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Let H and K be two complex inner product spaces with 
dim(H) ≥ 2. We prove that for each non-zero mapping 
A : H → K with dense image the following statements are 
equivalent:
(a) A is (complex) linear or conjugate-linear mapping and 

there exists γ > 0 such that ‖A(x)‖ = γ‖x‖, for all x ∈ H, 
that is, A is a positive scalar multiple of a linear or a 
conjugate-linear isometry;

(b) There exists γ1 > 0 such that one of the next properties 
holds for all x, y ∈ H:

(b.1) 〈A(x)|A(y)〉 = γ1〈x|y〉,
(b.2) 〈A(x)|A(y)〉 = γ1〈y|x〉;

(c) A is linear or conjugate-linear and preserves orthogonal-
ity;

(d) A is additive and preserves orthogonality in both direc-
tions;

(e) A is additive and preserves orthogonality.
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This extends to the complex setting a recent generalization of 
the Koldobsky–Blanco–Turnšek theorem obtained by Wójcik 
for real normed spaces.

© 2025 Elsevier Inc. All rights are reserved, including those 
for text and data mining, AI training, and similar 

technologies.

1. Introduction

Elements x, y in a real or complex inner product space (H, 〈·|·〉) are called orthogonal
in the Euclidean sense (x ⊥2 y in short) if 〈x|y〉 = 0. It is an intriguing question to 
determine how much information about H is preserved by knowing all orthogonal pairs 
of elements in H. We are led to the following problem on preservers: If K is another 
real or complex inner product space, a mapping Δ : H → K preserves (Euclidean) 
orthogonality if ∀x, y ∈ H, x ⊥2 y ⇒ Δ(x) ⊥2 Δ(y). If the implication “⇒” is replaced 
with the equivalence “⇔” we say that Δ preserves (Euclidean) orthogonality in both 
directions. When can we conclude that such a mapping Δ is linear or conjugate linear? 
Are the inner product spaces H and K isometrically isomorphic?

We should begin by observing that it is simply hopeless to characterize additive sur-
jective maps preserving orthogonality in both directions on the one-dimensional complex 
Hilbert space H = C, since every additive surjective mapping on C automatically pre-
serves orthogonality in both directions. If we take a non-continuous bijective additive 
mapping f : R → R, the natural extension f̃ : C → C, f̃(α + iβ) = f(α) + if(β)
is an additive bijection preserving orthogonality in both directions. We shall see next 
that this counterexample can only occur when the inner product space in the domain is 
one–dimensional.

Concerning the above questions, a result by J. Chmieliński (see [2, Theorem 1]) assures 
that for each non-zero mapping T between two (real or complex) Hilbert spaces H and 
K the following statements are equivalent:

(a) T is linear and there exists γ > 0 such that ‖T (x)‖ = γ‖x‖ for all x ∈ H;
(b) There exists γ1 > 0 such that 〈T (x)|T (y)〉 = γ1〈x|y〉, for all x, y ∈ H;
(c) T is linear and preserves orthogonality in both directions;
(d) T is linear and orthogonality preserving.

Chmieliński also gave examples of non-linear (actually non-additive) and discontinuous 
maps preserving orthogonality on the 2-dimensional real Hilbert space �22.

The conclusion in the just quoted result is closely related to the celebrated Koldobsky–
Blanco–Turnšek theorem. It is known that elements x, y in a Hilbert space H are 
orthogonal if, and only if, they are Birkhoff or Birkhoff-James orthogonal (x ⊥B y

in short), that is, for all α ∈ K we have ‖x‖ ≤ ‖x + αy‖. Birkhoff orthogonality makes 
sense for normed spaces. Let us observe that the underlying field K is crucial in the above 
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definitions. Consider, for example, the complex Hilbert space H = �22 with inner product 
〈(λ1, λ2)|(μ1, μ2)〉 =

∑
i λiμi, and the underlying real Hilbert space HR with respect to 

the inner product (·|·) = �e〈·|·〉. It is easy to check that ((i, 1)|(1,−i)) = �e(2i) = 0, 
that is (i, 1) ⊥2 (1,−i) in HR, while (i, 1) ⊥2 (1,−i) in H.

The celebrated Koldobsky–Blanco–Turnšek theorem asserts that a non-zero linear 
mapping T between two real or complex normed spaces X and Y , preserves Birkhoff 
orthogonality if, and only if, there exists γ > 0 such that ‖T (x)‖ = γ‖x‖, for all x ∈ X

(see [1] for the case of real normed spaces and [5] for complex normed spaces). In a more 
recent reference (cf. [8, Theorem 3.1]), P. Wójcik established a generalization of the 
Koldobsky–Blanco–Turnšek theorem by showing that for each non-zero additive map-
ping A between two normed real spaces X and Y with dim(X) ≥ 2, the following 
conditions are equivalent:

(a) A preserves Birkhoff orthogonality;
(b) A is a linear mapping and there exists γ > 0 such that ‖T (x)‖ = γ‖x‖, for all x ∈ X.

Obviously, Wójcik’s theorem holds when X and Y are real inner product spaces, where 
it is more natural to speak about preservers of (Euclidean) orthogonality. However, the 
strong dependence on the base field of Birkhoff orthogonality and (Euclidean) orthog-
onality makes impossible to apply Wójcik’s result for additive orthogonality preserver 
between complex Hilbert spaces (even more for additive preservers of Birkhoff orthogo-
nality between complex normed spaces). It seems interesting to fill the existing gap and 
characterize all additive maps preserving orthogonality between complex Hilbert spaces. 
This short note is aimed to provide a full characterization of additive orthogonality pre-
serving maps between complex inner product spaces, in this setting we show that, as 
it can be naturally expected, positive scalar multiples of conjugate-linear isometries are 
also possible. In our main result we prove that if A : H → K is a non-zero additive 
mapping with dense image between complex inner product spaces, then A is a positive 
scalar multiple of a (complex) linear or conjugate linear isometry if and only if it pre-
serves (Euclidean) orthogonality (see Theorem 2.1). We also prove that if X and Y are 
complex normed spaces with dim(X) ≥ 2 and X admits a conjugation τ (i.e., a period-2
conjugate linear isometry), then every additive mapping A : X → Y preserving Birkhoff 
orthogonality is real-linear. Furthermore, if A is surjective and preserves Birkhoff orthog-
onality in both directions, then A is a real-linear isomorphism and the underlying real 
normed spaces XR and YR are isomorphic (see Proposition 2.2).

2. The results

Before stating the desired characterization we include a technical lemma.

Lemma 2.1. Let A : H → K be a real-linear mapping with dense image between two 
complex inner product spaces. Suppose additionally that A preserves orthogonality. Then 
for each norm-one element x0 ∈ H we have A(Cx0) ⊆ CA(x0).
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Proof. We can suppose that A(ix0) = 0, otherwise A(Cx0) = A(Rx0) = RA(x0) ⊆
CA(x0).

Let us take z ∈ K = A(H) with z ⊥2 A(x0). By hypothesis, we can find a se-
quence (xn)n in H such that (A(xn))n → z. Since H = (Rx0 + R(ix0)) ⊕ {x0}⊥ =
(Rx0 + R(ix0)) ⊕ {ix0}⊥, there exist sequences (αn)n, (βn)n in R, and a sequence 
(yn)n ⊆ {ix0}⊥ = {x0}⊥ satisfying αnx0 + βnix0 + yn = xn for all n, and hence 
αnA(x0) + βnA(ix0) +A(yn) = A(αnx0 + βnix0 + yn) → z. By hypotheses, (αnA(x0) +
βnA(ix0)) ⊥2 A(yn) for all natural n, and hence the sequences (αnA(x0) + βnA(ix0))n
and (A(yn))n must be bounded.

If A(x0) = 0, we have A(H) = RA(ix0) ⊕⊥ A
(
{x0}⊥

)
, and thus

K = A(H) = RA(ix0) ⊕⊥ A ({x0}⊥) = RA(ix0) ⊕⊥ A ({x0}⊥)

= RA(ix0) ⊕⊥ A ({ix0}⊥) ⊆ RA(ix0) ⊕⊥ {A(ix0)}⊥ ⊆ K,

which is impossible. Therefore A(x0) = 0.
If A(x0) and A(ix0) are R-linearly dependent we can write A(ix0) = tA(x0) for some 

real t, and thus A(ix0) ∈ CA(x0).
We can now deal with the case that A(x0) and A(ix0) are R-linearly independent. 

Since (αnA(x0)+βnA(ix0))n is bounded, by basic theory of normed spaces the sequences, 
(αn)n and (βn)n must be bounded. Up to taking appropriate subsequences, we can 
assume that (αn)n → α0 ∈ R and (βn)n → β0 ∈ R, and hence (A(yn))n → z1 ∈
A({ix0}⊥) ⊆ {A(ix0)}⊥ ∩ {A(x0)}⊥. We therefore have z = α0A(x0) + β0A(ix0) + z1.

We shall next show that β0 = 0. Arguing by contradiction, we assume β0 = 0. By 
applying that z ⊥2 A(x0), we deduce that

0 = 〈z|A(x0)〉 = α0‖A(x0)‖2 + β0〈A(ix0)|A(x0)〉 + 〈z1|A(x0)〉
= α0‖A(x0)‖2 + β0〈A(ix0)|A(x0)〉,

(1)

which implies that Im〈A(ix0)|A(x0)〉 = 0, equivalently, 〈A(ix0)|A(x0)〉 ∈ R. This assures 
that

A(ix0) = sA(x0) + z2, with s ∈ R, and z2 ⊥2 A(x0).

We therefore arrive to

A(H) = (RA(x0) + RA(ix0)) ⊕⊥ A
(
{x0}⊥

)
⊆ RA(x0) ⊕⊥ {A(x0)}⊥,

and thus K = A(H) ⊆ RA(x0) ⊕⊥ {A(x0)}⊥ ⊆ K, which is also impossible, and hence 
β0 = 0, and by (1), α0 = 0.

All the previous conclusions lead to z = z1 ∈ {A(ix0)}⊥ ∩ {A(x0)}⊥. We have then 
proved that A(ix0) ⊥2 z for every z ⊥2 A(x0), and then A(ix0) ∈ CA(x0). �

We can now state the desired extension of the Blanco–Turnšek and Wójcik theorems.
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Theorem 2.1. Let A : H → K be a non-zero mapping between two complex inner product 
spaces with dim(H) ≥ 2. Suppose that A has dense image. Then the following statements 
are equivalent:

(a) A is a (complex) linear or a conjugate-linear mapping and there exists γ > 0 such 
that ‖A(x)‖ = γ‖x‖, for all x ∈ H, that is, A is a positive scalar multiple of a linear 
or a conjugate-linear isometry;

(b) There exists γ1 > 0 such that one of the next properties holds for all x, y ∈ H:

(b.1) 〈A(x)|A(y)〉 = γ1〈x|y〉,
(b.2) 〈A(x)|A(y)〉 = γ1〈y|x〉;

(c) A is linear or conjugate-linear and preserves orthogonality in both directions;
(d) A is linear or conjugate-linear and preserves orthogonality;
(e) A is additive and preserves orthogonality in both directions;
(f) A is additive and preserves orthogonality.

Proof. The equivalence (a) ⇔ (b) is known, actually (b.1) (respectively, (b.2)) holds if, 
and only if, A is linear (respectively, conjugate-linear). The implications (b) ⇒ (c) ⇒
(d) ⇒ (f), (c) ⇒ (e) and (e) ⇒ (f) are clear.

(f) ⇒ (a) Suppose that A is additive and preserves orthogonality. We shall first prove 
that A is real-linear. One is first tempted to apply Wójcik’s theorem [8, Theorem 3.1] 
to the additive mapping A : HR → KR regarded as a map between the underlying real 
inner product spaces HR and KR when equipped with the inner product (x|y) = �e〈x|y〉. 
However, in such a case we can find points x, y ∈ H with (x|y) = 0 but 〈x|y〉 = 0. We 
need a subtle argument to avoid the problem.

Our goal is to show that A(αx1) = αA(x1) for all α ∈ R and x1 ∈ H\{0}. By 
hypothesis, we can find x1 ∈ H such that A(x1) = 0. Since dim(H) ≥ 2, there exists 
x2 ∈ H\{0} such that x1 ⊥2 x2 in H. Let H1 be the real subspace of H generated by 
{x1, x2}, that is, H1 = Rx1⊕Rx2. Since the elements in H1 are real-linear combinations 
of x1 and x2, we can easily see that 〈x|y〉 = �e〈x|y〉 = (x|y) for all x, y ∈ H1, and 
thus elements in H1 are orthogonal in (H, 〈·|·〉) if, and only if, they are orthogonal in 
(H1,�e〈·|·〉). We can therefore conclude that the mapping A|H1 : H1 → KR is additive 
and orthogonality preserving. So, by Wójcik’s theorem [8, Theorem 3.1], A|H1 is real-
linear (and there exists a positive γ satisfying ‖A(x)‖ = γ‖x‖ for all x ∈ H1). We have 
also shown that A(x2) = 0 for all non-zero x2 with 〈x2|x1〉 = 0. Replacing the roles of x1
and x2 we get A(λx1) = 0 for all λ ∈ C\{0}. If x is a non-zero vector in H we can find 
λ ∈ C and x2 ⊥2 x1 such that x = λx1 + x2 and ‖x‖2 = ‖λx1‖2 + ‖x2‖2, since A(x) is 
the orthogonal sum of A(λx1) and A(x2), it follows from the previous conclusions that 
A(x) = 0. Consequently, in the above arguments, x1 can be replaced with any non-zero 
vector. The arbitrariness of x1 allows us to conclude that A is real-linear (and preserves 
orthogonality by hypothesis).
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We shall next prove that A is (complex) linear or conjugate-linear. Observe first that, 
by Lemma 2.1, A(Cx1) ⊆ CA(x1) for all norm-one element x1 ∈ H. Fix a norm-one 
element x1 ∈ H. As before, since dim(H) ≥ 2, we can find an orthonormal system of 
the form {x1, x2}. A new application of Lemma 2.1 proves that A(Cx2) ⊆ CA(x2). 
Observe that, by hypotheses, each element in the set {A(x1), A(ix1)} is orthogonal to 
every element in the set {A(x2), A(ix2)}.

By applying that A is real-linear we deduce that

A(λ1x1 + λ2x2) = �e(λ1)A(x1) + Im(λ1)A(ix1) + �e(λ2)A(x2) + Im(λ2)A(ix2), (2)

for all λ1, λ2 ∈ C. Observe that ix1 + ix2 and ix1 − ix2 are orthogonal vectors in H, and 
thus, by the hypothesis on A, we must have

‖A(ix1)‖2 − ‖A(ix2)‖2 = 〈A(ix1 + ix2)|A(ix1 − ix2)〉 = 0. (3)

On the other hand, for every λ2 = α + iβ ∈ C\{0} and λ1 = s + it ∈ C the 
vectors x1 + λ2x2 and λ1x1 − λ1λ

−1
2 x2 are orthogonal in H, we can therefore conclude 

from the assumptions on A that A(x1 + λ2x2) ⊥2 A(λ1x1 − λ1λ
−1
2 x2), equivalently, 

〈A(x1 + λ2x2)|A(λ1x1 − λ1λ
−1
2 x2)〉 = 0, which expanded gives

0 =�e(λ1)‖A(x1)‖2 + Im(λ1)〈A(x1)|A(ix1)〉 + �e(λ2)�e(−λ1λ
−1
2 )‖A(x2)‖2

+ �e(λ2) Im(−λ1λ
−1
2 )〈A(x2)|A(ix2)〉 + Im(λ2)�e(−λ1λ

−1
2 )〈A(ix2)|A(x2)〉

+ Im(λ2) Im(−λ1λ
−1
2 )‖A(ix2)‖2.

If we rewrite the previous identity in terms of real and imaginary parts of λ2 and λ1 we 
arrive to

0 = s‖A(x1)‖2 + t〈A(x1)|A(ix1)〉 + α
βt− αs 
α2 + β2 ‖A(x2)‖2

− α
βs + αt 
α2 + β2 〈A(x2)|A(ix2)〉 + β

βt− αs 
α2 + β2 〈A(ix2)|A(x2)〉 − β

βs + αt 
α2 + β2 ‖A(ix2)‖2,

(4)

for all α, β, s, t ∈ R with α2 + β2 = 0. Taking a quadruple of the form (α, β, s, t) =
(1, 0,−1, 0) in (4) we get

0 = −‖A(x1)‖2 + ‖A(x2)‖2. (5)

By applying the latter equality to simplify (4) we obtain

0 = β
βs + αt 
α2 + β2 ‖A(x1)‖2 + t〈A(x1)|A(ix1)〉 − α

βs + αt 
α2 + β2 〈A(x2)|A(ix2)〉

+ β
βt− αs 
α2 + β2 〈A(ix2)|A(x2)〉 − β

βs + αt 
α2 + β2 ‖A(ix2)‖2,

(6)
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for all α, β, s, t ∈ R with α2 + β2 = 0. Take now (α, β, s, t) = (1, 0, 0, 1) to obtain

〈A(x1)|A(ix1)〉 − 〈A(x2)|A(ix2)〉 = 0. (7)

By combining (7) and (6) we arrive to

0 = β
βs + αt 
α2 + β2 ‖A(x1)‖2 + β

βt− αs 
α2 + β2 〈A(x1)|A(ix1)〉

+ β
βt− αs 
α2 + β2 〈A(ix2)|A(x2)〉 − β

βs + αt 
α2 + β2 ‖A(ix2)‖2,

which leads to

0 = (βs + αt)
(
‖A(x1)‖2 − ‖A(ix2)‖2) + 2(βt− αs)�e〈A(x1)|A(ix1)〉, (8)

for all α, β, s, t ∈ R with β = 0. In the cases (α, β, s, t) = (0, 1, 0, 1) and (α, β, s, t) =
(0, 1, 1, 0) we get

�e〈A(x1)|A(ix1)〉 = 0, and ‖A(x1)‖2 = ‖A(ix2)‖2, respectively.

Now, having in mind that A(ix1) ∈ CA(x1) and both are non-zero, ‖A(ix1)‖ = ‖A(ix2)‖, 
and ‖A(x1)‖ = ‖A(x2)‖ (cf. (3) and (5)), it can be easily deduced that A(ix1) ∈
{±iA(x1)}. The roles of x1 and x2 are clearly interchangeable, so A(ix2) ∈ {±iA(x2)}. 
Let us write A(ixj) = σj(i)A(xj) for j ∈ {1, 2} and σj(i) ∈ {±i}. Furthermore, it follows 
from the equality 〈A(x1)|A(ix1)〉 = 〈A(x2)|A(ix2)〉 (cf. (7)) that σ1(i) = σ2(i). Back to 
(2) we easily check that A restricted to the linear complex span of x1 and x2 must be 
complex-linear or conjugate-linear.

We have therefore shown that if {x1, x2} is an orthonormal system in H, the restriction 
of A to the complex-linear span of {x1, x2} must be complex-linear or conjugate-linear.

Let us pick a norm-one vector z0 in H. It follows from the above that A(iz0) = iA(z0)
or A(iz0) = −iA(z0). If the first case holds, for each norm-one element x in H, there exists 
another norm-one element x2 in H such that {z0, x2} is an orthonormal system and x
belongs to its linear span. Since A(iz0) = iA(z0), the previous conclusion proves that the 
restriction of A to the linear span of {z0, x2} is complex-linear, and thus A(ix) = iA(x), 
which implies that A is complex-linear. If A(iz0) = −iA(z0), similar arguments show 
that A is conjugate-linear.

We have implicitly shown that A is a positive scalar multiple of an isometry. Namely, 
the conclusions in the first part of the proof guarantee that for each non-zero x1 ∈ H, 
there exists a positive γ1 ∈ R satisfying ‖A(x1)‖ = γ1‖x1‖. If x2 is another non-zero 
vector in H with x1 ⊥2 x2 (we can clearly assume that ‖x1‖ = ‖x2‖ = 1), by considering 
the subspace H1 = Rx1 ⊕ Rx2, as in the second part of the proof, we deduce from (5)
that γ1 = γ1‖x1‖ = ‖A(x1)‖ = ‖A(x2)‖ = γ2‖x2‖ = γ2. We have therefore shown that 
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if {x1, x2} is an orthonormal system in H, we have ‖A(x1)‖ = ‖A(x2)‖. Furthermore, 
since A is linear or conjugate-linear, for each x ∈ Cx1 ⊕�2 Cx2 we also have

‖A(x)‖ =‖A(λ1x1 + λ2x2)‖ ∈ {‖λ1A(x1) + λ2A(x2)‖, ‖λ1A(x1) + λ2A(x2)‖}

=
{√

|λ1|2‖A(x1)‖2 + |λ2|2‖A(x2)‖2,

√
|λ1|2‖A(x1)‖2 + |λ2|2‖A(x2)‖2

}

= ‖A(x1)‖
√
|λ1|2 + |λ2|2 = ‖A(x1)‖‖λ1x1 + λ2x2‖ = ‖A(x1)‖‖x‖.

Finally, a standard argument, like the one employed in the previous paragraph, assures 
that ‖A(x)‖ = ‖A(x1)‖ for every couple of norm-one vectors x, x1 ∈ H, which finishes 
the proof.

Although the reasoning in the above lines is self-contained, and almost explicit from 
what we proved before, there is also another method to deduce that A is a positive 
scalar multiple of a linear or conjugate-linear isometry. We already deduced that A is 
linear or conjugate-linear (and preserves orthogonality). In the first case, we can apply 
Chmieliński’ theorem [2, Theorem 1] to A and we get the desired conclusion. In the 
second case, let K be the complex inner product space obtained from K by replacing the 
complex structure with the conjugate one, that is, λ�x := λx (x ∈ K, λ ∈ C) and inner 
product 〈x|y〉rev = 〈y|x〉 (x, y ∈ K). The mapping Arev : H → K, Arev(x) = A(x) is a 
linear mapping preserving orthogonality, and hence Chmieliński’ theorem proves that A
is positive scalar multiple of a conjugate-linear isometry. �

The problem of determining when a real-linear mapping between complex Banach 
spaces is actually complex-linear or conjugate-linear is a topic studied in several con-
tributions, for example Dang established in [3, Proposition 2.6] that every real-linear 
surjective isometry between Cartan factors with rank ≥ 2 must be either (com-
plex) linear or conjugate-linear. In the case of rank-one Cartan factors (i.e. complex 
Hilbert spaces) the conclusion does not hold. For example, the mapping R : �2 → �2, 
R((λn)n) =

(
1+(−1)n

2 λn + 1−(−1)n
2 λn

)
n

is a surjective real-linear which is not complex-
linear nor conjugate-linear. In our result, the Hilbert spaces are rank-one Cartan factors 
and the mapping A is not assumed to be surjective nor isometric, however, the hypothe-
sis of being an orthogonality preserving additive mapping forces A to be complex-linear 
or conjugate-linear. Similarly, the conclusions around Tingley’s problem in the case of 
Hilbert spaces assert that every isometric mapping from the unit sphere of a Hilbert 
space H “into” the unit sphere of another Hilbert space K can be extended to a real-
linear isometric mapping from H into K (see [4, Theorem 2.2 and Corollary 2]), but 
nothing can be concluded about the (complex) linearity or conjugate-linearity of the 
extension.

It is natural to ask whether a generalization of Wójcik theorem holds for complex 
normed spaces and Birkhoff orthogonality. Concerning this question, we can present 
some partial answer in the case that the domain is a complex normed space admitting 
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a conjugation. We recall that a conjugation on a complex normed space X is a period-
2 conjugate-linear isometry τ : X → X. Define a conjugation τ � : X∗ → X∗ given 
by τ �(φ)(x) := φ(τ(x)) (φ ∈ X∗, x ∈ X). The sets Xτ = {x ∈ X : τ(x) = x} and 
(X∗)τ� = {φ ∈ X∗ : τ �(φ) = φ} are real-linear subspaces of X and X∗, respectively. By 
construction φ(Xτ ) ⊆ R for all φ ∈ (X∗)τ� , and X = Xτ ⊕ iXτ . It is also known that 
the mapping (X∗)τ� � φ �→ φ|Xτ = �eφ|Xτ is a surjective linear isometry from (X∗)τ�

onto (Xτ )∗.

Proposition 2.2. Let X and Y be complex normed spaces with dim(X) ≥ 2, and assume 
that X admits a conjugation τ . Let A : X → Y be an additive mapping preserving 
Birkhoff orthogonality. Then A is real-linear. Furthermore, if A is surjective and pre-
serves Birkhoff orthogonality in both directions, then A is a real-linear isomorphism and 
the underlying real normed spaces XR and YR are isomorphic.

Proof. A characterization of the Birkhoff orthogonality via Hahn-Banach theorem as-
sures that elements x, y in a real or complex normed space Z are Birkhoff orthogonal 
if and only if there exists a norm-one functional φ ∈ Z∗ satisfying φ(x) = ‖x‖ and 
φ(y) = 0. Consider the real subspace Xτ . If x ⊥B y in Xτ there exists a norm-one func-
tional φ ∈ (Xτ )∗ ≡ (X∗)τ� satisfying φ(x) = ‖x‖ and φ(y) = φ(τ(y)) = �eφ(y) = 0. In 
particular, φ is a norm-one functional in X∗ (with τ �(φ) = φ), and hence x ⊥B y

in X. Therefore, x ⊥B y in Xτ if, and only if, x ⊥B y in X. This implies that 
A|Xτ : Xτ → YR is an additive mapping preserving Birkhoff orthogonality between 
two normed real spaces. So, Wójcik’s theorem [8, Theorem 3.1] implies that A|Xτ is real-
linear and there exists a positive constant γ1 satisfying ‖A(x)‖ = γ1‖x‖ for all x ∈ Xτ . 
By applying a similar argument to the real subspace iXτ , whose dual space can be iden-
tified with i(X∗)τ� = {φ ∈ X∗ : τ �(φ) = −φ} (or by simply replacing τ with τ1 = −τ , 
and apply the above argument to Xτ1 = iXτ ), we deduce via Wójcik’s theorem [8, The-
orem 3.1] that A|iXτ is real-linear too, and there exists a positive constant γ2 satisfying 
‖A(iy)‖ = γ2‖iy‖ = ‖y‖ for all y ∈ Xτ . Finally, since X = Xτ ⊕ iXτ , the mapping A
must be real linear. Furthermore,

‖A(x + iy)‖ ≤ ‖A(x)‖ + ‖A(iy)‖ = γ1‖x‖ + γ2‖y‖ ≤ (γ1 + γ2)‖x + iy‖,

for all x + iy ∈ Xτ ⊕ iXτ = X.
Assume now that A is surjective and preserves Birkhoff orthogonality in both di-

rections (and, of course, real-linear). We first observe that A is injective. Namely, if 
A(x) = 0, it follows that A(x) ⊥B A(z) for all z ∈ X, and hence x ⊥B z for all z ∈ X, 
which clearly gives x = 0. Therefore, A is a continuous real linear bijection. By replacing 
A with A−1 we deduce that A is a real linear isomorphism of normed spaces. �

Paraphrasing R. Tanaka [7], the conclusion in our Theorem 2.1 assures that the vector 
addition and the relationship of orthogonality determine the entire structure of a complex 
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inner product space, while by Proposition 2.2 vector addition and the relationship of 
Birkhoff orthogonality determine isomorphically the entire structure of a complex normed 
space admitting a conjugation. It can be added that in [6], Tanaka studies the problem 
whether the existence of a (possibly non-additive) bijection Δ preserving Birkhoff–James 
orthogonality in both directions between two real Banach spaces X and Y assures the 
existence of a linear isomorphism Φ between X and Y , however no conclusion is obtained 
on the mapping Δ itself. Positive answers are known when X is finite-dimensional, or 
when X and Y are reflexive and smooth, or when X is a Hilbert space with dim(X) ≥ 3
(cf. [6]).
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