
1

How to Collaborate: Towards Maximizing the
Generalization Performance in Cross-Silo

Federated Learning
Yuchang Sun, Graduate Student Member, IEEE , Marios Kountouris, Fellow, IEEE , and

Jun Zhang, Fellow, IEEE

Abstract—Federated learning (FL) has attracted vivid attention as a privacy-preserving distributed learning framework. In this work,
we focus on cross-silo FL, where clients become the model owners after training and are only concerned about the model’s
generalization performance on their local data. Due to the data heterogeneity issue, asking all the clients to join a single FL training
process may result in model performance degradation. To investigate the effectiveness of collaboration, we first derive a generalization
bound for each client when collaborating with others or when training independently. We show that the generalization performance of a
client can be improved by collaborating with other clients that have more training data and similar data distributions. Our analysis
allows us to formulate a client utility maximization problem by partitioning clients into multiple collaborating groups. A hierarchical
clustering-based collaborative training (HCCT) scheme is then proposed, which does not need to fix in advance the number of groups.
We further analyze the convergence of HCCT for general non-convex loss functions which unveils the effect of data similarity among
clients. Extensive simulations show that HCCT achieves better generalization performance than baseline schemes, whereas it
degenerates to independent training and conventional FL in specific scenarios.

Index Terms—Federated learning, generalization, collaboration pattern, hierarchical cluster.

✦

1 INTRODUCTION

F EDERATED learning (FL), a distributed model training
paradigm, has recently received much attention due

to its benefits in preserving data privacy [1]–[3]. In an FL
system, a central server coordinates multiple clients with
private data for training deep learning (DL) models. Specifi-
cally, participating clients collaborate to find a global model
that achieves satisfactory performance on all clients’ data by
sharing model updates instead of training data. During the
FL training process, clients receive a global model from the
server and optimize it based on the local data. After local
training, clients upload the accumulated model updates
to the server for aggregation. The server in turn updates
the global model using the aggregated model updates and
sends it back to clients for the next epoch training.

Depending on the types of clients, FL can be classified
into cross-device and cross-silo settings [4], [5]. In this work,
we focus on cross-silo FL [6]–[8] where clients are typically
companies or organizations (e.g., banks or hospitals) and
become the model owners after FL training. These clients,

Y. Sun and J. Zhang are with the Department of Electronic and Computer
Engineering, The Hong Kong University of Science and Technology, Hong
Kong (e-mail: yuchang.sun@connect.ust.hk;eejzhang@ust.hk). M. Kountouris
is with the Andalusian Research Institute in Data Science and Computa-
tional Intelligence (DaSCI), Department of Computer Science and Artificial
Intelligence, University of Granada, Spain, and with EURECOM, France
(e-mail: mariosk@ugr.es). The work of J. Zhang was supported by the
Hong Kong Research Grants Council under the Areas of Excellence scheme
grant AoE/E-601/22-R and NSFC/RGC Collaborative Research Scheme grant
CRS HKUST603/22. The work of M. Kountouris was supported by the
European Research Council (ERC) under the European Union’s Horizon
2020 Research and Innovation Programme (Grant agreement No. 101003431).
(Corresponding author: Jun Zhang)

which normally have sufficient computation resources, are
expected to be continuously available throughout the train-
ing process. However, they are usually self-interested and
are only concerned about the generalization performance
on their local data [9], [10]. Specifically, each client wants
to learn a model that can generalize well on its local dis-
tribution. In practice, some powerful clients with sufficient
training data can achieve a good generalization perfor-
mance with independent training, thus having limited or
no incentive to collaborate with others. Meanwhile, the data
among clients are naturally not independent and identically
distributed (non-IID); this is known to severely degrade
the training performance of the global model [11]. Hence,
participating in FL may be a suboptimal choice for some
clients. On the other hand, clients with a limited amount of
data may prefer collaborating with others to benefit from
their training data. Nevertheless, they also tend to exclude
the diverged gradients uploaded by clients with disparate
data distribution. As such, training a single global model
by incorporating all clients cannot suit their requirements.
Given the above considerations, our paper aims to address
the challenge of how to collaborate among clients under the
FL framework, which demands a flexible collaboration plan.

There have been a few attempts to improve the utility
of collaboration in FL. A recent work [12] proposed to
only incorporate the clients that find the global model
beneficial in collaborative training while allowing others
to train independently. Nevertheless, those independent
clients, which have different data distributions from most
clients, may not enjoy satisfactory performance by making
a binary decision of whether to participate in FL or not. To
remedy the deficiency of a single global model, some works

ar
X

iv
:2

40
1.

13
23

6v
2

 [
cs

.L
G

]
 2

8
N

ov
 2

02
4

2

[13]–[15] introduce multiple global models to FL system.
Specifically, they cluster all clients into several groups, and
the clients in the same group cooperatively train a global
model. The clustering criterion is tailored to minimize the
training error of clients, which, however, is not sufficient to
guarantee good performance on unseen or new data [16].
To enhance clients’ generalization performance, the design
of an appropriate metric for partitioning clients remains an
unresolved challenge. Besides, determining the number of
groups without additional knowledge of local data distri-
bution is a notoriously challenging problem. As a more
general consideration, some studies resort to game theory
to formulate the client partition problem as a hedonic game
without fixing the number of groups [17]–[21]. However,
these works focus on the theoretical aspects of this game,
e.g., stability and equilibrium, and they do not provide any
practical and efficient algorithm to solve the problem.

In this work, we investigate how to design the collabora-
tion pattern of clients so as to maximize their generalization
performance in a cross-silo FL system. Our contributions are
summarized as follows:

• By collaborating, clients can benefit from more train-
ing data, but may also suffer from data heterogeneity.
To study in detail this phenomenon, we analyze the
local test error of a client when it joins any group
or trains a model independently. Our analytical re-
sults unveil that the generalization performance of a
client can be improved by involving more training
data samples yet excluding the collaborators with
diverged data distributions.

• Motivated by this analysis, we define the utility of
each client as an upper bound of the test error, where
the divergence of data distribution is approximated
by the gradient distance. Then, we formulate a client
utility maximization problem by designing the col-
laboration among clients. To solve the problem ef-
ficiently, we propose a hierarchical clustering-based
collaborative training scheme, coined HCCT, which
identifies the proper collaboration patterns for clients
during training. It is worth noting that the num-
ber of groups in HCCT is automatically determined
without requiring additional tuning. Considering the
computational complexity of evaluating client simi-
larity, we further propose an efficient implementa-
tion of HCCT.

• We prove the convergence of the HCCT scheme for
general non-convex loss functions by analyzing the
sum of local gradients of clients. With a more precise
assumption on gradient similarity, we can character-
ize the effect of client grouping on the convergence
performance in cross-silo FL.

• Finally, we evaluate the proposed HCCT scheme via
simulations in different training tasks and datasets.
Our experimental results show that HCCT achieves
better generalization performance than the baselines
and can adapt to various scenarios. Furthermore, the
ablation studies provide guidelines on the selection
of hyperparameters in HCCT.

Organization. The rest of the paper is organized as
follows. Section 2 introduces the related work. In Section

3, we describe the system model and a motivating example.
Then, we analyze the generalization performance of clients
and formulate the client utility maximization problem in
Section 4. In Section 5, we propose HCCT to optimize the
collaboration pattern, establish its convergence in Section 6,
and evaluate it via simulations in Section 7. We conclude
this paper in Section 8.

2 RELATED WORKS

In this section, we introduce related approaches that con-
sider the problem of collaboration patterns in FL with self-
interested clients. We note that personalization techniques,
e.g., [9], [10], [22]–[24], can be seen as orthogonal to our
study, since these techniques can be employed to further
enhance the model performance at clients after the collabo-
ration design.

Fair collaboration in single-model FL. Considering the
client requirements, Cho et al. [12] proposed a training
scheme named MAXFL, where each client participates in
FL only if it finds the global model appealing, namely,
if the global model yields a smaller training loss than
a self-defined threshold. This threshold is defined as the
difference between the current global model and a local
model optimized in an independent training process, which,
however, introduces additional computation costs. More im-
portantly, the binary decision used in this work excludes the
possibility that those independent clients may formulate a
group to further improve their generalization performance.
Another stream of work [25], [26] aims to achieve fair
model performance among clients by modifying the global
training objective. For example, [25] proposed to give a
higher weight to the model updates from clients with lower
training accuracy. Nevertheless, these attempts still focus
on the setup with a single global model, which limits the
performance improvement for most clients.

Clustered federated learning. To satisfy different local
objectives, clustered FL generates multiple global models by
clustering clients into several groups [13]–[15]. For example,
an iterative clustering algorithm for FL named IFCA was
proposed in [13], where client group identity estimation and
federated model training are carried out alternatively. To
estimate the group identity, clients are required to evaluate
each global model on their local data to find the one achiev-
ing the minimal training loss. However, this process incurs
additional training cost that increases linearly with the
number of groups. More importantly, the clustering criterion
in these works focuses on minimizing the training loss [13],
[14], [27] but fails to reflect the generalization performance
on the unseen data. Furthermore, selecting the number of
groups is known to be challenging in these algorithms as
the server does not know local data distribution.

Game theoretic approaches. As a more general formula-
tion, one branch of studies [17]–[20] views the collaboration
design of clients in FL as a hedonic game without fixing
the number of groups and arranges the client partition
to minimize their training errors. These works are closely
related to our consideration, but they mainly focus on the
theoretical aspects by analyzing the optimality, stability,
and equilibrium of solutions. Although an optimal client
partition was proposed in [17], it is restricted to the mean

3

estimation problem. A practical algorithm that can effi-
ciently arrange client partitions in general DL setups is still
lacking. Moreover, other game theory-based works [7], [28]–
[30] assume that clients are reluctant to collaborate due
to concerns of limited computation resources or privacy
leakage. Therefore, the central server, whose objective is to
obtain a satisfactory global model, gives clients sufficient
rewards to encourage their participation in FL. Neverthe-
less, these works focus on improving a single global model
and may become suboptimal in terms of local test error
since they ignore the performance requirements of clients. In
contrast to previous work, we propose an efficient algorithm
to design the collaboration pattern such that all clients can
achieve satisfactory generalization performance.

3 PRELIMINARIES

In this section, we introduce the cross-silo FL system, fol-
lowed by a motivating example.

3.1 Cross-Silo FL
We consider a cross-silo FL system which consists of a
central server and a set of N clients denoted by N =
{1, 2, . . . , N}. Each client i ∈ N has a training dataset Dtr

i

which includes Di ≜ |Dtr
i | data samples and follows data

distribution Ptr
i . Denote the feature and label of any data

sample by x ∈ X and y ∈ Y , respectively. Clients aim
to learn a prediction function h(·;w) : X → Y , which
is characterized by model w ∈ RM with M trainable
parameters, to minimize the prediction error on the test data
Dte

i , i.e.,

min
w∈RM

ϵi(h) ≜ E(x,y)∼Pte
i
[l(h(x;w), y)]. (1)

Here l(h(x;w), y) is the loss function (e.g., the categori-
cal cross-entropy) computed between the predicted label
h(x;w) and the ground-truth label y, and Pte

i denotes the
distribution of test data. Although the test data are typically
unknown during training, it is commonly assumed that the
training data and test data are generated from the same
underlying distribution [31], i.e.,

Pte
i = Ptr

i = Pi,∀i ∈ N . (2)

Besides, the central server has no data sample and its role is
solely to coordinate the clients for their collaboration.

In real-world scenarios, clients have various data dis-
tributions and different training dataset sizes [11], [32]. To
be specific, some clients may own a limited number of
data samples and thus seek assistance from others for col-
laboration to improve the model performance. To describe
this scenario, without loss of generality, we assume that
clients are partitioned into K groups with indices k ∈ [K].
Note that the number of groups K is a priori unknown.
Each group consists of a set of clients Ck ⊂ N , and a
client belongs to only one group. With the available training
data D̂tr

k ≜ ∪i∈Ck
Dtr

i , clients in group k train a model by
minimizing the following objective:

min
w∈RM

ϵk(h) ≜ E(x,y)∼P̂tr
k
[l(h(x;w), y)], (3)

where P̂tr
k denotes the distribution of training dataset D̂tr

k ,
and D̂k = |D̂tr

k |.

TABLE 1
Main Notations

Notation Meaning
Dtr

i , Dte
i Training dataset and test dataset at client i

Ptr
i , Pte

i Distribution of training data and test data at client i
Di Number of training data samples at client i
D̂tr

k Training dataset at group k

D̂k Number of training data samples at group k

P̂k Distribution of training data at group k
Ck Client set of group k
Gt

i The group index of i-th client at epoch t
wt

i , ŵt
k Initial model of client i or group k at epoch t

h(·;w) Prediction function characterized by w
ϵi(·), ϵk(·) Expected risk function of client i or group k

gt
i Model update of client i at epoch t

ĝt
k A weighted average of updates of clients in group k

In training epoch t, the training process of each group is
detailed as follows. Each client i receives the global model
ŵt

Gt
i

from its corresponding group Gt
i ∈ [K] and optimizes

this model by using mini-batch stochastic gradient descent
(SGD) for Q steps. Specifically, at step q ∈ [Q] of epoch t,
client i updates the local model according to

wt,q+1
i = wt,q

i − ηt
∑

(x,y)∈Bt,q
i

∇wl(h((x;wt,q
i), y), (4)

where wt,0
i = ŵt

Gi
, ηt is the learning rate, and Bt,qi is a batch

of training data randomly sampled from Dtr
i . Afterwards,

each client summarizes the model updates as

gt
i ≜

Q∑
q=1

1

|Bt,qi |

∑
(x,y)∈Bt,q

i

∇wl(h((x;wt,q
i), y), (5)

which is then uploaded to the server. This server then
aggregates these model updates from clients in each group
and updates the global model by averaging them, i.e.,

ŵt+1
Gt

i
= ŵt

Gt
i
− ηtĝt

Gt
i
, (6)

where ĝt
Gt

i
≜

∑
i∈CGt

i

Di

D̂Gt
i

gt
i . We summarize the main nota-

tions in Table 1.
It is worth noting that clients have various data dis-

tributions [1], [4], and thus some clients’ data may differ
significantly from others. However, under strict privacy pro-
tection, the local data distribution is only visible to the client
itself [33]. If the process of joining a group is performed
arbitrarily, clients may suffer from performance degradation
due to the data heterogeneity issue [11]. To clearly demon-
strate this phenomenon, we present an example in the next
subsection.

3.2 Motivating Example
We consider a cross-silo FL system with N = 3 clients.
They collaborate to classify data samples extracted from the
CIFAR-10 [34] dataset by training a convolutional neural
network (CNN) model with four convolutional layers. We
assume that clients 1 and 2 have the same data distribu-
tions and client 3 has different data distribution deviating
from the two others. To be concrete, clients 1 and 2 have
respectively 20% and 80% of five classes of training data,
while client 3 has all the training data samples of the other

4

Client 1 Client 2 Client 3

Server

Independent trainingCollaborative training

Fig. 1. An example of collaboration pattern among three clients in cross-
silo FL.

five classes. We simulate different collaboration patterns
among three clients and evaluate their test errors, as shown
in Table 2, where the best generalization performances are
highlighted in bold while the worst ones are underlined.

TABLE 2
Test error (%) after 10 training epochs in the CIFAR-10 example.

Pattern Client 1 Client 2 Client 3 Mean Std.
Independent 38.16± 1.53 25.12± 0.83 15.8± 0.82 26.36 9.19

Global 49.90± 1.31 49.40± 1.62 31.32± 1.53 43.05 8.33

Partial∗
(1, 2) 23.54± 1.40 25.28± 0.64 15.90± 1.19 21.58 4.10
(1, 3) 96.14± 4.81 26.12± 0.29 16.21± 0.67 46.15 35.58
(2, 3) 39.42± 3.72 56.84± 3.62 27.30± 1.85 41.18 12.32

∗Two clients collaborate on the global model, while the other client trains independently.

From the above results, we observe that the best collab-
oration pattern is teaming up clients 1 and 2 while allowing
independent training of client 3, as shown in Fig. 1. In this
pattern, all of them can learn models achieving the best local
generalization performance. In comparison, with indepen-
dent training, client 1 suffers from a limited amount of train-
ing data, and a simple global training approach degrades the
model performance of client 3 due to the data heterogeneity
issue. Meanwhile, arbitrary collaboration, such as pairing
clients 1 and 3, can severely impair the model performance
because of their divergent data distributions. This example
demonstrates the importance of designing a collaboration
pattern among clients to improve their generalization per-
formance. To quantify the effect of collaborative training,
we analyze the test error of clients and then formulate a
problem to maximize their generalization performance in
the next section.

4 PROBLEM FORMULATION

4.1 Theoretical Analysis of Generalization Perfor-
mance

Consider that client i joins in a group with index Gi ∈ [K]
for model training1. This group has D̂Gi

training data sam-
ples that follow a distribution of P̂Gi

. When this client per-
forms independent training, we have CGi

= {i}, D̂Gi
= Di,

and P̂Gi = Pi. In the following theorem, we quantify the
test error of client i by joining any group.

1. In the following, we omit the superscript t in Gt
i for simplification

when not causing any confusion.

Theorem 1. Consider the loss function with µ-strong convexity
and L-Lipschitz continuity. For a prediction function h and any
0 < δ < 1, the following holds:

ϵi(h) ≤
4L2

δµD̂Gi

+ d1
(
P̂Gi ,Pi

)
+ λ, (7)

with probability 1 − δ, where d1
(
P̂Gi

,Pi

)
is the distribution

divergence (e.g., H-divergence) between P̂Gi and Pi, and λ =

min
{
EPi

[fGi
(x)− fi(x)] ,EP̂Gi

[fGi
(x)− fi(x)]

}
with true

labeling functions fi(·) and fGi(·).

Proof. The result is proved following [35], [36]. Please refer to
Appendix A.

Remark 1. According to Theorem 1, the test error of client i
decreases with more training samples (i.e., a larger value of D̂Gi

)
or smaller distribution divergence between training data and test
data (i.e., a smaller value of d1

(
P̂Gi ,Pi

)
).

The above results show that any client should seek col-
laborators with similar training data distributions and more
data samples. However, the data distributions of clients
cannot be disclosed to others due to privacy concerns. To
solve this problem, in the following subsection, we propose
a method to estimate the data divergence and formulate the
client utility maximization problem.

4.2 Client Utility Maximization

Based on the analytical results, we define the utility of
client i as the upper bound of its test error in Theorem 1.
Nevertheless, the data distribution divergence d1

(
P̂Gi

,Pi

)
in (7) is intractable due to the unknown P̂Gi since clients
do not share the data or data distribution to others. To solve
this problem, we propose to use the gradient divergence
to approximate the divergence of data distribution. This is
inspired by the gradient matching methods in domain gen-
eralization [37] and dataset condensation [38], where close
gradient directions indicate similar data distributions. To be
specific, define s (i, Gi) as the similarity between client i and
its corresponding group Gi, where s : RM × RM → R is a
similarity function. One approach is to use cosine similarity
of gradients:

s
(
i, Gt

i

)
= cos⟨gt

i , ĝ
t
Gt

i
⟩ =

〈
gt
i , ĝ

t
Gt

i

〉
∥gt

i∥2
∥∥∥ĝt

Gt
i

∥∥∥
2

. (8)

Thus, the utility of client i is given by

Ui(G
t
i) = Ui(D̂Gt

i
, ĝt

Gt
i
) ≜ − α

D̂Gt
i

+ s
(
i, Gt

i

)
+ β, (9)

where α > 0 is a trade-off constant, and β > 0 is a large
constant ensuring non-negative utility. Such non-negativity
guarantees its physical meaning of utility without impacting
system design. We note that α balances between training
data volume and gradient similarity. If clients have suffi-
cient data, they prefer collaborating with similar clients by
adopting a small α; otherwise, they are hungry for more
data and choose a large α. The impact of α is discussed
further in Section 7.4 via simulations. According to the

5

definition in (9), a client can improve its utility by involving
more training data and increasing the similarity between
gradients.

We now formulate the client utility maximization prob-
lem by designing client partition Π as follows

P1 : max
Π

N∑
i=1

Ui(D̂Gt
i
, ĝt

Gt
i
), (10)

s.t. Π≜

{
{Ck}Kk=1|Ck ̸= ∅, Ck ∩ Ck′ = ∅,

K⋃
k=1

Ck = N
}
.

(11)

Here the constraint in (11) implies that all clients are divided
into K non-empty and non-overlapping groups. Note that
the number of groups K is not a predetermined value but
an unknown integer satisfying 1 ≤ K ≤ N .

Finding an optimal solution for Problem (P1) isNP-hard
in general [20]. One straightforward approach is to search
over all BN possible partitions, where BN denotes the Bell
number of a set with N elements. This approach, however,
introduces extremely high computational complexity. We
notice that if α = 0, Problem (P1) reduces to a k-means prob-
lem which partitions N clients into K groups to minimize
the within-cluster variance, i.e., the distance between each
point gt

i and its corresponding center gt
Gi

. There are many
classic methods for solving this problem, e.g., k-means clus-
tering [39], k-means++ [40] and hierarchical clustering [41],
[42] algorithms. However, the presence of the constraint
α > 0 makes it unfeasible to define a suitable distance
metric to solve Problem (P1). Consequently, these methods
cannot be directly employed. Drawing inspiration from the
aforementioned clustering algorithms, we introduce an al-
gorithm to efficiently address the client partition in Problem
(P1) in the following section.

5 HIERARCHICAL CLUSTERING-BASED COLLAB-
ORATIVE TRAINING SCHEME

In this section, we propose a hierarchical clustering-based
collaborative training scheme, coined HCCT, which generates
a collaboration pattern to improve the generalization perfor-
mance of all clients. In HCCT, the training process is divided
into T training epochs. In each training epoch, we partition
the clients into K groups and each group includes one or
multiple clients. After partition, clients train current models
based on their local data. If a group has only one client, this
client performs independent training. Otherwise, the clients
in this group participate in collaborative training, with the
server aggregating their model gradients. We summarize
the training process of HCCT in Algorithm 1 and detail the
client partition step as follows.

We begin with K = N groups each of which involves a
single client. In this case, the utility of each group equals the
utility of its client, i.e.,

Ûk = UiI{i = k},∀k ∈ [K], (12)

where I{·} is the binary indicator function. To improve the
client utility, we need to decide whether to allow a coalition
of any two groups. Suppose groups k1 and k2 are merged
as a new group k′, i.e., Ck′ = Ck1

∪ Ck2
, and thus the global

Algorithm 1 Hierarchical Clustering-Based Collaborative
Training (HCCT)

1: Initialize w0
i ,∀i = 1, 2, . . . , N ;

2: for t = 0, 1, . . . , T − 1 do
3: if t = 0 then
4: Initialize K = N groups Ck = {k},∀k ∈ [K];
5: else
6: Partition clients according to {Ck}Kk=1 ←

ClientPartition({gt
i}i∈N);

7: end if
8: for each group k = 1, 2, . . . ,K do
9: if |Ck| = 1 then

10: // Independent training
11: Client i ∈ Ck performs model training according

to (4) and uploads the gradient gt
i to the server;

12: Update local model as wt+1
i = wt

i − ηtgt
i ;

13: else
14: // Collaborative training
15: Compute the dataset size as D̂k =

∑
i∈Ck

Di;
16: Compute the global model as ŵt

k =
∑

i∈Ck

Di

D̂k
wt

i

and broadcast it to all clients in this group;
17: for each client i ∈ Ck do
18: Perform local training according to (4) and

upload the model gradient gt
i to the server;

19: end for
20: The server updates the global model as ŵt+1

k =
ŵt

k − ηt
∑

i∈Ck

Di

D̂k
gt
i and broadcasts it to clients

in Ck;
21: end if
22: end for
23: end for
24: return wT

i ,∀i ∈ N ;

gradient of group k′ is a weighted average of the gradients
from all clients in this group, i.e.,

ĝt
k′ =

∑
i∈Ck′

Di

D̂k′
gt
i . (13)

where D̂k′ =
∑

j∈Ck′ Dj is the number of training data
samples of clients in Ck′ . For these clients in group k′, we
recompute their utilities and sum them up as the utility of
this group, i.e.,

Ûk′ =
∑
i∈Ck′

Ui(D̂k′ , ĝt
k′). (14)

The benefit of this merging step is defined as the difference
of utilities after and before merging groups k1 and k2, i.e.,

B(k1, k2) = Ûk′ − Ûk1 − Ûk2 . (15)

We perform the above operations iteratively on any two
groups k1 ̸= k2, k1, k2 ∈ [K] and record the corresponding
benefits. Subsequently, we merge two groups k∗1 and k∗2 that
yield the maximal benefit, i.e.,

(k∗1 , k
∗
2) = argmax{(k1,k2)|k1 ̸=k2,k1,k2∈[K]}B(k1, k2). (16)

After this step, the optimization objective in (P1), i.e., the
total utility of all clients, is increased since the utility of other
groups remains unchanged. In other words, the partitioning

6

Step (1) Step (4)

31 2

4 5 6

31 2

4 5 6

31 2

4 5 6

31 2

4 5 6

Step (2) Step (3)

Fig. 2. An illustration of the client partition process in HCCT with six clients, where the same shapes indicate similar data distributions. In the
beginning, each client is a singleton group. In Step (1), clients 1 and 2 are clustered together since (1, 2) = argmax(k1,k2) B(k1, k2). In Step
(2), clients 4 and 5 are clustered together since (4, 5) = argmax(k1,k2) B(k1, k2). In Step (3), group 1 and client 3 are clustered together since
(1, 3) = argmax(k1,k2) B(k1, k2). In Step (4), we stop partitioning since there is no benefit, i.e., B(k1, k2) ≤ 0, ∀k1 ̸= k2. The final group number
in this example is 3.

Algorithm 2 Client Partition Function in HCCT

1: def ClientPartition({gt
i}i∈N , {Ck}Kk=1):

2: Initialize K = N groups Ck = {k}, and set StopF lag as
False.

3: while StopF lag is False do
4: for group k1 = 1, 2, . . . ,K − 1 do
5: for group k2 = k1 + 1, 2, . . . ,K do
6: if B(k1, k2) is not recorded then
7: Compute the averaged gradient gt

k′ and
dataset size D̂k′ assuming groups k1 and k2
merge as group k′;

8: Record the benefit B(k1, k2) as (15);
9: end if

10: end for
11: end for
12: Find k∗1 and k∗2 that achieves the maximal utility

according to (16);
13: Update the new group as Ck∗

1
← Ck∗

1
∪ Ck∗

2
, remove

group index k∗2 , and update the number of groups as
K ← K − 1;

14: // Evaluate the stopping criterion
15: if K=1 or B(k1, k2)≤0,∀k1, k2∈ [K], k1 ̸=k2 then
16: Set StopF lag as True;
17: end if
18: end while
19: return {Ck}Kk=1;

choice is optimal at the current stage. Now we have K =
N − 1 groups and repeat the above operations.

It is worth noting that there is no need to select be-
forehand the number of groups K . In every partitioning
step, the value of K will decrease by one automatically.
Thus, the number of groups is implicitly determined by the
stopping criterion. Specifically, the process of client partition
is terminated if there is only one group left, i.e., K = 1, or
there is no benefit in forming collaborations between any
two groups, i.e.,

B(k1, k2) ≤ 0,∀k1, k2 ∈ [K], k1 ̸= k2. (17)

Through multiple steps, HCCT builds a hierarchical repre-
sentation of clients and finalizes the grouping among them.
The process of client partition is summarized in Algorithm
2, and we show an example with six clients in Fig. 2.

5.1 Discussions

We note that the above partition operations in Algorithm 2
are carried out by the server and do not incur any additional
cost for clients. Moreover, HCCT is independent of group
number determination or group center initialization, which
is different from the traditional clustering methods for FL
[13], [14]. These advantages avoid the non-trivial parameter
tuning process for different training tasks.

In some scenarios, the result of client partition in HCCT
can degenerate into the following collaboration patterns:

• Independent training: each client performs indepen-
dent learning without any cooperation with others,
i.e., K = N and Ci = {i},∀i ∈ N . Typical scenarios
include: 1) clients have sufficient local training data,
and 2) the data distributions diverge significantly
among clients.

• Global training (conventional FL): all clients work
together to train a global model, i.e., K = 1 and
C1 = N . Typical scenarios include: 1) clients have
a very limited volume of training data, and 2) the
data distributions are very similar or even IID among
clients.

As will be verified via simulations, the proposed partition
algorithm adapts to various scenarios by particularizing to
the above collaboration patterns.

Connection to personalized FL. The proposed HCCT
scheme is orthogonal to the personalization techniques in
FL [9], [10], [22]–[24]. Specifically, each group in HCCT can
be viewed as “a micro FL system” that contains a set of
clients. Thus, we can employ any personalization technique
to enhance the clients’ performance in a group. For example,
the clients may only collaborate to train the feature extractor
of a model and keep the classifier as a personalization layer
locally. This variant, named HCCT-P is advantageous when
clients’ data are more diverse, as incorporating personalized
layers can enhance client-specific model accuracy. As such,
HCCT-P is tailored to scenarios characterized by a high
degree of non-IID data among clients. In Section 7.3, we
demonstrate the compatibility of HCCT with personaliza-
tion techniques via simulations.

Computational complexity. The proposed HCCT
scheme incurs only the computation cost on the server with-
out bringing any additional overhead to clients. Specifically,

7

the server needs to compute client similarity to evaluate
the client’s utility. The computational complexity of client
similarity is related to the number of clients and the number
of parameters in the gradient, as detailed in the following.
On one hand, the first step of the client partition function
requires computing gradient similarity between two clients,
which is repeated for 1

2N(N − 1) times. In the best case,
when there is no benefit for merging any two groups, the
computational cost is O(N(N −1)). Otherwise, in each step
2 ≤ l ≤ N , there is a newly generated group, which consists
of at most l + 1 clients, and other N − l − 1 groups. Since
we iterate over other groups and compute the benefits if
it is merged with this new group, this process results in a
computational cost of O(N(l + 2) − (l + 1)2). In the worst
case, where we continuously put clients into one single
group until it becomes a global training, the computational
complexity is O(16 (N

3 − 19N + 6)). It is worth noting that
the number of clients N in cross-silo FL is rather small [4],
leading to an acceptable cost on the server. On the other
hand, since the gradient similarity is computed as the vector
multiplication between two M -dimensional gradients, it
introduces a computational complexity of O(M).

5.2 Efficient Estimation of Client Similarity
Computing client utility requires repeatedly evaluating
client similarity s (i, Gi). Despite that this operation is
performed on the central server, it still introduces high
computational complexity of O(M) due to the vector multi-
plication between two M -dimensional gradients. To reduce
such complexity, we propose an efficient implementation
by finding the most important layer accounting for client
similarity. After the first training iteration, the server collects
the gradients from all clients. The gradient of client i can be
expressed in a layer-wise manner as follows:

gt
i = (gt

i [1],g
t
i [2], . . . ,g

t
i [l], . . . ,g

t
i [L]), (18)

where gt
i [l] denotes the parameters of the l-th layer. Then

the server finds the layer with the largest relative variance,
i.e.,

l∗ = argmax
l∈[L]

V ar(gt
1[l],g

t
2[l], . . . ,g

t
N [l])

Mean(gt
1[l],g

t
2[l], . . . ,g

t
N [l])

. (19)

Intuitively, the difference between clients can be identified
by solely using layer l∗. In the client partition process, the
client similarity is efficiently computed as:

s (i, Gi) = cos⟨gt
i [l

∗],gt
Gi
[l∗]⟩. (20)

This efficient implementation reduces the computational
complexity from O(M) to O(dim(gt

i [l
∗])).

To summarize, HCCT-E is an efficient implementation
of HCCT, designed to reduce the computational complex-
ity in the client partitioning process. This is particularly
advantageous in environments where clients have similar
data distributions and dataset sizes, as a coarse partition of
clients is sufficient.

6 CONVERGENCE ANALYSIS

In this section, we analyze the proposed HCCT scheme
to prove its convergence and observe the effect of client
similarity. To begin with, we make some commonly adopted

assumptions on the local loss functions [43]–[46]. It is worth
noting that we do not assume any convexity of loss func-
tions in this section. In other words, the following results
hold for general non-convex loss functions. For simplicity,
we denote the local empirical loss function of client i by:

Ji(w) ≜
1

Di

∑
(x,y)∈Dtr

i

l(h((x;w), y). (21)

Assumption 1. (L-smoothness) There exists a constant L > 0
such that for any w1,w2 ∈ RM , we have:

∥∇Ji(w1)−∇Ji(w2)∥2 ≤ L∥w1 −w2∥2,∀i ∈ N . (22)

Assumption 2. (Unbiased and variance-bounded gradient) On
client i, the stochastic gradient computed on a random batch of
data samples B is an unbiased estimate of the full-batch gradient
over local training data Dtr

i , i.e.,

E

 1

|B|
∑

(x,y)∈B

∇wl(h((x;w), y))

 = ∇Ji(w),∀i ∈ N .

(23)
Besides, there exists a constant σ > 0 such that

E


∥∥∥∥∥∥ 1

|B|
∑

(x,y)∈B

∇wl(h((x;w), y))−∇Ji(w)

∥∥∥∥∥∥
2

2

 ≤ σ2,∀i ∈ N .

(24)

The data distributions on clients vary among each other,
as explained in Section 3.1, which leads to different opti-
mization objectives and diverse gradients. To show such
data heterogeneity, previous works [47], [48] made assump-
tions on the difference between local and global training
objectives. Different from these works, we aim to investigate
the collaboration among clients and thus make a more
precise assumption on the gradient similarity among clients
as follows.

Assumption 3. (Gradient similarity) There exist constants
κi,j > 0 such that

∥∇Ji(w)−∇Jj(w)∥2 ≤ κi,j ,∀i, j ∈ N . (25)

We are now to derive the convergence of the HCCT in
the following theorem. Previous works in FL [5], [49], [50]
consider that an algorithm has reached convergence if it con-
verges to a stationary point of the global loss function, i.e., if
its expected squared gradient norm mint∈[T] E[∥∇Ji(w)∥2]
is zero [51]. Compared with these works, the clients in
cross-silo FL have local training objectives and are not
concerned about the global objective. Therefore, a better
option is to verify the convergence of the algorithm by
upper bounding the sum of squared norm of local gradients∑

i∈N E[∥∇Ji(wt
i)∥2] [52].

Theorem 2. Let ξT =
∑T−1

t=0 ηt. Consider client i joins in group
Gt

i at epoch t. With Assumptions 1-3, if the learning rates satisfy
ηt < 1

L ,∀t ∈ [T], we have:

1

ξT

T−1∑
t=0

ηt
∑
i∈N

E[∥∇Ji(wt
i)∥2]

≤ 2

ξT

∑
i∈N

(
E[Ji(w0

i)]− E[Ji(w∗
i)]

)

8

+
1

ξT

T−1∑
t=0

2ηt
∑
i∈N

∑
j∈Gt

i

atjκ
2
i,j

+
1

ξT

T−1∑
t=0

2ηtL2
t−1∑
s=0

(ηs)2
∑
i∈N

∑
z∈Cs

i

aszκ
2
i,z

+
1

ξT

T−1∑
t=0

L(ηt)2Nσ2 +
T−1∑
t=0

4ηtL2N
t−1∑
s=0

(ηs)2σ2. (26)

Proof. We first prove an upper bound for the local loss decay
of all clients at training epoch t (formally stated in Lemma
1 in Appendix B), which is given by:∑

i∈N
E[Ji(wt+1

i)]−
∑
i∈N

E[Ji(wt
i)]

≤− ηt
∑
i∈N

E⟨∇Ji(wt
i),

∑
j∈Gt

i

atj∇Jj(wt
j)⟩

+
L(ηt)2

2

∑
i∈N

E


∥∥∥∥∥∥
∑
j∈Gt

i

atj∇Jj(wt
j)

∥∥∥∥∥∥
2
+

L(ηt)2N

2
σ2.

(27)

In the right-hand side (RHS) of (27), the inner product
−ηtE⟨∇Ji(wt

i),
∑

j∈Gt
i
atj∇Jj(wt

j)⟩ needs to be further up-
per bounded. The main challenge is to bound the diver-
gence between any two local gradients, i.e., E[∥∇Ji(wt

i) −
∇Ji(wt

j)∥2]. Using L-smoothness in Assumption 1, we
show that:

E[∥∇Ji(wt
i)−∇Ji(wt

j)∥2] ≤ L2E[∥wt
i −wt

j∥2]. (28)

Then we observe that, despite evolving from different
groups, wt

j and wt
i have the same initialization w0. There-

fore, we can upper bound their difference by comparing the
accumulated gradients in previous t− 1 iterations.

Finally, the result is completed by summing up both
sides of an upper bound of (27) over index t = 0, 1, . . . , T−1
and dividing them by

∑T−1
t=0

ηt

2 . The detailed proof is de-
ferred to Appendix C.

Corollary 1. When the learning rates satisfy
limT→∞

∑T−1
t=0 ηt = ∞, limT→∞

∑T−1
t=0 (ηt)2 < ∞,

and ηt = O
(
(
∑

i∈N
∑

j∈Gt
i
atjκ

2
i,j)

1/p
)

with p > 0, the RHS
of (26) converges to zero as T →∞, i.e., the local models output
by HCCT converge to the stationary points of the local loss
functions.

Proof. Please refer to Appendix D.

From Theorem 2 and Corollary 1, we observe that the
convergence of HCCT is hindered by the gradient dissim-
ilarity among clients. Specifically, as more heterogeneous
clients are grouped, i.e.,

∑
j∈Gt

i
atjκ

2
i,j is larger, the conver-

gence speed will be slowed down. This verifies our intuition
that clients with similar gradients should be divided into the
same collaboration group. In the next section, we will show
the empirical benefits of the proposed HCCT scheme via
extensive simulations.

Note that we adopt a fixed learning rate during a lo-
cal epoch and time-varying learning rates across (global)
training epochs. This setup follows previous studies on FL
e.g., [1], [47], and studies on local SGD, e.g., [53], [54]. As

we focus on comparing the impact of data distributions and
dataset sizes, we adopt the simple but classic SGD optimizer
as the client optimizer and leave the investigation of HCCT
with varying local learning rates as future work.

7 SIMULATION RESULTS

7.1 Setup
We simulate a cross-silo FL system with one central server
and N clients. To comprehensively demonstrate the effect of
various client data distributions, we simulate three scenarios
with different training tasks:

• Digit [55]: In this training task, N = 10 clients collab-
orate to classify the digit images with labels ranging
from 0 to 9. The task involves five datasets including
SVHN [56], USPS [57], SynthDigits [58], MNIST-M
[58], and MNIST [59]. Each client is assumed to have
a set of randomly chosen training data sampled from
one of these datasets.

• FMNIST [60]: In this training task, N = 20 clients
have IID data extracted from the FMNIST dataset.
The number of data samples at each client follows a
half-normal distribution H(1) [32].

• CIFAR-10 [34]: In this training task, N = 10 clients
have heterogeneous and imbalanced data samples.
We divide the training data into 100 shards, each of
which contains one random class of samples. Then,
we randomly allocate a certain number of shards to
each client using a half-normal distribution H(1).

For local evaluation, we split the data samples at each client
into the training dataset and test dataset randomly.

In the Digit training task, we adopt the same CNN
model with three convolutional layers as that of [55]. For
the FMNIST and CIFAR-10 training tasks, we train a fully
connected neural network model and a CNN model with
four convolutional layers, respectively.

For comparisons, we adopt the following training
schemes as baselines:

• Independent training: Each client performs local
training independently based on the local training
data.

• Global training: All clients collaboratively train a
global model.

• MAXFL [12]: A client chooses to participate in train-
ing the global model only if its local loss is lower than
a certain threshold; otherwise it retains independent
training.

• FedFA2 [25]: All clients train in a global model simi-
lar to the global training scheme. The key difference
is that their model updates are weighted accord-
ing to the training accuracy At

i on local data, i.e.,
ĝt
1 =

∑
i∈N

− log2 At
i∑

j∈N − log2 At
j
gt
i , which ensures equi-

table accuracy distribution among clients.
• IFCA [13]: In every training epoch, each client selects

the global model with the minimum loss on its local
data from the given number of global models.

2. This work [25] adopts SGD with momentum as local training
algorithm, but for fair comparisons we use mini-batch SGD in all
methods.

9

• FLSC [14]: In every training epoch, each client
chooses Ng global models with the minimum loss on
their local data from multiple global models and then
takes an average of these models as its local model.

IFCA and FLSC serve as benchmarks for client clustering in
FL, while FedFA and MAXFL represent other approaches to
determining client collaboration patterns. To demonstrate
the compatibility of HCCT, we also show the simulation
results for two variants: HCCT-E (an efficient implementa-
tion in Section 5.2) and HCCT-P (with personalization layers
[23]).

We summarize the statistics of the above training tasks
and the detailed experimental setup in Table 3. We run each
experiment with five random seeds and report the average
result.

TABLE 3
Simulation Setup

Digit FMNIST CIFAR-10

of classes 10 10 10
of clients 10 20 10

Avg. # of samples/client 185 120 950
Batch size 64 64 64

Learning rate ηt 0.1× 0.995t−1 0.1× 0.995t−1 0.1× 0.995t−1

Local epochs 5 1 1
Training epochs 20 50 50

of groups (IFCA, FLSC) 10 5 10
of soft groups Ng (FLSC) 2 3 3

α (HCCT) 1 100 1
α (HCCT-E) 100 100 10
α (HCCT-P) 1 100 1

7.2 Performance Comparison
We first compare the generalization performance under
different training schemes in three training tasks. Table 4
shows the average local test error of all clients after a given
number of training epochs. We observe that in the Digit
training task, HCCT achieves minimal test error among all
training schemes. This is because HCCT finds an appro-
priate collaboration pattern for all clients which enhances
their generalization performance by involving more training
data while excluding gradients from clients with dissimilar
data distribution. In comparison, clients in independent
training cannot achieve a good generalization performance
because of limited training data, while global training suf-
fers from poor convergence speed caused by heterogeneous
data. Moreover, other baseline schemes including MAXFL,
FedFA, and FLSC, induce larger test errors at clients, since
they cannot identify the intrinsic cluster structure of clients.
In addition, we find that in IFCA all clients may find the
same model appealing and tend to join in that group, which
degrades its generalization performance.

In the FMNIST training task, HCCT and global train-
ing have similar test errors, and they outperform other
baselines. Given the IID data at clients, a global collab-
oration incorporates the maximum training data samples
and significantly improves the generalization performance
of the model. However, clients in the CIFAR-10 task have
heterogeneous data, and thus the global training scheme
suffers from such non-IID issues. In this case, clients should
perform independent training, and HCCT also exhibits com-
parable test error to independent training. These results

TABLE 4
Local test error (%) in different training tasks. The best performances

(except HCCT-P) are highlighted in bold.

Digit FMNIST CIFAR-10
Indenpendant 30.22± 0.27 48.38± 1.52 34.47± 4.73

Global 29.55± 1.37 29.98± 4.04 46.96± 3.72
MAXFL 29.23± 1.56 29.98± 4.09 41.25± 6.99
FedFA 30.03± 1.38 34.29± 3.88 44.54± 5.65
IFCA 28.63± 2.57 38.84± 5.23 37.23± 2.96
FLSC 34.76± 6.26 33.55± 4.16 41.11± 0.50
HCCT 20.06± 0.66 29.98± 1.37 34.51± 4.64

HCCT-E 24.05± 1.87 32.02± 2.55 34.51± 4.70
HCCT-P 19.85± 0.31 29.51± 2.11 34.37± 4.77

evidence that HCCT can identify the most effective client
collaboration pattern, including independent training and
global training, to accommodate various scenarios.

To further compare different training schemes, we sum-
marize the average, standard deviation, minimal, and max-
imal values of test errors at clients in the Digit training
task in Table 5. We see that in addition to achieving the
lowest average test error, HCCT also notably reduces the
test error of the worst-performing client, which verifies
that clients with fewer training data samples can benefit
from effective collaboration. Meanwhile, the generalization
performances of those clients with sufficient training data
are also preserved, as the proposed utility function excludes
clients with dissimilar data from its collaboration group.
Besides, it is worth noting that HCCT achieves a lower stan-
dard deviation than the baseline schemes, which shows that
HCCT implicitly enhances fairness among clients, leading
to similar generalization performance for all clients.

TABLE 5
Local test error (%) in the Digit training task. The best performances

are highlighted in bold.

Mean (↓) Std. (↓) Min. (↓) Max. (↓)
Independent 30.22 18.89 6.13 56.01

Global 29.55 20.89 4.99 62.27
MAXFL 29.23 20.83 4.88 62.01
FedFA 30.03 21.10 5.21 63.71
IFCA 28.63 19.13 4.70 60.44
FLSC 34.76 21.39 6.49 67.99
HCCT 20.06 13.47 4.19 39.44

HCCT-E 24.05 16.00 4.67 45.77

7.3 Compatibility of HCCT

Compatibility with personalization techniques. Table 4
also shows the local test error of HCCT with personalization
layers (HCCT-P). Compared with the original results of
HCCT, HCCT-P further reduces the test error of clients.
However, since clients already found a proper collaboration
pattern with others, the improvement is relatively limited. A
better combination with existing personalization techniques
is left as future works.

Flexibility of tackling incoming clients. To demonstrate
the additional advantage of HCCT, we present the learning
curves in Fig. 3 where 10 clients begin training and 0, 1,
and 2 new clients join in training every 10 iterations. Upon
the arrival of a new client, its allocation to a specific group

10

0 20 40 60 80 100
Training iterations

20

30

40

50

60

70

80

90

100

Lo
ca

l T
es

t E
rro

r (
%

)

Nnew = 0
Nnew = 1
Nnew = 2

Fig. 3. Local test error (mean) vs. training iterations in the CIFAR-10
dataset with Nnew new clients.

is determined based on the utility evaluation according to
(15) and (16). This immediate integration of the new client’s
data into the training process is evident from the observed
increase in accuracy. Notably, the integration of additional
clients over time contributes to a progressive reduction in
the final training error. This demonstrates the flexibility and
efficiency of our framework in not only integrating new
clients but also in utilizing their data to improve the overall
model performance.

7.4 Effect of System Parameters

Effect of α. In Fig. 4, we investigate the effect of α using
the CIFAR-10 dataset. A larger value of α emphasizes the
importance of data volume, while a small value means that
clients tend to collaborate with someone with similar data
distribution. In this study, we split the assigned data for
each client into the training data and test data according to
different ratios, where a larger ratio means that a client has
more training data samples but less test data. In general,
when α is small, its effect on the model performance is
rather trivial. We observe from the results that as the ratio
becomes larger, more training data speed up the training
process and enhance the generalization performance in all
cases. Moreover, if clients have fewer training data samples
(i.e., the ratio is 0.05 or 0.1), the optimal value of α is 100.
It means that clients have limited local data and tend to
collaborate with others to benefit from their training data.
In contrast, when clients have many local data samples (i.e.,
ratio is 0.2 or 0.5), they will emphasize more on the data
distribution. Thus, by using a smaller α clients can avoid
collaborating with other clients whose data distribution di-
verges significantly. These results provide a guideline for the
selection of the value of α in the utility function. In addition,
it is straightforward to extend and apply personalized α for
different clients.

Effect of the number of groups. Next, to study how the
number of groups affects the generalization performance,
we set the number of clients as N = 20, manually fix
the number of groups as K , and evaluate the test error
in the Digit training task. From the results in Fig. 5, we
observe that in this scenario the optimal number of groups
to achieve the minimal test error is 10. Notably, the maximal

10 1 100 101 102 103
20

25

30

35

40

45

50

55

60

65

Lo
ca

l T
es

t E
rro

r (
%

)

45.78

42.2535.23

25.71

Ratio=0.05
Ratio=0.1
Ratio=0.2
Ratio=0.5

Fig. 4. Local test error (mean) in the CIFAR-10 dataset with different
values of α.

1 2 5 10 20
Number of Groups K

20

25

30

35

40

45

Lo
ca

l T
es

t E
rro

r (
%

)

Global
34.42

31.91

29.33

26.83

Independent
34.10

17.0

17.5

18.0

18.5

19.0

19.5

20.0

Av
er

ag
e

Ut
ilit

y

19.38 19.43
19.54

19.7

19.38

Fig. 5. Local test error (mean) and utility in the Digit dataset with different
numbers of groups.

utility is also achieved when clients are divided into 10
groups. A plausible explanation is that each group consists
of clients sharing the same dataset. This implies that the util-
ity function can effectively reflect the client’s requirement
of improving the generalization performance, such that the
minimal test error is achieved when the utility is maximized.

Furthermore, we set the number of clients as N ∈
{10, 20, 30, 40, 50}, manually fix the number of groups as
K ∈ {1, 2, 5, 10, N}, and evaluate the test error in the Digit
training task. The results in Fig. 6 show that the clients prefer
collaborating with a limited number of clients instead of
joining in a global federation.

8 CONCLUSIONS

In this work, we tackled the challenge of optimizing the
client collaboration pattern in order to maximize the gen-
eralization performance in cross-silo FL. We derived the
generalization bound for clients in various collaboration
cases and then formulated the client utility maximization
problem. To efficiently solve this problem, we proposed
HCCT, a hierarchical clustering-based collaborative training
scheme, in which clients are partitioned into different non-
overlapping groups without the need to initially decide
the number of groups. We also proved the convergence of
HCCT for general loss functions. The effectiveness of HCCT

11

1 2 5 10 N
Number of Groups K

6

8

10

12

14

16

18

20

Lo
ca

l T
es

t E
rro

r (
%

)

N=10
N=20

N=30
N=40

N=50

Fig. 6. Local test error (mean) in the Digit dataset with different numbers
of groups K and clusters N .

is further verified via extensive simulations in different
scenarios and datasets.

The group partition function in HCCT requires evalu-
ating client similarity for computing the client utility. This
introduces additional computational costs on the central
server, increasing with the number of clients. Given this
scalability issue, HCCT is limited to the cross-silo FL with
fewer clients. For future work, it is interesting to design the
collaboration patterns for cross-device FL [4], [61]. Besides,
it is worth exploring personalization techniques in HCCT
to further improve the generalization performance. In ad-
dition, adapting HCCT to the case with time-varying local
learning rates would be beneficial.

REFERENCES

[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A.
y Arcas, “Communication-efficient learning of deep networks
from decentralized data,” in Proc. Int. Conf. Artif. Intell. Statist.
(AISTATS), Ft. Lauderdale, FL, USA, Apr. 2017, pp. 1273–1282.

[2] S. Wang, M. Chen, C. Yin, W. Saad, C. S. Hong, S. Cui, and
H. V. Poor, “Federated learning for task and resource allocation
in wireless high-altitude balloon networks,” IEEE Internet Things
J., vol. 8, no. 24, pp. 17 460–17 475, 2021.

[3] W. Ni, J. Zheng, and H. Tian, “Semi-federated learning for collab-
orative intelligence in massive iot networks,” IEEE Internet Things
J., vol. 10, no. 13, pp. 11 942 – 11 943, Jul. 2023.

[4] P. Kairouz et al., “Advances and open problems in federated
learning,” Found. Trends Mach. Learn., vol. 14, no. 1–2, pp. 1–210,
2021.

[5] Y. Sun, Y. Mao, and J. Zhang, “MimiC: Combating client dropouts
in federated learning by mimicking central updates,” IEEE Trans-
actions on mobile computing, to appear.

[6] C. Huang, J. Huang, and X. Liu, “Cross-silo federated learning:
Challenges and opportunities,” [Online]. Available: https://arxiv.
org/pdf/2206.12949.pdf.

[7] M. Tang and V. W. Wong, “An incentive mechanism for cross-silo
federated learning: A public goods perspective,” in Proc. IEEE Int.
Conf. Comput. Commun. (INFOCOM). Vancouver, BC, Canada:
IEEE, May 2021, pp. 1–10.

[8] C. Zhang, S. Li, J. Xia, W. Wang, F. Yan, and Y. Liu, “Batchcrypt:
Efficient homomorphic encryption for cross-silo federated learn-
ing,” in Proc. USENIX Annu. Tech. Conf. (USENIX ATC), Jul. 2020,
pp. 493–506.

[9] Y. Huang et al., “Personalized cross-silo federated learning on non-
IID data,” in Proc. AAAI Conf. Artif. Intell. (AAAI), Virtual Event,
Feb. 2021, pp. 7865–7873.

[10] T. Yu, E. Bagdasaryan, and V. Shmatikov, “Salvaging federated
learning by local adaptation,” [Online]. Available: https://arxiv.
org/pdf/2002.04758.pdf.

[11] Q. Li, Y. Diao, Q. Chen, and B. He, “Federated learning on non-
IID data silos: An experimental study,” in Proc. IEEE 38th Int. Conf.
Data Eng. (ICDE). Kuala Lumpur, Malaysia: IEEE, May 2022, pp.
965–978.

[12] Y. J. Cho, D. Jhunjhunwala, T. Li, V. Smith, and G. Joshi, “To
federate or not to federate: Incentivizing client participation in
federated learning,” [Online]. Available: https://arxiv.org/pdf/
2205.14840.pdf.

[13] A. Ghosh, J. Chung, D. Yin, and K. Ramchandran, “An efficient
framework for clustered federated learning,” in Proc. 34th Conf.
Adv. Neural Inf. Process. Syst. (NeurIPS), Virtual Event, Dec. 2020,
pp. 19 586–19 597.

[14] C. Li, G. Li, and P. K. Varshney, “Federated learning with soft
clustering,” IEEE Internet Things J., vol. 9, no. 10, pp. 7773–7782,
May 2021.

[15] Y. Kim, E. Al Hakim, J. Haraldson, H. Eriksson, J. M. B. da Silva,
and C. Fischione, “Dynamic clustering in federated learning,” in
Proc. IEEE Int. Conf. Commun. (ICC), Virtual Event, Jun. 2021, pp.
1–6.

[16] H. Yuan, W. Morningstar, L. Ning, and K. Singhal, “What do we
mean by generalization in federated learning?” [Online]. Avail-
able: https://arxiv.org/pdf/2110.14216.pdf.

[17] K. Donahue and J. Kleinberg, “Optimality and stability in feder-
ated learning: A game-theoretic approach,” in Proc. 35th Conf. Adv.
Neural Inf. Process. Syst. (NeurIPS), Virtual Event, Dec. 2021, pp.
1287–1298.

[18] ——, “Model-sharing games: Analyzing federated learning under
voluntary participation,” in Proc. AAAI Conf. Artif. Intell. (AAAI),
Virtual Event, Feb. 2021, pp. 5303–5311.

[19] A. Blum, N. Haghtalab, R. L. Phillips, and H. Shao, “One for one,
or all for all: Equilibria and optimality of collaboration in federated
learning,” in Proc. Int. Conf. Mach. Learn. (ICML), Virtual Event, Jul.
2021, pp. 1005–1014.

[20] C. Hasan, “Incentive mechanism design for federated learning:
Hedonic game approach,” [Online]. Available: https://arxiv.org/
pdf/2101.09673.pdf.

[21] G. Huang, X. Chen, T. Ouyang, Q. Ma, L. Chen, and J. Zhang,
“Collaboration in participant-centric federated learning: A game-
theoretical perspective,” IEEE Trans. Mob. Comput., pp. 1–16, to
appear.

[22] A. Z. Tan, H. Yu, L. Cui, and Q. Yang, “Towards personalized
federated learning,” IEEE Trans. Neural Networks Learn. Syst., to
appear.

[23] M. G. Arivazhagan, V. Aggarwal, A. K. Singh, and S. Choudhary,
“Federated learning with personalization layers,” [Online]. Avail-
able: https://arxiv.org/pdf/1912.00818.pdf.

[24] A. Fallah, A. Mokhtari, and A. Ozdaglar, “Personalized feder-
ated learning with theoretical guarantees: A model-agnostic meta-
learning approach,” in Proc. 34th Conf. Adv. Neural Inf. Process. Syst.
(NeurIPS), Virtual Event, Dec. 2020, pp. 3557–3568.

[25] W. Huang, T. Li, D. Wang, S. Du, and J. Zhang, “Fairness and
accuracy in federated learning,” [Online]. Available: https://arxiv.
org/pdf/2012.10069.pdf.

[26] M. Mohri, G. Sivek, and A. T. Suresh, “Agnostic federated learn-
ing,” in Proc. Int. Conf. Mach. Learn. (ICML). Long Beach, CA,
USA: PMLR, Jun. 2019, pp. 4615–4625.

[27] F. Sattler, K.-R. Müller, and W. Samek, “Clustered federated learn-
ing: Model-agnostic distributed multitask optimization under pri-
vacy constraints,” IEEE Trans. Neural Networks Learn. Syst., vol. 32,
no. 8, pp. 3710–3722, 2021.

[28] Y. Deng et al., “Fair: Quality-aware federated learning with precise
user incentive and model aggregation,” in Proc. IEEE Int. Conf.
Comput. Commun. (INFOCOM). Vancouver, BC, Canada: IEEE,
May 2021, pp. 1–10.

[29] T. H. Thi Le et al., “An incentive mechanism for federated learning
in wireless cellular networks: An auction approach,” IEEE Trans.
Wireless Commun., vol. 20, no. 8, pp. 4874–4887, Aug. 2021.

[30] Y. Zhan, J. Zhang, Z. Hong, L. Wu, P. Li, and S. Guo, “A survey of
incentive mechanism design for federated learning,” IEEE Trans.
Emerg. Top. Comput., vol. 10, no. 2, pp. 1035–1044, Apr.-Jun. 2021.

[31] P. M. Long and H. Sedghi, “Generalization bounds for deep
convolutional neural networks,” in Proc. Int. Conf. Learn. Repr.
(ICLR), LA, USA, May 2019.

[32] M. Duan, D. Liu, X. Chen, R. Liu, Y. Tan, and L. Liang, “Self-
balancing federated learning with global imbalanced data in mo-
bile systems,” IEEE Trans. Parallel Distributed Syst., vol. 32, no. 1,
pp. 59–71, Jan. 2020.

https://arxiv.org/pdf/2206.12949.pdf
https://arxiv.org/pdf/2206.12949.pdf
https://arxiv.org/pdf/2002.04758.pdf
https://arxiv.org/pdf/2002.04758.pdf
https://arxiv.org/pdf/2205.14840.pdf
https://arxiv.org/pdf/2205.14840.pdf
https://arxiv.org/pdf/2110.14216.pdf
https://arxiv.org/pdf/2101.09673.pdf
https://arxiv.org/pdf/2101.09673.pdf
https://arxiv.org/pdf/1912.00818.pdf
https://arxiv.org/pdf/2012.10069.pdf
https://arxiv.org/pdf/2012.10069.pdf

12

[33] W. House, “Consumer data privacy in a networked world:
A framework for protecting a privacy and promoting
innovation in the global digital economy,” [Online]. Available:
https://obamawhitehouse.archives.gov/sites/default/files/
privacy-final.pdf.

[34] A. Krizhevsky et al., “Learning multiple layers of features from
tiny images,” 2009.

[35] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and
J. W. Vaughan, “A theory of learning from different domains,”
Mach. Learn., vol. 79, pp. 151–175, Oct. 2009.

[36] S. Shalev-Shwartz, O. Shamir, N. Srebro, and K. Sridharan, “Learn-
ability, stability and uniform convergence,” J. Mach. Learn. Res.,
vol. 11, pp. 2635–2670, Dec. 2010.

[37] Y. Shi, J. Seely, P. Torr, N. Siddharth, A. Hannun, N. Usunier, and
G. Synnaeve, “Gradient matching for domain generalization,” in
Proc. Int. Conf. Learn. Repr. (ICLR), Virtual Event, May 2021.

[38] B. Zhao, K. R. Mopuri, and H. Bilen, “Dataset condensation with
gradient matching,” in Proc. Int. Conf. Learn. Repr. (ICLR), Virtual
Event, May 2020.

[39] J. MacQueen, “Some methods for classification and analysis of
multivariate observations,” in Proc. 5th Berkeley Symp. Math. Statist.
Probability, Oakland, CA, USA, 1967, pp. 281–297.

[40] D. Arthur and S. Vassilvitskii, “K-means++: the advantages of
careful seeding,” in Proc. Eighteenth Annu. ACM-SIAM Symp. Dis-
cret Algorithms (SODA), New Orleans, LA, USA, Jan. 2007, pp.
1027–1035.

[41] J. H. Ward Jr, “Hierarchical grouping to optimize an objective
function,” J. Amer. Statistical Assoc., vol. 58, no. 301, pp. 236–244,
1963.

[42] A.-K. Großwendt, “Theoretical analysis of hierarchical clustering
and the shadow vertex algorithm,” Ph.D. dissertation, Univer-
sitäts-und Landesbibliothek Bonn, 2020.

[43] M. Chen, H. V. Poor, W. Saad, and S. Cui, “Convergence time
optimization for federated learning over wireless networks,” IEEE
Trans. Wireless Commun., vol. 20, no. 4, pp. 2457–2471, Apr. 2021.

[44] H. Xing, O. Simeone, and S. Bi, “Federated learning over wireless
device-to-device networks: Algorithms and convergence analy-
sis,” IEEE Journal on Selected Areas in Communications, vol. 39,
no. 12, pp. 3723–3741, Dec. 2021.

[45] C. T. Dinh, N. H. Tran, M. N. H. Nguyen, C. S. Hong, W. Bao, A. Y.
Zomaya, and V. Gramoli, “Federated learning over wireless net-
works: Convergence analysis and resource allocation,” IEEE/ACM
Transactions on Networking, vol. 29, no. 1, pp. 398–409, Feb. 2021.

[46] Z. Lin, H. Liu, and Y.-J. A. Zhang, “CFLIT: Coexisting federated
learning and information transfer,” IEEE Trans. Wireless Commun.,
to appear.

[47] S. Wang and M. Ji, “A unified analysis of federated learning with
arbitrary client participation,” in Proc. 35th Conf. Adv. Neural Inf.
Process. Syst. (NeurIPS), LA, USA, Nov. 2022.

[48] Y. Sun, J. Shao, Y. Mao, J. H. Wang, and J. Zhang, “Semi-
decentralized federated edge learning for fast convergence on
non-IID data,” in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC),
Austin, TX, USA, Apr. 2022.

[49] J. Wang and G. Joshi, “Cooperative SGD: A unified framework for
the design and analysis of local-update SGD algorithms,” J. Mach.
Learn. Res., vol. 22, no. 1, pp. 9709–9758, Jan. 2021.

[50] Y. Sun, Z. Lin, Y. Mao, S. Jin, and J. Zhang, “Channel and gradient-
importance aware device scheduling for over-the-air federated
learning,” IEEE Trans. Wireless Commun., 2023.

[51] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods
for large-scale machine learning,” SIAM Review, vol. 60, no. 2, pp.
223–311, Aug. 2018.

[52] P. Krishna, M. Kshitiz, M. Abdel-Rahman, R. Mike, S. Maziar, and
X. Lin, “Federated learning with partial model personalization,” in
Proc. Int. Conf. Mach. Learn. (ICML). Baltimore, MD, USA: PMLR,
Jul. 2022, pp. 17 716–17 758.

[53] X. Gu, K. Lyu, L. Huang, and S. Arora, “Why (and when) does
local SGD generalize better than sgd?” in Proc. Int. Conf. Learn.
Repr. (ICLR), Kigali, Rwanda, May 2023.

[54] Y. Guo, Y. Sun, R. Hu, and Y. Gong, “Hybrid local SGD for
federated learning with heterogeneous communications,” in Proc.
Int. Conf. Learn. Repr. (ICLR), Virtual Event, Apr. 2022.

[55] X. Li, M. JIANG, X. Zhang, M. Kamp, and Q. Dou, “Fedbn: Feder-
ated learning on non-IID features via local batch normalization,”
in Proc. Int. Conf. Learn. Repr. (ICLR), Virtual Event, May 2020.

[56] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y.
Ng, “Reading digits in natural images with unsupervised feature

learning,” [Online]. Available: https://storage.googleapis.com/
pub-tools-public-publication-data/pdf/37648.pdf.

[57] J. J. Hull, “A database for handwritten text recognition research,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 16, no. 5, pp. 550–554,
May 1994.

[58] Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by
backpropagation,” in Proc. Int. Conf. Mach. Learn. (ICML). Lille,
France: PMLR, Jul. 2015, pp. 1180–1189.

[59] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86,
no. 11, pp. 2278–2324, Nov. 1998.

[60] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: A novel
image dataset for benchmarking machine learning algorithms,”
[Online]. Available: https://arxiv.org/pdf/1708.07747.pdf.

[61] J. Mu, Y. Cui, W. Ouyang, Z. Yang, W. Yuan, and X. Jing, “Feder-
ated learning in 6G non-terrestrial network for iot services: From
the perspective of perceptive mobile network,” IEEE Network,
2024.

https://obamawhitehouse.archives.gov/sites/default/files/privacy-final.pdf
https://obamawhitehouse.archives.gov/sites/default/files/privacy-final.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/37648.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/37648.pdf
https://arxiv.org/pdf/1708.07747.pdf

13

APPENDIX A
PROOF OF THEOREM 1

Denote the true labeling functions on datasets Dte
i and D̂tr

Gi

by fi(·) ≜ fi(·;w∗
i) : X → Y and fGi

(·) ≜ fGi
(·; ŵ∗

Gi
) :

X → Y , which are characterized by optimal models w∗
i and

ŵ∗
Gi

, respectively. In other words, they satisfy

y = fi(x;w
∗
i),∀(x, y) ∈ Dte

i , (29)

and

y = fGi
(x; ŵ∗

Gi
),∀(x, y) ∈ D̂tr

Gi
. (30)

Define two auxiliary risks as follows:

ϵi(h, fGi
) ≜ Ex∼Pi

[|h(x)− fGi
(x)|], (31)

ϵGi
(h, fi) ≜ Ex∼P̂Gi

[|h(x)− fi(x)|]. (32)

We begin with decomposing the test error ϵi(h) as fol-
lows:

ϵi(h)

(a)
=ϵi(h)− ϵGi

(h) + ϵGi
(h)− ϵGi

(h, fi) + ϵGi
(h, fi)

(b)
≤ϵGi

(h) + |ϵGi
(h, fi)− ϵGi

(h)|+ |ϵi(h, fi)− ϵGi
(h, fi)|

(c)
≤ϵGi(h) + EP̂Gi

[fGi(x)− fi(x)] + |ϵi(h, fi)− ϵGi(h, fi)|
(d)
≤ ϵGi

(h) + EP̂Gi
[fGi

(x)− fi(x)]

+

∫ ∣∣∣P̂Gi − Pi

∣∣∣ |h(x)− fi(x)| dx

(e)
≤ϵGi

(h) + EP̂Gi
[fGi

(x)− fi(x)] + d1
(
P̂Gi

,Pi

)
, (33)

where (b) follows the fact x + y ≤ |x| + |y|,∀x, y ∈ R.
Besides, (c) and (d) apply the definition of several risks
directly. Moreover, we obtain the result in (e) following [35],
which provides an upper bound for the error of a hypothesis
on the target domain.

In (a), if we opt to add and subtract ϵi(h, fGi
)

instead of ϵGi
(h, fi), we arrive at a similar result

of (33) except substituting EP̂Gi
[fGi

(x)− fi(x)] with
EPi

[fGi
(x)− fi(x)]. Therefore, by defining a constant

λ = min{EPi
[fGi

(x)− fi(x)] ,EP̂Gi
[fGi

(x)− fi(x)]}, we
obtain the following result:

ϵi(h) ≤ ϵGi
(h) + d1

(
P̂Gi

,Pi

)
+ λ. (34)

Next, we provide an upper bound for the training error
ϵGi

(h). According to [36, Theorem 2], with probability at
least 1− δ, we have

ϵGi
(h) = Ex∼P̂Gi

[|hi(x)− fGi
(x)|] ≤ 4L2

δµD̂Gi

, (35)

where D̂Gi is the size of the training dataset at cluster Gi.
Plugging (35) into (33) completes the proof.

APPENDIX B
ADDITIONAL LEMMA

In the following lemma, we analyze the local decay of all
clients at training epoch t.

Lemma 1. Let ati ≜
Di

D̂Gt
i

. With Assumptions 1-2, we have

∑
i∈N

E[Ji(wt+1
i)]−

∑
i∈N

E[Ji(wt
i)]

≤− ηt
∑
i∈N

E⟨∇Ji(wt
i),

∑
j∈Gt

i

atj∇Jj(wt
j)⟩

+
L(ηt)2

2

∑
i∈N

E
[∥∥ ∑

j∈Gt
i

atj∇Jj(wt
j)
∥∥2]+ L(ηt)2N

2
σ2.

(36)

Proof. Using Assumption 1, we have

E[Ji(wt+1
i)]− E[Ji(wt

i)]

≤E⟨∇Ji(wt
i),w

t+1
i −wt

i⟩+
L

2
E[
∥∥wt+1

i −wt
i

∥∥2]
(a)
=E⟨∇Ji(wt

i),−ηt
∑
j∈Gt

i

atj∇Jj(wt
j)⟩+

L

2
E[
∥∥wt+1

i −wt
i

∥∥2]
=E⟨∇Ji(wt

i),−ηt
∑
j∈Gt

i

atj∇Jj(wt
j)⟩+

L(ηt)2

2
E[∥

∑
j∈Gt

i

atjg
t
j∥2]

=E⟨∇Ji(wt
i),−ηt

∑
j∈Gt

i

atj∇Jj(wt
j)⟩+

L(ηt)2

2
E[∥

∑
j∈Gt

i

atj∇Jj(wt
j)∥2]

+
L(ηt)2

2
E[∥

∑
j∈Gt

i

atj∇Jj(wt
j)−

∑
j∈Gt

i

atjg
t
j∥2]

(b)
≤ − ηtE⟨∇Ji(wt

i),
∑
j∈Gt

i

atj∇Jj(wt
j)⟩

+
L(ηt)2

2
E
[∥∥∥ ∑

j∈Gt
i

atj∇Jj(wt
j)
∥∥∥2]+ L(ηt)2

2
σ2, (37)

where (a) follows the gradient unbiasedness and (b) follows
the bounded gradient variance in Assumption 2.

APPENDIX C
PROOF OF THEOREM 2
Upper bounding the inner product. We upper bound the
inner product in (36) as follows:

− E⟨∇Ji(wt
i),

∑
j∈Gt

i

atj∇Jj(wt
j)⟩

(a)
= − 1

2
E[∥∇Ji(wt

i)∥2]−
1

2
E[∥

∑
j∈Gt

i

atj∇Jj(wt
j)∥2]

+
1

2
E[∥∇Ji(wt

i)−
∑
j∈Gt

i

atj∇Jj(wt
j)∥2]

(b)
= − 1

2
E[∥∇Ji(wt

i)∥2]−
1

2
E[∥

∑
j∈Gt

i

atj∇Jj(wt
j)∥2]

+
1

2
E[∥∇Ji(wt

i)−∇Ji(wt
j) +∇Ji(wt

j)−
∑
j∈Gt

i

atj∇Jj(wt
j)∥2]

14

(c)
≤ − 1

2
E[∥∇Ji(wt

i)∥2]−
1

2
E[∥

∑
j∈Gt

i

atj∇Jj(wt
j)∥2]

+ E[∥∇Ji(wt
i)−∇Ji(wt

j)∥2]
+ E[∥∇Ji(wt

j)−
∑
j∈Gt

i

atj∇Jj(wt
j)∥2]

(d)
≤ − 1

2
E[∥∇Ji(wt

i)∥2]−
1

2
E[∥

∑
j∈Gt

i

atj∇Jj(wt
j)∥2]

+ E[∥∇Ji(wt
i)−∇Ji(wt

j)∥2] +
∑
j∈Gt

i

atjκ
2
i,j , (38)

where (a) follows the fact ⟨x,y⟩ = 1
2∥x∥

2 + 1
2∥y∥

2 − 1
2∥x−

y∥2, in (b) we plus and minus ∇Ji(wt
j) in the last term,

(c) employs the inequality 1
2∥x + y∥2 ≤ ∥x∥2 + ∥y∥2,

and (d) follows Assumption 3. It is worth noting that by
collaborating with similar clients, the last term

∑
j∈Gt

i
atjκ

2
i,j

can be mitigated due to their similar objectives.
For the third term in the RHS of (38), we upper bound it

as follows:

E[∥∇Ji(wt+1
i)−∇Ji(wt

j)∥2]
(e)
≤L2E[∥wt

i −wt
j∥2]

=L2E[∥w0 −
t−1∑
s=0

ηs
∑
z∈Cs

i

aszg
s
z −w0 +

t−1∑
s=0

ηs
∑
z∈Cs

j

aszg
s
z∥2]

(f)
≤L2

t−1∑
s=0

(ηs)2E[∥
∑
z∈Cs

i

asz(g
s
z −∇Ji(ws

z) +∇Ji(ws
z))

−
∑
z∈Cs

j

asz(g
s
z −∇Jj(ws

z) +∇Jj(ws
z))∥2]

(g)
≤L2

t−1∑
s=0

(ηs)2E[∥
∑
z∈Cs

i

asz(∇Ji(ws
z)−∇Jj(ws

z))∥2]

+ 2L2
t−1∑
s=0

(ηs)2σ2

(h)
≤L2

t−1∑
s=0

(ηs)2
∑
z∈Cs

i

aszκ
2
i,z + 2L2

t−1∑
s=0

(ηs)2σ2, (39)

where (e) follows Assumption 1, and (f) follows the inde-
pendence among different iterations. (g) and (h) hold due to
Assumptions 2 and 3, respectively.

We plug the results of (38) and (39) back into the RHS of
(36) as follows:∑

i∈N
E[Ji(wt

i)]−
∑
i∈N

E[Ji(wt
i)]

≤− ηt

2

∑
i∈N

E[∥∇Ji(wt
i)∥2]−

∑
i∈N

ηt

2
E[∥

∑
j∈Gt

i

atj∇Jj(wt
j)∥2]

+ ηt
∑
i∈N

∑
j∈Gt

i

atjκ
2
i,j +

L(ηt)2

2

∑
i∈N

E[∥
∑
j∈Gt

i

atj∇Jj(wt
j)∥2]

+
L(ηt)2N

2
σ2 + ηt

∑
i∈N

E[∥∇Ji(wt
i)−∇Ji(wt

j)∥2]

≤− ηt

2

∑
i∈N

E[∥∇Ji(wt
i)∥2]

− (
ηt

2
− L(ηt)2

2
)
∑
i∈N

E[∥
∑
j∈Gt

i

atj∇Jj(wt
j)∥2]

+ ηt
∑
i∈N

∑
j∈Gt

i

atjκ
2
i,j

+ ηtL2
t−1∑
s=0

(ηs)2
∑
i∈N

∑
z∈Cs

i

aszκ
2
i,z

+
L(ηt)2N

2
σ2 + 2ηtL2N

t−1∑
s=0

(ηs)2σ2. (40)

Completing the proof. Now we rearrange the terms and
sum up both sides of (40) over t = 0, 1, . . . , T − 1 to obtain
the following result:

T−1∑
t=0

ηt

2

∑
i∈N

E[∥∇Ji(wt
i)∥2]

≤
∑
i∈N

E[Ji(w0
i)]−

∑
i∈N

E[Ji(w∗
i)]

+
T−1∑
t=0

ηt
∑
i∈N

∑
j∈Gt

i

atjκ
2
i,j

+
T−1∑
t=0

ηtL2
t−1∑
s=0

(ηs)2
∑
i∈N

∑
z∈Cs

i

aszκ
2
i,z

+
T−1∑
t=0

L(ηt)2N

2
σ2 +

T−1∑
t=0

2ηtL2N
t−1∑
s=0

(ηs)2σ2, (41)

where we use −(η
t

2 −
L(ηt)2

2) < 0 and −E[Ji(wT
i)] ≤

−E[Ji(w∗
i)].

By dividing both sides of (41) over
∑T−1

t=0
ηt

2 , we com-
plete the proof of Theorem 2.

APPENDIX D
PROOF OF COROLLARY 1

Recall the inequality (26) as:

1

ξT

T−1∑
t=0

ηt
∑
i∈N

E[∥∇Ji(wt
i)∥2]

≤ 2

ξT

∑
i∈N

(
E[Ji(w0

i)]− E[Ji(w∗
i)]

)
︸ ︷︷ ︸

S1

(42)

+
1

ξT

T−1∑
t=0

ηt
∑
i∈N

∑
j∈Gt

i

atjκ
2
i,j︸ ︷︷ ︸

S2

+
1

ξT

T−1∑
t=0

ηtL2
t−1∑
s=0

(ηs)2
∑
i∈N

∑
z∈Cs

i

aszκ
2
i,z︸ ︷︷ ︸

S3

(43)

+
1

ξT

T−1∑
t=0

L(ηt)2Nσ2 +
T−1∑
t=0

ηtL2N
t−1∑
s=0

(ηs)2σ2

︸ ︷︷ ︸
S4

. (44)

15

If the learning rates satisfy limT→∞ ξT =
limT→∞

∑T−1
t=0 ηt =∞, we have:

lim
T→∞

S1

ξT
= 0, (45)

as S1 is irrelevant of t. Besides, the second term satisfies:

lim
T→∞

S2

ξT
= O

∑T−1
t=0 ηt(

∑
i∈N

∑
j∈Gt

i
atjκ

2
i,j)

p∑T−1
t=0 ηt

 = 0,

(46)
since ηt = O

(
(
∑

i∈N
∑

j∈Gt
i
atjκ

2
i,j)

1/p
)

with p > 0. In

addition, we have limT→∞
S3

ξT
= 0 and limT→∞

S4

ξT
= 0.

Thus, the RHS of (26) converges to zero when T →∞.

	Introduction
	Related Works
	Preliminaries
	Cross-Silo FL
	Motivating Example

	Problem Formulation
	Theoretical Analysis of Generalization Performance
	Client Utility Maximization

	Hierarchical Clustering-based Collaborative Training Scheme
	Discussions
	Efficient Estimation of Client Similarity

	Convergence Analysis
	Simulation Results
	Setup
	Performance Comparison
	Compatibility of HCCT
	Effect of System Parameters

	Conclusions
	References
	Appendix A: Proof of Theorem 1
	Appendix B: Additional Lemma
	Appendix C: Proof of Theorem 2
	Appendix D: Proof of Corollary 1

