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BACKGROUND: Bone health is remarkably affected by endocrine side effects due to paediatric cancer treatments and the disease
itself. We aimed to provide novel insights into the contribution of independent predictors of bone health in young paediatric
cancer survivors.
METHODS: This cross-sectional multicentre study was carried out within the iBoneFIT framework in which 116 young paediatric
cancer survivors (12.1 ± 3.3 years old; 43% female) were recruited. The independent predictors were sex, years from peak height
velocity (PHV), time from treatment completion, radiotherapy exposure, region-specific lean and fat mass, musculoskeletal fitness,
moderate-vigorous physical activity and past bone-specific physical activity.
RESULTS: Region-specific lean mass was the strongest significant predictor of most areal bone mineral density (aBMD), all hip
geometry parameters and Trabecular Bone Score (β= 0.400–0.775, p ≤ 0.05). Years from PHV was positively associated with total
body less head, legs and arms aBMD, and time from treatment completion was also positively associated with total hip and femoral
neck aBMD parameters and narrow neck cross-sectional area (β= 0.327–0.398, p ≤ 0.05; β= 0.135–0.221, p ≤ 0.05), respectively.
CONCLUSION: Region-specific lean mass was consistently the most important positive determinant of all bone parameters, except
for total hip aBMD, all Hip Structural Analysis parameters and Trabecular Bone Score.

Pediatric Research; https://doi.org/10.1038/s41390-023-02645-8

IMPACT:

● The findings of this study indicate that region-specific lean mass is consistently the most important positive determinant of
bone health in young paediatric cancer survivors.

● Randomised clinical trials focused on improving bone parameters of this population should target at region-specific lean mass
due to the site-specific adaptations of the skeleton to external loading following paediatric cancer treatment.

● After paediatric cancer diagnosis, years from peak height velocity (somatic maturity) is critical for bone development.

INTRODUCTION
Paediatric cancer survival has experienced an unparalleled increase
during the last few years.1 The 5-year survivorship rate for all
paediatric cancers has approached 85%.2 However, a low areal bone
mineral density (aBMD), defined by a Z-score less than –1, has been
found in up to 68% of young paediatric cancer survivors, while a
very low aBMD (Z-score less than –2) was found in up to 46% of
them.3 This is caused by decreased bone formation and increased
bone resorption due to paediatric cancer treatments and the
disease itself.4 Remarkably, paediatric cancer occurs during a critical
time of active skeletal maturation and growth, affecting the accrual
of bone mass and, therefore, bone preservation throughout life.5

Physical activity has become a cornerstone as an effective
strategy to develop healthy bones during childhood and

adolescence,6 mainly when high-impact weight-bearing physical
activity occurs above a certain intensity and duration.7 Following a
cancer diagnosis, children and adolescents with low physical
activity levels are more prone to have increased bone resorption
and, consequently, limited bone mass quantity and quality.4 A
previous study showed positive associations between physical
activity and lumbar spine aBMD among Wilms tumour survivors.8

Physical activity contributes to the development of bone mass
due to its association with increases in lean mass according to
Frost’s mechanostat theory, which states that ‘bigger muscles
exert higher tensile forces on the bones they attach’.9 Likewise,
musculoskeletal fitness seems to be an important factor for
developing and preserving normal aBMD in paediatric cancer
survivors.10 This relationship may be explained as well by
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improvements in lean mass.11 Poor lean mass has been
recognised as a risk factor that contributes to bone pathology
during and after oncological treatment in young paediatric cancer
survivors.12 Other modifiable factors, such as calcium intake13 and
vitamin D status,14 are known to be essential components of bone
formation during childhood and adolescence. Previous evidence
has found vitamin D deficiency in children after cancer diagnosis15

and a recent review of the literature underlined that about 70% of
the paediatric cancer survivors did not meet the Recommended
Dietary Allowance for calcium.16 Nevertheless, the integrative and
quantitative contribution of these factors on bone parameters in
young paediatric cancer survivors remains unknown.12 Previous
evidence identified that lean mass is the most important predictor
of bone parameters in healthy and athletic children and
adolescences,17 but it remains unknown whether other factors
could outweigh the contribution of lean mass in young paediatric
cancer survivors.
In this study, we aim to provide novel insights into the

contribution of independent predictors to bone parameters in
young paediatric cancer survivors. In order to provide a more in-
depth evaluation of the bone status of this population, we
included not only aBMD outcomes obtained by Dual-energy X-ray
Absorptiometry (DXA) but also other DXA-derived parameters
obtained from the Hip Structural Analysis and the textural analysis
of the lumbar spine. We hypothesised that region-specific lean
mass and years from peak height velocity (PHV) would be the
most important contributors of bone parameters in young
paediatric cancer survivors, as in healthy young population.17

METHODS
Study design and participants
This observational study was developed within the iBoneFIT project
framework (https://profith.ugr.es/pages/investigacion/proyectos/ibonefit).
A detailed description of the methodology was carried and described
elsewhere.18 In short, iBoneFIT is a multicentre, parallel-group randomised
controlled trial designed to examine the effect of a 9-month online
exercise programme on bone health in young paediatric cancer survivors
aged 6–18 years.18 Young paediatric cancer survivors were recruited from
the Units of Paediatric Oncology and Haematology of the ‘Virgen de las
Nieves’ (Granada) and ‘Reina Sofia’ (Cordoba) University Hospitals.
Inclusion criteria were: (i) being 6–18 years old; (ii) not currently receiving
treatment for cancer; (iii) diagnosed 1 year earlier at minimum; and (iv) to
have been exposed to radiotherapy and/or chemotherapy. Participants
were recruited in the iBoneFIT project between Autumn and Winter from
October 2020 and March 2022 in two waves. All parents and participants
provided written consent and assent, respectively. iBoneFIT was approved
by the Ethics Committee on Human Research of Regional Government of
Andalusia (Reference: 4500, December 2019), followed the ethical guide-
lines of the Declaration of Helsinki (revised version 2013) and was
registered in ClinicalTrials.gov (identifier: isrctn61195625, 2 April 2020). This
study followed the STROBE checklist (Strengthening The Reporting of
OBservational Studies in Epidemiology)19 (Supplementary Table 1, see the
section on Supplementary materials given at the end of this article).
Although we recruited 116 participants in total, sample size slightly varied
in some variables due to missing data (i.e., some participants were unable
to perform some of the tests, were afraid of being scanned using DXA or
not willing to collaborate on testing day).

Descriptive characteristics
Anthropometry and somatic maturity. Body mass (kg) was assessed with
an electronic scale (SECA 861, Hamburg, Germany) with an accuracy of
100 g. Stature (cm) was assessed using a precision stadiometer (SECA 225,
Hamburg, Germany) to the nearest 0.1 cm. Somatic maturity was measured
using the prediction of years from PHV using validated algorithms for
males and females.20

Clinical data. Information about the type of cancer (Supplementary
Table 2), type of treatment (radiotherapy, chemotherapy and/or surgery,
alone or in combination) and time from treatment completion was
obtained from the participants’ medical records. Since radiotherapy is a

strong risk factor for persistently low BMD (Z-score less than –1) in young
paediatric cancer survivors,21 a dichotomic variable based on the type of
treatment (radiotherapy; yes/no) was computed and used as a predictor
variable. Moreover, we observed in a preliminary analysis that this variable
was more correlated with bone outcomes than type of cancer, and hence,
the later was not included in the regression models.

Physical activity. Participants were given a tri-axial accelerometer
(ActiGraph GT3X, Pensacola, FL) to be worn on their non-dominant wrist
for at least 7 consecutive days (24 h a day). They only removed it for water-
based activities (e.g., bathing or swimming). Moreover, participants had a
diary to record the time when they went to bed, woke up and removed the
device. Accelerometers were initialised at a sampling frequency of 90 Hz
and raw data were processed as described elsewhere.22 Daily means were
used for the analyses (min/day). Moderate-to-vigorous physical activity
(MVPA) was used in preference to other intensities due to its health-related
benefits. A valid day was considered when the accelerometer registered at
least 23 h and the participants wore it for at least 16 h. In addition, no
distinction was made between weekdays and weekends since there were
no significant differences between MVPA weighted and plain variables in
our sample. Five seconds epochs after auto-calibration of the raw
acceleration were applied and the cut-off point for MVPA was 200mg.23

Daily means were used for the analyses (min/day).
Using the bone-specific physical activity questionnaire,24 the past

activity was reported by the participants taking into account which sport
they had practised throughout their lifespan and for how long. The (past)
bone-specific physical activity questionnaire algorithm is obtained as
follows: R × y × a, where R refers to the effective load stimulus (derived
from ground reaction force testing), y refers to the years of participation,
and a refers to the age weighting factor (participants < 15 years = 0.25;
participants > 15 years = 0.1). This tool has been validated to assess the
osteogenic characteristics of previous sports and physical activities on the
skeleton.24

Musculoskeletal fitness. Upper-body strength was obtained by using the
handgrip test (performed twice by each hand and the best scores were
averaged) and lower-body power by using the standing long jump test
(performed twice and the best score was retained) according to the ALPHA
health-related fitness test battery for children and adolescents.25 These
field-based fitness tests have been validated, reliable and related to health
in children and adolescents.26

Calcium and vitamin D. Daily calcium intake (in milligrams) and vitamin
D status were estimated by validated food-frequency questionnaires,
respectively.27,28 Vitamin D status was based on three questions regarding
sun exposure during the last year for any time (yes/no), use of tanning
booth (yes/no) and the number of glasses of milk per day (two or more
glasses were considered as yes and less than two glasses were considered
as no). Using the threshold of two out of three negative responses for
these habits proposed by,28 we identified participants with vitamin
D deficits.

Body composition
Dual‑energy X‑ray absorptiometry: A single DXA scanner (Hologic
Series Discovery QDR, Bedford, MA) and the APEX software (version 4.0.2)
were used to perform three scans (total body, right hip and lumbar spine)
and obtain aBMD (g/cm2) of the total body less head, femoral neck, lumbar
spine (mean of L1–L4), total hip, legs and arms. Following the International
Society of Clinical Densitometry recommendations for paediatric popula-
tion,29 total body less head values were used in preference to total body.
The total body scan was also used to obtain lean mass (g) [body mass–(fat
mass+bone mass)] and fat mass (g) of the total body less head, trunk, legs
and arms. The device was calibrated every single day using a lumbar spine
phantom. The positioning of the participants remaining still and in the
supine position, and the analyses of the results were undertaken according
to the International Society of Clinical Densitometry.29

A single trained researcher analysed all DXA scans to standardise the
analyses performed by three trained assessors. Previous paediatric
populations studies have shown the percentage coefficient of variation
of the DXA between 1.0 and 2.9%, depending on the region.30

Hip Structural Analysis: Hip geometry parameters at the narrowest
point of the femoral neck were determined using Hip Structural Analysis
software (based on DXA images of the hip analysis) which analyses
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structural characteristics in a line of pixels across the bone axis through the
distribution of bone mineral mass.31 We obtained the following estimates:
(1) cross-sectional area (cm2), which provides a score of axial compression
strength of the bone surface area in the cross-section after excluding soft
tissue and trabecular space; (2) cross-sectional moment of inertia (cm4),
which is the index of structural rigidity and; (3) section modulus (cm3),
which is the bending strength indicator for maximum bending stress in the
direction of the image plane. The short-term precision percentage
coefficient of variation of these variables has been reported to be between
2.4 and 6.4%.32

Trabecular Bone Score: The iNsight Software (Medimaps, research
version 3.0, Pessac, France) indirectly provides a textural index of
trabecular microarchitecture in the lumbar spine. This DXA-based
technological tool is considered a score of bone quality since it has been
shown to significantly predict fracture risk33 Trabecular Bone Score
determines the heterogeneity of the grey-levels pixels of the aBMD
lumbar spine and lower homogeneity implies worse trabecular connectiv-
ity based on experimental variograms of the projected DXA image.34 All
calculations were performed at the aBMD lumbar spine assessed by the
same trained researcher. The short-term coefficient of variation for
Trabecular Bone Score has been reported to be between 1.7 and 2.1%
for lumbar spine aBMD.35 Although Trabecular Bone Score has been mostly
used in the adult population,36 its use has been extended into paediatric
population in the last few years.37–39

Statistical analysis
The normal distribution of the raw variables was checked and verified
using a visual check of histograms, skewness and kurtosis values,
Shapiro–Wilk test, Q–Q and box plots. Descriptive data were illustrated
as mean and standard deviation. Collinearity was checked for the variables
using the variance inflation factor and tolerance levels. Missing data were
not imputed.
Multiple linear regression analyses were conducted to ascertain the

contribution of sex, years from PHV, time from treatment completion,
radiotherapy exposure, region-specific lean and fat mass, upper-body
strength, lower-body power, MVPA and past bone-specific physical activity
to the variance of total and regional aBMD, Hip Structural Analysis
parameters and Trabecular Bone Score. Region-specific lean mass and
region-specific fat mass were used as predictor variables because of the
site-specific adaptations on the skeleton,17 as follows: the legs’ lean mass
or fat mass were used as predictor variables for hip-related bone
outcomes; the arms lean mass or fat mass were used as predictor
variables when the outcome was the arms aBMD and; the trunk lean mass
or fat mass were used as predictor variables for lumbar spine bone
outcomes. Sex interaction was checked for the associations between
predictors and dependent variables. No interaction was found in most of
them and therefore analyses were conducted for males and females
together and sex was added as a potential predictor. The selection of the
predictor variables was based on their relationship with bone
parameters.17,40–42 In a preliminary analysis, we found that calcium intake
and vitamin D status were not significant predictors of bone parameters in
this population (Supplementary Table 3), and consequently, they were not
included in the model. The remaining predictors were entered into the
regression models simultaneously. Consequently, the sample size dropped
from 116 to 98–99 participants (depending on the outcome variable)
because the regression analysis in the Statistical Package for the Social
Sciences (IBM Corporation, Chicago, Illinois) takes the lowest sample of
participants with data in all the studied variables. For the multiple linear
regressions, the standardised β coefficients were presented, R2 was
calculated by Stein’s equation43 as it shows how well the models predict
the values of a different sample from the same population and values of
0.05 were considered statistically significant. The squared semi-partial
correlation coefficients (sr2) were included to quantify the contribution of
each predictor in the overall variance of the model, removing shared
contributions with other predictors.

RESULTS
A total of 116 young paediatric cancer survivors (12.1 ± 3.3 years
old; 43% female) were recruited. Table 1 shows the descriptive
characteristics of the participants included in this study. Most of
the participants were diagnosed with acute lymphoblastic

leukaemia (38.8%), lymphoma (12.0%) and central nervous system
(9.5%) (Supplementary Table 2).

Determinants of areal bone mineral density
Multivariate regression models for aBMD parameters significantly
explained 55.3–84.0% (on average, 69.7%) of the variance in the
aBMD parameters (Table 2). Region-specific lean mass was the
strongest significant predictor and was positively associated with
all aBMD parameters (β= 0.400–0.517, sr2= 0.017–0.023, p ≤ 0.05),
except for total hip (p > 0.05). Years from PHV were positively
associated with aBMD at total body less head, legs and arms
(β= 0.327–0.398, sr2= 0.016–0.027, p ≤ 0.05). Past bone-specific
physical activity was positively associated with aBMD at total hip
and arms (β= 0.097–0.162, sr2= 0.006–0.018, p ≤ 0.05). Being
female was positively associated with aBMD at lumbar spine
(β= 0.182, sr2= 0.017, p ≤ 0.05). Time from treatment completion
was positively associated with aBMD at total hip (β= 0.221,
sr2= 0.037, p ≤ 0.05). Fat mass was positively associated with
aBMD at arms (β= 0.232, sr2= 0.028, p ≤ 0.05). Radiotherapy
exposure, upper-body strength, lower-body power and MVPA
were not found to be significant predictors of aBMD parameters
(all β coefficient < 0.137, p > 0.05). The contribution of each
predictor variable by its standardised β coefficient to each bone
parameter is visually displayed in Supplementary Fig. 1.

Determinants of Hip Structural Analysis parameters and
Trabecular Bone Score
In the multivariate regression analysis of the Hip Structural
Analysis (Table 3), the predictors explained 43.9–64.6% (on
average, 54.25%) of the variance in the Hip Structural Analysis
and Trabecular Bone Score. Region-specific lean mass was the
strongest significant predictor and was positively associated with
all Hip Structural Analysis parameters (β= 0.628–0.775,
sr2= 0.049–0.071, p ≤ 0.05). Being female (positively) and upper-
body strength (negatively) were associated with Trabecular Bone
Score (β= 0.245 and –0.443, sr2= 0.031 and 0.023, p ≤ 0.05,
respectively). Time from treatment completion was positively
associated with narrow neck cross-sectional area (β= 0.135,
sr2= 0.014, p ≤ 0.05). Years from PHV, radiotherapy exposure, fat
mass, lower-body power, MVPA and past bone-specific physical
activity were not found to be significant predictors of the Hip
Structural Analysis parameters nor spine Trabecular Bone Score (all
β coefficient < 0.246, p > 0.05). The contribution of each predictor
variable by its standardised β coefficient to each bone parameter
is visually displayed in Supplementary Fig. 2.

DISCUSSION
Region-specific lean mass was the principal explanatory variable at
most sites of the skeleton. Moreover, we found that years from
PHV was a positive significant predictor only for aBMD at total
body less head, legs and arms; and longer time from treatment
completion was a positive significant predictor at the femoral
neck, total hip and narrow neck cross-sectional area. This means
that longer periods after treatment completion indicate better
bone health. Finally, other factors such as sex (being female) and
past bone-specific physical activity had a positive significant but
small contribution to aBMD, Hip Structural Analysis parameters
and Trabecular Bone Score.

Determinants of areal bone mineral density
Previous findings in healthy population with similar models of
determinants explained 40–83% of the variance in bone mineral
content.17 Our results show that the strongest positive determi-
nant was region-specific lean mass which is consistent with
findings from previous studies in healthy children and adoles-
cents44 and, children with cancer during45 and after oncological
treatment.46,47 This is explained mainly due to Frost’s mechanostat
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theory since inadequate lean mass acquisition impairs bone
development.48 In relation to the association of region-specific fat
mass and aBMD parameters, our findings indicate negligible
associations after accounting for other predictors in the model.
The strong effect of other predictors such as years from PHV and
sex are likely to moderate the relationship between fat mass and
bone parameters.49 However, contrary findings were found by
Mostoufi-Moab et al.50 in survivors of paediatric hematopoietic
stem cell transplantation (aged 12–25 years). In their study, fat
mass was inversely associated with abnormal trabecular architec-
ture. Discrepancies between studies might be explained by
the differences in the age of the participants, number of
predictor variables as well as the paediatric cancer treatment
received by the participants since both hematopoietic stem cell

transplantation and total body irradiation are known to impair the
normal fat–bone axis.51

In the present analysis, we found that years from PHV had a
positive association with aBMD at total body less head, legs and
arms aBMD. In this regard, pre-, peri- and postpubertal periods are
vital periods for bone development during normal growth52 and
even more critical after paediatric cancer diagnosis.46 Time from
treatment completion also had a positive association with femoral
neck and total hip aBMD. This backs up that aBMD parameters
improve with increasing time-off therapy after exposure to
oncological treatment.4

Past bone-specific physical activity had a positive association
only with total hip and arms aBMD. After adjusting for other
covariates, the contribution of past bone-specific physical activity

Table 1. Descriptive characteristics of the participants included in this study.

Variable Total N Females N Males N

Sex (female/male, %) 43/57 116

Age (years) 12.1 (3.3) 116 12.3 (3.5) 50 12.0 (3.2) 66

Body mass (kg) 46.6 (18.0) 116 46.0 (19.0) 50 47.1 (17.4) 66

Stature (cm) 147.5 (17.1) 116 145.6 (16.0) 50 148.9 (17.8) 66

Body mass index (kg/m2) 20.7 (4.7) 116 20.9 (5.3) 50 20.5 (4.1) 66

Time from treatment completion (years) 5.1 (3.9) 114 5.3 (4.2) 49 5.0 (3.7) 65

Radiotherapy exposure (yes/no) 32/84 116 13/37 50 19/47 66

Years from peak height velocity –0.8 (2.7) 116 0.0 (2.9) 50 –1.4 (2.5) 66

Calcium intake (mg/day) 785.5 (437.2) 116 702.94 (384.6) 50 848.02 (466.7) 66

Vitamin D status (yes/no, %) 53.2/46.8 111 60.4/39.6 48 47.6/52.4 63

Fitness and physical activity

Upper-body strength (kg) 18.1 (8.6) 116 16.32 (5.92) 50 19.39 (10.01) 66

Lower-body power (cm) 118.1 (33.1) 115 106.4 (25.1) 50 127.2 (35.8) 65

Moderate-to-vigorous physical activity (min) 41.6 (25.7) 110 35.9 (25.2) 49 46.2 (25.4) 61

Number of valid days 7.5 (0.8) 110 7.3 (1.0) 49 7.6 (0.5) 61

Past bone-specific physical activity 12.6 (16.0) 108 9.7 (13.4) 46 14.7 (17.3) 62

Lean mass (g)

Total body less head 25,713.2 (10,381.1) 116 23,937.8 (8962.5) 50 27,058.1 (11,218.3) 66

Legs 4560.9 (1950.3) 116 4187.2 (1591.7) 50 4844.1 (2152.1) 66

Arms 1338.5 (587.3) 115 1166.2 (444.9) 49 1466.4 (647.9) 66

Trunk 14,296.0 (5561.0) 116 13,611.4 (5129.4) 50 14,814.7 (5852.0) 66

Fat mass (g)

Total body less head 14,899.1 (8336.3) 116 16,161.2 (9695.7) 50 13,942.9 (7066.0) 66

Legs 3227.5 (1644.7) 116 3493.7 (1816.4) 50 3025.8 (1484.2) 66

Arms 896.6 (535.0) 115 987.1 (653.7) 49 829.4 (419.1) 66

Trunk 6644.3 (4171.0) 116 7187.7 (4932.0) 50 6232.6 (3470.3) 66

Areal bone mineral density (g/cm2)

Total body less head 0.791 (0.159) 116 0.791 (0.163) 50 0.791 (0.157) 66

Femoral neck 0.732 (0.152) 115 0.744 (0.176) 49 0.723 (0.132) 66

Lumbar spine 0.731 (0.187) 116 0.776 (0.195) 50 0.697 (0.175) 66

Total hip 0.823 (0.169) 115 0.819 (0.185) 49 0.825 (0.158) 66

Legs 0.924 (0.200) 116 0.919 (0.203) 50 0.927 (0.200) 66

Arms 0.595 (0.116) 115 0.580 (0.119) 49 0.605 (0.114) 66

Hip Structural Analysis

Narrow neck cross-sectional area (cm2) 2.203 (0.677) 115 2.147 (0.682) 49 2.244 (0.675) 66

Narrow neck cross-sectional moment of inertia (cm4) 1.378 (0.861) 115 1.192 (0.611) 49 1.516 (0.989) 66

Narrow neck section modulus (cm3) 0.871 (0.416) 115 0.807 (0.357) 49 0.918 (0.452) 66

Trabecular Bone Score 1.318 (0.103) 116 1.348 (0.112) 50 1.296 (0.089) 66

Data are presented as mean (standard deviation) or as frequencies (associated percentages), as indicated.
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does not seem noticeable, perhaps because of the strong
relationship of region-specific lean mass. In addition, depending
on the osteogenic characteristics, the type of physical activity
affects differently the skeletal development in this population.53–55

In our study, 70% of the participants in the top quartile related to
osteogenic stimulus calculated by past bone-specific physical
activity reported football as one of the sports practices along the
life, while 40% reported basketball. Our findings are in line with
previous research indicating that past bone-specific physical
activity could have a significant but weak contribution on specific
sites of the skeleton in healthy adolescents.6 The cause of this low
bone mass is multifactorial and hence, finding the major
contributors of aBMD, Hip Structural Analysis parameters and
Trabecular Bone Score in young paediatric cancer survivors is of
clinical relevance to target earlier recovery strategies.

Determinants of Hip Structural Analysis parameters and
Trabecular Bone Score
Previous work in healthy population showed that Hip Structural
Analysis can provide a more thorough geometrical evaluation at
the hip site compared with aBMD parameters.56 In agreement
with Macdonald et al.,40 the results of our study highlight the
association of region-specific lean mass and Hip Structural
Analysis parameters during childhood and adolescence. Previous
findings in allogeneic hematopoietic stem cell transplantation
survivors showed alterations in body composition following
oncological treatment: increased fat mass, while lean mass did
the opposite.57 These alterations partially explained the substan-
tial deficits in trabecular volumetric bone mineral density and
cortical geometry.58 We did not find that region-specific fat mass
was associated with any Hip Structural Analysis parameters.
However, the differences in the population characteristics,
evaluation techniques and region of interest make the studies
incomparable. Of note, Mostoufi-Moab et al.58 assessed bone, lean
and fat mass at the 66% site of tibia using peripheral quantitative
computed tomography. In our study, the time-off therapy was
positively associated with the narrow neck cross-sectional area
after the exposure to oncological treatment like the femoral neck
aBMD. This is consistent with the findings of a previous review
which identified that following the completion of oncological
therapy, there is a substantial recovery in the femoral neck
geometrical property.59 Hence, the axial compression strength
feature of the narrow femoral seems to improve specifically with
time after therapy.
Similar to aBMD and Hip Structural Analysis parameters, the

strongest determinant for the Trabecular Bone Score was region-
specific lean mass which agrees with previous studies in healthy
population.60 However, they did not distinguish the site-specific
relationship of lean mass which, in fact, was considered in the
present study. Being female in this cohort had a positive
association with bone texture acquisition at the lumbar spine,
showing a diminished contribution once other factors (e.g.,
region-specific lean mass) were accounted. This aligns with a
previous study in which Trabecular Bone Score at baseline was
significantly higher in females than males (Trabecular Bone Score
in males: 1.345 ± 0.095; and females: 1.370 ± 0.099).60 This shows
the beneficial effects of time-off therapy on bone impairments
caused by oncological treatment. However, the limited number of
studies using Trabecular Bone Score in young paediatric cancer
survivors does not allow further comparisons, reflecting the
novelty of this study. Our findings also indicate that upper-body
strength had a weak negative association with Trabecular Bone
Score, in contrast with scientific literature in healthy children.61

This surprising finding needs to be confirmed in this population.
One limitation of our study consisted of the cross-sectional

approach and hence, it cannot be proved cause and effect
between the determinants and bone outcomes. To the best of our
knowledge, this is the first study conducted on young paediatric

cancer survivors examining the determinants of aBMD, Hip
Structural Analysis parameters and Trabecular Bone Score. Many
predictors have been taken into account, adjusting their effects on
each other. In addition, this study specifically uses region-specific
lean mass as a predictor because of the site-specific adaptations of
the skeleton during growth.62

In conclusion, region-specific lean mass was consistently the
most important positive determinant of all bone parameters. Years
from PHV and time from treatment completion were also found to
be important positive determinants for the aBMD and Hip
Structural Analysis parameters. Randomised clinical trials focusing
on bone outcomes of young paediatric cancer survivors should
focus on improving region-specific lean mass due to the site-
specific adaptations of the skeleton to external loading and
unloading following cancer treatment. Interventional studies after
paediatric cancer and its treatment should meet the clinical need
of including resistance training to increase lean mass before
including weight-bearing exercises with a view to improving bone
health.
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