected future rewards, and
anticipated world states.

H2: Spontaneous encoding of the emotional spectrum. Such patterns can sponta-
neously emerge and be learned in an unsupervised way from first principles in simple
artificial intelligence agents, based on their current state, their recent temporal course,
and their temporal projections or expectations.

H3: Measurable utility of synthetic emotions. Incorporating learned emotions into
an agent’s state can increase its expected utility, yielding benefits analogous to those
observed in nature, such as improved behavioral responses, more efficient learning, and
enhanced social competencies.

Hypotheses H1 and H2 are thoroughly investigated both theoretically and experimentally in
this research, while hypothesis H3, whose full investigation is beyond the scope of this work,
is addressed and analyzed from a theoretical perspective.

2.1.2 General objectives
In order to validate or falsify hypotheses H1 and H2, this research primarily aims to:

O1: Define and develop a generic methodological framework, both theoretical and
experimental, that describes and delineates the role that synthetic emotions can play in
the field of Reinforcement Learning.
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O2: Empirically validate the applicability of the framework through a case study,
verifying the results against external references provided by independent human observers
and documented experimental accounts in psychology literature.

Objectives O1 and O2, which are central to this thesis, are comprehensively addressed in the
subsequent chapters.

With regards to hypothesis H3, which falls beyond the scope of this work, the proposed
framework does address the theoretical integration of learned emotions within standard
Reinforcement Learning (RL) architectures, as well as the methodology for their utilization
and interpretation in both online and offline settings. Its actual implementation would
test whether synthetic emotions can enhance purely cognitive or rational processes (such as
decision making and learning) by providing measurable utility to AI agents in environments
characterized by dynamics similar to natural ones, including stochasticity, partial observability,
multiplicity of goals and limited resources. Additionally, the implementation would explore how
synthetic emotions can promote beneficial interactions between agents in their environment,
such as cooperation and competition, analogous to the ones observed in animal associations
as a response to environmental pressures.

A future objective addressing hypothesis H3 could be formulated as follows:

O3: [Out of scope] Empirically validate the utility of learned emotions through a case
study, demonstrating significant improvements over a non-emotional agent in one
or more of the following areas: individual performance, such as achieving higher or
more stable rewards; learning efficiency, including faster learning, reduced sensitivity
to hyperparameters, or better generalization; or multi-agent cooperation, such as an
increase in total reward.

2.1.3 Specific objectives
The theoretical and experimental framework must define a general and coherent methodology of
empirical nature for the learning of functional artificial emotions in agents with Reinforcement
Learning, supported by experimental evidence of its applicability. This methodology must
include the following concrete deliverables:

• A computational and mathematical definition of artificial emotion as an automati-
cally synthesized product, based on the data collected during the agent’s training in an
RL environment.

• An algorithm for the training of emotional encoders, capable of learning artificial
emotions as defined above that, based on first principles of RL, is not dependant on the
environment.

• An algorithm for the elicitation of synthetic emotions, capable of generating
emotional responses in real-time as agents interact with the environment.

• An algorithm for the interpretation of synthetic emotions, capable of associating
elicited emotions to emotion terms for human interpretation, based on predefined
reference profiles of basic emotions consistent with those described in psychology.
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• A statistical study of the emotional spectra obtained, as well as an analysis of
their dynamics and congruence with on-going environmental developments.

• A methodology for the validation of experimentally learned emotions grounded
on external references from independent human observers.

2.2 Possible future objectives
We believe that the validation of the hypotheses addressed in this research and the achievement
of its central goals will establish a formal foundation on which further research might address
more ambitious objectives. In addition to objectives O1, O2 and O3, centered in enhancing
the performance of AI agents in RL environments, the principles and methods defined here
could extend to the following related fields:

• Affective computing: By directly formalizing and integrating synthetic emotions within
practical agents, this approach would extend the original scope of the field, with huge
potential for its core goal of effectively enhancing human-machine interactions with
emotional intelligence.

• AI agents interpretability: The spontaneous emergence of emotions in AI, evidenced
in apparently unrelated tasks—like next character prediction [138]—and suggested in
the field of RL as a byproduct of reward maximization [139], cannot be ignored. A
generic emotional framework could provide interpretability tools for identifying and
understanding such emergent emotions, which conventional “black-box” deep learning
architectures cannot natively support.

• Artificial empathy: Looking ahead, the insights gained from this research could be
extended to the development of computational models of empathy. These models
would predict the emotions of other agents or humans by utilizing the perceived and
estimated states and values of those entities, as interpreted by the observing agent.
This application has the potential to enhance the responsiveness and sensitivity of AI
systems in interactions involving emotional understanding.

• Enhanced interactive entertainment experiences: The definition of virtual characters
endowed with realistic, fully integrated emotional reactions, grounded on the on-going
progress of the game, might yield unprecedented levels of realism and engagement to
the industry.

• Other fields: Finally, as originally suggested by the foundation works in the field
of Affective Computing [87], the application of emotional AI could benefit various
sectors, including computer-assisted learning, perceptual information retrieval, arts and
entertainment, as well as human health and interaction.

Further details and discussions of these applications and their implications are more thoroughly
covered in chapter Conclusions.

31





Chapter 3

A generic self-learning emotional
framework

3.1 Inspirational background
Drawing on insights from the fields of neuroscience, psychology, and biology, we approach the
problem of formalizing and learning artificial emotions from a functional and information-
theoretic perspective. Thus, we analyze the end-to-end dynamics that transform original
perceptions into the cognitive products we know as “emotions”. We examine their triggers,
intensity, how they sequentially occur—whether they overlap, replace each other or attenuate
over time—and, critically for their synthesis, the cognitive abilities that each requires.

To address this apparent complexity, we draw guidance from the following foundations,
documented in nature, that play a role in emotional phenomena, so as to identify parallelisms
with existing AI frameworks and methods. Our goal is to reconcile, integrate, or extend these
foundations to achieve a functional understanding and emulation of emotions, rather than
their exact low-level replication:

1. Perception: Cognition originates in what we perceive and feel. Neuroscience describes
how animal perception stems from sensory neurons capturing external and internal
stimuli, like vision through retinal photoreceptors or pain through nociceptors in skin
and body tissues. This sensory information travels via neural pathways to the central
nervous system where, in combination with previous experiences, is processed into
increasingly abstract concepts, structuring a perceived reality into an individual’s
internal representation [140], crucial for emotional phenomena [141].

2. Reward and pain signals: Among these cognitive products, the ones we identify as
“emotions” are linked to the limbic system—involving structures like the hypothalamus,
amygdala and parts of the cortex in humans. Closely connected to it, the reward
circuit is responsible for the reward responses which, along with pain signals from the
somatosensory system, provide the “common neural currency” [142] guiding animal
behavior. Both are central to the emotional experiences, serving as the evolutionary
compass toward achievement, survival and reproduction [143]. These subjective signals,
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our referential scale for what feels “good” or “bad”, are shaped by individual homeostatic
dynamics, maintaining the organism’s internal equilibrium [144][145].

3. Retrospection: Past experiences heavily influence an individual’s emotional state,
strongly correlated with recent positive or negative outcomes [146][29], as well as with the
perceived sign of trend changes, which are equally relevant [147]. More subtle processes
involve “habituation” over time via repeated exposure to a reinforcing stimulus [148], as
well as “extinction” via neutral exposures to previously valenced stimuli [149].

4. Anticipation: Critically for their survival, animals can predict the probability and
variance of future rewards based on their perception and memories—which has been
shown to be coded in neurons in the basal ganglia, midbrain, parietal, and parts of the
cortex in humans [150]—and is associated with dopamine-producing neurons [151]. It is
revealing that the dopamine neurotransmitter, a mediator of reward prediction learning
[152], is prevalent in all animal phyla, (except for its equivalent octopamine in phylum
Arthropoda [153]).

5. Knowledgeability: Some emotions may be associated with cognitive representations
of states of the environment [154] (such as surprise, curiosity or confusion) or with
elements judged as beneficial or harmful for an animal—objects, places or other living
beings—based on its own subjective reality [155][156].

6. Feedback mechanism: Lastly, emotions can act as signals, communicating internal
states to the external environment and influencing interactions—such as fear or anger,
signalling threats to others and prompting specific responses [1][6][157]. Internally,
emotions can also guide behavior adjustments, maintaining balance and achieving goals
[3][5].

7. Cognitive gradation: All of these factors, integral to the known emotional psycho-
dynamics, engage specific brain regions, and are therefore conditioned by each species’
unique cognitive abilities. This has suggested a gradation or genealogy of emotions
corresponding to the advancement of these abilities throughout evolution alongside with
the development of increasingly complex brains, as documented in biology [1][44].

3.2 Introduction to the proposed framework
In alignment with this foundational background, we propose here a generic, fully self-learning
emotional framework for AIs. Grounded in first principles from Reinforcement Learning
(RL), this framework enables any agent interacting with an environment to automatically
learn, elicit, and utilize its own synthetic emotional spectrum, convincingly resembling natural
emotions described in the literature. An overview of the framework is explained here, while
its formal description and detailed methodology can be found in Theoretical framework.

The framework is based on the following fundamental hypothesis:

Hypothesis: All emotions correspond to distinct temporal patterns perceived in
crucial values for a living being, such as recent rewards, expected future rewards or
anticipated world states.
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Furthermore, given that said crucial values, generated as cognitive variables, are determined
by the individual’s specific cognitive abilities, they condition the complexity of the emotions
experienced. The most basic emotions reflect trends or patterns in reward / punishment
signals, while increasingly sophisticated emotions integrate their subjectively anticipated
values, anticipated world states, associations with other individuals or objects, etc. (Unlike in
psychology or neuroscience, the term “reward” encompasses positive and negative outcomes
in RL, rarely using “punishment” for the latter, a convention that we also follow henceforth.)

This assumption suggests the viability of AI agents in the field of RL automatically learning
such patterns too, based on historical information—or subjective experiences—which is the
principle underpinning the self-learning framework introduced here.

Example:

To understand the correspondence between said temporal patterns and natural emotions,
we introduce the main components of the proposed framework with an illustrative example
of a simplified bioinspired RL setup (see Fig. 3.1). An AI agent’s goal is to survive in an
environment where energy sources—the reward signal—are scarce and disputed with other
agents. Its energy slowly diminishes over time (for example, average reward ≈ −0.1), but
it can perceive its nearby environment as a state, and is endowed with simple actuators for
displacement, feeding and combat. Its cognitive abilities include a short-term—or replay-
memory, a state-based prediction of future rewards—or state-value function—and a policy
defining its behavior. As shown in the figure, the agent observes sequences of recent and
predicted rewards during the simulation, producing differentiated temporal patterns as
sequences of multivariate time series (MTS). We now describe how such patterns can be
associated with emotions.
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Figure 3.1: Overview of the framework: How emotions can be learned from experiences, then
elicited and interpreted. A reinforcement learning agent’s interactions are registered as sequences of
multivariate time series (instantaneous reward and future predicted rewards—or state-value—in the example).
An emotional encoder (such as a deep autoencoder) is trained unsupervised on the sequences, encoding them
into a low-dimensional latent space. Distinct dynamic patterns in the sequences emerge as clusters whose
centroids can be mapped to known emotional reference profiles (showing three here for simplicity).
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During a continuing successful execution without foreseeable hurdles, the agent would observe
a series of positive rewards along with equally positive predictions, which might correspond
to happiness. Contrarily, a disastrous and irreparable situation—such as a damaged actuator
preventing progress—would yield a series of negative rewards and equally negative predictions,
which might correspond to distress. Some other basic emotions might be equally described
from similar stable patterns, or emotional reference profiles, like concern or optimism (top
rows of Table 3.1).

Table 3.1: Association of some emotions to latest observed values.

Latest rewards Latest predictions Emotion Rationale

positive positive happiness Successful execution, no foreseeable hurdles
negative negative distress Poor execution, no foreseeable improvements
average negative concern Regular execution, expected to worsen
average positive optimism Regular execution, expected to improve
. . . . . . . . . . . .
average increased excitement An opportunity emerged during regular execution
decreased average frustration A reward is no longer being received
. . . . . . . . . . . .
average decreased-to-average anger A threat arose, seen as potentially addressable
average decreased-to-negative fear A threat arose, seen as hardly addressable

Crucially, within the framework, values are deemed positive, average or negative based on
their comparison with historical observations, thus capturing the pivotal role of homeostasis in
emotions (for instance, a positive reward that is substantially lower than the average reward
would be considered as negative).

Other emotions can be associated with the dynamics of change, corresponding to recent trends
of increases or decreases in these values, for example excitement and frustration (middle rows
of Table 3.1).

Finer interpretation of temporal trends allows the differentiation between closely linked
emotions like anger and fear (bottom rows of Table 3.1), where cognitive appraisal of the
agent’s control on its chances to overcome the challenge reflects a slight or steep drop
respectively (Yang et al, 2018) [158]:

We introduce the following additions to the classic RL setup (see Fig. 3.1):

– an emotional encoder (or emotional model) which, trained on various MTSs experienced,
learns its latent features as a low-dimensional representation Ψt ∈ Rd representing the
emotional state at time-step t;

– an emotional interpreter which, trained on the value distribution of ψ over the latent
space Rd, maps its values to emotion terms for human interpretation, based on known
reference profiles.

The use of the emotional encoder within an extended RL architecture allows the emotional
agent to dynamically elicit instantaneous emotions, enriching the state used by an emotionally-
enabled policy with a subjective, emotional state (Fig. 3.2).
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Figure 3.2: Elicitation of learned emotions. a, Elicitation. Once trained, the agent’s emotional
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state. b, Architecture. Extension of the actor-critic architecture with an emotional encoder that stores the
latest observed values (rewards and state-values). Unlike the actor and critic, its training is not necessarily
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For interpretability, the emotional interpreter can be used during the execution of the task
to map instantaneous emotional states to known terms. Fig. 3.3 illustrates how a longer
succession of events and their temporal patterns is associated with a series of coherent
consecutive emotions. Richer emotional sequences in an actual RL environment, covering
entire episodes, are discussed in chapter Results.
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Figure 3.3: Interpretation of the learned emotions. Instantaneous emotions can be mapped to known
referential profiles for external interpretation or communication to other agents. A probabilistic clustering
model (such as Gaussian mixture) can predict their distribution probabilities across clusters, associating them
to the clusters’ preassigned profiles. The example interprets six consecutive profiles out of the 30 combinations
in a LOVE 2:5x6 interpretability mapping (LOVE: Latest Observed Values Encoding, with two observed
values that have 5 and 6 possible patterns respectively; see 3.4.3 and Fig. 3.4 and Fig. 4.6 for details).
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This illustrative example outlines the core ideas of the framework based on a limited set of
cognitive values, namely, reward and predicted rewards (or state-value). Agents endowed
with higher cognitive capabilities, such as a world model anticipating future states or external
associations, are likely to develop more complex emotions, which belong to higher emotional
orders. These concepts are discussed in section Theoretical framework, where we provide
detailed definitions formalizing the concepts of emotion, emotional encoder, emotional spec-
trum, and emotional orders (for example, the agent in Fig. 3.1 is categorized as Order III).
Additionally, we describe the detailed methodology subsequently applied to a case study.

In conclusion, we have introduced how the proposed framework can capture the natural
foundations described above, extending the RL framework to allow the learning, elicitation
and utilization of synthetic emotions, as well as their external interpretation. The framework
integrates objective perception (external state and rewards) with internal, subjective appraisals
and the homeostatic definitions of average, based on past experiences. The case study
included in Results illustrates how this synthetic emotional system naturally reproduces
other well-known dynamics, such as elicitation / decay, coexistence, alternation, subjectivity,
environment-dependency, and confusion.

3.3 Theoretical framework
We cover here the theoretical formalization and primary definitions of the introduced framework
as well as its integration within the RL framework, before addressing a detailed description of
its application within a generic methodology.

3.3.1 Foundational concepts from Reinforcement Learning
In the classic Reinforcement Learning setup, an agent learns how to maximize the amount
of reward received through interactions with an environment over a sequence of discrete
time-steps. The actions influence not just the immediate rewards, but also the subsequent
states of the system, with an impact on future rewards. The environment is formulated as a
Markov Decision Process, satisfying the Markov property, that is to say, its response at time
t+ 1 depends only on the state and action taken at t [61].

The dynamics of this setup yield a series over time with the form: S0, A0, R1, S1, A1, R2, A2 . . .
where St is the state observed by the agent at time-step t, At is the action then taken, and
Rt+1 is the reward observed after the action. We’ll follow the classic notation in which capital
letters are used for random variables, whereas lower case letters are used for the values of
random variables (such as s, a, r, etc.).

The action At is chosen by a policy π based on state St. The literature offers a broad
variety of methods to train π, but here we’ll focus on the actor-critic methods [159], a
subset of policy-gradient methods. These methods simultaneously obtain a policy π (the
actor) and a value function v (the critic), whose learning is based on the temporal difference
error, an error mechanism that has been compared by neuroscience to dopamine’s in animal
learning [160]. In this family of methods, widely used in state-of-the-art applications, v yields
state-values, an estimate of future rewards, whose sign and magnitude are key for emotional
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elicitation. Significantly, the actor-critic model has been compared with the mesolimbic brain,
a system that plays a crucial role in emotional processing and regulation across a wide range
of vertebrate species. Specifically, the ventral and dorsal striatum areas have been associated
with the critic and actor components of reinforcement learning models, respectively [161].

These are the elements taken from the framework, whose detailed formulations are thoroughly
studied in the literature [61]:

St ∈ S is the state observed at time t, from the set of states S;
At ∈ A is the action taken at time t, from the set of actions A;
Rt ∈ R (a subset of R) is the positive or negative reward observed at time t;
π(a | s) ∈ [0, 1] is the probability of choosing action a in state s;
vπ(s) ∈ R is the value of state s under policy π (or expected future rewards).

3.3.2 Primary definitions for the framework
In addition to the above, the following necessary definitions and components are introduced,
whose possible implementations are separately addressed and extended in Methodology:

Emotions. Def.: The instantaneous latent representations, or encodings, of temporal patterns
in vital values recently observed by the agent.

Said patterns can reflect significant trends in current, past and predicted values, endowing
the agent with a meaningful, on-going appraisal on their progression. For simplicity, the
forthcoming exposition will focus on reward and state-value, briefly discussing promising
alternatives further down.

Analogous to St (the external state observed at time t) we’ll use the following notation:

Ψt ∈ E is the emotional state at time-step t, from the set of emotional states E .

Emotional encoder. Def.: A model that takes as input the multivariate time series sequence
formed by the latest values observed by the agent, generating a low-dimensional encoded
representation of their recent dynamics, namely, the above-mentioned emotion.

Its input would take the form of a multivariate time-series:

Ot−T +1:t = {O1, O2, . . . , OW}t−T +1:t

where:

W is the number of observed values;
T is the length of the sequence, an arbitrary value that defines the emotional window of
the agent;
Ow

t−T +1:t is the time series sequence (wt−T +1, . . . , wt) of the latest T values observed for
value w at time-step t.
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In the sample case with two values, the sequence takes this form:

Ot−T +1:t = {(Ri), (Vi)}t−T +1:t

where:

Ri and Vi are, respectively, the reward and estimated state-value observed at time-step
i within the latest T values at time-step t;

and the emotional encoder is formulated like this:

Ψt = e ({(Rt−T +1, . . . , Rt), (Vt−T +1, . . . , Vt)})

where:

e is the emotional encoder (for example, a deep autoencoder);
Ψt ∈ E is a point in the latent emotional space Rd of dimension d, from the set of
emotional states E ⊂ Rd, representing the emotional state at time-step t;
d is the dimension of the latent space learned by e, a hyperparameter of the model.

Emotional window. Def.: The lapse before which no observation has an emotional impact,
imposed by the length of the input sequences processed by the emotional encoder, taken from
the agent’s experience.

Its choice is arbitrary, but too low or too high values might render the events within the time
window unstable or irrelevant respectively. As a guidance, the analysis of the most basic
natural emotions typically considers seconds or even minutes, rather than hours, just enough
to keep relevant events within the short-term memory [146][29].

Emotional spectrum. Def.: The range of possible values that the emotional state Ψt can
take within the latent space Rd, denoted as E ⊂ Rd.

It depends on: (1) the experiences from which it has been learned, namely, the environment
and the actions taken in it; (2) the choice of values integrated in Ψt, limited by the agent’s
cognitive abilities, or emotional order. Despite taking continuous values, the distribution of the
random variable over the latent space may naturally tend to follow non-uniform probabilistic
distributions, amenable to interpretation.

Emotional orders. Def.: A stratification of learnable emotional spectra of increasing
cognitive complexity, determined by the set of values integrated in Ψt, which is limited by the
agent’s cognitive abilities.

The first, more basic orders, describe the gradation from the fleeting, irreflexive experience
of instantaneous reward to multifaceted blends of expectations and recent events originated
in the value function, replay memory and world model. For their representation in Fig. 3.4
we introduce graphically their corresponing Latest Observed Values Encodings (or LOVE
patterns), that are formally defined in Interpretation of the learned emotions.
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Figure 3.4: How cognitive abilities determine the emotional spectrum. A gradation of emotional
spectra arises from increasingly higher cognition based on Latest Observed Values Encodings (or LOVE
patterns) relative to subjective historical averages. The x-axis represents time, and the y-axis represents value
magnitude. a, Order I. Immediacy: a single instantaneous reward value defines the simplest spectrum. b,
Order II. Retrospection: a short-term memory of the latest rewards allows elementary emotional dynamics.
c, Order III. Anticipation: the ability to predict future rewards (state-value) defines a much richer learnable
spectrum of predictive dynamic emotions, which is used in the case study.

Order 0 : A standard RL agent; cognition allows action selection (by the policy π) based on
sensory information (the state s). No emotions are elicited.

Order I - Immediacy: Taking only the current value of the reward defines the simplest learnable
spectrum, with instantaneous homeostatic emotions such as good, bad or neutral (for positive,
negative and average values respectively).

Order II - Retrospection: A simple short-term memory of the latest rewards endows the
agent with elementary emotional dynamics, extending the learnable spectrum with basic
stateful homeostatic emotions reflecting the latest trends (for example, satisfaction, frustration,
happiness, sadness, or neutral).

Order III - Anticipation: Including the recent state- or action-values predicted by a value
function can signal meaningful trends in future expectations, defining a much richer learnable
spectrum of predictive dynamic homeostatic emotions (including anger, fear, concern, excite-
ment, frustration, euphoria, etc.). RL algorithms that learn a value function are suitable here,
such as SARSA, Q-Learning, actor-critic, etc. [61]; we will focus on the latter in this study.

Order IV - World-knowledgeability: Agents that learn a world model (not necessarily for
planning) can predict the likeliest state continuations, detecting mismatches through state-
prediction errors that can elicit basic knowledge-related emotions (such as surprise, curiosity,
boredom), as well as valenced emotions toward objects or places (including aversion, attraction,
phobia or fondness).
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Higher Orders: Agents endowed with higher cognitive abilities, like longer-term memory
or more complex world- or self-models, could learn and experience higher-order emotional
spectra, like remote retrospections, social, moral or self-conscious emotions, which lay beyond
the scope of this work.

A detailed analysis of the specific learnable emotions for each order requires the introduction
of recent-trend patterns, discussed in section Interpretation of the learned emotions.

Emotional interpreter. Def.: A system that takes as input an emotion encoded by an
emotional encoder, mapping it to known emotion terms for human interpretation.

The input would be Ψt ∈ Rd, representing the emotional state at time-step t, and the
output the attributed emotion term (for instance, “joy”, “frustration”, “relief”), similar to
the examples in Introduction to the framework.

3.4 Methodology
Here, we present how the framework operates, detailing a generic methodology for the
spontaneous encoding of the emotional spectrum within an RL environment from raw agent’s
experience which, based on the definitions introduced, provides the following functionality:

1. Learning emotions from experience;

2. Elicitation of emotions and integration within an RL architecture;

3. Interpretation of the learned emotions.

A fully detailed, step-by-step description of its application on a real case study is covered in
chapters Results and Methods and tools.

3.4.1 Learning emotions from experience
Training of an emotional encoder

The simplest approach to training an emotional model (for example, a deep autoencoder)
from direct observations of the agent is offline learning, following these steps:

1. Train a conventional RL agent A to the desired performance, for instance, with an
actor-critic method.

2. Run the trained agent A on new episodes in the environment, saving the stepwise
trajectories as MTS of the key values (for example, reward and state-value).

3. Train a deep autoencoder (unsupervised) on normalized trajectory sequences of length
T , representing the emotional window.

The offline setting approaches emotional systems as “frozen” models, learned from previous
agents’ experiences, comparable to “super distilled foundation models passed onto us by our
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ancestors, through genetics and evolution,” as emotions have been described in the context of
modern generative AI [162]. On top of its lower complexity, this method offers advantages such
as stability, consistency and reliability, at the expense of increasingly detrimental mismatches
between newly learned policies and the frozen emotional model. This might potentially impact
its utility if, for instance, a new agent A′ were to be defined and subsequently trained making
use of the extended states (external and internal), inheriting the emotional dynamics of A,
despite now learning a different policy and value function.

The alternative would be the online learning of the emotional model along with the original
training of the agent A (for example during the training cycles over the replay buffer of
previous experiences), which despite the added complexity, might yield higher-utility emotions.
In the real case covered in Results we adopted the simplest offline learning.

Input values

The choice of input values for the encoder is arbitrary, but will determine its learnable
emotional spectrum. A logical prioritization inspired by nature and psychology, and based on
the principles of utility and availability, is suggested here, following the order-wise stratification
introduced by the framework (see Emotional orders in section Primary definitions for the
framework):

1. reward, as the key RL first principle. The objective value to maximize, defining good
and bad for an agent, and directly received from the environment (but also applicable
to less classic approaches like intrinsically-motivated RL [136]).

2. state-value, a prevalent cognitive product contributing contextual estimates of “how
good” future expected rewards will be. Its anticipatory nature adds valuable subjective
charge to emotions like optimism or fear.

3. state-prediction error , quantifying the discrepancies between a learned world model and
the observed state transitions. It can define emotions driven by an agent’s understanding
of its environment like surprise, astonishment or interest.

Beyond these values, related to orders I to IV, other possibilities might be considered:

4. average reward, a running estimate of r(π), the average reward per time-step of the
policy, typically expressed by Rt at time t, could provide a good measure of life-long
performance and a broader reference of normality for valenced emotions relative to its
subjective neutral or homeostatic value.

5. moving average reward, the mean value of rewards observed only during the latest steps,
provides a more recent, adaptive reference of normality, and could substantiate the
emotional dynamics of habituation to valenced emotions relative to its dynamic value,
modulated by the length and parameterization set for the averaged period.

6. Other descriptive statistics of all the values above might capture emotionally-relevant
dynamics (for instance, a high fluctuation in recent rewards should probably prevail
over other values, with a sense of confusion or uncertainty).
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7. Finally, temporal difference error, or TD error, estimating instantaneous step-wise errors
in the expected future rewards, is applied all over the RL literature. However, it is
by definition a byproduct of reward and value estimates [61], and therefore redundant.
Furthermore, as discussed in section The TDRL theory of emotion and related approaches,
whenever predictions match observations well, TD provides little to no information
regardless of the success or failures of the agent.

Model architecture

A natural choice for the unsupervised learning model that encodes recent sequences into a
low-dimensional latent space is a deep autoencoder (DAE) [163]. This type of artificial neural
network is extensively applied to learn compact feature spaces, which have been empirically
demonstrated to capture existing similarities and relations among the original samples [164].
While the generative properties of the more sophisticated approach, variational autoencoders
[165] are not required for the core task, interesting sequence-based alternatives like Recurrent
Neural Networks [166][167] (dispensing with the fixed-size time window) or state-of-the-art
self-attention models [55][56] might be considered in future works.

For the case of a DAE, since the purpose of the model is not input regeneration or denoising,
an excessively high encoding dimension d, or too high depth and complexity of the architecture,
might harm its purpose to capture high-level trends and magnitudes of the observed values.

3.4.2 Elicitation of emotions and integration within an RL archi-
tecture

Figure 3.2 in Introduction to the proposed framework illustrates how a trained emotional
encoder can be used by an agent to dynamically enrich its policy’s input with an emotional
state. The following definitions are proposed:

Extended state Def.: The extension of the state St observed from the environment at time-
step t, or external state, with the emotion Ψt elicited by the emotional encoder, or internal
state, with the form Xt = (St,Ψt) ∈ S × E.

The extended state Xt can produce a richer representation that blends the objective and
subjective perception of the agent at each step.

Emotional agent Def.: An RL agent whose policy makes use of an extended state Xt.

Its policy π would take this form:
π(a | x) ∈ [0, 1] is the probability of choosing action a in extended state x ∈ S × E .

In section Introduction to the proposed framework we propose an architecture for such an
emotional agent, based on the actor-critic method, that utilizes the extended state. While its
implementation is not included in this work, we provide the pseudocode for its training in a
continuing task for agents of Order III and IV in section 3.4.4, Extensions of the actor-critic
method.
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3.4.3 Interpretation of the learned emotions
Finally, we detail here the principles to create a generic emotional interpreter. While
interpretability of the learned emotions is not imperative for their utilization by an emotional
agent, it significantly contributes to their validation and analysis, and potentially facilitates
the external communication of the instantaneous emotional state. A few new concepts and
tools are required for this purpose.

Clustering of the emotional spectrum

The distinct dynamic patterns learned by the emotional encoder will translate into a non-
uniform distribution of ψ over the latent space, emerging as clusters whose centroids represent
their respective prototypical sequences. The number and diversity of these clusters depends
on many factors, including the clustering method chosen, but once learned, each centroid’s
sequence can be mapped to known emotional reference profiles associated with prototypical
emotions described in the psychology literature, allowing human interpretation, as shown in
Introduction to the proposed framework.

Selection and validation of the interpretability mapping

The applicable interpretability mapping is determined by the emotional order of the agent,
and will allow the interpretation of the instantaneous emotions. The following definitions are
proposed:

Emotional reference profile Def.: A possible combination of recent-trend patterns of the
observed values in the corresponding emotional order associated to some known emotion term.

For instance, in Order III, where values include rewards and state-values (or expectations
for more clarity), the profile <average rewards, positive expectations> might correspond to
optimism. Other examples might be:

Latest observed trends Emotion term
<average rewards, negative expectations> concern
<negative rewards, negative expectations> distress
<increased rewards, positive expectations> reassurance
etc.

Interpretability mapping Def.: A set of emotional reference profiles formed by the different
possible combinations of their recent-trend patterns, ideally encompassing an ample range of
emotion terms.

The following naming convention is followed for mappings:

LOVE Nvalues : Nprofiles
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where LOVE stands for Latest Observed Values Encoding. For example, a LOVE 2:5x5
mapping would correspond to two values (like reward and state-value) mapped over 25 profiles
(the combinations of five patterns per value).

In Introduction to the proposed framework we showed possible interpretability mappings for
the first three emotional orders, where each possible profile is associated with an emotion
based on the interpretation of its recent-trend patterns (see Fig. 3.4). The set of recent-trend
patterns defined for observed values is arbitrary, but a few basic ones inspired in psychology
render significant variety and representativeness to the mapping:

average: Latest observed values do not differ much from their historical average;
positive: Latest observed values are higher than average;
negative: Latest observed values are lower than average;
increased: Latest observed values reflect a positive trend;
decreased: Latest observed values reflect a negative trend.

The three first patterns reflect the well-known principle of subjective “normality” versus
“exceptionality” associated with homeostasis [144][145]. As for the emotional effect of recent
changes perceived, research shows how trends may be more relevant than actual magnitudes
(for instance, a minor improvement can bring happiness to the unwell, yet a minor ailment
may frustrate the healthy [147][168]), a principle that is captured in the two last patterns.

However, since the encoding of the latest values yields continuous values, specific criteria must
be established for classification based on their statistical nature. For example: values can be
classified as positive or negative when the mean value falls out of the range [−kσ, kσ], where
σ is the standard deviation of the values and k is a factor defining the “average” interval.
Additionally, values can be classifed as increased or decreased when the slope of the linear
regression of the sequence deviates from its average value in the observed distribution by a
specified amount, such as a fraction of its own standard deviation.

Profiles can nonetheless be extended for more nuanced interpretations if needed; for example,
in Order III, the differentiation of decreased into two patterns (decreased-to-average, decreased-
to-negative) for state-value results in 30 profiles (LOVE 2:5x6), and captures the relevant
distinction between fear and anger respectively (see Fig. 4.6 in Results). (The rationale
behind this distinction is based on the psychological interpretation of the subjective appraisal
attributed to these two emotions [169]: while both are classified as negative in valence and
associated with potentially adverse future outcomes, anger is linked to more individual control
over the threat and relatively higher certainty than fear, which would respectively reflect into
less steep declines in state-value for anger than for fear.) Further possible extensions are
briefly mentioned in Conclusions.

Attribution of emotion terms

The resulting profiles of each mapping can then be associated with known prototypical
emotion (or affect) terms through analysis. However, given the lack of a broad consensus in
the number, definition and categorization of emotions or affects in the literature [170][171][16],
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the following principles, partially inspired in the most influential theories, were applied to
denominate the mappings of Orders I to III showed in Introduction to the proposed framework.
Further research will possibly contribute refinements to these mappings:

– Conformity: Initial analysis of the value trends in each profile (magnitude, valence, stable
/ dynamic) for comparison with emotion descriptions in the relevant literature (including
authoritative emotion/affect models, dimensions, lists and stability / transience).

– Meaningfulness: Prioritization of the most broadly adopted terms in the field, depriori-
tizing the uncommon.

– Comprehensiveness: Maximization of the overall emotional spectrum’s range of each
mapping.

– Cognitive adequacy: Contextualization within the respective cognitive orders (from
basic, simple concepts in emotional Order I, to finer, richer emotions in Order III).
Homogenization of the emotional spectra, not mingling complex affects (such as social,
moral or self-conscious) with primary, instantaneous emotions, solely elicited by the
recent events.

– Theoretical sequential coherence: Offline simulations of event-guided emotional sequences
and review till fully natural transitions are obtained in all cases and all profiles visited
several times (see Theoretical validation of LOVE profile terms for details).

– Experimental sequential coherence: Finally, adaptation of the emotion terms to match
the nature of the environment-agent interactions in the actual case study through the
review of real emotional sequences.

Example: The pattern tagged as satisfaction is characterized by an increase in rewards, along
with its corresponding decrease in future expected rewards or state-value, as described for
example in (Schultz, 2015) [152]: “Value informations for choices need to be updated when
reward conditions change. For example, food consumption increases the specific satiety for the
consumed reward and thus decreases its subjective value while it is being consumed.”

Real-time emotional interpretation

Once the learned clusters have been associated to profiles from the LOVE mapping chosen,
the instantaneous emotion encoded can be dynamically classified by the clustering model
used and accordingly interpreted through its preassigned profile. If a probabilistic clustering
model was used (for example, a Gaussian mixture model), a probability distribution will be
obtained which, on top of the likeliest emotion, will capture richer nuances (for instance, 70%
neutral, 30% fear may be interpreted as slight fear).

The stepwise stability of these classifications may be impacted by the different noisy values it is
based on (environment rewards, model predictions, encoding model), which can be addressed
by different techniques (such as smoothing moving average, reclassification thresholds, etc.).
(See 4.1.3 for real-time interpretations in a concrete use-case.)
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3.4.4 Extensions of the actor-critic method
We document here the pseudocode for training Order III and Order IV emotional agents,
based on the architecture introduced in Introduction to the framework (the significance of
Orders I and II is more theoretical than practical). We followed the notation and original
pseudocode taken from (Sutton, 2018) [61]. For the sake of brevity, we focus on the continuing
task setup—which will apply better to future biologically-inspired natural setups—but the
extensions can be applied to all the variants, such as episodic tasks, eligibility traces, etc.

Training of a classic actor-critic agent (Order 0 - Non-emotional agent)

As a reference, we first include Algorithm 1, the original pseudocode for training the policy and
the state-value function of a vanilla actor-critic agent for continuing tasks (based on average
reward estimates, and without the classic gamma discount factor) [61]. This corresponds to a
non-emotional agent (emotional Order 0). In the pseudocode provided:

S, S ′ ∈ S are the states observed at time-steps t and t+ 1 from the set of
external states S;

A ∈ A is the action taken at time-step t, from the set of actions A;
R ∈ R is the reward observed at time-step t;
R ∈ R is the estimate of average reward at time-step t;
π(a | s,θ) ∈ [0, 1] is the probability of choosing action a in state s given policy π

with parameter vector θ;
v̂(s,w) ∈ R is the approximate value of state s given weight vector w.

(For greater clarity, the pseudocode does not optimize the number of invocations to the
function v̂. This also applies to forthcoming algorithm versions involving other functions.)

Algorithm 1 Training of a vanilla non-emotional actor-critic agent (continuing tasks)
1: Input: a differentiable policy parameterization π(a | s,θ)
2: Input: a differentiable state-value function parameterization v̂(s,w)
3: Initialize R̄ ∈ R (e.g. to 0)
4: Initialize state-value weights w ∈ Rd′ and policy parameter θ ∈ Rd′′ (e.g., to 0)
5: Algorithm parameters: αw > 0, αθ > 0, αR̄ > 0
6: Initialize S ∈ S (e.g. to s0)
7: loop forever (for each time-step)
8: A ∼ π(· | S,θ) ▷ Choose an action
9: Take action A, observe S ′, R ▷ Observe new state and reward

10: δ ← R− R̄ + v̂(S ′,w)− v̂(S,w) ▷ Temporal difference error
11: R̄← R̄ + αR̄δ ▷ Update average reward
12: w ← w + αwδ∇v̂(S,w) ▷ Adjust v̂
13: θ ← θ + αθδ∇ ln π(A | S,θ) ▷ Adjust π
14: S ← S ′ ▷ Update state
15: end loop
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Training of an emotional agent (Order III - Anticipation)

An Order III agent includes recent rewards and state-values, and an emotional encoder e,
following the architecture introduced in Introduction to the proposed framework. Algorithm 2
provides the pseudocode to train the agent based on e, previously trained offline on MTSs,
where:

R(T ) = [Rt−T +1, . . . , Rt] ∈ RT is the list of the latest T rewards R observed at time-step t;
V (T ) = [Vt−T +1, . . . , Vt] ∈ RT is the list of the latest T state-values V observed at time-step t;
Ψ = e(R(T ), V (T )) ∈ Rd is the emotion encoded by e from R(T ) and V (T ) at time-step t;
X = (S,Ψ) is the extended state observed at time-step t;
π(a | x,θ) ∈ [0, 1] is the probability of choosing action a in extended state x given

policy π with parameter vector θ;
T is the emotional window of the agent.

The implementation of the short-term memory utilizes a circular buffer with the latest T
observed values, as the input to e (needed for a fixed-input architecture of e, but not required
in other implementations, such as a Recurrent Neural Network, whose hidden state naturally
represents past inputs). For the same reason, the first T − 1 time-steps require special
treatment until the two input lists have accumulated enough values. The simplest approach
is to assign an arbitrary initial value ψ0, for example, corresponding to a neutral emotion.

Training of an emotional agent (Order IV - World-knowledgeability)

The most basic emotional agent of Order IV would count with an additional learned world
model m, anticipating next states from the current state and the action then taken. The
emotional encoder would thus observe a third value, measuring the accuracy of the latest
predictions, as suggested in Primary definitions for the framework, Emotional orders.

We provide Algorithm 3, a basic pseudocode where:

S ′ = m(s, a) ∈ S is the external state predicted while being in
state s ∈ S and taking action a ∈ A;

diff (s, s′) ∈ R is a measure of the difference between two external
states s and s′ ∈ S (for example, Euclidean);

D(T ) = [Dt−T +1, . . . , Dt] ∈ RT is the list of latest T values of diff () observed at time t;
Ψ = e(R(T ), V (T ), D(T )) ∈ Rd is the emotion encoded by e from the latest

T values of R, V , and D at time t.
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Algorithm 2 Training of an Order III emotional actor-critic agent (continuing tasks)
1: Input: a differentiable policy parameterization π(a | s,θ)
2: Input: a differentiable state-value function parameterization v̂(s,w)
3: Input: a trained emotional encoder e(R(), V ())
4: Initialize R̄ ∈ R (e.g. to 0)
5: Initialize state-value weights w ∈ Rd′ and policy parameter θ ∈ Rd′′ (e.g., to 0)
6: Algorithm parameters: αw > 0, αθ > 0, αR̄ > 0
7: Initialize S ∈ S (e.g. to s0)
8: Initialize Ψ ∈ Rd (e.g., to ψ0 = neutral emotion)
9: Initialize R(T ), V (T ) (as empty lists)

10: loop forever (for each time-step)
11: X = (S,Ψ) ▷ Extended state
12: A ∼ π(· | X,θ) ▷ Choose an action
13: Take action A, observe S ′, R ▷ Observe new state and reward
14: δ ← R− R̄ + v̂(S ′,w)− v̂(S,w) ▷ Temporal difference error
15: R̄← R̄ + αR̄δ ▷ Update average reward
16: w ← w + αwδ∇v̂(S,w) ▷ Adjust v̂
17: θ ← θ + αθδ∇ ln π(A | S,θ) ▷ Adjust π
18: S ← S ′ ▷ Update state
19: v ← v̂(S ′,w) ▷ Evaluate new state
20: Store R, V in lists R(T ), V (T )

21: if time-step ≥ T then
22: Ψ = e(R(T ), V (T )) ▷ Generate emotion
23: end if
24: end loop
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Algorithm 3 Training of an Order IV emotional actor-critic agent (continuing tasks)
1: Input: a differentiable policy parameterization π(a | s,θ)
2: Input: a differentiable state-value function parameterization v̂(s,w)
3: Input: a trained emotional encoder e(R(), V (), D())
4: Input: a trained world model m(s, a)
5: Input: a state-distance function diff (s, s′)
6: Initialize R̄ ∈ R (e.g. to 0)
7: Initialize state-value weights w ∈ Rd′ and policy parameter θ ∈ Rd′′ (e.g., to 0)
8: Algorithm parameters: αw > 0, αθ > 0, αR̄ > 0
9: Initialize S ∈ S

10: Initialize Ψ ∈ Rd (e.g., to ψ0 = neutral emotion)
11: Initialize R(T ), V (T ), D(T ) (as empty lists)
12: loop forever (for each time-step)
13: X = (S,Ψ) ▷ Extended state
14: A ∼ π(· | X,θ) ▷ Choose an action
15: Ŝ ′ ← m(S,A) ▷ Predict next state
16: Take action A, observe S ′, R ▷ Observe new state and reward
17: δ ← R− R̄ + v̂(S ′,w)− v̂(S,w) ▷ Temporal difference error
18: R̄← R̄ + αR̄δ ▷ Update average reward
19: w ← w + αwδ∇v̂(S,w) ▷ Adjust v̂
20: θ ← θ + αθδ∇ ln π(A | S,θ) ▷ Adjust π
21: S ← S ′ ▷ Update state
22: V ← v̂(S ′,w) ▷ Evaluate new state
23: D ← diff (Ŝ ′, S ′) ▷ World-state prediction error
24: Store R, V , D in lists, R(T ), V (T ), D(T )

25: if time-step ≥ T then
26: Ψ = e(R(T ), V (T ), D(T )) ▷ Generate emotion
27: end if
28: end loop

51





Chapter 4

Results

4.1 Application of the framework on a practical case
study

The methodology introduced in 3.4 was successfully applied in a Reinforcement Learning
(RL) case study, and an overview of the results is presented here. The full details about each
step, involving diverse numerical processing, are included in chapter Methods and tools.

The tests were executed on the classic RL environment LunarLander-v2 [172]. In it, the
objective is to safely land a spacecraft on a lunar surface, requiring control of the position and
velocity while managing limited fuel resources (Fig. 4.1). The agent receives positive rewards
for landing near the designated pad and maintaining a stable orientation, while penalties
are incurred for excessive use of fuel and crashing. The task is considered solved when the
average score over the last 100 episodes is greater or equal to 200.

Figure 4.1: The environment LunarLander-v2 used in the case study. A screenshot of the OpenAI
Gym in which the spacecraft approaches the landing pad.
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This environment was chosen for its simplicity (short episodes of 250-300 time-steps, and
a maximum of 1,000 for failure), and the variety of life-or-death situations it presents for
the simulated pilot, with potential for basic emotions spanning intense emotional ranges.
Additionally, the lack of any emotional cues—no in-game character, face or body language is
shown—guarantees an unbiased emotional attribution test.

By applying the methodology introduced in Methodology, the following two models were
obtained (Fig. 4.2):

– Emotional encoder: A deep autoencoder (DAE) [163] was trained on 20,220 landing
sequences experienced by a previously trained RL agent. The input values used were
20-step sequences of reward and state-value, in order to obtain an Order III emotional
agent, generating their 5-dimensional step-wise representations.

– Emotional interpreter: A probabilistic Gaussian mixture model was trained on the
5-dimensional latent space learned by the emotional encoder, identifying eight distinct,
uneven-sized clusters, whose centroids represented their respective prototypical mul-
tivariate sequences. For their interpretation, an Order III - Latest Observed Values
Encoding (LOVE) 2:5x6 mapping was used (2 values, 5 reward x 6 state-value patterns),
for more accurate mapping of clusters 3 and 7 than LOVE 2:5x5 in Fig. 3.4c.

A high-level diagram of the experimental pipeline is illustrated in Fig. 4.2, while additional
visuals are detailed later.
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Figure 4.2: Learning emotions from experiences in a practical case study. The emotional framework
was tested on the classic RL environment LunarLander-v2, on which an actor-critic PPO model (see 5.1.1) had
been previously trained to solve the task. The trained agent was run on new scenarios to obtain a dataset with
stepwise values for reward and state-value. A 1D-Convolutional autoencoder was then trained on sequences
from the dataset, and their low-dimensional latent representation obtained (as shown in the 2D graph using
t-distributed stochastic neighbor embedding, or t-SNE). Finally, a clustering model identified eight distinct,
uneven-sized clusters, whose prototypical sequences are shown on the right as 20-step average sequences of
reward and state-value, where the shaded areas indicate the standard deviation.
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4.1.1 Learning emotions from experience
Pre-training of a conventional RL agent

For simplicity, the offline learning approach was chosen, in which the emotional model is
trained with the experiences collected by an already competent non-emotional agent. In this
case, an agent of the actor-critic PPO (Proximal Policy Optimization) family was previously
trained on the environment to solve the task, obtaining its policy and state-value functions
(see 5.1.1).

Dataset generation. Selection of input values and emotional window

The trained agent was run on unseen scenarios to obtain a representative dataset of 60
trajectories with stepwise values for a broad set of potential variables, from which reward
and state-value were chosen so as to apply an Order III mapping, and an emotional window
of 20 time-steps was set, obtaining 20,220 sequences. Figure 4.3 shows one example of the
trajectories obtained.

Step
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600400200

Reward Value Delta Avg Rwd Ema Rwd

Figure 4.3: Trajectory of a full episode run with the trained agent. The values registered as a
multivariate time-series included a variety of step-wise variables, from which Reward and (State-)value were
selected (excluding Delta, the temporal difference error; Avg Rwd, the average reward, and Ema Rwd, the
exponential moving average of the reward).

Training of the emotional model from dataset sequences

A deep autoencoder architecture (DAE) was chosen for the task of representation learning,
as explained in Model architecture. The 1D-Convolutional Autoencoder, suitable for time
series, was trained and tested on the dataset in an unsupervised manner to reproduce 20-step
x 2 values normalized multivariate time series (MTS) sequences by learning their latent
representation in a low-dimensional latent space. The final architecture, with an encoding
dimension of 5, was chosen for the best balance between reproduction error and compression
ratio.
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4.1.2 Elicitation of emotions
The trained emotional encoder was then used to encode the ongoing sequences of latest
observed values from the full dataset, obtaining their 20,220 latent representations in the
5-dimensional latent emotional space. This was the emotional spectrum data used for
interpretation. The integration of the emotional encoder within the extended RL actor-critic
architecture introduced in Methodology (see 3.4.2 and Fig. 3.2) was not addressed in this
experiment.

4.1.3 Interpretation of the learned emotions
Clustering of the emotional spectrum

To identify the distinct dynamic patterns present in the emotional spectrum, a probabilistic
Gaussian mixture model was trained on the latent space learned. This method models data
as a mixture of a number of Gaussian distributions, capturing its covariance structure in
clusters of uneven spatial extents, which suited the nature of the problem.

The model identified eight distinct, uneven-sized clusters, shown in Fig. 4.4 (and Fig. A.5 in
annex 3D visualization of the emotional spectrum), whose centroids represent their respective
prototypical multivariate sequences, as shown in Fig. 4.5.
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Figure 4.4: The eight classes identified by the emotional interpreter. Clustering on the learned
emotional space revealed eight distinct classes, corresponding to eight hypothetical emotions. The figure
shows a t-SNE representation in two dimensions of the five-dimensional emotional spectrum.

Selection and validation of the interpretability mapping

For emotional interpretation, an Order III - LOVE 2:5x6 was used (2 values, 5 reward times 6
state-value patterns, Fig. 4.6) for more accurate mapping of patterns 3 and 7 than the LOVE
2:5x5 interpretability mapping shown in Fig. 3.4. The chosen mapping was theoretically
validated and refined as described in Theoretical validation of LOVE profile terms.
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Figure 4.5: The eight emotional patterns learned. Average sequence corresponding to the centroids of
each of the eight clusters identified (x-axis represents time; y-axis represents value in logarithmic scale).
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Figure 4.6: Order III - LOVE 2:5x6 Interpretability mapping. 30 reference profiles are characterized
by two values (reward and state-value) for which 5 and 6 recent-trend patterns are defined respectively.

Attribution of emotion terms

Through statistical analysis of the average MTS sequence associated to each centroid, seven
clearly differentiated basic emotions were identified, one of them in two degrees of intensity
(Optimism and high Optimism) (Fig. 4.7a). The predominant class (cluster 2, with 29.8%),
technically classified as Neutral, shows a distinct below-average state-value and will be treated
as Neutral / slight Concern moving forward. As for the more clearly valenced emotions
emerged from the agent’s experience, their distribution reflects its overall good competence
at landing, with “positive” emotions (Optimism, Satisfaction, high Optimism, Excitement)
totalling a 44.1%, while “negative” emotions (Distress, Concern, Fear) only add up 26.1%.
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The eight patterns were associated with the best-matching emotional reference profile from
the interpretability mapping by analytically comparing their features to the statistical char-
acteristics of the registered trajectories (see Attribution of emotion terms in Methods and
tools).
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2 Neutral 6,023 29.8%
3 Satisfaction 733 3.6%
4 high Optimism 3,341 16.5%
5 Concern 2,536 12.5%
6 Excitement 3,950 19.5%
7 Fear 974 4.8%
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Figure 4.7: Interpretation of the learned emotions. a, Interpreting the learned patterns. Mapping
the patterns against Order III - LOVE 2:5x6 reference profiles identified seven basic emotions, one of them
(Optimism) in two degrees of intensity. b, Interpretation of the learned emotional space. The
distribution of the learned emotions over the latent emotional space is shown in this 2D t-SNE graph. The
overlapping between the identified classes, originating from the continuous nature of the 5-dimensional values,
is accentuated in their 2D representation.
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Relevantly, the fully-interpreted emotional spectrum in Fig. 4.7b suggests clearly natural
transitions, critical for the utility of the model, such as:

a) neutral → excitement → optimism → high optimism → satisfaction;
b) neutral → concern → distress;
c) neutral → fear;
d) etc.

Upon analyzing all the emotional transitions registered during the 60 episodes, we found
that their succession flowed naturally, rather than behaving arbitrarily or randomly. A few
transitions accounted for the majority of the cases, as shown in the transition matrix (Fig. 4.8a)
and the transition graph (Fig. 4.8b). Episodes were initiated at “Start”, till enough steps
had been registered within the emotional window, and typically transitioned to neutral or
excitement, reflecting the overall high competence of the trained agent. Difficulties elicited
transitions toward concern or fear, sometimes to distress, while proficient performance elicited
excitement, optimism and eventually satisfaction at episode’s end.

Concern

Start Neutral

Excite-
ment

Fear Satis-
faction

high 
Opti-
mism

Opti-
mism

End

DIstress

Occurrences:

≥ 100 
50 to 99
10 to 49
< 10 (not shown)

a b

Figure 4.8: Emotional transition matrix and graph. a, Emotional transition matrix with the occurrence
of each transtion over the 60 episodes (rows = initial emotion, columns = final emotion). b. Emotional
transition graph illustrating the most frequent transitions.

Visualization

To further validate these results, the agent was tested on unseen scenarios, step-wise emotions
were synthesized by the emotional encoder and their probability distribution over the eight
clusters was predicted by the clustering model (Fig. 4.9).

Two of these scenarios are shown as Examples 1 and 2 below, vividly illustrating the stepwise
elicitation and interpretation of learned emotions during two complete episodes: a successful
and a failed landing (Figures 4.10 and 4.11).
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Figure 4.9: Interpretation of the instantaneous emotion. The emotional agent was tested on unseen
scenarios and step-wise emotions synthesized by the learned emotional encoder from the latest observed
rewards and state-values. The learned clustering model predicted the step-wise probability distribution of
each encoded emotion over the eight clusters. In the image, where the agent is having difficulty aiming the
spaceship toward the lunar base, a lower-than-average state-value (still unnormalized on the left) distinguishes
“concern” as the predominant emotion (cluster 5).

Example 1: A successful landing (Fig. 4.10):

Distress
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Figure 4.10: Interpreting live emotions during a successful landing.

Emotional attributions start at step 20 (the time window of the encoder) and during this
episode, positive emotions convincingly match the events experienced by the agent, who only
faces a minor incident around step 200 (eliciting fear). Emotional transitions happen naturally
as reward accumulates (with some hiccups in the 200-230 interval) and expectations vary,
ending in the sequence neutral-excitement-optimism. The stepwise probabilities frequently
allow predominant and secondary emotions to blend into richer states (like excitement and
high optimism at the start). Notice how the smoothing applied imposes some latency to the
attributions, but reduces instability (for example, a spurious neutral glitch at step 230).
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Example 2: A failed landing (Fig. 4.11):
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Figure 4.11: Interpreting live emotions during a failed landing.

This episode starts with lower expectations than Example 1 (excitement fails to manifest
itself), and concern is elicited at some point during the descent. Then the inaccurate landing
in a precarious position produces fear, followed by concern and distress during the fall, as
negative rewards accumulate down to a negative score. Once stabilized at the bottom, fear
dominates the emotional state; notice though how the probabilistic attributions naturally
elicit some sort of “emotional confusion” in a hectic situation, with overlapping emotions.

In summary, we found that the methodology spontaneously learned eight basic, recognizable
emotions in an unsupervised manner. The synthetic emotional system naturally reproduced
well-known natural emotional dynamics like:

– Elicitation and decay of step-wise emotions in synchrony with external changes observed
and internal cognitive appraisals;

– Natural emotion transitions, with coexistence and progressive or sudden alternation
driven by external and cognitive changes;

– Homeostasis, based on the agent’s subjective experience of average values registered;

– Subjectivity, with dependency on the individual’s appraisals (from the state-value
function) and said homeostatic references.

– Environment dependency, with the emotional spectrum shaped and determined by the
specific historical interactions between agent and environment;

– States of shock and confusion, with fast-overlapping negative emotions in highly unstable
situations.
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The results illustrate as well how, by associating instantaneous emotions with continuous
values characterized by non-uniform distributions—which tend to give rise to clusters—the
framework seamlessly integrates principles derived from both discrete and dimensional emotion
theories, experimentally described in the literature [173].

In this experiment, however, with very short-lived episodes, the documented dynamics of
“habituation” and “extinction” were not reproduced, despite their feasibility within the
framework, as analyzed in Conclusions.

Finally, in most clustering models tried, and despite the necessary distortions produced
by t-SNE, two axes consistently aligned with the two emotion dimensions most repeatedly
identified by psychology: pleasure (or valence) and arousal (or activation, dominance) [30]
[174][31][19]. As seen in Fig. 4.12, directly obtained from the use case discussed, the horizontal
axis (pleasure or valence) arranges emotions from negative (concern, distress, neutral / slight
concern, fear) to positive ones (excitement, optimism, satisfaction, high optimism). The
vertical axis (arousal) sorts emotions from low (neutral / slight concern) to high (distress, fear,
satisfaction), with the others in-between. The significance and consistence of this alignment
with historically documented emotion dimensions remains unanalyzed.

PositiveNegative

Valence?

Interpretation of the
latent emotional spaceDistress

Concern

Neutral

Fear

Excitement

Optimism

high 
Optimism

Satisfaction

-100 -75 -50 -25 0 25 50 75 100

-30

-20

-10

0

10

20

30

40

H
ig

h
Lo

w

A
ro

us
al

?

Figure 4.12: Spontaneous emergence of documented emotion dimensions. The emotional latent
space obtained might naturally reproduce classic emotional dimensions.

4.2 Experimental validation of the learned emotions

4.2.1 Emotional attribution test with humans
The eight emotions learned from the agent’s experience by the emotional encoder had been
convincingly mapped against predefined profiles and seemed to flow naturally in live action, but
that did not prove that the synthetic emotions truly reflected natural emotions. To validate
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their recognizability, an emotional attribution survey was executed, involving subjective
observations from independent human participants.

Data obtained from human raters

The emotional attribution survey compared the subjective observations made by 96 inde-
pendent participants during 48 different short sequences against their previously attributed
emotion terms—concealed to them. The methodology used was Lang’s Self-Assessment
Manikin (SAM) [175], an extensively applied evaluation technique that directly measures
emotional responses on three dimensions: pleasure, arousal and dominance (PAD) [31], by
rating each from 1 to 9 (see 5.3 in Methods for details). In our case, participants were asked
to rate the pilot’s emotion at the end of 48 short unlabeled sequences.

Discussion of results

Upon analysis of the 2,304 PAD data points registered, we observed that their average values,
both by sequence (Fig. 4.13a) and attributed emotion (Fig. 4.13b), reflected a differentiated
emotional spectrum.
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Figure 4.13: Results of the emotional attribution study. An emotional attribution survey (n = 96)
was conducted to rate the pilot’s emotion at the end of 48 short unlabeled landing sequences. For the test,
Lang’s Self-Assessment Manikin (SAM) [175] was used, capturing the dimensions of pleasure, arousal and
dominance (PAD) with Likert scales from 1 (lowest) to 9 (highest). a, PAD attributed to each sequence.
Unaware of the emotions previously attributed to the sequences, the participants consistently rated samples
of the same class with similar PAD values, as illustrated by the color mapping. b, PAD attributed to
each emotion. The average PAD values of the videos associated with each emotion show a meaningful and
coherent progression along the axes.

Furthermore, the PAD values corresponded well with their associated emotions. For instance,
sorting them by pleasure reveals a nearly perfect progression from negative to positive
emotions (Fig. 4.14): distress, fear, concern, neutral / slight concern, excitement, high
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optimism, optimism, satisfaction (with the exception of the two optimism states, similar in
pleasure, but distinguished by the higher arousal attributed to high optimism).
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Figure 4.14: Average Pleasure value attributed to sequences of each emotion. A nearly perfect
natural sorting by increasing Pleasure emerges spontaneously. The shaded area reflects the standard deviation.

Notably, low arousal ratings were scarce, in consonance with the dynamic, high-stakes nature
of the sequences, with most ratings falling between 5 and 7.

The values for dominance, spanning from 2.5 to 7.2, were highly correlated with pleasure in this
environment (see Table 4.2 and Table 4.3), and the ordering of emotions from “low” to “high”
is almost the same: distress, fear, concern, neutral / slight concern, excitement, optimism,
high optimism, satisfaction. The less clearly identified class was excitement, showing the
highest dispersion in pleasure and dominance.

Table 4.1 shows the PAD rates obtained for each targeted synthetic emotion, aggregated over
all raters from their corresponding six videos, clearly reflecting the differentiated emotional
characterization obtained. (The PAD rates attributed to each of the 48 videos can be seen in
Table A.1 in annex Experimental validation of learned emotions with humans: Extended data.)

Table 4.1: PAD rates of each emotion in range [1, 9] aggregated over all raters from their six corresponding
videos.

Emotion Pleasure Arousal Dominance
(mean) (stdev) (mean) (stdev) (mean) (stdev)

● Distress 2.615 1.827 6.955 2.228 2.500 1.627
● Optimism 7.378 1.669 5.469 2.186 7.101 1.859
● Neutral / Slight Concern 4.722 1.823 6.649 1.838 4.642 1.865
● Satisfaction 8.427 1.067 5.486 2.572 8.219 1.360
● High Optimism 7.337 1.749 5.851 2.245 7.184 1.969
● Concern 3.844 1.852 6.437 2.108 3.833 1.991
● Excitement 5.288 2.329 6.437 2.059 5.292 2.405
● Fear 3.156 1.705 6.448 2.091 3.149 1.722

The correlation rates among the three dimensions across all videos (Table 4.2) indicate a strong
positive correlation between pleasure and dominance, highlighting a significant relationship
between these two dimensions. In contrast, pleasure and arousal, as well as arousal and
dominance, show a moderate to strong negative correlation, reflecting the complex interplay

64



Chapter 4. Results

between these emotional dimensions. These correlations manifested themselves even more
visibly on the PAD values, once aggregated over the eight emotions (Table 4.3).

Table 4.2: Correlation among Pleasure / Arousal / Dominance across all the videos (Pearson Two-sided).

X Y r CI95% p-unc BF10 Power

Pleasure Arousal -0.69329 [-0.82, -0.51] 4.72E-08 3.42E+05 0.999933
Pleasure Dominance 0.99436 [0.99, 1.00] 1.76E-46 1.49E+42 1
Arousal Dominance -0.688291 [-0.81, -0.50] 6.43E-08 2.56E+05 0.999913

Table 4.3: Correlation among Pleasure / Arousal / Dominance across the eight emotions (Pearson Two-sided).

X Y r CI95% p-unc BF10 Power

Pleasure Arousal -0.922272 [-0.99, -0.62] 1.11E-03 3.37E+01 0.961207
Pleasure Dominance 0.999416 [1.00, 1.00] 4.99E-10 6.82E+05 1
Arousal Dominance -0.917867 [-0.99, -0.60] 1.30E-03 3.01E+01 0.955431

The test obtained a high reliability, with a high degree of agreement on PAD values for
each video sequence across raters, according to the ICC2k statistical tests run (Intraclass
Correlation Coefficient, two-way random effects model, absolute agreement) (see Table 4.4).
The pleasure and dominance dimensions obtained “excellent” correlation rates according to
the orientative criteria by (Koo, 2016) [176] (greater than 0.90) and (Cicchetti, 1994) [177]
(greater than 0.75), while arousal achieved “good” per one guideline (between 0.75 and 0.90)
and “excellent” per another (greater than 0.75) (see Table 4.4).

Table 4.4: ICC2k Intraclass Correlation Coefficients obtained from the study.

Dimension Test ICC F df1 df2 p-value CI95%

Pleasure A 0.991303 143.006427 23 1173 < 0.001 [0.99 1.00]
Pleasure B 0.987127 95.329519 23 989 < 0.001 [0.98 0.99]
Arousal A 0.869813 10.420163 23 1173 < 0.001 [0.79 0.93]
Arousal B 0.809354 6.115296 23 989 < 0.001 [0.69 0.90]
Dominance A 0.987786 108.758808 23 1173 < 0.001 [0.98 0.99]
Dominance B 0.984978 83.461934 23 989 < 0.001 [0.97 0.99]

Equally remarkable, the underlying hypothetical emotions, despite being unknown to the
raters, showed a high degree of statistical distinguishability according to the Hotelling’s
T-squared pairwise tests run: optimism and high optimism were the least distinguishable
emotions (with p = 0.116), followed by excitement and neutral (p = 0.002), while all other
pairwise comparisons showed p-values well below 0.001 (see Table 4.5).

4.2.2 Mapping versus documented experimental accounts
Finally, to further validate the significance of the learned emotions, the PAD rates obtained for
each emotion were mapped versus select pivotal experimental accounts from human subjects,
numerically documented in psychology literature, obtaining significant agreement with some
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Table 4.5: p-value of the Hotelling’s T-squared statistical test for all emotion pairs.

D O N S H-O C E F

D - - - - - - - -
O 3.66E-143 - - - - - - -
N 8.03E-44 4.32E-65 - - - - - -
S 9.06E-211 1.04E-17 1.91E-123 - - - - -
H-O 3.34E-135 1.16E-01 6.79E-58 8.63E-17 - - - -
C 4.71E-18 1.83E-92 4.69E-08 2.45E-155 8.91E-86 - - -
E 1.14E-49 1.36E-33 2.13E-03 1.62E-71 1.23E-28 3.48E-15 - -
F 4.46E-06 2.37E-127 1.30E-25 1.57E-197 1.29E-118 1.39E-05 4.34E-33 -
Abbrev.: (D)istress, (O)ptimism, (N)eutral / slight concern, (S)atisfaction, (H)igh (O)ptimism, (C)oncern,
(E)xcitement, (F)ear.

of the most broadly referenced PAD lists, selected for their mathematical qualities and impact
in their field [31][178][179][180][181].

To compare the PAD multivariate distribution obtained for each emotion with the referential
PAD values, we applied statistical tests (Hotelling’s T-squared) and plain euclidean distance
among means, focusing on the emotion terms of relevance for our context (short life-or-death
landing maneuvers), excluding complex social, moral, self-conscious affects (such as kind,
guilty, repentant), or the frequent non-emotion terms (like butter, cemetery, chair).

We firstly identified the three top matches in each account for each emotion, shown in
Table 4.6 (the detailed methodology is described in Methods and tools, section Mapping versus
documented experimental accounts).

Based on this mapping, we then produced a semantic collage for each learned emotion with
the five top matches across authors, obtaining the final mapping shown in Table 4.7.

Remarkably, despite the disparity of terms, PAD values and applied mapping variants,
significant agreement emerged between the originally attributed terms (from the LOVE 2:5x6
mapping) and their respective top matches across authors.

In summary, the videos previously associated with each emotion, invisible to the external
raters, were described by them with consistent and differentiated values for their pleasure,
arousal and dominance dimensions, validating their distinguishability and recognizability. The
PAD values obtained could then be successfully associated with remarkably similar emotions
described by their own PAD values in psychology literature.
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Table 4.6: Results from mapping PAD values from the survey to five documented experimental accounts.

Learned Emo-
tion

Mapping to Documented
Emotion-PAD Pairs (Top 3 Matches)

Russell-
Mehrabian
(1977)

Bradley-Lang
(1999)

Redondo
(2007)

Landowska
(2018)

Scott (2019)

Distress Helpless
Fearful
Insecure

Scared
Panic
Embarrassed

Nervous
Lost
Insecure

Fearful
Pain
Terrified

Fearful
Frightened
Panic

Optimism Capable
Concentrating
Proud

Optimism
Masterful
Inspired

Capable
Easy
Confident

Masterful
Strong
Powerful

Skilled
Mighty
Pride (feeling)

Neutral /
slight Concern

Anxious
Tense
Startled

Startled
Overwhelmed
Anxious

Troubled
Moody
Ecstasy

Startled
Anxious
Suspicious

Intense
Impulse
Urgent

Satisfaction Proud
Capable
Self-satisfied

Confident
Triumph
Victory

Safe
Capable
Satisfied

Proud
Joyful
Masterful

Achievement
Courage
Triumphant

high
Optimism

Capable
Concentrating
Strong

Brave
Pride
Bold

Confident
Capable
Interest

Strong
Powerful
Inspired

Pride (feeling)
Might (strength)
Drive (motivation)

Concern Confused
Tense
Pain

Nervous
Overwhelmed
Suspicious

Moody
Thrill
Troubled

Suspicious
Confused
Startled

Startle
Risky
Shock

Excitement Aroused
Concentrating
Anxious

Startled
Alert
Anxious

Power
Pride
Activate

Anxious
Aggressive
Curious

Impulse
Intense
Alert

Fear Insecure
Confused
Pain

Nervous
Panic
Scared

Thrill
Fearful
Suspicious

Fearful
Despairing
Frustrated

Fright
Scary
Startle

Table 4.7: Top pleasure-arousal-dominance (PAD) matches across authors for each learned emotion.

Learned Emotion Top PAD Matches Across Authors

Distress Helpless, Scared, Nervous, Fearful(x2)
Optimism Capable(x2), Optimism, Masterful, Skilled
Neutral / Slight Concern Anxious, Startled(x2), Troubled, Intense
Satisfaction Proud(x2), Confident, Safe, Achievement
High Optimism Capable, Brave, Confident, Strong, Pride (feeling)
Concern Confused, Nervous, Moody, Suspicious, Startle
Excitement Aroused, Startled, Power, Anxious, Impulse
Fear Insecure, Nervous, Thrill, Fearful, Fright
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Methods and tools

In this chapter we detail the exact step-by-step procedures followed to obtain the results
described in Results in the classic Reinforcement Learning (RL) environment chosen, which
can be applied to other RL setups with minimal modification. The purpose of this chapter
is to enable the replication of the obtained results and their reuse on different contexts.
While this information is crucial for replicating our findings, it may not be essential for the
comprehension of the final Conclusions.

5.1 Application of the framework on a practical case
study

We specify here technical and procedural details that clarify and justify low-level aspects of
the processes followed to learn, elicit and interpret emotions in the case study presented in
Results.

5.1.1 Learning emotions from experience
Pre-training of a conventional RL agent

For simplicity, the offline learning approach was chosen, in which the emotional model is
trained with the experiences collected by an already competent non-emotional agent. The
open-source library OpenAI’s Spinning Up [182], compatible with OpenAI’s Gym [172], was
chosen because its modular and well-documented implementation of RL algorithms facilitated
the extensions required for the experiments.

The chosen method, actor-critic PPO (Proximal Policy Optimization) [183], from the policy-
gradient family, is broadly used for its stability during training, avoiding too large policy
updates. Its training learns both a policy π (the actor) and a value function v (the critic).

The non-emotional agent was trained to solve the task (average episode reward ≥ 200 over
100 consecutive episodes), with these features:
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– Agent: Actor-critic PPO model, artificial neural network architecture: (64, 64), activa-
tion function: rectified linear unit (ReLU ), seed: 10;

– Hyperparameters: gamma: 0.99, lambda: 0.97, policy learning rate: 0.0003, state-value
function learning rate: 0.001, target Kullback-Leibler (KL): 0.01.

Figure 5.1 reflects the peformance of the agent during training, with the vertical axis showing
the total accumulated reward at episode end, and the horizontal axis showing the total amount
of stepwise interactions experienced by the agent.

Figure 5.1: Training of the conventional RL agent chosen.

The architectures explored involved combinations of 1-2-3 hidden layers, 32-64-128 neurons
per layer, ReLU / tanh activation functions, and varied seeds (see Alternative conventional
RL agents trained).

Dataset generation. Selection of input values and emotional window

The trained agent was run on unseen scenarios to obtain a representative dataset of 60 episodes
as multivariate time series (MTS) with stepwise values for a broad set of potential variables:
reward, state-value, temporal difference, average reward, exponential moving average reward,
and cumulative reward (see Fig. 5.2).

Upon review of the recorded episode dynamics and MTS, an Order III target mapping was
chosen, for which only reward and state-value were required (see discussion of alternatives
in the Theoretical framework, section Emotional orders). (We anticipate that this mapping
may perform well in a large variety of setups for its potential to capture a broad range of
short-term, fundamental emotions with moderate, addressable complexity.) A tentative value
for the emotional window was set at 20, expected to suffice to capture instantaneous emotions,
and later corroborated by results.

The resulting dataset contained 20,220 20-step long sequences from the recorded MTS
(training / test split = 16,281 / 3,939). The two-variables (reward, state-value) were z-score
normalized for training based on training-set statistics, thus establishing their average values
as homeostatic references.
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Figure 5.2: All the values registered during one trajectory. The registered multivariate time-series
included a variety of step-wise variables, from which Reward and (State-)value were selected.

Training of the emotional model from dataset sequences

A 1D-Convolutional Autoencoder—a type of deep autoencoder (DAE) [163] whose architecture
is suitable for time series—was chosen for the task of representation learning (as explained in
Model architecture). The model was trained and tested on the dataset in an unsupervised
manner to reproduce 20-step x 2 values normalized MTS sequences by learning their latent
representation in a low-dimensional latent space [164].

We used the Keras/TensorFlow library [184], defining an encoder and a decoder with these
features: encoding_dim = 5, l1_filters = 32, l1_kernel_size = 5, l1_strides = 2, l2_filters =
16, l2_kernel_size = 5, l2_strides = 2, padding = “same”, activation = “relu”. The separate
encoder, used for emotion elicitation, consisted of 3,333 learned parameters. The training
took 29 epochs with batch_size=10 and validation_split=0.1.

Along with different architectures and parameters, several encoding dimensions were tried,
and 5 was found to produce the best balance between reproduction root mean squared error
(RMSE) and compression ratio (reward: RMSE = 2.97119; state-value: RMSE = 4.32781;
compression ratio = 5:40) (Figure 5.3).

For example, dim=10 yielded lower RMSE (2.48047 and 4.21228 respectively), but a poorer
compression ratio of 10:40. As noted, the model was not intended for input regeneration or
denoising, but to capture high-level trends and magnitudes of the observed sequences. (For
context, the reward time series showed a range of [-100, 100], with a mean of 0.67 (standard
deviation: 5.60), while the state-value time series spanned from [-12.37, 109.51] with a mean
of 62.41 (standard deviation: 18.99).)

Figure 5.4 compares several examples of original MTS sequences with their reconstructions
at the output of the autoencoder. As intended, the high-level trends and magnitudes were
mostly preserved, while the details were simplified.
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Figure 5.3: Comparison of different encoding dimensions. Root Mean Square Error obtained on the
test-set by different autoencoder dimensions for the two values of the time-series. Model “(smaller layers)”
with dimension 5 was chosen over best-performing dim = 10 for its better compression ratio. Model “(bigger
layers)”—with 32 filters in hidden layer 2 over the 16 filters of “(smaller layers)”—showed a worse performance.
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Figure 5.4: Test sequences reproduced by the autoencoder. Ten original MTS sequences (top)
alongside their reproductions by the trained deep autoencoder (bottom) preserve most of the major features.
Each sequence depicts the two variables in the MTS, with the x-axis representing time.

5.1.2 Elicitation of emotions
Obtaining the 5-dimensional representations of each step-wise emotion was simply a matter
of using a sliding window to loop through all registered trajectories and feeding the segments
into the trained autoencoder.

5.1.3 Interpretation of the learned emotions
Clustering of the emotional spectrum

To identify the distinct dynamic patterns in the emotional spectrum captured, a probabilistic
Gaussian mixture model (GMM) was trained on the latent space learned. For the training
of the GMM, the Scikit-learn library [185] was used for a number of clusters between 1 and
16, and up to ten different random seeds for each. We found the most promising clustering
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distributions to consist of 7 or 8 clusters, with minimal BIC scores (Bayes Information
Criterion) and sufficient differentiation, although somewhat dependent on the initial seed.

The final choice was arbitrary, following practical experimentation on real sequences, and
settled on 8 components with covariance type = “full” (assigning to each component its own
general covariance matrix). For this purpose, the custom tool “RL Emotion Lab” was built,
reproducing full episode trajectories on the environment along with the stepwise probabilistic
classsifications of the interpreter of the synthetic emotions (Fig. 5.5). The Bokeh library [186]
was used, and episodes and analysis reproduced on a regular web browser.

Figure 5.5: The custom-made tool “RL Emotion Lab”. The tool allowed the step-by-step reproduction
and analysis of fully documented trajectories. Floating window: State of the agent and the environment at
time-step 146. Top: The agent’s trajectory as an MTS, including Reward, (State-)value, Delta (or temporal
difference), step-wise Average Reward, step-wise Exponentially Moving Average Reward and Accumulated
Reward. Current step (146) is tracked by the vertical line, with the shaded area signaling the 20-step emotional
window. Middle: Stepwise emotional probabilities of the eight classes from the emotional encoder, as well as
their attributed emotion term. Bottom right: The full emotional trajectory within the emotional space,
with initial emotion (solid circle) and final emotion (empty circle). Bottom left: The on-going emotional
trajectory upto current time-step, classified as Neutral.

This approach exhibited satisfactory performance, thereby obviating the need for further
automation (some alternative clustering results are shown and discussed in Alternative
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clustering results). The eight resulting classes, along with the average multivariate sequence
representing their corresponding cluster centroids, are shown in Fig. 5.6.
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Figure 5.6: The eight emotional patterns learned. Average sequence corresponding to the centroids of
each of the eight clusters identified. The line shows the mean value at each step, and the shaded area its
standard deviation (x-axis represents time; y-axis is in logarithmic scale).

Selection and validation of the interpretability mapping

To map the eight resulting clusters with familiar emotion terms, the Latest Observed Values
Encoding (LOVE) 2:5x5 mapping was initially tried—corresponding to the Order III emotional
spectrum learned, with two values: reward and state-value (Fig. 3.4c). After a preliminary
attribution (as described below), the mapping was extended to LOVE 2:5x6 for a more
accurate denomination of emotions 3 and 7 (Fig. 4.7). This allowed the distinction between
anger and fear based on the individual’s appraisal on its certainty and control on future
outcomes (with anger associated with a decrease to average, and fear with a decrease to
negative (Q. Yang et al., 2018) [158]).

The final terms for the eight emotions learned in this use case, as well as for the full set of thirty,
were theoretically validated as described in Theoretical validation of LOVE profile terms,
verified in live simulations and, finally, experimentally contrasted with external references
(see Experimental validation of learned emotions with humans).

Attribution of emotion terms

To associate the eight patterns with the best-matching emotional reference profile from the
chosen interpretability mapping, the statistical features of each pattern were analytically
compared to the global statistical features of the registered trajectories.

Firstly, the mean value and slope of each variable (and their standard deviations) were
calculated across all 20-step intervals of all the original MTS trajectories, as shown in
Table 5.1. Note that mean values reflect the normalized distributions of the two variables.
The mean slope (and its standard deviation) was computed across all 20-step sequences from
their first-degree polynomial approximations.

Once these referencial values were obtained, the mean value and slope were calculated for each
of the eight multivariate sequences representing the learned classes. For their classification
into discrete LOVE-compatible patterns, the following recent-trend classification criteria were
established, based on the slopes of the sequences and their respective value ranges:

74



Chapter 5. Methods and tools

Table 5.1: Global statistics of all the original MTS trajectories by 20-step sequences.

Reward State-value

Mean value 0.0 (+/- 1.0) 0.0 (+/- 1.0)
Mean slope 0.0004716 (+/- 0.0259) 0.001478 (+/- 0.03235)

1. Trend change of slopes is the primary classification criterion, following the emotional
relevance guidelines established by the theoretical framework, taking precedence over the
secondary criterion below. A range around smean of length 0.5sstd was defined for “Flat”
(where smean is the mean slope, and sstd is the standard deviation), and values above and
below were respectively classified as “Increased” and “Decreased” (Table 5.2), separately for
reward and state-value.

For the LOVE x6 patterns, a distinction was required for decreased trends, and patterns were
classified as “Decreased-to-average” or “Decreased-to-negative” depending on the sign of the
last value of the linear regression in the interval.

Table 5.2: Recent-trend classification criterion of a variable’s slope.

Slope value ranges Classification

≥ smean + 0.25 sstd Increased
(smean − 0.25 sstd, smean + 0.25 sstd) Flat
≤ smean − 0.25 sstd Decreased

Note: smean and sstd are the referencial mean and standard deviation of the slopes across all
sequences for the normalized variable.

2. Value range classification of the mean values followed a similar approach, as summarized
in Table 5.3, in which two extra ranges of length 0.5σ were defined for finer categorization of
some patterns. This secondary criterion only applies to “Flat” slope changes.

Table 5.3: Recent-trend classification criterion of a variable’s mean value.

Mean value ranges Classification

≥ 0.75σ high Positive
[0.25σ, 0.75σ) Positive
(−0.25σ, 0.25σ) Average
(−0.75σ,−0.25σ] Negative
≤ −0.75σ high Negative

Note: σ is the standard deviation of each normalized variable.

The application of these two classification criteria over the eight clusters for the two variables
is shown in Table 5.4 and Table 5.5, while the final attribution of emotion terms is presented
in Table 5.6.

The soundness of this analytical attribution is supported by the following brief qualitative
discussion of each cluster’s features:
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Table 5.4: Local statistics and classification of the eight individual average sequences for Reward.

Cluster Mean Slope Trend change Value range LOVE 2:5x5 pattern

0 -0.2679 0.0048 (flat) Negative Negative
1 -0.0726 -0.0028 (flat) Average Average
2 -0.0368 -0.0025 (flat) Average Average
3 0.2117 0.0275 Increased Average Increased
4 -0.0155 0.0018 (flat) Average Average
5 -0.1224 -0.0021 (flat) Average Average
6 -0.0992 0.0010 (flat) Average Average
7 -0.0270 0.0046 (flat) Average Average

Table 5.5: Local statistics and classification of the eight individual average sequences for State-value.

Cluster Mean Slope Slope change Value range LOVE 2:5x6 Pattern

0 -1.9240 0.0015 (flat) high Negative high Negative
1 0.8304 0.0002 (flat) high Positive high Positive
2 -0.6099 0.0025 (flat) Negative Negative
3 0.8762 -0.0399 Decreased high Positive Decreased to average
4 1.3809 0.0089 (flat) high Positive high Positive
5 -1.9056 -0.0031 (flat) high Negative high Negative
6 0.3636 0.0457 Increased Positive Increased
7 -0.5979 -0.0160 Decreased Negative Decreased to negative

Table 5.6: Final emotion term attribution to learned clusters.

Cluster Reward State-value LOVE 2:5x6
LOVE x5 pattern LOVE x6 pattern emotion attribution

0 Negative high Negative Distress
1 Average high Positive Optimism
2 Average Negative Neutral / slight Concern
3 Increased Decreased to average Satisfaction
4 Average high Positive high Optimism
5 Average high Negative Concern
6 Average Increased Excitement
7 Average Decreased to negative Fear

– Cluster 0: Distress (reward: below-average values; expectation: negative, well below −σ
values). The high variance of reward reflects very uneven values, which is subjectively
perceived as negative due to the well-studied loss aversion principle (the pain of a loss
is felt by individuals twice as intensively as the pleasure of an equivalent gain [187]).

– Cluster 1: Optimism (reward: average values; expectation: positive values around +σ).

– Cluster 2: Neutral / slight concern (reward: average values; expectation: below-average
values). The most frequent emotion in this always uncertain environment (29.8% of
the samples) falls closer to neutral than to concern, but the low expectation pattern
justifies the compound naming.

– Cluster 3: Satisfaction (reward: increased values; expectation: decreased-to-average
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values). The least frequent emotion, triggered upon reception of a significant reward,
with expectations decreasing accordingly

– Cluster 4: High optimism (reward: average values; expectation: well above +σ values).
Technically, both 1 and 4 match Optimism, but expectations in 4 significantly exceed
+σ.

– Cluster 5: Concern (reward: average values; expectation: negative, well below −σ
values).

– Cluster 6: Excitement (reward: average values; expectation: increased values).

– Cluster 7: Fear (reward: average values; expectation: decreased to negative values).

Finally, for real-time interpretation, the stepwise probabilities predicted by the emotional
encoder were smoothened for more stable cluster attributions and easier external tracking:
a moving average of 5 steps on values and a minimal probability of 0.9 as reclassification
threshold (or, alternatively, a minimal amount of 10 consecutive attributions).

Visualization

For the 2D and 3D visualization of the learned emotional space, t-SNE (T-distributed
Stochastic Neighbor Embedding) was used (see Fig. 4.7b for 2D and link in A.1 for a 3D
animation). For the 2D representation with t-SNE, the Scikit-learn library [185] was used,
with these parameters: seed = 90, n_components = 2, perplexity = 200, init = ’pca’, n_iter
= 2000.

Despite not technically required by the methodology, the use of colors, differentiating the
classes learned by the emotional encoder, was instrumental for the final selection of the
autoencoder.

5.2 Theoretical validation of LOVE profile terms
The principles described by the theoretical framework provide an initial foundation to associate
LOVE profiles (idealized patterns of the latest values) with the best possible emotion terms
in human language (see Interpretation of the learned emotions). However, given the difficulty
of the task, their coherence was validated and refined both theoretically and experimentally.
For the former, a sequence coherence test was run, following this methodology:

1. Attribute an initial term to each of the 30 profiles, based on said theoretical principles.

2. Run offline simulations of event-guided, plausible emotional sequences where each profile
is a state:

– Start from a stable state (for example, neutral).

– Try different sequences involving positive / negative evolutions of rewards and
state-value (or expectations), with brief explanatory narratives.
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– Discard beyond-scope transitions (namely, positive → increased, or negative →
decreased).

– Avoid too many abrupt transitions (positive → negative, negative → positive).

– End in stable or already visited states.

3. Review the resulting term sequences and repeat step 2 till fully natural transitions are
obtained in all cases, leaving no pattern unused (ideally a few times).

For step 2., the sequence coherence test was iterated and refined over thirty-eight simulated
emotional sequences with full profile coverage, such as:

Neutral → (An opportunity arises...) → Excitement → (and seems to hold.) →
Optimism→ (Suddenly the opportunity vanishes...) → Anger→ (and we are back
to normal.) → END.

For additional clarity, all the simulated emotional sequences tested can be seen in the annex
Theoretical Validation of LOVE Profile Terms: Extended data.

5.3 Experimental validation of learned emotions with
humans

The following methodology was used for the emotional attribution survey and its ensuing
mapping to psychology literature references.

5.3.1 Emotional attribution test with humans
Dataset

A representative list of 3-6 second long sequences was automatically selected from the dataset
in which one specific learned emotion clearly prevailed over the others (six for each of the
eight learned emotions, totalling 48 sequences at different stages of the landing maneuver).
This guaranteed equal representation of all eight emotions (which presented some difficulty in
the case of 3, satisfaction, the least frequent emotion, often smoothened out at sequence end
by the probability smoothing applied).

To reduce the effect of fatigue on raters, the test was randomly split in two evenly-distributed
lists of 24 videos (A and B), the sequence order further randomized in two versions each, and
raters assigned alternating versions (A1, A2, B1, B2, A1, etc.).

Tests with Lang’s SAM manikin

All participants were adult volunteers who were native Spanish speakers, recruited from
diverse academic and professional backgrounds. A subset of 26 participants received university
credits as acknowledgment for their involvement. The study was conducted online, in Spanish
language, and after registering and giving legal consent, an introduction was displayed
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explaining the dynamics of the study, the information shown during the sequences, the scoring
system and the mission of the agent trying to land on a lunar base, described as a life-or-death
task (see Fig. 5.7).

Figure 5.7: Information in a frame from one of the 48 rated sequences. The short videos showed
the trained agent during landing, including its current score in relation with the 200 point target, as well as
its last 20 values (the informative text and arrows in the figure were not present in the sequence).

Once familiarized with the agent’s task, Lang’s Self-Assessment Manikin (SAM) [175], a test
extensively applied in psychological experiments and market research, was introduced to the
participants. They were allowed to try it on two practice videos, characterizing a successful
and a failed landing, whose respective results were discarded.

Finally, the subjects proceeded to the test, and for each of the 24 videos, reproduced on a
separate screen, they were asked to describe the emotions they would associate to the state of
the pilot at the end of each sequence using SAM. The test had no time limit, the videos could
be played as many times as desired and ratings could be reviewed before the final submission.

SAM is a pictorial assessment technique that directly measures emotional responses on three
main dimensions: pleasure, arousal and dominance [31], associated with a person’s affective
reaction to a wide variety of stimuli, typically by rating each dimension from 1 to 9 on a
Likert scale. Some SAM tests incorporate a collection of words positioned at the relevant end
of each Semantic Differential scale to identify the anchors of each dimension to the subject
[32]. These original terms [174] were predominantly translated into Spanish from the version
by Gurbindo (1989) [188], with nuanced contributions from the French version by Detandt
(2017) [189].

Fig. 5.8 shows a real screenshot with the graphic layout of the survey, and one of the videos
rated during the test, while more detailed close-ups of the three Likert scales can be seen in
annex Experimental validation of learned emotions with humans: Extended data. Videos were
hosted on YouTube, and results collected with Google Forms during June 2023.
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3-6 second long sequences, 
hosted in YouTube

Likert scales from 1 to 9 for 
Pleasure, Arousal and 
Dominance
included a collection of words 
at the ends, identifying the 
anchors of each dimension

Screen info included the latest 
20 rewards and the total score

Figure 5.8: SAM, the classic graphic layout used for the rating of sequences.

80



Chapter 5. Methods and tools

Statistical significance

The study involved 96 raters aged 18 to 64 (n = 96), with a fairly even split of 53 males and
43 females. The majority of participants (89) held a University degree, providing a diverse
pool for comprehensive statistical analysis.

Test reliability

In order to assess the reliability of the ratings, the ICC2k statistic was used (Intraclass
Correlation Coefficient, two-way random effects model, absolute agreement). Results were
assessed according to two commonly referred set of guidelines: (Koo, 2016) [176] and (Cicchetti,
1994) [177].

PAD values attributed to the 48 videos

Each of the 48 sequences was assigned a pleasure, arousal and dominance (PAD) triad of
values, obtained as an average of the registered values, as shown in Fig. 4.13a. The values
and correlations obtained are detailed in Table A.1 and Table 4.2 respectively.

PAD values attributed to the eight learned emotions

Similarly, each of the eight emotions was assigned a PAD triad of values as an aggregation
over all raters from its six corresponding videos. The results can be visualized in Fig. 4.13b,
and their values and correlations in Table 4.1 and Table 4.3 respectively.

Distinguishability of the learned emotions

To accurately validate the distinguishability of the eight emotions from their assigned PAD
values, the robust Hotelling’s T-squared statistical test was used, comparing the distribution
of each pair of multivariate samples. The results are reflected in Table 4.5.

5.3.2 Mapping versus documented experimental accounts
The PAD values of each learned emotion, obtained from human ratings, were compared
to select pivotal experimental findings in psychology literature. From a diverse array of
studies and reports, priority was given to those offering well-documented values for the three
referential dimensions, showcasing the highest significance and impact within their field. The
references chosen, all of them detailing mean and standard deviation for all three dimensions,
were:

1. Russell-Mehrabian (1977) [RM] [31]: 151 emotional states. The terms seem to have
been selected by the authors.

2. Bradley-Lang (1999) [BL] [178]: Affective Norms for English Words (ANEW), including
1,034 terms. The list contains very heterogeneous terms (like abduction, abortion, absurd,
abundance, etc.) along with actual emotions.
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3. Redondo (2007) [RE] [179]: Spanish ANEW; 1,034 Spanish words corresponding to the
original ANEW with newly obtained PAD values.

4. Landowska (2018) [LA] [180]: ANEW-MEHR; 112 words selected from the Russell &
Mehrabian’s list with the PAD values from ANEW.

5. Scott (2019) [SC] [181]: Glasgow Norms, including 5,553 words. The list contains very
heterogeneous terms (like abattoir, abbey, abbreviate, abdicate, etc.) along with actual
emotions.

The task required overcoming a number of difficulties; firstly, we found a high degree of
discrepancy in the terms included, heterogeneity of the emotional scopes, abundance of
non-emotion terms, and other arbitrary peculiarities.

– Arbitrariness: the terminologies chosen by the authors, far from conforming a shared,
standard set of emotions, often seemed inconsistently artificious (such as weary with
responsibility, quietly indignant, proud and lonely, snobbish and lonely, in RM), or overly
nuanced (for instance, angry and angry but detached; hostile and hostile but controlled in
RM). All these terms were kept, despite producing somewhat idiosyncratic top matches.

– Heterogeneity of the emotional scopes: All authors seamlessly mingled complex affects
(like social, moral, self-conscious) with primary, instantaneous or more basic emotions
(like fright, anxious, euphoria). For the purpose of tagging this agent’s task (short
life-or-death landing maneuvers), we did not map the emotions associated with social
relationships, moral judgements or self-conscious reflections, along with a few overly
redundant or vague ones and one case of bodily needs (including guilty, kind, repentant,
lonely, hungry in RM and LA; unfaithful, loyal, insolent, admired in BL and RE; dignity,
paranoid, emotional or achievement and achieved, frightened and fright in SC).

– Non-emotions: The scope of some references was not limited to emotion terms, including
all sorts of concepts (such as butter, cemetery, chair in BL and RE; abdominal, apple
(fruit) or musketeers in SC), which were not used for emotional interpretation.

The terminology for the three dimensions has also historically differed among authors (namely,
pleasure/valence; arousal/activation; dominance/control); however, we found that the more
traditional (pleasure-arousal-dominance) model was easier to articulate and comprehend for
non-expert participants.

As for the methodologies followed by the authors to obtain the PAD values, they also differed
in format and profile of the participants, which probably contributed to the variance found in
the reported values (see below the different values reported for “angry” in the rank of [-1, 1]):

Author PAD values reported for “angry”
Russell-Mehrabian (1977) (-0.510, 0.590, 0.250)
Bradley-Lang (1999), Landowska (2018) (-0.538, 0.543, 0.138)
Redondo (2007) (-0.700, 0.403, -0.290)
Scott (2019) (-0.652, 0.227, 0.105)
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Finally, despite all authors reporting standard deviations and number of samples, the lack
of covariance matrices limited the applicability of standard statistical tests to compare two
distributions, like Hotelling T-squared. To address this, we applied three different methods
to map the PAD distributions obtained from our test for each emotion (sample 1) against
reported PAD mean and standard deviation values (sample 2), often with unequal results in
each table:

– Method 1: Hotelling T-squared test, assuming three independent variables in sample 2
(diagonal covariance matrix).

– Method 2: Hotelling T-squared test, assuming sample 2 had the same covariance matrix
as sample 1.

– Method 3: Euclidean distance, comparing only the means.

To obtain the final mapping of each learned emotion, drawing inspiration from the ensemble
of models concept, we independently mapped it against each reference table, identifying its
three top matches, and then we merged the five top matches across authors into a semantic
collage.
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Chapter 6

Conclusions

6.1 Discussion

6.1.1 Key achievements

A cross-disciplinary mathematical formalization of emotions

Emotions are arguably among the most elusive concepts encountered across various disciplines,
including psychology, neuroscience, biology, and AI [190][191][192][105]. The cross-disciplinary
significance of the framework proposed here lies in its capacity to effectively associate them
with quantifiable, mathematically describable temporal patterns in critical values for a living
being, akin to a “Periodic Table” for emotions. This systematic categorization allows for an
organized comprehension, analysis and synthesis of their complex spectrum as observed in
nature, as well as their integration into machine learning frameworks—a crucial step toward
the goal of enabling artificial agents to generate and process their own emotions [193][194].

A generic self-learning emotional framework

This work diverges from, and complements, the predominant focus in affective computing
and related areas—a rapidly evolving field thanks to the convergence of multiple technologies
[87][88][89][105]. Rather than the recognition or interpretation of human affects through
external sensors (such as a user’s voice, text, or image) or their verbal/visual communication
to users, this approach directly addresses the core concept of “emotion” itself, its formalization,
elicitation, and integration within functional agents.

Furthermore, standing apart from previous predominantly theoretical, case-specific, arbitrary
or hard-coded emotional models [78][81][106][107][108][109][65][94][110][111][112] this generic
methodology addresses emotion learning in an unsupervised manner from first principles
within the RL framework, devoid of any preconceptions, and encompassing the entire emo-
tional spectrum. This spectrum is spontaneously encoded as temporal patterns, learned in
an unsupervised fashion during agent’s interactions with computational simulations of an
environment. The relevance of achieving such a robust, transferable, fully learned approach has
been recognized in the field of AI as a core challenge for the future [78][109][195][196][65][84].
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The framework effectively integrates both discrete and continuous aspects of emotions by
representing them as low-dimensional latent points, that are subsequently interpreted through
probabilistic clustering. Remarkably, the learned emotional spectrum is shaped in congruence
with the environment’s dynamics and the agent’s cognitive capabilities—rather than by pre-
defined categories or ad-hoc specifications—enabling it to scale naturally with the complexity
of the agent-environment interaction. Future testing in new environments, producing diverse
emotional spectra, will further validate or challenge these findings.

A novel mapping of RL values to human affective dimensions

To the best of our knowledge, this work is the first to analytically establish a concrete
relationship between RL-derived values, such as reward and state-value, and PAD (Pleasure-
Arousal-Dominance) ratings from psychological models during an agent’s task execution. By
mapping these observed values onto established affective dimensions, the interpretability of
agent behaviors is enhanced, providing a psychologically grounded framework that connects
machine emotions to classic human affective theory. This could pave the way for richer
integration of psychological insights into AI emotional frameworks, opening new avenues for
intuitive AI-human emotional interactions.

However, a limitation of the method applied is its reliance on human attribution, which
may introduce subjective biases or cultural variability in the emotional interpretations. The
relationship was established through an experimental survey in which human participants
attributed PAD values to emotional states inferred from the agent’s behavior. Future work
could focus on refining or fully automating this process to reduce reliance on human input, for
instance, by leveraging dynamic sequence analysis, or documented PAD values in psychology
literature.

A verifiable emotional framework

Crucially, the proposed framework is both analytically and experimentally verifiable, as
demonstrated in the Results. The recognizability of the learned emotions is remarkable: the
synthetic emotions elicited during the agent’s environmental interactions are situationally
coherent, distinguishable to independent observers, and direclty relatable to empirically
documented characteristics of natural emotions.

To elaborate, the emotional spectrum learned during unlabelled agent interactions was
automatically categorized into eight basic emotions, such as distress, optimism, and satisfaction,
obtaining strong empirical confirmation from subjective human observers. Participants, who
were unaware of the emotions attributed by the system, rated pleasure-arousal-dominance
(PAD) values during 48 sequences. The ratings exhibited high ICC2k agreement rates
and, most relevantly, showed a strong alignment with the eight learned emotions (high
statistical distinguishability in Hotelling’s T-squared tests), reflecting situational coherence
as well as a natural progression from negative to positive emotions. Additionally, the PAD
rates demonstrated significant semantic agreement with five key psychological studies in the
literature.

Indeed, the emotions we have experimentally simulated show notable similarities to their
natural counterparts. The analysis of fully stepwise-interpreted episodes also demonstrated
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that the learned emotions are relatable to documented characteristics of natural emotions, such
as the relevance of recent events in instantaneous emotional responses and their homeostasis-
driven elicitation and decay, with average reward and expectations serving as referential
values. Additionally, we observed natural emotional progressions that align well with external
events and subjective appraisals, as well as temporal coexistence, resembling states of shock
and confusion during turbulent scenarios.

An extension of the Reinforcement Learning framework

Lastly, and though not experimentally covered in our first experiments, we foresee great promise
in the integration of emotional agents in the field of Reinforcement Learning. The enrichment
of the agent’s perceived state with the learned synthetic emotions has the potential to increase
its expected utility. Namely, the new policy could yield advantages analogous to those observed
in nature, such as behavioral benefits (rapid, valuable appraisals to adjust conduct, attention
and goals), efficient learning (focusing on emotionally significant sequences), and social
competences (enabling agent-to-agent communication, with better collective performance).

Furthermore, the integration of the synthetic emotion—a rich vectorial representation—into
the agent’s behavior is straightforward, as it merely involves a simple state extension. This
process does not require external interpretation or adaptation to the task (see Extensions of
the actor-critic method).

6.1.2 Limitations and future work

Richer emotional ranges and dynamics

Currently though, the framework has only been jointly formalized and tested on short-term
“basic” emotions, spanning over a maximum of thirty potential emotional reference profiles,
and has not been proved to capture richer retrospective dynamics like habituation (depending
on more remote values) and extinction (requiring continuous learning of the agent’s functions),
as well as emotional associations to external objects or subjects (like facilitators or blockers),
knowledge-related emotions (like surprise) and higher-order emotions (such as social, moral
or self-conscious).

“Habituation” may simply require the inclusion of moving averages to the observed values—with
continuous homeostatic renormalization—possibly combined with an expanded, smooth
emotional window.

“Extinction”, though, depends on adjustments in the agent’s appraisal, such as continuous
training of the agent’s subjective state-value function on newly-neutral stimuli.

More sophisticated cognitive abilities are required for the rest, as well as higher-order inter-
pretability mappings and the coexistence of multiple-range windows (giving rise to concurrent,
higher-order emotions from life-long temporal patterns), that are not discussed here

Refinement of the interpretability mappings

In relation with the introduced mappings, the tentative emotional attributions assigned
might benefit from further analysis and testing of the numerous profiles not experimentally
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demonstrated in this first case study. Future research might also explore extended patterns
such as high/low decreases, high-/low-variance policy outputs, and their potentially uneven
prevalence.

More biologically-inspired environments

More ambitious research might explore the extension of the framework to multiple reward
setups, inspired by how living beings experience and balance very heterogeneous and often
contradictory signals. The scope should encompass physical sensations like pain, hunger or
sensual pleasure, as well as higher-order feelings like calmness, love, and self-realization.

These tests could be expanded to include partially observable environments, continuous
learning scenarios (beyond episodic tasks) and multi-agent setups (exploiting the social
role that elicited / displayed emotions play). Exploring these lines could further enrich
our understanding and lead to more comprehensive models, setting the stage for the most
innovative contributions outlined in this work.

6.1.3 Ethical considerations
Finally, in addressing ethical considerations, particularly whether machines should have
emotions, it is important to clarify that the emotions elicited in our study are synthetic,
mathematically derived from learned patterns, and no AI agent experienced suffering or
enjoyment during simulations.

However, the possibility of their spontaneous emergence in AI should not be overlooked. Early
evidence indicates spontaneous sentiment representation in apparently unrelated tasks—like
next character prediction [138]. Furthermore, within the RL field, it has been suggested that
emotions might emerge in deep neural network layers as a byproduct of the generic objective
of reward maximization [139].

In such scenarios, our framework offers invaluable interpretability tools to identify and
understand these emergent emotions. Looking ahead, this clarity could be extended to
computational models of empathy, enabling predictions of other agents’ or humans’ emotions
based on their approximate states and values.

6.2 Final thoughts
We have introduced here a universal emotional language learned from first principles in
Reinforcement Learning and inspired by primary cognitive variables like reward/punishment
signals and their predicted future values. The supporting theoretical framework and demon-
strated methodology are, to the best of our knowledge, the first successful attempt to formally
describe and synthesize a comprehensive range of recognizable, functional emotions of compa-
rable characteristics to those of living beings. This pioneering work not only bridges the gap
between artificial and natural emotional processes, but also opens new avenues for exploring
the intersection of cognition, emotion, and machine learning. We believe that the generality
of our framework could lay a foundation upon which further research and applications will
lead us toward emotional machines that think and act more like us.
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Extended data

A.1 Code and data
Access

The datasets, step-by-step code and some additional information may be found in the public
GitHub repository at https://github.com/Alberto-Hache/love-emotional-framework.

Licensing

The code and data repository associated with this PhD thesis are licensed under the MIT
License. This permissive open-source license allows anyone to freely use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the software and associated documentation,
provided that the original copyright notice and this permission notice are included in all
copies or substantial portions of the software.

In summary, this means that:

• You can use the software for any purpose.

• You can distribute the software.

• You can modify the software and distribute your modifications.

• You can sublicense the software.

However, the software is provided “as is”, without any warranty of any kind. This means
that the author is not liable for any damages or issues that arise from using it.

For the full text of the MIT License, please refer to the repository where the code and data
are hosted.
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A.2 Application of the framework on a practical case
study: Extended data

A.2.1 Alternative conventional RL agents trained
We show here the performance registered by different Reinforcement Learning (RL) agents
trained for the case study with alternative choices of some key hyperparameters (while keeping
fixed the following ones: gamma: 0.99, lambda: 0.97, policy learning rate: 0.0003, state-value
function learning rate: 0.001, target KL: 0.01).

The initial tests compared architectures with two hidden layers (of 32 or 64 neurons) and
two types of activation functions (ReLU and tanh). Figure A.1 shows their comparative
peformance, with the vertical axis showing the total accumulated reward at episode end, and
the horizontal axis showing the total amount of stepwise interactions experienced by the agent.
Each combination was tested with three different random seeds to initialize the environments,
and allowed to run for 40,000 time-steps (with typical episodes lasting 250-200 time-steps,
and a maximum of 1,000 for failure). The best performance was obtained by the architecture:
(64, 64), with activation function: ReLU.

Figure A.1: Quick initial exploration of hyperparameters.

Figure A.2a shows the tests with denser hidden layers, of (128, 64), (64, 32) and (64, 64)
each, using the ReLU activation function, tested with three different random seeds. The best
performance was obtained by the architecture (64, 64).

Architectures with more hidden layers were tested as well, like the one shown in Figure A.2b,
not registering better results than the shallower (64, 64) one.

Finally, a quick search for an optimal random seed over ten alternatives resulted in seed = 10
as the best choice, reaching total rewards around 200 earlier, as shown in Figure A.3.
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a b
Performance Performance

Figure A.2: Alternative architectures tested. a, Tests with denser hidden layers. b, Tests with more
than two hidden layers.

Figure A.3: Tests with several random seeds on the final architecture.
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A.2.2 Alternative clustering results
Figure A.4 shows some of the different clustering models obtained during the interpretation
phase. We found a high overall consistency of the resulting clusters across most alternatives,
but live testing of the corresponing classifiers revealed that two of the minority classes,
highlighted in the figures, were frequently merged into a single class despite happenning in
visibly differentiated situations.

n_components, covariance_type, seed = 7, 'full', 8

n_components, covariance_type, seed = 8, 'full', 2

n_components, covariance_type, seed = 9, 'full', 7

n_components, covariance_type, seed = 8, 'full', 7014

a b

c d

Figure A.4: Alternative clustering options evaluated. Four clustering results obtained during the
interpretation of the learned emotional space. a, Seven classes, resulting in a too generic classification that
missed the differentiation between the two highlighted regions. b, This option, with ten classes, only obtained
a partial split between the highlighted areas. c. In this case, with eight classes, only a partial split is
obtained on the top right region. d. The final clustering, chosen for its balanced number of classes and the
nearly perfect differentiation of the two highlighted regions.
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A.2.3 3D visualization of the emotional spectrum
Figure A.5 shows a 360º rotation of a tridimensional t-SNE (T-distributed Stochastic Neighbor
Embedding) representation of the emotional spectrum learned during the case study.

Figure A.5: 3D representation of the eight identified classes.
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A.3 Theoretical Validation of LOVE Profile Terms: Ex-
tended data

This section illustrates all the sequence coherence tests conducted to refine and theoretically
validate the profile terms of the LOVE 2:5x6 interpretability mapping.

Series 1.1 and 1.2
(Fig. A.6 and A.7)

• Description: Variations starting with an opportunity.
• Sequences: Neutral → Excitement → Optimism → ...
• Coverage: 18 fully coherent paths; 63 emotional states.

Series 2.1
(Fig. A.8)

• Description: Variations starting with a threat.
• Sequences: Neutral → Fear → ...
• Coverage: 11 fully coherent paths; 34 emotional states.

Series 3.1, 3.2 and 3.3
(Fig. A.9, A.10, and A.11)

• Description: Focus Studies
• Coverage: 9 fully coherent paths; 34 emotional states.
• Sub-Series:

– Series 3.1: Study of the symmetry between anticipated quick positive/negative
rewards.

– Series 3.2: Evolution of a supposedly temporary negative reward.
– Series 3.3: Paths including Contentment.
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Figure A.6: Sequence coherence test: Series 1.1.
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Figure A.7: Sequence coherence test: Series 1.2.
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Figure A.8: Sequence coherence test: Series 2.1.
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Figure A.9: Sequence coherence test: Series 3.1.

Figure A.10: Sequence coherence test: Series 3.2.

98



Appendix A. Extended data

Figure A.11: Sequence coherence test: Series 3.3.
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A.4 Experimental validation of learned emotions with
humans: Extended data

A.4.1 Likert scales used for emotion attribution in Spanish
Likert scales for Pleasure, Arousal and Dominance in Lang’s Self-Assessment Manikin (SAM
included a collection of words at the ends (anchors of each dimension), that were adapted to
Spanish.

Figure A.12: Likert scale for the “Pleasure” dimension.

Figure A.13: Likert scale for the “Activation” dimension.
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Figure A.14: Likert scale for the “Dominance” dimension.
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A.4.2 PAD values attributed to the 48 videos
Table A.1 shows the pleasure-arousal-dominance (PAD) rates attributed to each of the 48
videos aggregated over all raters. Each learned emotion (from clusters 0 to 7), concealed to
the participants, was represented by six short videos.

Table A.1: PAD rates for each video in range [1, 9] aggregated over all raters.

Video Emotion Pleasure Arousal Dominance
(mean) (stdev) (mean) (stdev) (mean) (stdev)

A01 0 1.711538 0.976921 7.442308 2.199942 1.903846 1.332249
A02 0 1.230769 0.703364 8.115385 2.210969 1.480769 1.350242
A03 0 3.384615 1.561219 5.942308 2.118207 3.173077 1.617565
A04 1 8.211538 1.242018 5.288462 2.483961 7.980769 1.378979
A05 1 6.923077 1.569890 5.596154 1.763015 6.692308 1.698194
A06 1 8.211538 1.242018 5.096154 2.491237 8.115385 1.338038
A07 2 3.480769 1.552864 6.750000 2.085195 3.673077 1.700302
A08 2 5.615385 1.457285 6.134615 1.940576 5.500000 1.650906
A09 2 4.038462 1.825329 7.038462 1.596093 4.057692 1.808623
A10 3 8.500000 1.019419 5.019231 2.532072 8.403846 1.256506
A11 3 8.519231 1.244445 5.076923 2.936225 8.269231 1.509647
A12 3 8.115385 1.423250 5.557692 2.476663 7.788462 1.718829
A13 4 7.538462 1.954999 5.826923 2.332390 7.423077 2.295316
A14 4 7.673077 1.279111 5.692308 2.305479 7.192308 1.633455
A15 4 7.750000 1.631492 4.846154 2.452567 7.480769 2.033932
A16 5 4.384615 1.816632 6.519231 2.033932 4.557692 1.984385
A17 5 3.961538 1.385662 5.884615 1.986759 4.134615 2.067762
A18 5 3.038462 1.759696 6.923077 2.094307 3.115385 1.652732
A19 6 4.634615 1.680673 6.230769 1.722007 4.423077 1.933666
A20 6 6.500000 1.995092 6.057692 2.127444 6.846154 1.944168
A21 6 5.057692 1.719707 7.038462 1.888682 4.942308 2.090252
A22 7 3.423077 2.190408 5.923077 2.416010 3.192308 1.950751
A23 7 3.942308 1.764725 6.692308 1.754976 3.807692 1.749380
A24 7 3.076923 1.412079 6.442308 2.145798 3.173077 1.801102
B01 0 2.363636 1.699397 7.318182 2.066035 2.363636 1.526371
B02 0 4.204545 2.063859 5.931818 1.945749 3.522727 1.591966
B03 0 3.068182 1.909556 6.863636 1.959959 2.727273 1.436463
B04 1 7.636364 1.348400 5.477273 2.337646 7.090909 1.877878
B05 1 5.863636 1.936082 5.590909 1.821298 6.045455 1.790862
B06 1 7.204545 1.439954 5.840909 2.090323 6.409091 2.127540
B07 2 5.272727 1.436463 7.318182 1.307807 4.818182 1.742395
B08 2 4.409091 1.980347 6.386364 2.037051 4.409091 1.920734
B09 2 5.704545 1.439954 6.272727 1.689415 5.522727 1.620919
B10 3 8.818182 0.581607 5.500000 2.782838 8.636364 0.942311
B11 3 8.363636 0.685087 5.681818 2.310469 8.181818 0.994701
B12 3 8.272727 0.996824 6.227273 2.208479 8.068182 1.387615
B13 4 7.000000 1.524986 6.000000 2.090955 6.886364 1.781245
B14 4 7.431818 1.969509 6.090909 2.055262 7.568182 1.822313
B15 4 6.454545 1.810236 6.863636 1.664833 6.454545 2.028340
B16 5 3.590909 1.834022 7.090909 1.582141 3.181818 1.768888
B17 5 3.886364 1.768141 7.409091 1.574775 3.772727 1.903041
B18 5 4.227273 2.270781 4.795455 2.247268 4.181818 2.191662
B19 6 5.431818 1.619614 6.795455 1.862476 5.318182 1.681261
B20 6 7.772727 1.411969 6.113636 2.071017 7.568182 1.453108
B21 6 2.272727 1.420181 6.386364 2.553756 2.590909 1.674962
B22 7 2.545455 1.454017 7.181818 1.781986 2.636364 1.495589
B23 7 2.772727 1.178561 6.681818 1.877315 2.954545 1.524292
B24 7 3.000000 1.656558 5.818182 2.244090 3.000000 1.540160
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B.2 Other dissemination activities

Keynote Speaker at “The Discussion Club” Session

• Title: “A generic self-learning emotional framework for Reinforcement Learning agents”
• Organizer: BBVA - AI Factory, Av. Manoteras 44, 28050 Madrid, Spain
• Date: October 1st, 2024
• Duration: 1 hour
• Attendees: 42

Keynote Speaker at the Department of Information and Communication Tech-
nologies

• Title: “A generic self-learning emotional framework for Reinforcement Learning agents”
• Organizer: Eduardo Ros Vidal - Department of Information and Communication

Technologies - Neural Engineering and Bio-inspired Integrated Systems
• Date: June 4th, 2024
• Duration: 1 hour
• Attendees: 17

Keynote Speaker at “Computation-Neuroscience-ML-Robotics” Meeting

• Title: “Un marco genérico para el aprendizaje automático de emociones funcionales en
agentes con Aprendizaje por Refuerzo - State review”

• Organizer: Eduardo Ros Vidal - Department of Information and Communication
Technologies - Neural Engineering and Bio-inspired Integrated Systems

• Date: April 10th, 2023
• Duration: 1 hour
• Attendees: 22
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Resumen de la tesis

Introducción

Las emociones, tanto en humanos como en otros seres vivos, son una ventaja evolutiva clave
para la adaptación al entorno. Lejos de ser perturbaciones irracionales o ajenas a la toma de
decisiones, como históricamente se ha entendido en la tradición filosófica occidental, están
profundamente integradas en los procesos cognitivos y conductuales. Teorías contemporáneas
de la biología y la neurociencia, como las de Charles Darwin y Antonio Damásio, subrayan la
importancia de las emociones en la supervivencia y la toma de decisiones, demostrando cómo
daños en los sistemas emocionales pueden perjudicar gravemente las capacidades cognitivas.

Desde el punto de vista biológico, Darwin (1872) fue pionero al argumentar que las emociones
humanas y animales tienen una base evolutiva común, siendo esenciales para la supervivencia.
En la neurociencia, Damásio (1994) mostró que las emociones son cruciales para la toma
de decisiones racionales, mientras que estudios de Jaak Panksepp han identificado sistemas
emocionales primarios en el cerebro de los mamíferos, como el miedo, la ira o el placer, basados
en circuitos neuronales específicos.

En psicología, diversas teorías han intentado clasificar y describir las emociones. De entre
las más influyentes, las teorías discretas, como las de Paul Ekman, identifican un número
limitado de emociones básicas universales (alegría, tristeza, ira, sorpresa, miedo, asco). Por
otro lado, teorías dimensionales, como el modelo de afecto circunflejo de James Russell (1980),
proponen que las emociones se distribuyen en un espacio bidimensional definido por la valencia
(placer-displacer) y la activación (alta-baja).

A pesar de estos avances en biología y psicología, la inteligencia artificial (IA) ha ignorado en
gran medida las emociones, centrándose en replicar únicamente los procesos racionales de la
mente humana. Desde la fundación de la IA por John McCarthy en 1955, la disciplina se ha
focalizado en la imitación de la lógica y el razonamiento, desvinculándose de las emociones por
la influencia de una tradición racionalista que, desde Descartes, las consideraba perturbadoras
para la razón. Marvin Minsky fue una de las voces críticas frente a esta visión reduccionista,
argumentando que las emociones no son un obstáculo, sino una forma de pensamiento que
toda inteligencia avanzada debería poseer.
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En años más recientes, el campo de la informática afectiva, liderado por Rosalind Picard
(1997), ha tratado de integrar emociones en sistemas artificiales, pero los avances han sido
limitados. Los modelos actuales de emociones en IA suelen ser soluciones específicas y no
generalizables. Esto resalta la necesidad de un marco teórico más sólido que permita a los
sistemas de IA aprender y generar emociones de manera autónoma, un vacío que este trabajo
intenta abordar proponiendo un marco autoaprendido basado en principios de aprendizaje
por refuerzo.

Objetivos
El objetivo principal de esta investigación es demostrar que las emociones artificiales pueden
ser aprendidas de forma autónoma por agentes de inteligencia artificial a partir de principios
fundamentales, sin necesidad de supervisión externa o modelos predefinidos. Para ello, se
proponen tres hipótesis clave:

H1: Descriptibilidad matemática de las emociones. Las emociones básicas, como la
ira, satisfacción o miedo, corresponden a patrones temporales diferenciados percibidos
en valores clave para un ser vivo, tales como recompensas recientes, recompensas futuras
esperadas y estados anticipados del entorno.

H2: Codificación espontánea del espectro emocional. Estos patrones pueden emerger
espontáneamente y ser aprendidos de forma no supervisada por agentes de inteligencia
artificial a partir de primeros principios, utilizando únicamente su estado actual, su
experiencia reciente y sus expectativas temporales.

H3: Utilidad medible de las emociones sintéticas La integración de estos patrones
emocionales en la arquitectura de un agente puede mejorar su capacidad para tomar
decisiones, su eficacia en el aprendizaje y su interacción social, de modo análogo a los
beneficios que las emociones proporcionan a los seres vivos.

Las hipótesis H1 y H2 se investigan a fondo tanto teórica como experimentalmente en esta
investigación, mientras que la hipótesis H3, cuya investigación completa excede el alcance de
este trabajo, se aborda y analiza desde una perspectiva teórica.

Los objetivos generales del estudio son desarrollar un marco teórico y experimental que
permita definir, aprender e integrar emociones en sistemas de aprendizaje por refuerzo (o
Reinforcement Learning), y validar empíricamente su aplicabilidad mediante un caso de
estudio. Se busca proporcionar una metodología para el aprendizaje empírico de emociones
artificiales, utilizando algoritmos que permitan la codificación y la interpretación de respuestas
emocionales en tiempo real.

Un marco emocional autoaprendido genérico
El marco emocional autoaprendido propuesto en este trabajo, basado en principios de Apren-
dizaje por Refuerzo (RL), permite que un agente de IA, interactuando en un entorno, aprenda
y utilice un espectro emocional sintético, imitando emociones naturales documentadas. Este
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marco concibe las emociones como patrones temporales derivados de valores críticos, como
recompensas recientes y recompensas futuras esperadas, postulando que estos patrones son la
base de las emociones tanto en sistemas naturales como artificiales.

Hipótesis y supuestos clave
Se establece que las emociones pueden entenderse como patrones temporales observados en
variables cognitivas. La complejidad de las emociones depende de las capacidades cognitivas
del agente, donde emociones más básicas reflejan tendencias en recompensas inmediatas, y
emociones más sofisticadas integran valores anticipados y estados del mundo anticipados. Esto
sugiere que los agentes de IA, mediante el aprendizaje de sus experiencias previas, pueden
desarrollar emociones autónomamente.

Metodología y arquitectura del marco emocional
El marco incluye un codificador emocional, usualmente una red neuronal autocodificadora
(autoencoder), que aprende y codifica patrones emocionales de secuencias temporales multi-
variadas observadas por el agente. Éste, basado en una arquitectura de RL extendida a partir
de los métodos actor-crítico, emplea un estado “extendido” que combina su estado objetivo
(el entorno) con un estado emocional subjetivo codificado, enriqueciendo así las entradas de
su política de decisión (policy) con un componente emocional. Se presentan definiciones clave
para los estados emocionales y el proceso de aprendizaje de emociones:

1. Entrenamiento del codificador emocional: Utilizando secuencias de recompensas
y valores de estado, el codificador aprende a identificar patrones temporales en estos
valores. Se exploran tanto enfoques offline, que congelan el modelo emocional una
vez entrenado, como enfoques online, donde el aprendizaje del modelo emocional se
actualiza junto con la política del agente.

2. Elicitación e integración emocional: El codificador emocional permite al agente
enriquecer su representación del estado, creando estados extendidos que abarcan percep-
ciones objetivas y apreciaciones subjetivas, proporcionando una respuesta emocional
inmediata ante cambios en recompensas y valores de estado.

3. Interpretación y mapeo emocional: Los patrones emocionales aprendidos se agrupan
en clusters en un espacio latente, cuyos centroides se asocian a perfiles emocionales
referenciales. Estos grupos (o clusters) facilitan la interpretación humana y se mapean
a términos emocionales conocidos (como “satisfacción” o “preocupación”), basándose
en modelos probabilísticos como los modelos de mezclas gaussianas (Gaussian mixture
models). Este proceso permite la atribución e interpretación de emociones en tiempo
real, aportando transparencia a los estados emocionales del agente.

Órdenes emocionales y escalabilidad
El marco establece diferentes niveles de complejidad emocional, denominados órdenes
emocionales:
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• Orden 0: Agente estándar de RL, sin emociones.

• Orden I: Emociones inmediatas basadas en recompensas actuales, como “bueno” o
“malo”.

• Orden II: Emociones retrospectivas basadas en tendencias de recompensas recientes,
permitiendo emociones como “satisfacción” o “frustración”.

• Orden III: Emociones anticipatorias mediante el uso de predicciones de valores de
estado, permitiendo emociones dinámicas como “temor”, “excitación” o “euforia”.

• Orden IV: Emociones basadas en el conocimiento del mundo, donde el agente evalúa
discrepancias entre sus predicciones y estados observados, generando emociones de
“sorpresa” o “curiosidad”.

• Órdenes superiores: Emociones de mayor complejidad, como la retrospección distante,
las emociones sociales o morales, y la autoconciencia, pueden surgir en agentes con
habilidades cognitivas avanzadas, tales como memoria a largo plazo o modelos internos
complejos del mundo y de sí mismos (no explorados en el presente trabajo).

Aplicabilidad y resultados
La integración de emociones en la arquitectura de RL tiene el potencial de mejorar la toma
de decisiones y la eficiencia del aprendizaje, similarmente a los beneficios observados en
sistemas biológicos. Los resultados experimentales demuestran que el espectro emocional
aprendido es coherente y comprensible para observadores humanos, quienes identificaron
patrones emocionales que se alinean con las emociones humanas, validando así la efectividad
y naturalidad del sistema en escenarios de prueba.

Este marco establece una base sólida para avanzar hacia una IA emocional que pueda no sólo
procesar, sino también expresar estados emocionales complejos, integrando tanto respuestas
emocionales instintivas como evaluativas en su interacción con el entorno y otros agentes.

Resultados
La aplicación del marco emocional se evaluó en el entorno LunarLander-v2, en el cual el agente
de Aprendizaje por Refuerzo (RL) debía alunizar una nave espacial con control de posición,
velocidad y consumo de combustible. Los resultados experimentales obtuvieron el aprendizaje
de ocho emociones distintas, modeladas como patrones temporales de recompensas y valores
de estado en secuencias de 20 pasos, permitiendo su interpretación y la elicitación en tiempo
real.

Validación y evaluación experimental
1. Codificación emocional y agrupamiento: A través de un autocodificador y un mod-

elo de mezcla gaussiana, el agente categorizó sus emociones en ocho grupos representando
emociones básicas como “temor”, “excitación” u “optimismo”. La disposición espacial
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de estas emociones se verificó mediante análisis t-SNE, revelando una organización
coherente con los ejes de placer y activación, dimensiones reconocidas en psicología
emocional.

2. Transiciones emocionales naturales: El agente demostró transiciones naturales
y progresivas en su espectro emocional. En los episodios de prueba, inició en un
estado neutral o de emoción leve, y transitó a emociones de preocupación o temor
ante dificultades, o a emociones positivas como la satisfacción tras un alunizaje exitoso.
Estas transiciones se visualizaron mediante una matriz y un grafo de transición que
destacaban las secuencias emocionales más comunes durante el testeo del agente.

3. Estudio de atribución emocional con humanos: Para validar la reconocibilidad
de las emociones aprendidas, 96 participantes evaluaron secuencias de video del agente
alunizando. Utilizando el método Self-Assessment Manikin (SAM), los participantes
puntuaron las secuencias en las dimensiones de placer, activación y dominancia (PAD).
Los resultados reflejaron alta consistencia en la evaluación de emociones, con los valores
de PAD alineándose estrechamente con emociones humanas documentadas, y se observó
una notable diferenciación en el espectro emocional de cada secuencia.

4. Mapeo frente a registros experimentales documentados: Los valores de placer,
activación y dominancia (PAD) de las emociones aprendidas se compararon con registros
experimentales de estudios psicológicos, mostrando una alineación significativa. Cada
emoción aprendida mostró correspondencias estrechas con emociones humanas docu-
mentadas en la literatura, lo que valida la coherencia del modelo emocional respecto a
estudios previos. Esta correspondencia respalda la precisión del marco en la reproducción
de patrones emocionales reconocibles y naturales.

Conclusiones y observaciones clave
El agente desarrolló espontáneamente un sistema emocional con patrones y transiciones com-
parables a emociones naturales, exhibiendo homeostasis (equilibrio emocional) y subjetividad
en respuesta a sus interacciones. Aunque las emociones de orden superior como la habituación
y extinción no fueron observadas, el modelo demostró ser adaptable y coherente con la teoría
emocional tanto discreta como dimensional, sentando las bases para una IA con percepción
emocional compleja.

Métodos y herramientas
1. Entrenamiento del agente de aprendizaje por refuerzo (RL): Se preentrenó

un agente clásico de RL con el método actor-crítico, específicamente el modelo PPO
(Proximal Policy Optimization), para manejar de manera competente la tarea en el
entorno LunarLander-v2.

2. Generación de datos de entrenamiento: Con el agente preentrenado, se ejecutaron
escenarios adicionales para capturar series temporales multivariadas, enfocándose en
secuencias de recompensa y valor del estado. Estas series se normalizaron y secuenciaron
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con una longitud de “ventana emocional” de 20 pasos.

3. Modelo de codificación emocional: Un autocodificador convolucional de una
dimensión se entrenó para capturar las representaciones latentes de los datos emocionales
en un espacio de baja dimensionalidad, logrando un balance entre precisión y compresión
de los datos.

4. Agrupamiento e interpretación emocional: Los patrones emocionales latentes
fueron agrupados mediante un modelo de mezcla gaussiana, obteniendo ocho categorías
emocionales, cada una correspondiente a una emoción prototípica experimentada por el
agente.

Este enfoque metodológico permite la reproducción y el análisis de emociones aprendidas de
manera autónoma, proporcionando las bases para la replicación y el uso en distintos entornos
de RL.

Conclusiones

Principales logros
Este trabajo introduce un marco emocional autoaprendido que permite a los agentes de
Aprendizaje por Refuerzo (RL) experimentar emociones de manera autónoma. A través del
uso de patrones matemáticos derivados de valores críticos del entorno, como recompensas y
expectativas de estado, el marco facilita la emergencia de emociones sin supervisión externa.
Los agentes pueden identificar y responder a categorías emocionales básicas, organizadas en
un espectro de emociones sistemático, coherente y reconocible.

El potencial de este modelo radica en su capacidad para integrar emociones como estados
extendidos en la arquitectura de RL, y mejorar la capacidad del agente para evaluar y
adaptarse a situaciones complejas. Además, la estructura del modelo permite el mapeo de
emociones en términos humanos (por ejemplo, “temor”, “excitación”, “satisfacción”) a través
de agrupamiento mediante técnicas de mezcla gaussiana. La validación mediante observadores
humanos demostró que estas emociones son comprensibles y alineadas con el comportamiento
emocional esperado, lo cual subraya la aplicabilidad del marco en la construcción de agentes
más interpretables y adaptativos.

Este marco establece una base sólida para avanzar hacia agentes de IA con una riqueza
emocional compleja, abriendo nuevas posibilidades para aplicaciones en robótica, interfaces
humano-computadora y sistemas de toma de decisiones, donde las respuestas emocionales
aporten beneficios adicionales. La capacidad de los agentes para desarrollar estados emo-
cionales situacionales y transitorios sin programación explícita representa un avance significa-
tivo hacia la emulación de la inteligencia emocional en IA.

Limitaciones y futuras investigaciones
Aunque el marco se probó con éxito en emociones básicas de corto plazo, la extensión a
emociones de orden superior y dinámicas de largo plazo, como la habituación y extinción,
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requerirá mejoras. También se propone explorar entornos parcialmente observables y escenarios
de aprendizaje continuo, lo cual enriquecerá la comprensión de emociones complejas y sus
aplicaciones prácticas en IA.

Consideraciones éticas
El marco de emociones sintéticas es un sistema matemático que no implica experiencias de
sufrimiento o disfrute reales para los agentes de IA.
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