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Abstract
Instrument calibration is essential to ensure measurement accuracy and reliability, particularly
in wood characterization using non-destructive acoustic techniques. This study aims to develop
and validate an improved calibration strategy for wood characterization tools. It focuses on
integrating advanced algorithms into resource-constrained microcontroller systems. An
optimized time-of-flight (ToF) detection algorithm based on the Akaike Information criterion
(AIC) was implemented. The algorithm incorporates adaptive intelligent windows to
autonomously identify the onset of acoustic waves, eliminating user intervention and enhancing
repeatability. A suitable calibration material compatible with commercial piezoelectric sensors
was identified and adapted for testing. Experimental investigations were carried out on
cylindrical rods of various materials and lengths to measure acoustic wave propagation velocity,
comparing results from two commercial systems and a laboratory-developed prototype. ToF
measurements obtained with the prototype showed a high level of agreement with theoretical
propagation times, outperforming commercial systems in accuracy and computational
efficiency. These findings support the use of an aluminum bar as the reference calibration
material, alongside the intelligent AIC algorithm, to ensure consistent and reliable
measurements. The proposed calibration strategy offers a robust and repeatable solution for
wood characterization applications. By optimizing computational efficiency and accuracy, this
approach enables the integration of advanced acoustic measurement techniques into
cost-effective, microcontroller-based systems, paving the way for broader adoption in industrial
and research settings.
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1. Introduction

The increasing demand for high-quality wood materials in
various industries calls for innovative methods that guaran-
tee the reliability and consistency of wood properties across
the entire production chain, from silviculture to final product
manufacturing [1–3]. Measuring the quality of trees through-
out their growth and plantation years is crucial, as it enables
the optimization of silvicultural practices and the production
of higher-quality wood [4]. Early and continuous characteriz-
ation of trees during their development can lead to better man-
agement strategies, ensuring that the wood harvested at matur-
ity meets the desired standards [5]. This approach not only
improves the overall health and productivity of forests, but also
contributes to the creation of wood materials with enhanced
mechanical and physical attributes. Non-destructive testing
(NDT) technologies, particularly those based on acoustic
emission (AE) techniques, have emerged as effective tools for
this purpose [6, 7]. These methods provide valuable insights
into the material’s properties without causing any damage,
making them an essential component of modern wood qual-
ity control [5].

A central aspect of AE NDT is the measurement of the time
of flight (ToF) of an acoustic wave as it propagates through
a material [8]. ToF represents the elapsed time it takes for an
acoustic wave to travel from its source to a designated detector,
typically a piezoelectric sensor. This measurement is a key
indicator of the material’s internal structure and mechanical
properties [9]. The propagation velocity of the acoustic wave,
which is inversely related to the ToF, can reveal important
information about material homogeneity and the presence of
internal defects. A reduction in ToF may indicate an elong-
ated wave path, often caused by material heterogeneities or
defects [10].

For the effective application of acoustic NDT, particularly
for the assessment of mechanical properties such as stiff-
ness and strength, precise detection of the wave’s onset time
is crucial [10–12]. Accurate identification of when the wave
begins to propagate enables reliable measurements, facilitat-
ing a precise and non-destructive evaluation of various mater-
ials’ properties. This becomes especially challenging when
working with intelligent, autonomous algorithms that must
process this information on a portable, embedded system with
limited computational resources.

One of the biggest challenges in AEmeasurements is signal
processing, which remains a key issue in the damage assess-
ment and materials characterization. Much work is required to
further improve the analysis of parameters and waveforms in
AE signal processing, especially with regard to the normalisa-
tion of extracted features [13]. Some studies have focused on
developing algorithms for accurate ToF determination, often
relying on computationally expensive methods [14–16] or
requiring user intervention for parameters selection [11, 17–
22], reducing repeatability and automation.

This study addresses these limitations by introducing
a novel calibration strategy that integrates an optimized
ToF detection algorithm based on the Akaike Information

Criterion (AIC) with adaptive intelligent windows. This
autonomous approach identifies acoustic wave onset,
enhancing repeatability and eliminating user interven-
tion. However, this study goes beyond merely evaluat-
ing the effectiveness of such algorithms; it also aims to
identify a feasible solution that can be embedded in low-
computational-cost systems. This includes the develop-
ment of algorithms capable of accurately interpreting ToF
data under different conditions, ensuring robust and reli-
able assessments even in resource-constrained embedded
environments.

This work addresses the development of a robust calibra-
tion strategy for an emerging prototype designed to perform
non-destructive characterization ofwood. Accurate calibration
ensures the reliability and repeatability of results, essential for
adoption in both industrial and research settings. The object-
ives of this study are summarized as follows:

(1) Optimization of intelligent autonomous algorithms for the
accurate and reliable acquisition of the acoustic wave’s
onset time captured by piezoelectric sensors. A compar-
ison of the computation time and the reliability of the res-
ults was carried out to embed the algorithm in a limited
computational result system.

(2) Experimental determination of the acoustic wave’s
propagation velocity in cylindrical calibration rods
of commercial materials by non-destructive acoustic
techniques.

(3) A benchmark of various commercial devices and the emer-
ging tool for obtaining the ToF in different materials and
its accuracy.

By addressing the growing demand for precise and effi-
cient quality control in wood production, this study advances
acoustic measurement science and offers a scalable solution
for structural health monitoring, material characterization, and
industrial applications.

2. Method and materials

2.1. Structural quality characterization of a material

The modulus of elasticity (MoE) is a mechanical property that
indicates a material’s stiffness. In the context of civil engineer-
ing, this property is indispensable for the design of structures
that need to support large loads without undergoing deforma-
tions. Choosing themost economical and sustainablematerials
when designing a structure requires studying their MoE since
it indicates the material’s ability to resist deformations under
loads. The higher the stiffness, the higher the MoE value [23].

This characteristic of materials relates stress-strain proper-
ties when they have a linear relationship [24]. The relationship
is expressed in two ways, depending on the nature of the test
performed on the material:
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• Modulus of static elasticity (MoEsta): subjected to deform-
ation tests in a tensile strength testing machine [25].

MoEsta =
σ

ε
(1)

where σ is the normal stress and ε is the strain.
• Modulus of dynamic elasticity (MoEdyn): obtained by
dynamic methods involving the propagation of elastic
waves [25].

MoEdyn = vprop
2 · ρ (2)

where vprop is the propagation velocity and ρ is the density
of the sample.

Because the procedure for obtaining the same property
depends on the test carried out, the resulting numerical value
will be similar but not the same. Numerous works correl-
ate dynamic and static MoE values and show that it is pos-
sible to predict the MoE value from non-destructive tests [26–
28]. Previous studies show that the dynamic MoE tends to be
slightly higher than the static MoE [12, 29].

2.2. Description of the acoustic techniques

NDT based on acoustic techniques aims to determine the prop-
erties of a material by measuring its acoustic parameters such
as the wave’s propagation velocity or the wave’s resonance
frequency propagated inside the material. In this context, the
propagation velocity is an intrinsic property of the material
that is directly related to its MoEdyn [28]. The wave propaga-
tion velocity in the material is determined non-destructively as
follows:

vprop =
distance
ToF

(3)

considering the distance between the sensors and the ToF as
the time required for the wave to travel that distance.

A shorter propagation time implies a higher propagation
velocity, which is associated with fewer general defects (such
as knots, cracks, splits, or fibre deviations) in the material.
Therefore, to achieve high-quality structural wood products,
the propagation velocity should be maximized, which in turn
will result in a higher MoE value.

In the wood value chain, NDT to assess wood quality can
be performed at different stages: on the standing tree, on the
log, or on the board. Figure 1 illustrates the measurement of
ToF on a standing tree [26], which is the main objective of
the equipment under development. The test consists of placing
two piezoelectric sensors on thematerial: one near the emitting
source (S1) and the other one at a set distance (S2).

Under controlled laboratory conditions and with the aim
of establishing a measurement protocol to calibrate the
device, tests were performed with different non-destructive
equipment.

Figures 2(a) and (b) show the laboratory tests on a bar [23]
using the AE equipment and the novel NDT tool, respectively.

Figure 1. Scenario for wood quality measurement in standing trees
using non-destructive acoustic techniques.

A wave is artificially generated at or near S1. Both sensors
capture the wave, although a delayed and attenuated version
of the wave detected at S1 is recorded at S2 figure 2(c). This
delay corresponds to the ToF value, calculated from the onset
time of each wave as.

ToF= tinit,S2 − tinit,S1 (4)

where tinit,S2 is the wave’s onset time captured by sensor S2
and tinit,S1 is the wave’s onset time captured by S1.

2.3. ToF algorithms for determining an acoustic wave onset
time

As previously indicated, it is necessary to find an algorithm
that can automatically and accurately estimate the waves’
onset time, t1 and t2 (figure 2(c)). Detecting the onset time
is not trivial, since an inaccurate algorithm can lead to an
erroneous calculation of the acoustic wave propagation velo-
city, and consequently of the MoE. Therefore, in this paper,
two algorithms are proposed to estimate the onset time of the
signal:

• First Threshold Cross (FTC) algorithm: This algorithm
is widely used due to its simplicity. The ToF can be estim-
ated from the time when the raw signal crosses a previously
defined amplitude threshold [17]. The selection of an appro-
priate threshold for each kind of signal requires a thorough
analysis of the signals according to the environment and the

3



Meas. Sci. Technol. 36 (2025) 046134 I Gil-Martín et al

Figure 2. (a) Experimental set-up of the ToF measurement test on a
bar using the acoustic emission equipment and a pencil-lead
breakage (PLB) as source; (b) Experimental set-up of the ToF
measurement test using the novel NDT characterization tool and a
hammer hit as source; (c) Examples of waves captured by each
sensor with indication of the arrival time of each wave and the ToF
between them.

material [18, 19]. This method is theoretically simple and
requires low computational time, which makes it an efficient
and practical option for computer implementation.

• AIC algorithm: The AIC algorithm can effectively separate
different events in a transient signal or determine the signal
arrival time [30–32]. This statistical method divides the sig-
nal at a point of entropy change: high entropy is expected in
the noisy signal region, to the left of the signal start, while
low entropy is expected on the right, after the transient signal
start [18].

The function that allows estimating the entropy difference in
a signal is defined as:

AIC(k) = k · log
(
σ2 (x [1 : k])

)
+(N− k− 1)

· log
(
σ2 (x [K+ 1 : N])

)
(5)

where N is the total sample count of the signal, and k rep-
resents the order of each sample, ranging from 1 to N. The
signal onset time is related to maximum entropy, and there-
fore the AIC function will reach its minimum value. The AIC
algorithm requires the selection of a signal window. In the
literature, many studies have estimated the window sample
length based on visual observation [20–22]. However, changes

Figure 3. Phases followed in the study of the calibration strategy
for a non-destructive testing tool to characterize wood.

in the sampling frequency or selecting a window that is too
small to capture the event can lead to errors in determining the
wave onset time. In order to eliminate the inconvenience of
visual window selection, this paper proposes a novel improve-
ment by means of automatic window selection based on the
maximum amplitude of the signal, which is close to the start
of the signal. Two versions of the algorithm are proposed: a
fixed window (AIC F.W.) visually selected as described in the
literature [20]; and a newly proposed intelligent and autonom-
ous variable window (AICV.W.) valid for any kind and for any
sampling rate.

Numerous papers have already analyzed acoustic signals
using AIC algorithms [18, 33, 34]. Specifically, a comparison
between FTC and AIC algorithms focused on wood [19]. No
references have been found that evaluate the vulnerability of
the AIC algorithm to sampling frequency variations. The exist-
ence of different levels of background noise has been studied,
although the proposed method involves a high computational
cost [33, 35]. While the AIC algorithm is intended to detect
various types of changes, there is limited analysis on how to
address multiple changes within the specific portion of the sig-
nal where the algorithm is applied.

In this paper, the comparison in terms of measurement
accuracy will be analyzed, as well as aspects related to the
computational cost of both algorithms in order to evaluate the
minimum characteristics of the systems used to implement
them. Previous research has investigated the computational
time of AIC [31], but without considering the feasibility of
its integration into a system with limited resources.

2.4. Experimental procedure

The calibration strategy developed entailed five phases, as
illustrated in figure 3, explained in detail in section 2.5. First,
various materials were selected as potential calibration bars,
and these materials were prepared in the form of bars of dif-
ferent lengths (section 2.5). Next, several acoustic tests were
conducted, and data analysis was performed to assess the reli-
ability and repeatability of the experimental measurements
(section 2.6). Given the need for a wooden block to insert the
piezoelectric sensors, the bars were modified through machin-
ing. Non-destructive tests were subsequently conducted with
the new configuration, and the resulting data were analyzed.
Finally, a comparison of the results obtained with different
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Table 1. Materials used for the calibration bars, including properties, diameters, and prices.

Material

Description

Isotropy Homogeneity
Density
(g cm−3)

MoEsta

(GPa)
Diameter
(mm)

Price
(€/m)

Propagation velocity
(m s−1)

Stainless steel AISI-304 3 3 7.93b 193b 25 34.83c 4933
Aluminum 7075 T6 3 3 2.80a 72a 25 18.85c 5000
Perlitic cast iron (GG) 3 3 7.20a [100–120]a 25 11.89c [3727–4085]
Brass (CuZn39Pb2) 3 3 8.45b 102b 25 48.51c 3475
Plastic Delrin POM C 8 3 [1.41–1.43]a 3a 25 6.57c 1459
Beechwood 8 8 [0.71–0.73]b 14.8 · 10−3b 25 2.59c [4566–4503]
a Information given by the manufacturer.
b Information obtained from bibliographic sources.
c Prices excluding taxes and transportation charges, referred to June 2022.

equipment was carried out, leading to the establishment of the
calibration strategy.

2.5. Material description

To select the most suitable calibration bar in terms of mater-
ial and length, cylindrical rods made from various commercial
materials were chosen. NDT was conducted on these rods to
assess the acoustic wave propagation velocities. Table 1 lists
the six materials analyzed, along with their respective proper-
ties, covering a broad range of densities, elastic moduli, costs,
and acoustic propagation velocities. Beechwood was used to
adapt the bars to the positioning requirements of the sensors
for wooden applications, not as a material for the calibration
bar. For each of the 5 materials selected for the calibration
bars, six different bar lengths were prepared, ranging from
150 mm to 1479 mm, as shown in figure 4. Figure 5 provides
a real image of the bars of varying lengths and materials. The
initial tests in phase 2 were performed with the bars of con-
stant cross-section (figure 4(b)). However, as the commercial
piezoelectric sensors used for wood applications specifically
the SD-02 sensors from Fakopp (figure 6) need to be inser-
ted into wood, the bars were adapted to incorporate a piece
of wood. To this end a machining procedure was proposed as
phase 3, shown in figure 4(c). This procedure involves drilling
cylindrical holes at both ends of the bars, into which beech-
wood cylinders were inserted, ensuring proper placement of
the sensors, and enabling them to capture the propagating
acoustic waves within the material. To enhance wood-to-metal
adhesion and ensure the bar behaves as a single element under
vibrations, a thin layer of silicone grease was applied as a
coupling agent between the metal and the wood.

2.6. NDT equipment for wood quality characterization

Three measurement devices were selected for this research: a
commercial laboratory AE system for obtaining highly accur-
ate data (AE equipment, described in section 2.6.1); a com-
mercial NDT tool that measures acoustic wave propagation
times (MST tool, described in section 2.6.2); and a prototype
developed in our laboratory for conducting non-destructive
acoustic tests, designed to be a user-friendly field device

Figure 4. Scheme of the bar preparation process following phases
described in figure 3: (a) bars prepared for cutting; (b) bars with
different lengths; (c) machined bar with a detail image of the
machining section; (d) table with the dimensions indicated in the
diagram by letters, all in mm.

that delivers comprehensive technical results (TIK TREE,
described in section 2.6.3).

2.6.1. Vallen systeme AE equipment. The AE equipment
used to characterize the materials is the Vallen Systeme
AMSY-6. VS-150M piezoelectric sensors with a 150 kHz fre-
quency resonance [37] were placed on the surface to acquire
the wave (figure 7). A layer of silicone grease is placed
between the material and the sensor to ensure proper wave
propagation. For a correct sensor-equipment interface, the
AEP4 amplifiers were used with a gain of 34 dB [38].
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Figure 5. Real image of the bars with different lengths. Materials:
BR refers to brass, SS to stainless steel, AL to aluminum, PL to
plastic, and CI to pearlitic cast iron (GG).

Figure 6. SD-02 piezoelectric sensor from Fakopp. (a) Side view
and top view [36]; (b) Dimensions for the side view, all in mm.

Figure 8 shows the AE tests’ experimental set-up for phases
2 and 4. Once the wave was recorded, the signals were pro-
cessed using the different algorithms to obtain the ToF in each
case.

Figure 7. VS-150M sensor from Vallen Systeme. (a) Real view of
the sensor; (b) Frequency spectrum of the sensor.

Figure 8. Experimental set-up for AE tests.

As the AE source,pencil-lead breakage (PLB) was used, it
being a long-established standard as the reproducible artificial
source for different applications. Often this type of source is
also referred to as the Hsu-Nielsen source, based on the ori-
ginal works of Hsu and Nielsen [39]. These types of signals
obtained using PLBs are highly reproducible if the manipula-
tion of the lead holder is accurately repeated [40].

After the instrumentation was installed, a PLB test was
performed as a calibration procedure to verify proper func-
tionality. EA tests were conducted on all the bars at six dis-
tinct, equidistant positions between the sensors, as shown in
figure 2(a). At each position, five breakages were carried out,
resulting in a total of 30 data points for each bar.

2.6.2. Fakopp microsecond timer (MST) NDT tool. MST
is a NDT tool for evaluation of trees from Fakopp company.
It was designed to help determine the structural soundness of
trees by measuring the ToF of an acoustic wave. The measured
time is indicative of solid wood, or a problem area caused by
decay, fungus, or other structural damage [36]. This tool only
provides the propagation time between the two sensors, not
giving any information about the recorded waves or the time
determination procedure.

The sensors used in this test were the model SD-02 from
Fakopp, shown in figure 6, with a resonant frequency of
23 kHz. The experimental set-up used in Phase 4 is shown in
figure 9.
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Figure 9. Experimental setup for tests using MST tool.

Figure 10. Experimental setup for the laboratory-developed
non-destructive AE testing tool.

The SD-02 sensors must be driven into the material under
study at a depth of 12 mm parallel to the bar. A hit of a ham-
mer of 100 g on one of the sensors was used as an acoustic
source. In this case, 5 repetitions were carried out on each
sensor. Therefore, a total of 10 measurements per bar were
registered.

The calibration method proposed with this equipment is
based on the use of an optional calibration bar provided by
the manufacturer. The manual of the equipment indicates the
time (with known error) to be recorded during the calibration
test. When the calibration time indicated by the manufacturer
is obtained, the equipment is ready to give reliable measure-
ments. If the measured ToF does not match the calibration
time, the user must add manual post-processing in the office,
where the results must be corrected by adding or subtracting
the value obtained in the calibration test [33]. This procedure
hinders measurements in that the real values are not obtained
in the field and can lead to errors.

2.6.3. TIK TREE, an NDT tool prototype. TIK Tree is an
emerging tool for non-destructive wood characterization. This
portable, innovative, and low-cost device was used with the
commercial SD-02 sensors (figure 6) by Fakopp. The exper-
imental setup of the Phase 4 tests using the prototype equip-
ment is shown in figure 10.

The measurement procedure is the same as in the previous
section. That is, each sensor is hit 5 times on each of the bars;
hence there will be 10 measurements per bar.

Finally, it should be noted that the calibration of this equip-
ment will depend on the study carried out in this research. The
idea is to include an easy-to-handle bar (laboratory-measured
with the equipment) allowing the user to perform a calibration
experiment. The calibration mode is selected from the general
menu before proceeding to perform the calibration test. The
tool measures the ToF of the propagated wave and compares it
with the factory setting. The difference will be adjusted auto-
matically within the equipment, assuring accurate and reliable
results.

3. Results and discussion

3.1. Optimization and reliability validation of ToF
determination algorithms

In this research, three options of algorithms are proposed
for determining the onset time of an acoustic wave the FTC
algorithm [17–19] and two versions of the AIC algorithm [30–
32] along with two alternatives: fixed window (AIC F.W.) or
variable window (AIC V.W.). The aim of the first analysis is
to determine themost accurate algorithm and appraise whether
the computational cost is reasonable to embed it into a system
with limited computational resources. This section addresses
their advantages and disadvantages, including statistical ana-
lysis of the computation time.

Figure 11 offers an example of the transient signals recor-
ded during the AE test carried out on the 148 cm length alu-
minum bar, including the threshold, the AIC values and the
ToF using all three algorithms. The upper signal comes from
the S1 sensor, closest to the source. The signal below was
recorded by S2, being farthest from the source. The dashed
curve lines represent the AIC values. As seen, the onset time
is set at the point where the minimum AIC value is reached.
The vertical lines indicate the onset times of the signal apply-
ing the three proposed algorithm versions.

Observing signal S1, the FTC algorithm and the optimized
AIC V.W. algorithm estimated the onset of the wave with good
accuracy. However, the AIC F.W. algorithm (not optimised)
did not properly detect the onset in the S1 registered wave.
Observing the AIC F.W. values, a minimum found at 2.9 µs
would be related to the onset of the signal, but the global min-
imum is obtained at 175.5µs, associatedwith a change in amp-
litude of the wave (attenuation of the signal). Automatically,
the algorithm selects as ToF the globalminimumofAIC, so the
automatic detection using a fixed window is erroneous. This
fact supports the statement that the visual selection of the win-
dows to apply the AIC algorithm can induce errors in certain
cases. The fact of considering the window size (N) in the AIC
calculation has already been recognized in previous studies
[11, 41], where these values have been shown to significantly
influence the AIC results, which underlines the importance of
taking them into account when applying the algorithm [27].

It should be stressed that for the FTC algorithm, the sig-
nal was visually studied, and the threshold was chosen con-
scientiously. Despite this, in some cases (like the S2 sensor
signal) the FTC algorithm had indicated a start prior to where
the signal actually started. Setting the threshold in a generic
way is very complicated, especially for signals propagated in
non-homogeneous media.

Note that the difference between the AIC V.W. and the
AIC F.W. algorithms is the number of events that lead to
a change in signal entropy. As the theory of this criterion
dictates, for good results, the part of the signal contain-
ing the event to be detected must be analyzed [10]. As
an example, table 2 presents the mean values and stand-
ard deviation (STD) obtained for aluminum bars of different
lengths, applying the three algorithms and comparing them
with the theoretical value. It can be observed that the STD
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Figure 11. Examples of the transient signals recorded during the AE test carried out on the 148 cm length aluminum bar, the threshold, the
AIC values, and the ToF using the three algorithms. (a) Signal coming from S1, the sensor closest to the source; (b) Signal coming from S2,
farthest from the source.

Table 2. ToF measured on bar of aluminum of different lengths calculated applying the AIC F.W., AI C.V., and TOF, along with theoretical
values.

Length
(cm) Algorithm

AIC F.W.
(µs)

AIC V.W.
(µs)

FTC
(µs)

Theoretical
(µs)

147.9 Mean 244.4 279.9 279.8 291.5
STD 79.4 3.7 3.7 —

119.6 Media 238.3 238.5 238.5 235.1
STD 38.2 4.0 4.0 —

89.7 Media 150.3 179.3 179.6 177.1
STD 68.0 4.5 4.7 —

59.6 Media 66.3 118.4 118.3 117.7
STD 74.8 7.8 7.8 —

29.5 Media 52.6 52.5 52.6 58.2
STD 3.1 3.1 3.0 —

15.0 Media 24.4 24.5 24.5 29.2
STD 1.1 0.9 0.9 —

values obtained with AIC F.W., where a fixed window is
applied in all cases, are more than 20 times higher for the
147.9 cm bars and approximately 10 times higher for the
119.6 cm, 89.7 cm, and 59.6 cm bars, compared to the AIC
V.W. and FTC algorithms. Therefore, in terms of measure-
ment accuracy, the optimized AIC V.W. algorithm should be
taken as the one that detects the wave onset with the highest
accuracy.

In terms of computational time, figure 12 shows a graph of
the computation time required by each algorithm, having run
500 iterations of each algorithm on the same signals. This pro-
cedure was repeated for four runs. Therefore, the computation

time was estimated for a total of 2000 runs of each algorithm
on the same signals.

The computer used for the measurements had a 13th gen-
eration Intel i7-1355U 1.70 GHz processor with an installed
RAM of 32 GB (31.6 GB usable) and a 64-bit operating sys-
tem with an x64-based processor. The operating system used
was Windows 11 multitask system, resources far beyond what
any microcontroller can offer.

The significant changes in time as measured from one iter-
ation to another were a result of Windows background multi-
tasking processes, which introduced uncontrolled and undesir-
able interruptions.
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Figure 12. Computational time of the AIC F.W., AIC V.W. and FTC algorithms on four executions of 500 repetitions each, of the signals
recorded on the AE test carried out with 29.5 cm length AISI-304 stainless steel bars.

From a temporal computational perspective, the FTC
algorithm is the least time-consuming, processing 4096
samples in an average time of 14 ms. In contrast, both versions
of the AIC algorithm take around 60ms per run (AIC F.W. pro-
cesses 2000 samples, while AICV.W. less than 1000 samples).
Although the AIC algorithm is four times slower than the FTC
algorithm, it could be successfully used with a lower-resource
system such as the TIK Tree tool.

Considering these results, in the following sections only the
AIC V.W. and FTC algorithms are compared. The AIC F.W.
algorithm was rejected due to its inefficiency and high margin
of error.

3.2. Estimation of the propagation velocity of an acoustic
wave in different materials

AE tests were carried out to measure the propagation velo-
city inside cylindrical bars of different isotropic and homo-
geneous commercial materials, following the indications of
section 2.6.1. Table 3 shows the ToF measured on the bars
of different materials and lengths, applying the AIC V.W. and
FTC algorithms.

It can be observed that the highest STD are obtained for
the FTC algorithm, but they are not always larger for longer
bars. For example, in the case of brass, higher STD values
are found for 119.6 cm and 89.7 cm than for 149.7 cm, while
for Plastic Delrin, the highest STD is observed at 119.6 cm.
This indicates that high STD values are primarily associated
with the algorithm used for ToF detection. These results high-
light the limitations of the FTC algorithm, which is based
on a fixed amplitude threshold and is particularly sensitive to
wave dispersion, attenuation, and noise, as small changes in
signal amplitude can lead to inconsistent results, in conson-
ance with previous research [11, 29]. In contrast, the proposed

autonomous approach, the AIC V.W. algorithm, is more robust
against these effects, providing greater accuracy and repeatab-
ility across different sample lengths and materials.

Figure 13 displays, as an example, the ToF results obtained
for the aluminum 7075 T6 bars of different lengths, includ-
ing both the theoretical values and those obtained with the
AIC V.W. and FTC algorithms. The propagation velocity was
obtained as the inverse of the slope of the linear regression
(y=mx+ n) of the bar’s length and the ToF measured in each,
considering all 30 repetitions carried out.

ToF= m ·L+ n (6)

where m is the regression slope, L is the length of the bar and
n is the error term.

The coefficient of determination (R2) is also indicated. The
R2 value for the theoretical values is not presented, as it is
always 1. In this case, it is evident that the dispersion between
ToF values is very low, except for the longest bars. It may
be because, as the bar length increases, factors such as atten-
uation, resonance frequencies, or propagation modes have a
more significant effect.

Table 4 shows the theoretical and experimental velocity val-
ues obtained with the AIC V.W. and FTC algorithms for each
material, including the R2 value. As seen, the experimentally
obtained velocities through NDT, in percentage variation, dif-
fer significantly from the theoretical values [42–46]. The vari-
ation remains below 5% in all metallic materials except for
iron, which reaches 14%. This low dispersion in metals was
expected, as they are homogeneous materials. However, the
high dispersion in iron is due to the pearlite-ferrite ratio in
its composition, which has a strong influence on the propaga-
tion velocity. If the theoretical velocity does not precisely
match the composition of the material supplied, variations in
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Table 3. ToF measured on bars of different materials and lengths, applying the AIC V.W. and FTC algorithms (mean ± STD), along with theoretical values.

Materials Stainless steel AISI-304 Aluminium 7075 T6 Perlitic cast iron (GG) Brass (CuZn39Pb2) Plastic Delrin POM C

Lengths
(cm)

Theor.
(µs)

AIC
V.W. (µs)

FTC
(µs)

Theor.
(µs)

AIC
V.W. (µs)

FTC
(µs)

Theor.
(µs)

AIC
V.W. (µs)

FTC
(µs)

Theor.
(µs)

AIC
V.W. (µs)

FTC
(µs)

Theor.
(µs)

AIC
V.W. (µs)

FTC
(µs)

149.7 299.2 316.2 ±
4.9

307.6 ±
33.3

291.5 279.7 ±
3.7

279.8 ±
3.7

379.6 332.2 ±
5.0

328.2 ±
44.9

425.0 442.1 ±
13.4

419.7 ±
30.4

995.4 881.0 ±
34.4

879.5 ±
34.3

119.6 243.3 260.2 ±
5.5

252.9 ±
17.4

235.1 238.5 ±
4.0

238.5 ±
4.0

306.9 277.7 ±
7.3

272.4 ±
31.8

343.9 357.6 ±
11.1

343.6 ±
30.7

809.3 706.2 ±
36.1

704.3 ±
37.6

89.7 181.8 194.4 ±
7.1

182.0 ±
20.7

177.1 179.3 ±
4.5

179.6 ±
4.7

230.0 208.1 ±
7.5

198.4 ±
24.6

258.4 269.6 ±
14.4

258.6 ±
35.7

604.9 447.9 ±
17.8

447.6 ±
17.7

59.6 121.2 130.4 ±
5.4

130.0 ±
17.5

117.7 118.4 ±
7.8

118.3 ±
7.8

153.2 144.0 ±
33.2

148.5 ±
44.4

171.8 172.9 ±
11.7

157.7 ±
14.7

403.3 270.7 ±
6.1

270.7 ±
6.1

29.5 59.8 56.4 ±
2.2

56.4 ±
2.2

58.2 52.5 ±
3.1

52.6 ±
3.0

75.6 62.1 ±
2.6

62.1 ±
2.7

84.9 73.7 ±
3.0

73.6 ±
2.9

198.9 134.1 ±
3.2

134.1 ±
3.2

15.0 30.4 26.3 ±
1.8

26.3 ±
1.8

29.2 24.5 ±
0.9

24.5 ±
0.9

38.4 30.8 ±
4.4

30.9 ±
4.4

43.2 35.3 ±
2.6

35.4 ±
2.7

101.2 65.3 ±
3.2

65.2 ±
3.2
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Figure 13. Bar length vs. ToF measured during the AE tests on the 7075 T6 aluminium bar, including the estimated theoretical values as
well as the values calculated using the AIC V.W. and FTC algorithms.

Table 4. Propagation velocities for all materials: theoretical (obtained from the static MoE) and experimental values, obtained as the inverse
of the regression slope of the regression line estimated for each material.

Algorithm Theoretical AIC Variable Window FTC

Materials

Mean
propagation
velocity
(m s−1)

Mean
propagation
velocity
(m s−1) R2

Variation
from

Theoretical
velocity (%)

Mean
propagation
velocity
(m s−1) R2

Variation
from

Theoretical
velocity (%)

Stainless steel AISI-304 4933.4 4539.3 1.000 8.0 4712.5 0.999 4.5
Aluminium 7075 T6 5075.9 5091.6 0.998 0.3 5091.6 0.998 0.3
Pearlitic cast iron (GG) 3904.7 4347.8 0.999 11.3 4450.4 0.998 14.0
Brass (CuZn39Pb2) 3474.6 3228.9 1.000 7.1 3397.4 1.000 2.2
Plastic Delrin POM C 1428.8 1607.7 0.994 12.5 1610.3 0.995 12.7

the measured velocity can occur, as demonstrated in [47]. On
the other hand, the variation in plastic exceeding 12% is reas-
onable due to its non-homogeneous nature and the variabil-
ity of its physical properties depending on the temperature
process [46].

This finding is consistent with the expected difference [11,
12, 29] since, although the property is the same, the methods
used to obtain it inherently produce variations in the result-
ing values. Moreover, the experimentally obtained velocities
for steel, aluminum, and brass agree with those reported in
other experimental studies [48, 49]. Reinforcing the reliab-
ility of the results for these homogeneous materials. In con-
trast, the larger deviation observed in iron and plastic further
supports the influence of microstructural heterogeneity and
material composition on wave propagation, highlighting the
importance of precise characterization when comparing the-
oretical and experimental values.

It is also noteworthy that in the case of the AIC V.W.
algorithm, the R2 is closer to 1 than for the FTC, both being
very good values of this parameter. Because the 29.5 cm bars
are the most suitable for transport and handling, and present
lower dispersion (STD) due to attenuation or mode interfer-
ences, from here on only the results on these bars will be
analyzed.

Figure 14. Experimental scenario for measuring the influence of the
waveguide of the SD-02 Fakopp sensors.

3.3. Experimental determination of the time propagation at
the sensor waveguide

Since the SD-02 sensor used for NDT inwood has awaveguide
of considerable size (60 mm), it was investigated whether the
propagation time at the tip of this sensor was despicable or not.
The experimental scenario of this verification test is shown in
figure 14. The time taken by the wave to travel through the
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Table 5. ToF times measured on the bars of 29.5 cm length using the three different equipment types and two algorithms (AIC V.W. and
FTC). (Mean values ± STD).

Equipments AE TIK MST

Materials
AIC V.W.

(µs)
FTC
(µs)

AIC V.W.
(µs)

FTC
(µs) (µs)

Stainless steel AISI-304 84.7 ± 5.2 84.6 ± 5.1 80.5 ± 3.0 105.8 ± 13.1 73.3± 4.3
Aluminium 7075 T6 70.7 ± 1.4 70.6 ± 1.3 71.9 ± 0.6 83.8 ± 1.7 71.4± 2.5
Pearlitic cast iron (GG) 92.5 ± 5.8 92.5 ± 5.8 92.8 ± 3.6 150.5 ± 10.7 84.2± 1.4
Brass (CuZn39Pb2) 113.9 ± 4.7 113.9 ± 4.8 103.8 ± 2.3 121.3 ± 6.5 99.3± 1.1
Plastic DELRIM POM C 253.1 ± 2.3 253.0 ± 2.3 194.8 ± 2.8 249.0 ± 3.9 180.6± 4.9

sensor tip was set to 14.1 ± 1.3 µs. This time value served to
correct the measurements recorded using these sensors.

3.4. Benchmarking of the ToF on different materials using
different NDT tools

This section benchmarks the ToF values obtained from
29.5 cm long bars using different NDT tools. The tests were
conducted with the AE equipment, following the configuration
shown in figure 8, the commercial MST equipment (figure 9),
and the laboratory-developed prototype TIK Tree (figure 10).
A layer of acoustic couplant was applied between the bar and
the wooden plugs (placed to allow the sensors to be driven
in) in order to enhance wave propagation between the two
materials.

TheAE tests and those performedwith the TIK tool enabled
recording of the signals registered by the sensors. In both
cases, the previously selected FTC and AIC V.W. algorithms
were applied. The propagation time of the wave through the
sensor tip was considered in the ToF calculation. While the
MST equipment provides a ToF value, it does not allow for
signal visualization.

Table 5 shows the ToF values measured on the 29.5 cm
long bars, with the three devices, applying the calculation
algorithms. Comparing the values obtained with AICV.W. and
FTC, for both in the AE and TIK tests, the AIC V.W. algorithm
generally yields lower STD values, except in the cases of stain-
less steel and aluminum in the AE tests. This is consistent with
findings in the literature, where it has been demonstrated that
the STD of FTC is generally higher than that of AIC [11]. The
TIK tool used with the AIC V.W. algorithm gives lower STD
values when compared to the AE tests, except in the case of
plastic. The threshold algorithm exhibits significantly higher
STD values, reaching up to 10% of the mean value in the
case of plastic. Thus, it can be said that AIC V.W. is more
accurate, since the threshold algorithm depends on a threshold
amplitude value chosen by the user. In signals recorded with
a relatively low sampling frequency, very large errors can be
obtained if an erroneous start sample is selected. Therefore,
for a low sampling frequency, the threshold method should be
discarded if the signal noise conditions are not well controlled.
This finding aligns with observations in other studies, where it
has been noted that themain advantage of AIC is its repeatabil-
ity. As these algorithms provide consistent results for the same

Table 6. Variation (%) of the mean ToF measured with the TIK and
MST tools compared to the ToF measured with the AE system using
the AIC V.W. algorithm.

Materials

Variation from AE (%)

TIK MST

Stainless steel AISI-304 5 13
Aluminum 7075 T6 2 1
Pearlitic cast iron (GG) 0 9
Brass (CuZn39Pb2) 9 13
Plastic DELRIM POM C 23 29

Table 7. Comparison of the dimensions, mass and price of the
selected materials.

Materials
L

(cm)
D

(mm)
m
(kg)

Cost
(€)

Stainless steel AISI-304 29.5 25 1.46 10.3
Aluminum 7075 T6 29.5 25 0.52 5.56
Pearlitic cast iron (GG) 29.5 25 1.33 3.51
Brass (CuZn39Pb2) 29.5 25 1.56 14.3
Plastic DELRIM POM C 29.5 25 0.26 1.94

signal, they are particularly useful when interpreting complex
signals, where multiple arrival points could be chosen manu-
ally, or in cases with very large datasets where manual inter-
pretation becomes impractical [41].Table 6 presents the per-
centage differences in the ToF measured with the TIK and
MST tools as opposed to the ToF measured with the AE sys-
tem using the AICV.W. algorithm. Overall, the ToFsmeasured
using MST tool present a greater deviation than the ToF meas-
ured using TIK tool (except from aluminum), but with a dif-
ference of 1%. It can therefore be deduced that the new equip-
ment proposal provides more accurate ToF estimates, closer to
laboratory equipment, than the commercial tool MST.

Finally, table 7 presents a comparison of the dimensions,
mass, and cost of the studied materials to select the calibra-
tion bar of the TIK Tree tool. This table aims to support the
material selection process, not only considering the repeatab-
ility and reproducibility of the measurements, but also identi-
fying the most portable, manageable, and cost-effective mater-
ial for production. It is evident that plastic is the cheapest
and most manageable material. Yet according to the results in
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table 4, which demonstrate that plastic did not provide repeat-
able measurements, it is deemed unsuitable for our purpose.
Therefore, the next most lightweight and affordable material
is aluminum, making it the most appropriate choice. The ToF
measured by all equipment is very similar, so that it can be
assured that ToF measurements carried out on cylindrical alu-
minum bars are repeatable and reproducible.

4. Conclusion

In this study, a calibration strategy was developed for a non-
destructive wood characterization prototype tool based on
acoustic measurements. To obtain a calibration bar suitable for
the correct placement of the sensors, the influence of the bar
machining process was investigated, including wooden plugs
to facilitate this purpose. Three algorithms were evaluated to
determine the arrival time of acoustic signals, highlighting an
innovative approach based on the well-known AIC algorithm,
enhanced by incorporating adaptive intelligent windows (AIC
V.W.). The results demonstrated that the AIC V.W. algorithm
provided more repeatable and reliable results and was suitable
for integration into microcontrollers with limited resources.
Several experimental tests were carried out to determine the
acoustic wave propagation velocity in bars of different materi-
als, comparing these values with theoretical velocities. In view
of the analysis and discussion of the results, the proposed cal-
ibration strategy involves the use of an aluminum bar 29.5 cm
in length and 25 mm in diameter, machined to include wooden
plugs for the attachment of piezoelectric sensors.
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