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By means of a diffusion Monte Carlo technique, we study one-dimensional unbalanced mixtures of
fermionic Ytterbium atoms (173Yb, 171Yb). This means clusters in which the total number of 173Yb
particles is different from the sum of all the atoms belonging to the 171Yb isotope. Our aim will be to
check the possibility of having self-bound arrangements beyond the balanced compositions reported
in previous literature rather than exploring all the situations in which that could be possible. In that
vein, we focused mainly on mixtures in which the atoms belonging to one isotope are spin-polarized,
while the spins of the particles in the other isotope are evenly distributed in two sets. What we
found was that, even tough self-bound droplets are possible for different compositions, the most
stable ones are clusters with a slight excess of attractively interacting 171Yb particles with different
spins with respect to the number of spin-polarized 173Yb atoms. Clusters in which the number of
repulsively interacting unequal-spin 173Yb atoms are in excess with respect to the spin-polarized
171Yb particles have a very narrow stability range.

I. INTRODUCTION

A droplet can be defined as a (relatively) small cluster
of particles that stick together without collapse or evap-
oration during a reasonable long period of time. To be
considered self-bound, a droplet has to be stable without
the intervention of a external confining potential. When
several species are present, the outcome of the mixing
would depend on factors such as the bosonic or fermionic
nature of the particles, their repulsive or attractive inter-
actions and the dimensionality of the system [1–3]. The
seminal work by Petrov [4], opened the field for ultracold
Bose-Bose droplets [1, 2, 5–13], but other possibilities
[14–21] are also viable.
Within this context, the consideration of one-

dimensional (1D) systems offers the advantage of the
suppression of three-body losses with respect to their
three-dimensional counterparts [3, 22]. In addition, if the
interactions between species are the right ones, we can
have self-bound Bose-Bose [11–13], Bose-Fermi [14, 17],
and Fermi-Fermi 1D droplets [19, 20]. In this last case,
when the number of spin-ups equals the number of spin-
downs, we end up with a set of composite bosons (or
”molecules”) with an effective repulsion between them
[23, 24] that makes self-bound balanced 1D clusters of
equal-mass fermions impossible [19, 25].
Fortunately, we can circumvent that limitation by con-

sidering at least three different types of fermionic species
[19, 20]. This has been proved to work in small clusters
of Ytterbium (173Yb and 171Yb) with attractive short-
range interactions between atoms of different isotopes.
Since atoms belonging to the same isotope can have dif-
ferent spins, not all the 173Yb-171Yb molecules are equal:
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we have as many types of composite bosons as possible
spin pairings. Then, the relaxation of the Pauli avoid-
ance between different kinds of molecules allows the at-
tractive interaction between them to kick in, producing
self-bound droplets.

What all previous cases have in common is that they
consider only balanced clusters, i.e., ensembles in which
the number of atoms of both species (or isotopes) is equal
to each other. Very recently, that constraint has been re-
moved in some studies of Bose-Bose clusters modeled by
Gross-Pitaevskii equations [26–29] or within the frame-
work of the discrete 1D Bose-Hubbard model [30]. All
those works agreed in the existence of stable unbalanced
clusters of particles, at least within certain values of the
parameters defining the droplets. This opens the door
to the study of differences in the behavior of those clus-
ters with respect to the case of the balanced ones and to
establish their stability ranges.

In this work, we will expand this new avenue by con-
sidering continuous 1D systems of self-bound unbalanced
fermions. To do so, we will deal with 173Yb-171Yb mix-
tures in which N173 6= N171 (N173 and N171 being their
respective number of particles). We aim only to check
whether those unequal particle clusters exist, rather than
exhaustively testing all the situations in which we can
find unbalanced self-bound setups. This is the reason
why, to simplify things, we will consider mainly situa-
tions in which one of the components (either 173Yb and
171Yb) is spin-polarized while the atoms of the other are
equally split into two unequal spin sets. In this, we are
guided by the results of balanced clusters, in which all
compositions including more than three types of spins or
in which the numbers of atoms with the same spin are
not the same, have qualitatively similar behaviors when
the total number of particles is fixed [19, 20].
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II. METHOD

Following the previous literature, the 1D clusters in
this work will be described by the following Hamiltonian
[19, 20, 31, 32]:

H =

Np
∑

i=1

−~
2

2m
∇2

i + g173−171
1D

N173
∑

i=1

N171
∑

j=1

δ(x173i − x171j )

+g173−173
1D

∑

b>a

n173,a
∑

i=1

n173,b
∑

j=1

δ(x173a,i − x173b,j )

+g171−171
1D

∑

b>a

n171,a
∑

i=1

n171,b
∑

j=1

δ(x171a,i − x171b,j ), (1)

where Np is the total number of fermions, with Np =
N173+N171, and will be in the range 24-36. As indicated
above, N173 6= N171. Eq. 1 considers only interactions
in which the atoms in the pair are different from each
other, since Pauli’s exclusion principle takes care of the
avoidance between identical fermions. m is the mass of
the atoms, described by a single parameter as in the pre-
vious literature [19, 20, 31, 32]. This is expected to be a
reasonable approximation, since the mass difference be-
tween isotopes is around 1 %. n173,ab and n171,ab are
the number of atoms with spins a and b. The g1D pa-
rameters depend on the 1D-scattering lengths, a1D, via

gα,β1D = −2~2/ma1D(α, β). a1D is defined by [33]:

a1D(α, β) = −
σ2
⊥

a3D(α, β)

(

1−A
a3D(α, β)

σ⊥

)

, (2)

with A=1.0326 and (α, β) = (173, 171). σ⊥ =
√

~/mω⊥

is the oscillator length in the transverse direction, de-
pending on the perpendicular confinement frequency, ω⊥,
taken to be in the range 2π×50-100 kHz, tight enough to
produce a quasi-one dimensional system. a3D(α, β) are
the three-dimensional experimental scattering lengths
between isotopes, taken from Ref. 34 i.e., 10.55 nm
(173Yb-173Yb), -0.15 nm (171Yb-171Yb) and -30.6 nm
(171Yb-173Yb), where the minus signs mean attractive in-
teractions. Those scattering lengths cannot be changed
via magnetic Feshbach resonances due to the closed-shell
electronic structure of Yb atoms. The use of other kinds
of Feshbach resonances is, at best, problematic [35], and
to our knowledge, it has only been studied for setups con-
taining a single Yb isotope [36–38]. However, the values

of gα,β1D can be changed by modifying the external con-
finement, σ⊥, via Eq. 2. That variation could also, in
principle, change the nature of the interactions, deter-
mined by the sign of a1D, through a confining-induced
resonance. To do so, Aa3D/σ⊥ should be greater than 1,
something that does not happen for any of the a3D values
in the considered range of frequencies. This means that
the nature of the interactions between isotopes is fixed
by the sign of those a3D’s: atractive for the 173Yb-171Yb
and 171Yb-171Yb pairs and repulsive in the 173Yb-173Yb
case.

To solve the Schrödinger equation derived from the
continuous Hamiltonian in Eq. 1, we used the fixed-node
diffusion Monte Carlo (FN-DMC) algorithm, that gives
us the exact ground state of a 1D system of fermions
[39, 40], without resorting to any mean field treatment.
We start from an initial approximation to the exact wave-
function, the so-called trial function. We used:

Φ(x1, · · · , xNp
) =

A(x1731 , x1732 , · · · , xN173

N173
, x1711 , x1712 , · · · , xN171

N171
)

∏

b>a

n173,a
∏

i=1

n173,b
∏

j=1

ψ(x173a,i − x173b,j )

(x173a,i − x173b,j )

∏

b>a

n171,a
∏

i=1

n171,b
∏

j=1

ψ(x171a,i − x171b,j )

(x171a,i − x171b,j )
, (3)

where A(x1731 , x1732 , · · · , xN173

N173
, x1711 , x1712 , · · · , xN171

N171
) is

the determinant of a square matrix that depends on the
coordinates of all the particles in the system. The di-
mension of that square matrix will be Nmax × Nmax,
Nmax being the maximum value between N173 and N171.
To build that matrix, we followed the prescription used
in Ref. 41 for unbalanced sets of three-dimensional
fermions. If, for the sake of the argument, we consider
Nmax = N171 > N173, we will have a N171 × N171 ma-
trix. Bearing in mind that the solutions of the Schödinger
equation for a pair of 1D-particles interacting via an at-
tractive delta potential can be written as [42]:

φ(|x173i − x171j′ |) = exp

[

−
|g173,1711D |

2
|x173i − x171j′ |

]

, (4)

then, we have that the first N173 rows of that N171×N171

matrix are of the form:

φ(|x173i − x1711′ |), φ(|x173i − x1712′ |), · · · , φ(|x173i − x171N
171′

|),

(5)
with i in the range i=1,· · · ,N173. The remaining N171 −
N173 rows have to include functions that depend exclu-
sively on the coordinates of all the atoms of the 171Yb
isotope. Following Ref. 43, we considered single-particle
orbitals similar to the ones we would have in a Van-
dermonde matrix [44]. This means that the complete
N171 ×N171 determinant can be written as:

∣
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1′ xN171−N173−1
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with ri,j′ = |x173i −x171j′ |. This form does not include any
confining wavefuncion, as it is typically the case when
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an harmonic potential is included in the Hamiltonian,
[44] and generalizes the used in previous literature for
balanced fermion clusters.
The terms (xαa,i−x

α
b,j) in the denominator of Eq. 3 cor-

rect the spurious nodes between atoms of the same iso-
tope with different spins (see Refs. 19 and 31 for further
details). In Eq. 3, ψ(xαa,i − xαb,j)’s are Jastrow functions
that introduce the correlations between pairs of particles
of the same isotope belonging to different spin species
a, b. For the repulsively interacting 173Yb-173Yb pair, we
have [45]:

ψ(x173a,i − x173b,j ) = cos(k[|x173a,i − x173b,j | −Rm]) (6)

when the distance between atoms, |x173a,i − x173b,j |, was
smaller than a variationally obtained parameter, Rm, and
1 otherwise. k was obtained by solving the transcenden-
tal equation ka1D(173, 173) tan(kRm) = 1. When the
pair of particles of the same isotope attract each other,
as in the 171Yb-171Yb case, the Jastrow has the form of
Eq. 4 [31, 45], but with a different value of the defining

constant, g171,1711D .

III. RESULTS

As shown in previous literature [19, 25], when
N173=N171 and the atoms belonging to both isotopes
are spin-polarized, we have a set of composite bosons
with an effective repulsion between them due to a dou-
ble Pauli avoidance that precludes the formation of self-
bound clusters. One of the tell-tale signals of this be-
havior is that the energy per particle is exactly Eb/2 =

-(g173,1711D )2/(8~ω⊥σ⊥), with Eb the binding energy of a
pair of particles interacting attractively via a 1D delta
potential [42]. On the other hand, when N171 > N173

(again for the sake of the argument) what we have is that
the total energy of the system is N173Eb and the system
is again unbound. As stated above, we have neglected the
mass difference between isotopes (∼ 1 %) even tough that
difference, if large enough, could induce the existence of
self-bould boson [46] and fermion [46, 47] arrangements.
In Figs. 1-3 and Fig. 5, we display the depen-

dence of the energy per particle on the cluster com-
position to check whether is smaller than (N173/Np)Eb

(or (N171/Np)Eb, depending on the case) and self-bound

droplets are possible. The |g173,1711D | range displayed is
the result of taking ω⊥’s in the interval 2π×50-100 Hz,
deducing the corresponding σ⊥’s, and introducing those
values in Eq. 2 to produce the magnitude of the in-
teraction. The first of those figures show the case for
clusters with total number of particles in the range 24-
36, assembled by joining together a variable number of
spin-polarized 173Yb atoms and a evenly distributed set
of spin-up and spin-down 171Yb particles. Since 171Yb
atoms have SU(2) symmetry, we cannot consider more
than two spin sets. To consider larger clusters in order
to extrapolate our DMC results to the thermodynamic
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FIG. 1. Energies per Yb atom for clusters of different compo-
sitions (see text for definitions) as a function of the interaction
parameter between atoms of different isotopes. Error bars in
all cases are similar to the ones displayed and not shown for
simplicity. Dotted line is a least-squares third orden poly-
nomial fit to the 36-18/(9+9) case and it is intended as a
guide-to-the eye.

limit Np → ∞ is computationally very expensive and be-
yond the scope of this work. In this example, we fixed
N171/2 = 9, but the results are similar for clusters with
different compositions. To name those clusters, we used
the convention Np-N173/(N171/2+N171/2). Since their
energies per particle are smaller than Eb, we may say
that, in principle, the droplets are self-bound, this be-
ing due to the attractive interactions between atoms in
different (with unequal spins for the atoms in the 171Yb
isotope) molecules. We can see also that, for the same
total number of 171Yb atoms, the stability of the cluster
increases with the number of 173Yb particles. In Fig. 1
we display also the case of two unequal sets of spin-up
and spin-down 171Yb atoms (30-12/(10+8)). The energy
per particle is virtually identical that that of the more
balanced 30-12/(9+9) one. This implies that our results
are robust with respect to a slight change in spin compo-
sition. Larger differences in the number of spin up and
spin down 171Yb numbers produce unstable clusters (see
below). On the other hand, when we keep N173 constant,
the energy per particle also decreases with N171, as can
be seen in Fig. 2. Last, we display in Fig. 3, a couple
of representative examples that indicate that, when Np

is constant, the most stable arrangements are those with
a small imbalance in the N173/N171 ratio.

However, to make sure that we have a stable self-bound
droplet we have to check that the cluster will not even-
tually break during the course of the simulation. To
do that, we calculated the density profiles for different
arrangements and checked that they remained invariant
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FIG. 2. Same as in Fig. 1 but for clusters in which the number
of atoms in the spin-polarized 173Yb subcluster is fixed. As in
the previous figure, the error bars are comparable in all cases
and only shown for the 28-12/(8+8) droplet for clarity. The
dotted line is also intended as a guide-to-the-eye.
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FIG. 3. Energies per particle for different cluster composi-
tions. In all cases the error bars are of the size of the ones
displayed and the dotted lines are again guides-to-the eye.

and finite in width throughout each simulation. As a ex-
ample of such circumstance, we display in Fig. 4 one of
those profiles for a 28-12/(8+8) droplet, representative of
clusters in which the spin-polarized component is 173Yb,
for two different values of transverse confinement. The
profiles are normalized to the total number of particles
for the 173Yb isotope (12) and to the number of particles
per spin for the 171Yb one (8). Those are equilibrium
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FIG. 4. Density profiles for a 28-12/(8+8) cluster for two
different values of transverse confinement. Open symbols and
dashed line correspond to 173Yb densities, while solid symbols
and full line display the behavior of each spin component of
the 171Yb isotope. Error bars are of the size of the symbols
and not displayed by simplicity.

profiles, unchanged along a DMC simulation comprising
3 × 105 Monte Carlo steps after thermalization and aver-
aged over 3 independent Monte Carlo histories. To avoid
spurious correlations, we considered only configurations
separated 100 steps apart, i.e., we kept 3000 sets of data.
To be sure about stability of the clusters, we compared
those total averages with the ones obtained considering
the first 1000 DMC steps, the 1000 in the middle, and the
1000 final configurations of each history. In all cases, the
results were identical to those shown in Fig. 4. As to the
properties of the droplet itself, we can see that the tighter
the confinement, the larger the width of the atoms of the
cluster in the longitudinal direction, in accordance with
what happens in balanced clusters [19]. We can see also
that the 171Yb densities spread outside the locations of
the spin-polarized 173Yb isotope, but not too far. This
allows the excess 171Yb atoms in the wings to bind with
the 173Yb’s closer to them.

Fig. 5 gives us the same information as Fig. 1, but
for arrangements in which the spin-polarized component
belongs to the 171Yb isotope. This implies that the
interactions between the two (or three) sets of 173Yb
atoms are repulsive, as corresponds to the positive three-
dimensional scattering length [34] between them. In that
figure, we only display energies per particle for four clus-
ters. The reason is that they are the only ones for which
the density profiles are stable according to the criterion
described in the previous paragraph. When the number
of 171Yb decreases (or, equivalently, the number of 173Yb
increases), the clusters end up either splitting into smaller
units or regularly spreading along the simulation runs
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spin-polarized component is 171Yb. Error bars are similar in
both cases, but they are only shown for the 35-(9+9)/17 and
35-(6+6+6)/17 clusters.

with no equilibrium final position. This last circumstance
would be akin to ”evaporation”. This happens also when
we considered clusters in which the spin-polarized part
corresponds to 173Yb and the two-spin 171Yb sets are too
unequal, for instance for a 30-12/(12+6) arrangement or
for the case in which the number of unequal sets of spins is
three (out of the 6 possible for the 173Yb SU(6) atoms), as
in the 35-(6+6+6)/17 atoms. The density profile for the
stable 35-(9+9)/17 cluster is displayed in Fig. 6. There,
we can see that this droplet is wider than its counterpart
of the same size. Obviously, this is due to the repulsive
interactions between atoms in the (9+9) subcluster. In
any case, the nine atom subunits are contained within
the limits of their spin-polarized counterparts and the
whole cluster is stable due to the attractive 171Yb-173Yb
interactions.

IV. CONCLUSIONS

In this work we have dealt with the possibility of hav-
ing 1D self-bound unbalanced clusters of fermions. By
that, we meant mixtures of Ytterbium isotopes in which
the total number of 173Yb atoms is different than the
total number of 171Yb particles. As in the case of bal-
anced droplets (N173=N171), when both components are
spin-polarized, it is impossible to have a self-bound sys-
tem. On the other hand, when the atoms of one of the
isotopes have different spin values, those droplets are sta-
ble. In this work we have considered mainly examples of
evenly split spin populations, but the results are similar
for other distributions.
We saw also that the relative stability of the droplets
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FIG. 6. Same as in Fig. 4 for two different droplets with the
same size and different compositions for a transverse confine-
ment of ω⊥ = 2π×90 Hz. Dashed lines and open symbols
correspond to the spin-polarized component, while solid lines
and symbols show the results for one of the spin components
corresponding to atoms in the other isotope.

depends on their composition. Unbalanced droplets in
which the interactions between particles of the same iso-
tope and unequal spins are repulsive have a very narrow
stability range. What we have found is that when N173

(two or three different spins) > (N171+1) the clusters ei-
ther break into smaller units or evaporate. Conversely,
when the unequal-spin atoms attract each other (spin-
up and spin-down 171Yb), the variability in the clus-
ter compositions is larger. In particular, for the ma-
jority of the cases considered in this work, i.e., for Np-
N173/(N171/2+N171/2) arrangements with fixed Np, we
found that the most stable droplets were those of the
type Np-(Np/2-2)/(Np/4+1,Np/4+1), as can be seen in
Fig. 3. That can be understood as the result of hav-
ing a balanced cluster with two additional 171Yb atoms
located in both wings, as can be seen in the density pro-
files of the 28-12/(8+8) arrangement displayed in Fig. 4.
The relative reduction in the number of spin-polarized
173Yb atoms decreases the effective repulsive interaction
between identical fermions, lowering the total energy per
particle. However, if we further deplete the 173Yb part
of the cluster, the reduction in the 171Yb-173Yb interac-
tions de-stabilize the entire structure. This is because
the 171Yb atoms in the outer part of the wings are pro-
gressively further away from the 173Yb’s at the center,
and unable to form molecules. In addition, those 171Yb
atoms should bind to other 171Yb’s to stay in the cluster,
the 171Yb-171Yb interactions being too weak to stabilize
the wings if they are made up of more than two 171Yb
atoms.
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