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Stability of Cylinders in E(κ, τ )
Homogeneous Spaces
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Abstract. We extend the classical Plateau–Rayleigh instability criterion
in the E(κ, τ) spaces. We prove the existence of a positive number L0 > 0
such that if a truncated circular cylinder of radius ρ in E(κ, τ) has length
L > L0, then it is unstable. This number L0 depends on κ, τ and ρ. The
value L0 is sharp under axially symmetric variations of the surface. We
also extend this result for the partitioning problem in E(κ, τ).
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1. Introduction and Statement of Results

In capillary theory [10], the Plateau–Rayleigh instability criterion asserts that
a truncated piece of a circular cylinder of radius ρ > 0 in R

3 is unstable if its
length L satisfies

L > 2πρ. (1.1)
Circular cylinders are surfaces with constant mean curvature (cmc to abbre-
viate) and the inequality (1.1) can be derived from a well-established theory
of stability of cmc surfaces going back, at least, to the initial works of Bar-
bosa, do Carmo and Eschenburg [3,4]. An analogous bound for cmc cylinders
in the hyperbolic 3-space has been recently exhibited by the authors [5], and
similar instability criteria for cylindrical liquids have been obtained in other
contexts of the capillary theory, see [2,6,12,13,15] and references therein.

In this paper, we consider the stability of truncated cylinders in the fam-
ily of simply connected homogeneous 3-dimensional spaces whose isometry
group has dimension 4. These spaces can be parametrized by two real param-
eters κ, τ and are known as the E(κ, τ) spaces. The E(κ, τ) spaces complete
the classification of the Thurston geometries along with the space forms R

3,
H

3 and S
3, whose isometry group is of dimension 6, and the space Sol, whose

isometry group is of dimension 3. The E(κ, τ) spaces admit a Riemannian
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submersion π : E(κ, τ) → M
2(κ) onto the 2-dimensional space form M

2(κ)
and their bundle curvature is τ . If τ = 0, then E(κ, 0) is one the product
spaces M2(κ)×R. If τ �= 0, then E(κ, τ) is the Heisenberg space if κ = 0; the
universal cover of the special linear group if κ < 0; and the Berger spheres if
κ > 0.

A local model for the E(κ, τ) spaces is as follows: if r > 0, let D(r) =
{(x, y) ∈ R

2 : x2 + y2 < r2} be the disk of radius r > 0. Let R(κ, τ) be the
space R

3 if κ ≥ 0 or D(2/
√−κ) × R if κ < 0. Let us endow R(κ, τ) with

coordinates (x, y, z) and the metric

g = σ2(dx2 + dy2) + (στ(ydx − xdy) + dz)2, σ =
4

4 + κ(x2 + y2)
.

Then, (R(κ, τ), g) is isometric to the E(κ, τ) space. The Riemannian submer-
sion is isomorphic to the projection onto the first two coordinates, π : R(κ, τ) →
R

2 if κ ≥ 0 and π : R(κ, τ) → D(2/
√−κ) if κ < 0. Notice that the base

space in this submersion is the two-dimensional space form M
2(κ), equipped

with the metric σ2(dx2 + dy2). When κ ≤ 0, this model for the E(κ, τ)
spaces is global, but if κ > 0, then this model omits one fiber. Indeed,
in the case κ > 0, τ > 0 of the Berger spheres S

3
b , if we regard S

3
b =

{(z, w) ∈ C
2 : |z|2 + |w|2 = 1}, then an explicit isometry between R(κ, τ)

and S
3
b − {(eiθ, 0) : θ ∈ R} is

Ψ(x, y, z) =
1

√
1 + κ

4 (x2 + y2)

(√
κ

2
(x + iy)ei κ

4τ z, ei κ
4τ z

)
.

With this isometry, we see that two points (x, y, z) and (x, y, z + 8τπ
κ ) are

identified to the same point in S
3
b . Finally, if κ = τ = 0 in this model,

then E(0, 0) is simply the Euclidean space R
3, whose isometry group is of

dimension 6.
In the last decades, the theory of cmc surfaces in the E(κ, τ) spaces

has received the attention of many researchers since the extension of Hopf’s
theorem by Abresch and Rosenberg [1]. This produced a vast literature which,
without aiming to collect it, we refer the reader to [7–9] and references therein.
One the most relevant topics in the E(κ, τ) spaces is the study of the stability
of cmc surfaces [11,14,16,20]. A cmc surface is said to be stable if it is a
second-order minimizer of the area functional under the preservation of the
volume. In case that we drop the volume preserving condition, the surface is
said strongly stable.

Our aim in this paper is the extension of the Plateau–Rayleigh estimate
(1.1) in the context of E(κ, τ) spaces, and for that matter, we need to gener-
alize the analog of the circular cylinders. The natural notion of a cylinder is
the lifting in E(κ, τ) of a circle of M2(κ), where by a circle we mean a closed
curve of M2(κ) with constant geodesic curvature κg. In particular, if κ ≥ 0,
then κg is any positive constant and if κ < 0, then κ2

g > −κ.

Definition 1.1. Given a curve α : I ⊂ R → M
2(κ), the vertical cylinder over

α is defined as Cα = π−1(α(I)). The vertical cylinder is called circular if α
is a circle. In such a case, the radius of Cα is the radius of α.
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Notice that a vertical cylinder Cα has constant mean curvature if and
only if κg is constant because the mean curvature of Cα is κg/2. It was
proved in [14] that a cmc vertical cylinder Cα is strongly stable if and only
if κ2

g + κ ≤ 0. In particular, this implies κ ≤ 0. If κ = 0, then α is a geodesic
(κg = 0), but if κ < 0, there are three possibilities: α is a horocycle (κ2

g = −κ),
an equidistant curve (0 < κ2

g < −κ) or a geodesic (κg = 0).
From the result of [14], the only cmc vertical cylinders that are not

strongly stable are the circular ones. Following with the spirit of the clas-
sical Plateau–Rayleigh instability criterion, we want to establish conditions
of stability of compact pieces of circular cylinders in the E(κ, τ) spaces in
terms of their length. We precise the terminology. Given a circular cylinder
Cα and L > 0, we define the truncated circular cylinder of length L as the set
Cα(L) = {(x, y, z) ∈ Cα : 0 ≤ z ≤ L}. In other words, Cα(L) is the compact
piece of Cα between the planes of equations z = 0 and z = L. Since the
translations (x, y, z) 	→ (x, y, z + t) are isometries in E(κ, τ), the fact to fix
the z-coordinate between 0 and L does not lose generality in this definition.

The first result in this paper is the extension of the classical Plateau–
Rayleigh result in the E(κ, τ) spaces.

Theorem 1.2. Let Cα be a circular cylinder of radius ρ in E(κ, τ). If L0 is
given by

L0 =

⎧
⎪⎪⎨

⎪⎪⎩

2π
−κ sinh(ρ

√−κ)
√

−κ + 4τ2 tanh2(ρ
√−κ
2 ) κ < 0,

2πρ
√

1 + τ2ρ2 κ = 0,

2π
κ sin(ρ

√
κ)

√
κ + 4τ2 tan2(ρ

√
κ

2 ) κ > 0,

(1.2)

then if L > L0, the truncated cylinder Cα(L) is not stable. If κ > 0 and
τ �= 0, we assume, in addition, L < 8τπ/κ.

Notice that if κ = τ = 0, then L0 = 2πρ and theorem rediscovers the
classical Plateau–Rayleigh instability criterion (1.1) in R

3. In the case κ > 0
and τ �= 0 corresponding to the Berger spheres, the assumption L < 8τπ/κ
comes from the fact that if L ≥ 8τπ/κ then Cα(L) is identified as a torus by
the periodicity of the fibers. We will also prove that this inequality is optimal
in case that we consider axially symmetric variations of the surface (Cor.
4.1).

In the second result of this paper, we study the stability of vertical
cmc cylinders when regarded as solutions of the partitioning problem in the
E(κ, τ) spaces. The general setting is analogous to the Euclidean case and
3-manifolds in general [17,19,21]. Given a domain W ⊂ E(κ, τ) with smooth
boundary ∂W , a surface Σ with int(Σ) ⊂ int(W ) and ∂Σ ⊂ ∂W is a capillary
surface if it is a critical point of the area functional among all surfaces in
these conditions that separate W into two domains of prescribed volumes.
Any capillary surface is characterized by the fact that has constant mean
curvature and the contact angle that makes Σ with ∂W along ∂Σ is constant.
In this context, we have similar notions of stability.

In the E(κ, τ) spaces, we investigate the stability in the partitioning
problem of truncated pieces of vertical cmc cylinders between two planes. To
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be precise, let Πc = {(x, y, z) ∈ E(κ, τ) : z = c}, c ∈ R. Let Cα be a vertical
cmc cylinder and Cα(L) = {(x, y, z) ∈ Cα : 0 ≤ z ≤ L}. Notice that we are
now including the case that κ2

g +κ ≤ 0, that is, α is not circle. If α is a circle,
then the intersection of Cα(L) with the support planes Π0∪ΠL is orthogonal;
hence, Cα(L) is a capillary surface. The result that we prove is as follows:

Theorem 1.3. Let Cα(L) be a truncated circular cylinder of radius ρ and
length L in E(κ, τ), supported on the planes Π0 ∪ ΠL. If L > L0, where
L0 is given by (1.2), then Cα(L) is not stable in the partitioning problem. If
κ, τ > 0, we assume moreover L < 8τπ/κ.

In case that κ2
g +κ ≤ 0, the vertical cmc cylinder Cα(L) makes constant

contact angle with Π0 ∪ ΠL only if the ambient space is H
2(κ) × R. In such

a case, we will prove in Thm. 5.1 that Cα(L) is strongly stable regardless of
the value L. Theorem 5.1 is analogous to the result proved in [14] but in the
context of the partitioning problem.

The organization of the paper is as follows: in Sect. 2, we investigate
the model R(κ, τ) of the E(κ, τ) spaces. In Sect. 3 we introduce the two
variational problems considered in this paper. In both cases, a self-adjoint
elliptic operator is defined and the stability problem can be reformulated in
terms of the eigenvalues of this operator under suitable boundary conditions.
For Thm. 1.2, the eigenvalue problem has Dirichlet conditions, while the case
of Thm. 1.3 is of Neumann type. The proof of Thm. 1.2 is given in Sect. 4
and the proof of Thm. 1.3 is exhibited in Sect. 5.

2. Vertical Cylinders in E(κ, τ )

For each E(κ, τ) space, we consider the model R(κ, τ) described in Sect. 1.
In this model, the vector field E3 = ∂z is a Killing vector field and τ is
characterized by the property ∇XE3 = τX×E3 for all X ∈ X(E(κ, τ)), where
∇ is the Levi-Civita connection of E(κ, τ). Using this model, an orthonormal
basis of the tangent space is given by {E1, E2, E3}, where

E1 =
1
σ

∂x − τy∂z, E2 =
1
σ

∂y + τx∂z, E3 = ∂z.

Hence, we have

∂x = σ(E1 + τyE3), ∂y = σ(E2 − τxE3), ∂z = E3. (2.1)

The Levi-Civita connection ∇ is determined by the relations

∇E1E1 = −σy

σ2
E2, ∇E1E2 =

σy

σ2
E1 + τE3, ∇E1E3 = −τE2,

∇E2E1 =
σx

σ2
E2 − τE3, ∇E2E2 = −σx

σ2
E1, ∇E2E3 = τE1,

∇E3E1 = −τE2, ∇E3E2 = τE1, ∇E3E3 = 0,

(2.2)

Here, σx and σy stand for the partial derivatives of σ with respect to x and
y, respectively.

Let Cα be a vertical cylinder, where α : I → M
2(κ) is a regular curve.

If α is a parametrized by arc length, a basis of the tangent plane on Cα is
{α′, E3} where α′ refers to the horizontal lift of α′ through the submersion π.
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Let N be the unit normal vector on Cα chosen so α′ ×E3 = N . The matricial
expression of the second fundamental form A of Cα with respect to {α′, E3}
is

A =
( 〈∇α′α′, N〉 〈∇α′E3, N〉

〈∇E3α
′, N〉 〈∇E3E3, N〉

)
=

(
κg τ
τ 0

)
,

where κg is the geodesic curvature of α as a curve in M
2(κ). The following

result compiles some properties of the vertical cylinders: see [14, Appendix].

Lemma 2.1. Let Cα be a vertical cylinder. Then,
(1) The Gauss curvature of Cα is K = 0 and the mean curvature is H =

κg/2.
(2) The norm of the second fundamental form A is |A|2 = κ2

g + 2τ2.
(3) The Ricci curvature along the direction of N is Ric(N) = κ − 2τ2.

Since the metric on M
2(κ) is σ2(dx2 + dy2), the circle α can be

parametrized, up to an isometry in M
2(κ), by

α(s) =
(
r cos

s

σr
, r sin

s

σr

)
, r > 0, σ =

4
4 + κr2

.

The center of α is the origin (0, 0) of R2 if κ ≥ 0 or D(2/
√−κ) if κ < 0. The

radius ρ of α is given by

ρ =

⎧
⎪⎨

⎪⎩

2√−κ
arctanh r

√−κ
2 κ < 0,

r κ = 0,
2√
κ

arctan r
√

κ
2 κ > 0.

The geodesic curvature κg of α in M
2(κ) is constant and given by

κg =
4 − κr2

4r
=

⎧
⎪⎨

⎪⎩

√−κ coth(ρ
√−κ) κ < 0,

1
ρ

κ = 0,
√

κ cot(ρ
√

κ) κ > 0.

(2.3)

Let

R = rσ =
4r

4 + κr2
=

⎧
⎨

⎩

1√−κ
sinh(ρ

√−κ) κ < 0,

ρ κ = 0,
1√
κ

sin(ρ
√

κ) κ > 0.

The lifting of α via the submersion provides a parametrization of Cα, namely

ψ(s, t) =
(
r cos

s

R
, r sin

s

R
, t

)
, s, t ∈ R. (2.4)

We compute the first fundamental form (gij). Using (2.1), we obtain

ψs =
1
σ

(− sin
s

R
, cos

s

R
, 0) = − sin

s

R
E1 + cos

s

R
E2 − τrE3,

ψt = (0, 0, 1) = E3.

Thus, (gij) and its inverse (gij) are the matrices
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(gij) =
(

1 + r2τ2 −rτ
−rτ 1

)
, (gij) =

(
1 rτ
rτ 1 + r2τ2

)
. (2.5)

Finally, by Lem. 2.1, the mean curvature H of Cα is constant with H = κg/2.

3. Stability of cmc Surfaces in E(κ, τ ) Spaces

In this section, we recall the notions of stability and index of a cmc surface
in the contexts of fixed boundary (Thm. 1.2) and the partitioning problem
(Thm. 1.3). We begin with the first case. Let Σ be an oriented surface in
E(κ, τ) and let {Σt : t ∈ (−ε, ε)} be a compactly supported variation of Σ. If
we define the functionals

A(t) = Area(Σt), V(t) = Volume(Σt),

where V(t) is the volume enclosed by Σt, it is known that Σ is a critical point
of A for all volume preserving variations if and only the mean curvature H
of Σ is constant. In such a case, Σ is said to be stable if A′′(0) ≥ 0 for all
compactly supported normal variations that preserve the volume of Σ. If we
drop the volume preserving condition in the variations of Σ, we say that Σ
is strongly stable. Stability of Σ is equivalent to

A′′(0) = −
∫

Σ

u(Δu + |A|2u + Ric(N)u) ≥ 0, (3.1)

for all u ∈ C∞
0 (Σ) such that

∫
Σ

u = 0. Here Δ is the Laplacian operator on
Σ, A is the second fundamental form of Σ, N is the unit normal vector field
of Σ and Ric the Ricci curvature of E(κ, τ). The mean zero integral

∫
Σ

u = 0
comes from the condition that the variations preserve the volume of Σ. In
consequence, Σ is strongly stable if A′′(0) ≥ 0 for all u ∈ C∞

0 (Σ).
The parenthesis in (3.1) defines the Jacobi operator by

L = Δ + |A|2 + Ric(N), (3.2)

which is a self-adjoint elliptic operator. Since L is self-adjoint, we define the
quadratic form Q by

Q[u] = −
∫

Σ

u · L[u],

in the space V = {u ∈ C∞
0 (Σ):

∫
Σ

u = 0}. The weak Morse index of Σ,
denoted by indexw(Σ), is defined as the maximum dimension of any subspace
of V on which Q is negative definite. In a certain sense, the weak index
measures the ways to reduce the area of Σ, up to second order, preserving
the volume of Σ. Thus, Σ is stable if and only if indexw(Σ) = 0.

Suppose Σ is compact. Then indexw(Σ) coincides with the number of
negative eigenvalues λ of the eigenvalue problem

⎧
⎪⎨

⎪⎩

L[u] + λu = 0 in Σ,

u = 0 in ∂Σ,

u ∈ V.

(3.3)



MJOM Stability of Cylinders in E(κ, τ) Homogeneous Spaces Page 7 of 16    59 

Since the condition
∫
Σ

u = 0 is difficult to work with, instead of (3.3), we
consider the eigenvalue problem

⎧
⎪⎨

⎪⎩

L[u] + λu = 0 in Σ,

u = 0 in ∂Σ,

u ∈ C∞
0 (Σ).

(3.4)

By the ellipticity of L, it is well-know that the eigenvalues of (3.4) (also of
(3.3)) are ordered as a discrete spectrum λ1 < λ2 ≤ λ3 · · · ↗ ∞ counting
multiplicity. The Morse index of Σ, denoted index(Σ), is the number of neg-
ative eigenvalues of (3.4). Since in (3.4) it is only required that u belongs
to C∞

0 (Σ), we have that index(Σ) = 0 if and only if Σ is strongly stable or
equivalently, λ1 ≥ 0. Both indexes are related by the inequalities

indexw(Σ) ≤ index(Σ) ≤ indexw(Σ) + 1. (3.5)

The instability criteria in the Plateau–Rayleigh estimate (1.1) and in the
results of this paper (Thms. 1.2 and 1.3) are obtained once we could show
that λ2 < 0 in the eigenvalue problem (3.4). In such a case, the inequalities
(3.5) imply indexw(Σ) ≥ 1. This proves that Σ is not stable.

When Σ is not compact, the definition of the index of Σ is given by
taking an exhaustion Σ1 ⊂ Σ2 ⊂ . . . ⊂ Σ by bounded subdomains of Σ. Then
the weak Morse index and the Morse index of Σ are defined by

index w(Σ) = lim
n→∞ index w(Σn), index (Σ) = lim

n→∞ index (Σn). (3.6)

These definitions are independent of the choice of the exhaustion of Σ. Both
numbers can be infinite, but if they are finite, then the relation (3.5) holds
too.

Stability in the partitioning problem is defined similarly. Let S be a
surface that separates E(κ, τ) into two domains and name W to one of them,
having ∂W = S. Let Σ be an orientable surface with non-empty boundary
∂Σ such that int(Σ) ⊂ int(W ) and ∂Σ ⊂ S. Assume that int(Σ) separates
W into two connected components, each having as boundary the union of
int(Σ) and a domain in S. Fix one of these components, say D, and let
Ω = ∂D ∩ S. An admissible variation of Σ is a variation {Σt : t ∈ (−ε, ε)}
such that int(Σt) ⊂ int(W ) and ∂Σt ⊂ S. By denoting Ω(t) to the domain
bounded by ∂Σt in S, we define the energy functional

E(t) = Area(Σt) − cos γ Area(Ω(t)),

where γ ∈ (0, π). A surface Σ is a critical point of E for all volume preserving
variations of Σ if and only if the mean curvature H of Σ is constant and the
angle between Σ and S along ∂Σ is constant and it coincides with γ. In such a
case, we say that Σ is a capillary surface. The angle γ is the angle formed by
the unit normal vectors N of Σ and Ñ of S along ∂Σ, that is cos γ = 〈N, Ñ〉.
The vector N points into Ω, whereas Ñ points outwards Ω. See [18,19] for
details. The second variation of E is

E ′′(0) = −
∫

Σ

u · L[u] +
∫

∂Σ

u
(∂u

∂ν
− qu

)
,
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where
q =

1
sin γ

Ã(ν̃, ν̃) +
cos γ

sin γ
A(ν, ν). (3.7)

Here Ã is the second fundamental form of S with respect to −Ñ . The vectors ν
and ν̃ are the exterior unit conormal vectors of ∂Σ on Σ and on S respectively.
Associated to the quadratic form E ′′(0), we also have the notions of weak
Morse index and Morse index. The eigenvalue problems (3.3) and (3.4) are
the same but replacing the condition u = 0 in ∂Σ by the so-called Robin
condition

∂u

∂ν
− qu = 0 in ∂Σ. (3.8)

4. Proof of Theorem 1.2.

Under the hypothesis of Thm. 1.2, we know κ2
g+κ > 0 and Cα is parametrized

by (2.4). By Lem. 2.1, the Jacobi operator is

L = Δ + κ2
g + κ.

For the computation of the Laplacian Δ, we use its expression in local coor-
dinates ψ = ψ(s, t), namely

Δu =
1

√
det(gij)

2∑

i,j=1

∂i

(√
det(gij) gij∂ju

)
,

where ∂1 = ∂s and ∂2 = ∂t. Notice that g11 = 1, g12 = rτ , g22 = 1 + r2τ2

and det(gij) = 1. If u = u(s, t), then it is immediate

Δu = uss + 2rτust + (1 + r2τ2)utt. (4.1)

We now compute the eigenvalues of the eigenvalue problem (3.4) for the trun-
cated cylinders Cα(L). Let us observe that the domain of u is the rectangle
[0, 2πR]×[0, L] in the (s, t)-plane and u is 2πR-periodic in the s-variable. Con-
sider separation of variables u(s, t) = f(s)g(t), where f = f(s) and g = g(t)
are smooth functions of one variable and f is 2πR-periodic. Using that α is
a closed curve and (4.1), the eigenvalue problem (3.4) is
{

f ′′g + 2rτf ′g′ + (1 + r2τ2)fg′′ +
(
κ2

g + κ + λ
)
fg = 0, in [0, 2πR] × [0, L]

g(0) = g(L) = 0.
(4.2)

Here it is understood that the derivative (·)′ is with respect to each one of
the variables of f and g. Dividing the first equation by fg, we have

f ′′

f
+ 2rτ

f ′

f

g′

g
+ (1 + r2τ2)

g′′

g
+ κ2

g + κ + λ = 0.

Differentiating with respect to s and next with respect to t, we obtain
(

f ′

f

)′ (
g′

g

)′
= 0.

This equation implies that either f ′/f or g′/g are constant functions. If g′/g =
c ∈ R, then either g(t) is a constant function or g(t) = ect. The boundary
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condition g(0) = g(L) = 0 implies that if g is constant then g = 0 and hence
u(s, t) = 0, which it is not possible. In case that g(t) = ect, then the boundary
condition is not fulfilled.

Consequently f ′/f = c for some constant c ∈ R. We have two possibili-
ties.
(1) Case c �= 0. Then f(s) = ecs, but this case is not possible because f is

a periodic function.
(2) Case c = 0. Then f(s) is a non-zero constant function since otherwise

u(s, t) = 0. Then Eq. (4.2) reduces to

(1 + r2τ2)g′′ +
(
κ2

g + κ + λ
)
g = 0. (4.3)

The solution of this equation depends on the sign of κ2
g + κ + λ.

(a) Case κ2
g + κ + λ < 0. If

δ2 = −κ2
g + κ + λ

1 + r2τ2
,

then the solution of (4.3) is g(t) = A cosh(δt) + B sinh(δt), A,B ∈
R. Imposing the boundary condition (4.2), we arrive A = B = 0
and g would be 0, which it is not possible.

(b) Case κ2
g + κ + λ = 0. Then the solution of (4.3) is g(t) = At + B,

A,B nR. Again the boundary conditions (4.2) imply A = B = 0.
This case is not possible.

(c) Case κ2
g + κ + λ > 0. Let

μ2 =
κ2

g + κ + λ

1 + r2τ2
, μ > 0.

The solutions of (4.2) are g(t) = A sin(μt) + B cos(μt), where
A,B ∈ R. Since g(0) = g(L) = 0, then B = 0 and μL ∈ {nπ :
n ∈ N}. Therefore, the eigenvalues λ = λn are given by

λn =
n2π2

L2
(1 + r2τ2) − (κ2

g + κ), (4.4)

while the eigenfunctions are gn(t) = sin(nπ
L t), n ∈ N.

We have seen in Sect. 2 that if the second eigenvalue λ2 is negative, then the
surface is not stable. The condition λ2 < 0 is fulfilled whenever L satisfies

L > 2π

√
1 + r2τ2

κ2
g + κ

. (4.5)

This is just (1.2) after some manipulations and we conclude the proof.
Theorem 1.2 gives a sufficient criterion of instability for truncated pieces

Cα(L) of circular cylinders because we have restricted to find eigenfunctions
u that are of type u(s, t) = f(s)g(t). Using separation of variables, the eigen-
functions are of type un(s, t) := sin(nπ

L t). This implies that the variation
of Cα(L) associated to un does not depend on s. Thus, the variation of the
surface is axially symmetric with respect to the axis of the cylinder. In this
case, the z-axis of R(κ, τ). In consequence, if we are studying stability of
Cα(L) only for those variations that are axially symmetric, all the above
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computations provide sharp estimates in the stability/instability criterion.
By simplicity in the statement, we express the critical length in terms of r
and κg given by (4.4).

Corollary 4.1. Let Cα(L) be a truncated piece of a circular cylinder of length
L > 0. Then Cα(L) is:
(1) strongly stable for axially symmetric variations if and only if L ≤ L0/2.
(2) stable for axially symmetric variations if and only if L ≤ L0.

Proof. The statement (1) is immediate from the expression of λ1. For the
statement (2), notice that the eigenvalues of (3.3) are those λn that sat-
isfy that the corresponding eigenfunction belongs to V. The first eigenfunc-
tion u1(s, t) = sin( π

L t) does not satisfy the mean zero integral, so λ1 is not
an eigenvalue of (3.3). The next eigenvalue is λ2 where the eigenfunction
u2(s, t) = sin(2π

L t) has mean zero integral because
∫

Cα(L)

u2 =
∫ 2π

0

∫ L

0

sin
(

2π

L
t

)
dsdt = 0,

where we have used that det(gij) = 1. Thus, λ2 is the first eigenvalue of (3.3).
Then the result is immediate from the expression of λ2. �

We finish this section by a remark about the case κ2
g + κ ≤ 0, where κg

is constant. In this case, it was proved in [14] that Cα is strongly stable. This
can be deduced directly from the expression of the quadratic form Q defined
in (3.1). Indeed, by integration by parts, for all u ∈ C0(Cα) we have

Q[u] =
∫

Cα

|∇u|2 − (κ2
g + κ)u2 ≥ 0,

because κ2
g + κ ≤ 0. On the other hand, if one still wants to calculate the

Morse index, the arguments in the proof of Thm. 1.2 fail because now the
curve α is not closed. However, it is possible to compute explicitly the weak
index of Cα and deduce that this index is 0, proving strongly stability when
κ2

g + κ ≤ 0. To show an example, consider the case κ < 0 and κg = 0.
Then α is a geodesic of the hyperbolic plane H

2(κ). A parametrization of
the corresponding cylinder is Cα is ψ(s, t) = (s, 0, t), with s ∈ (−s1, s1),
where s1 = 2/

√−κ. Since α is not compact, we need to take an exhaustion
of Cα by considering pieces of cylinders of type ψ([−s0, s0] × [−L,L]), with
0 < s0 < s1, and letting s0 → s1 and L → ∞. Now ψs = σE1 and ψt = E3

and the eigenvalue problem (4.2) becomes
⎧
⎪⎪⎨

⎪⎪⎩

1
σ2

f ′′g + fg′′ + (κ + λ) fg = 0,

g(−L) = g(L) = 0,

f(−s0) = f(s0) = 0.

Making a similar reasoning, we obtain g(t) = sin(kπ
L t), k ∈ N, and

1
σ2

f ′′

f
+ κ + λ =

k2π2

L2
,
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or equivalently,

f ′′ + σ2

(
κ + λ − k2π2

L2

)
f = 0.

The solutions of this equation depend whether the parenthesis is negative,
zero or positive. By the boundary conditions f(−s0) = f(s0) = 0, the first
two cases are discarded and necessarily κ + λ − k2π2

L2 = δ2, for some δ > 0.
Then it is immediate to deduce δ = πn

2s0
, n ∈ N. In particular, we have

λ = λk,n =
1
σ2

(
δ2 +

k2π2

L2
− κ

)
> 0

because κ < 0. Thus, all compact pieces ψ([−s0, s0] × [−L,L]) are strongly
stable. If now s0 → s1 and L → ∞, we deduce that Cα is strongly stable.

5. Proof of Theorem 1.3

Now we prove Thm. 1.3 in the setting of the partitioning problem. With the
notation of Sec. 3, the surface S is the union of planes Πc of equation z = c,
specifically S = Π0 ∪ ΠL, and the domain W is the domain in E(κ, τ) having
Π0 ∪ΠL as boundary. Hence, the cylinder Cα is included in W and its bound-
ary are two circles, one included in Π0 and the other in ΠL. Consequently, if
we fix D as the bounded domain in W enclosed by Cα, then Ω are the two
disks in Π0 and ΠL bounded by the circular components of the boundary of
Cα.

Once we have identified all the geometric objects in the partitioning
problem, we first see that Cα intersects orthogonally each plane Πc and,
in consequence, Cα(L) is a capillary surface on Π0 ∪ ΠL with γ = π/2. A
parametrization of Πc is φ(x, y) = (x, y, c), x, y ∈ R. Using (2.1), we have

φx = σ(E1 + τyE3),

φy = σ(E2 − τxE3),

Ñ =
1

√
1 + τ2(x2 + y2)

(−τyE1 + τxE2 + E3).
(5.1)

In the cylinder Cα and thanks to the computation of ψs and ψt of the
parametrization (2.4), the unit normal N of Cα is

N = cos
s

R
E1 + sin

s

R
E2.

Thus, along ∂Σ, we have 〈N, Ñ〉 = 0. This means that the intersection is
orthogonal and that the contact angle is γ = π/2.

As a consequence, the function q in (3.7) reduces to q = Ã(ν̃, ν̃). For
the computation of Ã(ν̃, ν̃), we calculate the second fundamental form Ã with
respect to the basis {φx, φy}. We know that

Ã =

(
〈∇φx

φx, Ñ〉 〈∇φx
φy, Ñ〉

〈∇φy
φx, Ñ〉 〈∇φy

φy, Ñ〉

)

.
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Using (2.2), we have

∇φx
φx = σxE1 − (σy + 2τ2yσ2)E2 + σxτyE3,

∇φx
φy = (σy + τ2σ2y)E1 + (σx + σ2τ2x)E2 + τ(−σxx − σ + σ2)E3,

∇φy
φx = (σy + τ2σ2y)E1 + (σx + σ2τ2x)E2 + τ(σyy + σ − σ2)E3,

∇φy
φy = −(σx + 2τ2σ2x)E1 + σyE2 − σyτxE3.

Thus, the matrix of Ã is

τ
√
1 + τ2(x2 + y2)

( −x(σy + 2τ2yσ2) −σ + (1 + (x2 − y2)τ2)σ2 − yσy

σ − (1 − (x2 − y2)τ2)σ2 + xσx y(2xτ2σ2 + σx)

)
.

(5.2)
We calculate ν̃. We have

ν̃ = Ñ × ψs

|ψs| = N = −1
r
(xE1 + yE2) = − 1

rσ
(xφx + yφy).

It is now immediate from (5.2) that Ã(ν̃, ν̃) = 0 and consequently q = 0. This
implies that the Robin condition (3.8) in the eigenvalue problem is simply

∂u

∂ν
= 0 in ∂Cα(L).

The computation of ν gives

ν = N × ψs

|ψs| =
1√

1 + r2τ2
(−yτE1 + xτE2 + E3).

Since ∇u = f ′gψs + fg′ψt, we have

∂u

∂ν
= 〈∇u, ν〉 =

fg′
√

1 + r2τ2
. (5.3)

Again, consider separation of variables as in Thm. 1.2. Now the eigenvalue
problem is (4.2) together with (5.3), which leads to

{
f ′′g + 2rτf ′g′ + (1 + r2τ2)fg′′ +

(
κ2

g + κ + λ
)
fg = 0,

g′(0) = g′(L) = 0.
(5.4)

As in the proof of Thm. 1.2, we divide by fg and a similar argument allows
to deduce f ′(s) = cf(s). Again c = 0 because f(s) = ecs is not possible by
the periodicity of f . Since c = 0, f is a non-zero constant function and (5.4)
reduces to ⎧

⎨

⎩
g′′ +

κ2
g + κ + λ

1 + r2τ2
g = 0,

g′(0) = g′(L) = 0.

If κ2
g + κ + λ ≤ 0, then g does not fulfill the boundary conditions at

t = 0 and t = L. Thus, κ2
g + κ + λ must be positive. Let

μ2 =
κ2

g + κ + λ

1 + r2τ2
, μ > 0.
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The boundary condition g′(0) = 0 implies g(t) = A cos(μt) for some constant
A �= 0. The other boundary condition g′(L) = 0 yields μ = nπ/L, n ∈ N.
Consequently, the eigenvalues are

λn =
n2π2

L2
(1 + r2τ2) − (κ2

g + κ).

These eigenvalues coincide with the ones deduced in (4.4). In order to achieve
instability, we impose λ2 < 0 which yields

L > 2π

√
1 + r2τ2

κ2
g + κ

.

This is again (4.5) and we conclude the proof.
Theorem 1.3 considers the stability in the partitioning problem of cir-

cular cylinders. We now treat vertical cmc cylinders when κ2
g + κ ≤ 0 and

its stability in the partitioning problem. Notice that by Lem. 2.1, the mean
curvature of Cα is constant but this is not sufficient to be a capillary surface
because of the condition of contact angle. In fact, the intersection of Cα with
the planes Πc is not orthogonal unless that τ = 0. The condition κ2

g + κ ≤ 0
implies that the curve α is not closed. We have two cases.
(1) Case κg = 0, that is, α is a geodesic. Without loss of generality, we can

assume that α is parametrized by α(s) = (s, 0, 0) and Cα by ψ(s, t) =
(s, 0, t). Then ψs = σE1 and ψt = E3. This gives N = E2. On the other
hand, from (5.1), we have

Ñ =
1√

1 + s2τ2
(sτE2 + E3)

along Cα ∩ Πc. This gives 〈N, Ñ〉 = sτ/
√

1 + s2τ2 which it is only con-
stant if τ = 0. This case corresponds when E(κ, τ) is the product space
H

2(κ) × R.
(2) Case κg �= 0. Then necessarily κ < 0. Now α is a horocycle or an

equidistant curve. The parametrization of α is α(s) = (r cos s
R , r sin s

R −
y0) where y0 ∈ (0, 2√−κ

] and r > 2√−κ
− y0. Since the parametrization

of Cα is ψ(s, t) = (α(s), t), using (2.1), we have

ψs =
rσ

R

(
− sin

s

R
E1 + cos

s

R
E2 + (rτ + y0 sin

s

R
)E3

)
,

ψt = E3.

Thus,

N = cos
s

R
E1 + sin

s

R
E2.

Now along Cα ∩ Πc, we have

〈N, Ñ〉 =
y0τ cos s

R√
1 + τ2(r2 + y2

0 − 2ry0 sin s
R )

.

As a consequence, the contact angle along the intersection curve is con-
stant if and only if τ = 0 and, in such a case, γ = π/2.
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Summarizing, the case κ2
g + κ ≤ 0 only occurs if E(κ, τ) is H

2(κ) × R. In
the following result, we prove that Cα is strongly stable. This extends to the
partitioning problem the analogous situation of the case proved in [14].

Theorem 5.1. Let Cα be a vertical cmc cylinder in H
2(κ) ×R such that κ2

g +
κ < 0. Then, for any L > 0, the truncated cylinder Cα(L) is strongly stable
on Π0 ∪ ΠL in the partitioning problem.

Proof. The proof is a direct computation of the quadratic form E ′′
p (0). Let

u ∈ C0(Cα(L)). By an integration by parts, we have

E ′′
p (0) = −

∫

Cα(L)

u
(
Δu + (κ2

g + κ)u
)

+
∫

∂Cα(L)

u
∂u

∂ν
ds

=
∫

Cα(L)

|∇u|2 − (κ2
g + κ)u2 ≥ 0

because κ2
g + κ ≤ 0. �
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[13] López, R.: Plateau-Rayleigh instability of singular minimal surfaces. Commun.
Pure Appl. Anal. 21, 2981–2997 (2022)
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[16] Meeks, W.H., III., Mira, P., Pérez, J.: The geometry of stable minimal surfaces
in metric Lie groups. Trans. Am. Math. Soc. 372, 1023–1056 (2019)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


   59 Page 16 of 16 A. Bueno and R. López MJOM

[17] Nitsche, J.: Stationary partitioning of convex bodies. Arch. Ration. Mech. Anal.
89, 1–19 (1985)

[18] Ros, A., Souam, R.: On stability of capillary surfaces in a ball. Pac. J. Math.
178, 345–361 (1997)

[19] Ros, A., Vergasta, E.: Stability for hypersurfaces of constant mean curvature
with free boundary. Geom. Dedic. 56, 19–33 (1995)

[20] Rosenberg, H.: Constant mean curvature surfaces in homogeneously regular
3-manifolds. Bull. Austral. Math. Soc. 74, 227–238 (2006)

[21] Souam, R.: On stability of stationary hypersurfaces for the partitioning prob-
lem for balls in space forms. Math. Z. 224, 195–208 (1997)

Antonio Bueno
Departamento de Matemáticas
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