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Abstract: Differentiating tumor progression from radionecrosis in patients with treated
brain glioma represents a significant clinical challenge due to overlapping imaging features.
This study aimed to develop and evaluate a machine learning model that integrates ra-
diomics features and T2*-weighted Dynamic Susceptibility Contrast MRI perfusion (DSC
MRI) parameters to improve diagnostic accuracy in distinguishing these entities. A retro-
spective cohort of 46 patients (25 with confirmed radionecrosis, 21 with glioma progression)
was analyzed. From lesion segmentation on DSC MRI, 851 radiomics features were ex-
tracted using PyRadiomics, alongside seven perfusion parameters (e.g., relative cerebral
blood volume, time to peak) obtained from time–intensity curves (TICs). These features
were combined into a single dataset and 14 classification algorithms were evaluated with
GroupKFold cross-validation (k = 4). The top-performing model was selected based on
predictive area under the curve (AUC) yield. The Logistic Regression classifier achieved
the highest performance, with an AUC of 0.88, followed by multilayer perceptron and
AdaBoost with AUC values of 0.85 and 0.79, respectively. The precision values were 72%,
74%, and 78% for the three models, respectively, while the accuracy was 63%, 70%, and 71%.
Key predictive variables included radiomics features like wavelet-HHH_firstorder_Mean
and mean normalized TIC values. Our combined approach integrating radiomics and
DSC MRI parameters shows strong potential for distinguishing radionecrosis from glioma
progression. However, further validation with larger cohorts is essential to confirm the
generalizability of this approach.

Keywords: glioma; radionecrosis; tumor progression; magnetic resonance imaging; perfusion;
radiomics; machine learning
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1. Introduction
Glioma, the most prevalent primary malignant brain tumor in adults, represents a

major clinical challenge due to its infiltrative nature and propensity for recurrence [1].
Current therapeutic strategies typically combine maximal safe surgical resection with
adjuvant radiotherapy and chemotherapy, most commonly using alkylating agents such
as temozolomide as part of first-line treatment [2]. One of the main problems derived
from radiotherapy is the chance of developing radionecrosis (in up to 30% of patients), a
radiation-induced necrotic process that mimics tumor progression on conventional mag-
netic resonance imaging (MRI) [3,4]. This diagnostic ambiguity carries significant clinical
implications: unnecessary surgical interventions or inappropriate cessation of effective ther-
apies may occur if radionecrosis is misclassified as progression, while delayed treatment of
true progression risks worse prognosis with accelerated neurological decline [3,5].

Recent studies underscore the limitations of conventional imaging modalities in dif-
ferentiating radionecrosis from recurrence/progression. For instance, contrast-enhanced
T1-weighted MRI demonstrates sensitivity values as low as 31.7% for detecting progression,
although high specificity values of up to 93% have been reported [4]. Advanced techniques
like amino acid positron-emission tomography (PET) improve accuracy (sensitivity values
93%, specificity 100%), but limited availability and high costs restrict their routine use [4].
Perfusion-weighted MRI parameters—particularly relative cerebral blood volume (rCBV)
and time to peak (TTP)—have shown promise, yet their standalone performance remains
suboptimal (area under the curve [AUC], 0.75–0.88) [3,4]. The inherent heterogeneity of
gliomas, compounded by treatment-induced vascular and cellular changes, necessitates
multimodal approaches to overcome these diagnostic limitations [6,7].

Radiomics has emerged as a transformative tool in radiology, in general, and in neuro-
oncology, in particular. Radiomics refers to the high-throughput extraction of quantitative
features from medical images—such as texture patterns, intensity distributions, and mor-
phological descriptors—that are imperceptible to visual assessment but encode subvisual
heterogeneity at macroscopic and mesoscopic scales [8]. This enables the extraction of
high-dimensional data from routine imaging to quantify tumor heterogeneity [3,7]. By ap-
plying computational algorithms to imaging examinations such as MR perfusion, radiomics
transforms these features into mineable data, enabling the identification of phenotypic
signatures correlated with tumor biology, treatment response, and clinical outcomes [9].

Recent advancements in artificial intelligence further enhance this paradigm. For
instance, deep learning architectures can now achieve AUC values higher than 0.90 in many
radiological challenges by synthesizing radiomics features with clinical and molecular
data [3,7]. These challenges include differentiating between brain tumors, glioma grading,
and glioma prognosis [10–12]. However, most studies to date have focused on newly
diagnosed gliomas, leaving a critical gap in validated models for post-radiation scenarios,
where distinguishing between radionecrosis and progression is essential for an adequate
patient management [5,13].

Prior work to differentiating radionecrosis from tumor progression has predominantly
focused on the analysis of either radiomics [14] or perfusion parameters in isolation [15],
with variable results. However, novel strategies combining the information provided
by both approaches could offer promising outcomes and would also make it possible to
understand the differential significance of information based on textural (i.e., radiomics)
and temporal (i.e., perfusion metrics) data sources. In fact, previous studies have applied
methodological approaches combining information from radiomics and MRI perfusion
data [16], but only using information from specific hemodynamic parameters as the basis
to identify relevant radiomics features, precluding the analysis of the relevance of other
perfusion metrics, among other limitations.
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This study addresses this existing gap by developing a machine learning framework
that merges radiomics features from Dynamic Susceptibility Contrast MRI perfusion (DSC
MRI) with hemodynamic parameters. By integrating these complementary strategies into a
single predictive model, we aim to enhance diagnostic accuracy and offer a more nuanced
understanding of post-radiation lesion characterization.

2. Materials and Methods
2.1. Study Design

This study was designed and written in accordance with the Strengthening the Report-
ing of Observational Studies in Epidemiology (STROBE) and the Checklist for Evaluation
of Radiomics Research (CLEAR, Supplementary File S1) guidelines [17,18]. We conducted
a retrospective observational study of adult patients diagnosed with brain glioma (regard-
less of the degree) according to the WHO 2021 classification criteria [19] and treated with
radiotherapy and surgical resection. On follow-up imaging, these individuals exhibited
evidence of lesions suggestive of either radionecrosis or tumor progression, which were
confirmed histopathologically or radiologically (follow-up >6 months). The study was
conducted in the Hospital Universitario Virgen de las Nieves (Granada, Spain) and the
recruitment period was from 1 January 2020 to 1 January 2024.

The eligibility criteria were as follows:

- Inclusion criteria:

1. Histologically-confirmed brain glioma;
2. Treatment with radiotherapy among other treatments;
3. Lesion suspicion of recurrence or radionecrosis on follow-up DSC MRI;
4. Minimum follow-up of 6 months.

- Exclusion criteria:

1. Suboptimal quality of imaging examinations, including susceptibility or motion
artifacts that precluded from correctly assessing the suspicious area on perfusion
MRI. For quality check, several control measures were followed according to the
recommendations of the American Society of Functional Neuroradiology [20];

2. Uncertainty about the nature of the suspicious lesion due to either absence of
follow-up or lack of histological confirmation.

Regarding the reference standard, pseudoprogression (i.e., radionecrosis) was defined
by regression or stabilization of the suspicious lesion for at least 6 months, whilst glioma
progression was defined if the suspicious lesion increased on three or more subsequent
follow-up MRI studies. The study was approved by the Provincial Ethics Committee of
Granada (reference, IANeuro24; approval date, 29 June 2021). The retrospective nature of
the study and the minimal risk associated with reviewing anonymized imaging data led to
a waiver of written informed consent. A closed-source large language model [21] was used
exclusively for correcting the English writing of this manuscript.

2.2. Imaging Protocol and Preprocessing

All MRI studies were performed on a Philips Ingenia CX 3T system [22] with
32-channel array coils (multi-coil configuration) using a gradient-echo/echo-planar se-
quence. The specific imaging parameters for DSC MRI were as follows: repetition time
(TR), 2059; echo time (TE), 40 ms; section thickness, 4 mm; matrix, 128 × 128; number of
excitations, 1; flip angle, 75◦; total acquisition time: 88.5 s; total temporal sequences: 40.
All studies were de-identified to protect patient privacy, and no personally identifying
information was retained. We converted the raw DICOM data to NIfTI format using
dcm2niix (v. 1.0.20240202) [23] in conjunction with SimpleITK (v. 2.4.0) [24–26] in Python
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(v. 3.12.8), ensuring that original spatial parameters (e.g., orientation and pixel spacing)
were preserved (Supplementary File S2).

In 3D Slicer® (v. 5.8.0), a neuroradiologist with more than 10 years of experience
segmented the suspicious lesion and a region of normal-appearing white matter (NAWM)
on axial DSC MRI images, following a correlative examination of contrast-enhanced T1-
weighted images to ensure appropriate lesion location (Figure 1).
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Figure 1. Two samples (top and bottom) of the segmentation process using 3D Slicer®. The segmenta-
tion of the region of interest of radionecrosis or tumor progression can be seen in green and the segmen-
tation of the NAWM in yellow. (Left): axial contrast-enhanced T1-weighted image. (Middle): axial
DSC MRI perfusion sequence. (Right): coronal contrast-enhanced T1-weighted image.

These steps allowed us to generate binary masks for the lesion and NAWM, which
served as essential references for subsequent analyses. Once the masks were produced,
we ensured that the 3D segmentations and the 4D perfusion volumes were aligned so that
each timepoint in the perfusion dataset corresponded accurately to the lesion and NAWM
regions using MRIcroGL (v. 1.2.20220720) [27] (Figure 2). The final output of this stage
consisted of NIfTI images for aligned perfusion (4D) and binarized segmentations (3D).
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matter (NAWM) in the MRIcroGL viewer, where the binary (0–1) masks for each region are displayed.
The graph below shows the intensity of a voxel versus time before the preprocessing pipeline.

2.3. Radiomics Features Extraction

We applied PyRadiomics (v. 3.1.0) [28] to extract 851 radiomics features from
the DSC MRI volumes, focusing on both lower- and higher-order texture descriptors
(Supplementary Files S3–S5). The main categories comprised first-order statistics, Gray
Level Co-occurrence Matrix (GLCM), Gray Level Dependence Matrix (GLDM), Gray Level
Run Length Matrix (GLRLM), Gray Level Size Zone Matrix (GLSZM), Neighborhood Gray
Tone Difference Matrix (NGTDM), shape features, and wavelet-transformed variants. A
detailed description of the calculations used for each of the radiomics features can be
consulted in the supplementary material of the original PyRadiomics work [28]. A detailed
list of all the radiomics features extracted can be consulted in Supplementary File S6.

First-order features capture fundamental statistical descriptors derived solely from the
intensity distribution within the region of interest (ROI) (e.g., mean, variance, skewness,
and kurtosis), without taking into account any spatial arrangement of voxels [29]. By
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contrast, second-order features, commonly referred to as textural parameters, examine how
voxel intensities relate to one another. For instance, GLCM quantifies the frequency of
specific intensity pairings at defined offsets, revealing local heterogeneity and structural
patterns [30]. Together, these complementary feature sets provide a more comprehensive
characterization of lesion properties by integrating both global intensity statistics and local
texture information.

The extraction was performed frame by frame across each patient’s perfusion sequence.
A total of 40 frames per patient were used in all cases, except for one patient’s examination,
in which the last 5 frames were inadvertently lost during the transfer from the MRI machine
to the PACS system and were omitted from this study. Prior to feature computation,
images underwent normalization and resampling procedures set to a bin width of 5, a
normalization scale of 100, and a resampled voxel spacing of [1.75, 1.75, 4]. B-spline
interpolation and a padding distance of 5 mm around the ROI were also specified. Features
from the lesion mask were calculated in parallel to reduce computation time, resulting
in 1835 timepoint entries across all patients (46 patients with 40 time sequences plus one
patient with 35 time sequences). Considering the changes in the pixels’ information of each
temporal acquisition, each patient’s DSC MRI perfusion time sequence was treated as an
independent observational unit for feature extraction, effectively expanding the dataset
from 46 patients to 1835 unique timepoint entries.

2.4. Perfusion Curve Estimation and Analysis

In addition to extracting radiomics features, we processed dynamic perfusion data us-
ing a custom Python pipeline (Supplementary Files S7 and S8). For each patient, perfusion
images and their corresponding segmentation masks (tumor and NAWM) were loaded
from NIfTI files, while the TR was retrieved from JSON metadata to construct a uniform
temporal axis. Time–intensity curves (TICs) were then computed by averaging the signal
intensities within the tumor and NAWM regions across all DSC MRI frames. The NAWM
TIC established a baseline for normalizing the tumor curve, ensuring a pre-contrast value
of one, and the normalized tumor TIC was temporally aligned by shifting its time-to-arrival
(TTA) to zero. The TTP was identified as the minimum point of the normalized tumor
curve, and several perfusion parameters were subsequently calculated—including the
rCBV via trapezoidal integration, percentage signal recovery (PSR), mean transit time
(MTT), maximal falling slope, and the maximal signal intensity difference (MSID) for both
the tumor and NAWM. Finally, dual-panel figures contrasting the raw and normalized
TICs were generated (Figure 3).
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After extracting both radiomics features and perfusion parameters, we merged these
datasets into a single one that associated each timepoint with a patient identifier, the corre-
sponding label (progression or radionecrosis as 0 and 1), and relevant curve-derived param-
eters. Non-informative columns—such as those providing software version numbers—were
removed to avoid bias. This preprocessed and cleaned dataset was stored in a spreadsheet
containing the perfusion parameters and radiomics features.

2.5. Machine Learning Pipeline and Statistical Analysis

We used the scikit-learn (v. 1.6) [31] classification module to compare 14 classification
algorithms (AdaBoost, CatBoost, DecisionTree, ExtraTrees, GaussianNB, GradientBoost-
ing, KNeighbors, LDA, LightGBM, Logistic Regression, multilayer perceptron [MLP],
RandomForest, SVC, and XGBoost) (Supplementary File S9). The goal was to determine
which approach performed best in classifying radionecrosis versus tumor progression
(i.e., dependent variable). Since each patient contributed multiple timepoints, we employed
GroupKFold cross-validation with k = 4 to ensure that timepoints from the same patient
did not appear in differents folds and were randomly distributed. The random distribution
generated by the seed of this experiment can be consulted in Supplementary File S10.

For the evaluation of each method, we generated AUC plots for each iteration applied
to timepoints of the cross-validation and the mean of these, as well as feature importance
plots for each model, performance metrics, and confusion matrices.

3. Results
3.1. Characteristics of Patients and Imaging Data

We included a total of 46 patients with completely resected brain gliomas, similarly
distributed between radionecrosis (n = 25) and progression (n = 21). Figure 4 shows the
flow diagram of the study.
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Figure 4. Flow diagram of the patients included in the study.

The mean age was 54.4 years, and 24 (52.2%) patients were women. Table 1 describes
the main characteristics of the sample analyzed in this study. As previously described, this
cohort generated 1835 timepoint entries, each containing 851 radiomics features and seven
perfusion parameters extracted from TICs.
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Table 1. Characteristics of the patients and gliomas analyzed in the study. * Three cases located in the
cerebellum (one in each hemisphere and another one in the vermis), and one in the basal ganglia.

Total (N = 46) Radionecrosis
(n = 25)

Progression
(n = 21) p-Value

Women 24 (52.2) 11 (44) 13 (61.9) 0.226

Age 54.4 ± 11.5 56.9 ± 11.7 51.5 ± 10.8 0.110

Location
Frontal 18 (39.1) 9 (36) 9 (42.9)
Parietal 6 (13.0) 5 (20) 1 (4.8)
Temporal 16 (34.8) 6 (24) 10 (47.6) 0.173
Occipital 2 (4.3) 2 (8) 0 (0)
Other * 4 (8.7) 3 (12) 1 (4.8)

Side = right 18 (39.1) 11 (44) 7 (33.3) 0.551

High-grade glioma 36 (78.2) 18 (72) 18 (85.7) 0.306

3.2. Performance of the Selected Models

Fourteen models were assessed in our evaluation process. The best-performing classi-
fier was Logistic Regression, which achieved an AUC of 0.88 (Figure 5) under GroupKFold
cross-validation, followed by MLP and AdaBoost with AUC values of 0.85 and 0.79, respec-
tively. The confusion matrices to visualize the results of the cross-validation in training for
the three models are shown in Figure 6. The precision values for the three models were
72%, 74%, and 78%, respectively, while the accuracy was 63%, 70%, and 71%, respectively
(Figure 7). The main contributors to the models that allow the assessment of individual
variables (Logistic Regression and AdaBoost) were perfusion-based features, in particular
MTT, MSID, TTA, max slope, PSR, and rCBV, together with radiometric features such as
wavelet-HHH_firstorder_mean or wavelet-HHH_firstorder_skewness. A summary of the
performance of the other models can be found in Table 2.

Table 2. Performance metrics of the fourteen machine learning models assessed. AUC, area under the
curve. MLP, multilayer perceptron. SVC, support vector classifier. kNN, K-Nearest Neighbors. LDA,
Linear Discriminant Analysis. LightGBM, Light Gradient-Boosting Machine. XGBoost, eXtreme
Gradient Boosting.

Model Accuracy Precision AUC mean

LogisticRegression 0.6264 0.7205 0.8842

MLP 0.6986 0.7449 0.8479

AdaBoost 0.7074 0.7803 0.7915

SVC 0.6727 0.7074 0.7946

GradientBoosting 0.6899 0.6968 0.7854

kNN 0.7127 0.7327 0.7388

CatBoost 0.5673 0.6388 0.7326

ExtraTrees 0.6041 0.7038 0.7185

LDA 0.6326 0.7532 0.7055

LightGBM 0.6015 0.6812 0.6993

DecisionTree 0.5906 0.6568 0.6279

GaussianNB 0.5236 0.6562 0.5944

XGBoost 0.6367 0.6854 0.7420

RandomForest 0.5695 0.6591 0.6781
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3.3. Feature Importance

Analysis of feature relevance confirmed that perfusion-derived parameters played a
pivotal role (Figure 8). Among radiomics features, wavelet-HHH_firstorder_Mean was
the most important predictor. This feature represents the mean intensity of voxels in an
image processed with a wavelet-HHH filter, which enhances high-frequency structures
in all directions. Several other wavelet-based features demonstrated significant discrim-
inative power like wavelet-HHL_firstorder_Skewness, wavelet-HHL_firstorder_Mean,
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wavelet-LHH_firstorder_Mean, wavelet-HLL_glszm_LargeAreaHighGrayLevelEmphasis,
and wavelet-HLL_glsz_LargeAreaHighGrayLevelEmphasis.
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Conventional perfusion parameters also showed significant predictive value. In the
Logistic Regression classifier, six out of the seven evaluated parameters were among the
ten most important variables of the top-performing models, while three were included in
the AdaBoost classifier.

4. Discussion
In this study, we developed an integrated machine learning framework that combined

radiomics features extracted from DSC MRI with several perfusion parameters to differ-
entiate tumor progression from radionecrosis in glioma patients. Our best-performing
classifier, Logistic Regression, achieved an outstanding AUC of 0.88 under GroupKFold
cross-validation. These findings underscore the potential of multimodal data fusion to
surpass the performance reported in previous studies that have evaluated perfusion pa-
rameters or radiomics in isolation.

Our results demonstrate that classical perfusion metrics—including rCBV, CBF, MTT,
mean TIC, and MSID—were among the top contributors in classifying tumor progression.
This is in concordance with earlier works indicating that recurrent tumors typically exhibit
elevated rCBV and altered hemodynamics relative to radionecrosis [32,33]. Increased rCBV
and CBF values are strongly associated with tumor recurrence, whereas radionecrosis
tends to present with lower perfusion indices, likely due to radiation-induced vascular
damage and fibrosis [34–37]. Similarly, our observation that the mean normalized TIC and
rCBV significantly predict progression aligns with these studies and reinforces the clinical
relevance of DSC MRI-derived perfusion measures.

Furthermore, our radiomics analysis revealed that wavelet-transformed features pro-
vided additional discriminative power. In our model, wavelet-HHH_firstorder_Mean was
inversely associated with progression, suggesting that certain intensity patterns in these
frequency bands may reflect the aggressive biology of recurrent gliomas. Prior works
highlighted that wavelet-based texture features are capable of capturing intratumoral
heterogeneity and have been correlated with molecular signatures in glioblastoma [38].
These results support our finding that incorporating wavelet-based radiomics features,
which capture subtle textural differences beyond what is apparent in the raw perfusion
data, enhances model performance. These areas tend to exhibit a more homogeneous and
fibrotic structure with altered signal recovery characteristics, as suggested by recent studies
using texture analysis to differentiate post-radiation changes from recurrent tumors [39–41].



Life 2025, 15, 606 11 of 16

Although the literature on radiomics correlates of radionecrosis is not as extensive as that
for tumor progression, our findings are consistent with the hypothesis that radionecrosis
presents a unique textural signature on DSC MRI.

The combination of radiomics and MRI perfusion parameters in the study of glioma
is not completely new. Previous studies have tackled a set of diagnostic and prognostic
problems using this combined approach. For instance, Crisi et al. [42] evaluated 92 quan-
titative features on rCBV and rCBF maps to predict the MGMT promoter methylation
status on brain gliomas. They found that the best-performing model (MLP) using the five
most relevant imaging features showed good performance, with an AUC of 0.84. A similar
approach to predict glioma grade was followed by Hashido et al. [43], who found that
a radiomics model combined with rCBV from DSC MRI achieved excellent performance
(AUC = 0.962) in differentiating between low- and high-grade gliomas. Interestingly, they
also found that a similar model based on arterial spin labeling perfusion MRI instead of
DSC MRI showed non-significantly lower results. In addition, Sudre et al. [44] applied a
random forest model to combined radiomics–DSC MRI metrics, achieving good results to
predict the IDH mutation status and glioma grade (WHO II–IV), with overall specificity of
77% and sensitivity of 65%. Notably, the results for WHO glioma grade classification were
significantly worse (53% of gliomas were correctly classified).

To our knowledge, only two previous studies have explored a combined approach
based on radiomics and perfusion MRI to differentiate between radionecrosis and glioma
progression. Elshafeey et al. [16] aimed to differentiate between pseudoprogression
and true progression in a cohort of 98 patients with glioblastoma. They extracted over
300 radiomics features from rCBV and kTrans perfusion maps and applied a support
vector machine model, achieving outstanding results with AUC values of 0.94 and 0.90,
respectively. Similarly, Kim et al. approached the same problem in a cohort of 61 patients
with glioblastoma [45]. They developed a combined approach including radiomics and
multiparametric (contrast-enhanced T1, FLAIR, diffusion, and rCBV map parameters)
MRI, achieving an AUC of 0.90. Our approach is different to these two previous studies,
since we merged the information provided by the TIC-derived parameters with that from
radiomics features extracted in the ROI (i.e., as independent variables). Conversely, the
previous authors extracted radiomics features from maps of specific perfusion parameters
(e.g., rCBV).

The main advantages of our conceptual approach lie in the combination of TIC-derived
parameters and radiomics features, providing cues regarding the relative contribution of
both approaches in each machine learning method, facilitating their explicability and
opening interesting questions to be approached in future studies. Notably, while DSC
MRI-derived parameters provide physiologic insights regarding vascular perfusion and
hemodynamics, radiomics features capture underlying tissue heterogeneity. In our study,
the 10 most relevant variables of the Logistic Regression model included more TIC-derived
variables, leading to an AUC of 0.88 and precision of 78%, whereas AdaBoost included
more radiomics features than TIC-derived variables, leading to an AUC of 0.79 and the
same precision (78%).

Nevertheless, some relative discrepancies exist between our findings and earlier
reports that have evaluated individual DSC MRI parameters in isolation. For example,
some studies have noted that the standalone performance of perfusion parameters such
as TTP is modest [46], which may be attributable to inter-patient variability in acquisition
protocols or postprocessing methods. Our study suggests that combining these traditional
parameters with radiomic texture features mitigates such variability and enhances the
robustness of the predictive model.
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Several limitations must be acknowledged. First, our cohort was small (46 patients)
due to limited availability of eligible cases in our institution. However, the sample size
obtained is comparable to that of previous works on the topic [41,44], and the data distri-
bution and statistical results in the present study, along with the balance of the outcome
categories, support the validity of our conclusions—especially considering the conceptual
nature of our approach. Similarly, all MRI examinations were performed in the same scan-
ner, which also limits the external validity of our findings. In addition, the gold standard
(histopathology or radiological follow-up >6 months) does not totally exclude selection
bias, e.g., delayed recurrence misclassified as radionecrosis. Moreover, one MRI study had
35 temporal frames rather than the 40 used for most subjects due to a data transfer error
between the MRI scanner and the PACS, potentially introducing variability in the extracted
radiomics features. However, the missing time frames were at the end of the time series;
thus, it is unlikely that they significantly affected the TIC-derived parameters.

Another important limitation lies in the high dimensionality of the radiomics data
which, combined with a relatively limited sample size and lack of explicit feature selection,
poses a risk for model overfitting. In addition, the proposed model is a classifier that
uses temporal sequences as observational units instead of patients. We have observed
that it normally classifies all 40 temporal sequences of the same patient in the same way,
but when this is not the case (e.g., in future studies), a threshold-based system should be
generated to determine whether the patient belongs to one class or another. Finally, the
models’ accuracy was not compared with the performance of neuroradiologists. Of note,
such a comparison is difficult and sometimes unrealistic, since the degree of uncertainty of
the neuroradiologist is high in many cases, which prevents them from giving a definitive
diagnosis and makes them suggest close imaging follow-up. The RANO criteria would be
an appropriate benchmark in future studies, although they are usually restricted to clinical
trials and not commonly used in real-world practice [47].

Future research should overcome these limitations and explore other approaches that
were out of the scope of the present study. For instance, whilst we focused on the radiomics
features contained in PyRadiomics, other texture feature analysis tools such as MaZda [48]
could offer additional information of interest. Similarly, although we applied all the state-of-
the-art classifiers, including neural networks (MLP), more complex architectures like deep
learning models were not used due to the small size of the dataset and the unavailability
of a pre-trained model for similar cases. Future studies should explore the potential of
these models. In sum, external validation in larger, multicenter cohorts will be necessary to
confirm the robustness and utility of our integrated machine learning approach.

5. Conclusions
We demonstrated that a radiomic–perfusion approach—combining DSC MRI perfu-

sion parameters with texture-based features—can reliably distinguish radionecrosis from
tumor progression in a limited glioma patient cohort. Our top-performing model achieved
an AUC of 0.88, underscoring the promise of integrating conventional perfusion measures
with higher-order radiomic descriptors. However, the small sample size limits the gener-
alization of these findings; thus, these results should be viewed as an initial step toward
more comprehensive investigations.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/life15040606/s1: Supplementary File S1 (Checklist.pdf): Check-
list for evaluation of radiomics research. Supplementary File S2 (1.py): Script that converts
medical imaging files (DICOM, NRRD) to NIfTI, aligns perfusion with segmentation, and ex-
tracts imaging metrics for patients. Supplementary File S3 (2.py): Script that extracts radiomics
features from perfusion images using PyRadiomics, processing multiple patients in parallel.
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Supplementary File S4 (3.py): Script that reads the extracted features and counts the number of
timepoints per patient. Supplementary File S5 (4.py): Script that cleans the extracted features by
removing unnecessary columns and saves the cleaned data. Supplementary File S6 (RadiomicsFea-
tures.xlsx): List of radiomics features extracted with PyRadiomics. Supplementary File S7 (5.py):
Script that computes time–intensity curves (TICs) from perfusion images, normalizing and smoothing
them for analysis. Supplementary File S8 (6.py): Script that merges extracted features with normal-
ized TICs into a single dataset. Supplementary File S9 (7.py): Script that uses scikit-learn to train
machine learning models for progression prediction using extracted features. Supplementary File S10
(PatientFolds.pdf): Distribution of patients in the different folds in this experiment.
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