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Abstract
In this work, a physics-based unified compact model for III-V GAA FET electrostatics is proposed. The model consid-
ers arbitrary cross-sectional geometry of GAA FETs viz. rectangular, circular and elliptical. A comprehensive model for 
cuboid GAA FETs is developed first using the constant charge density approximation. The model is then combined with the 
earlier developed model for cylindrical GAA FETs to have a unified representation. The efficacy of the model is validated 
by comparing it with simulation data from a 2D coupled Poisson-Schrödinger solver. The proposed model is found to be, 
(a) accurate for GAA FETs with different geometries, dimensions and channel materials and (b) computationally efficient.

Keywords Gate all around FET · Nanowire · III–V · Compact model · Charge · Surface potential · Capacitance · Circuit 
simulation

1 Introduction

The Gate-All-Around (GAA) transistors (nanowire and 
nanosheet FETs) are being actively considered for Sub-5 
nm CMOS technology nodes because of their superior gate 
electrostatics [1–3]. Along with the gate all around geome-
try, the GAA FETs with III-V channel materials have shown 
potential for high speed and low power ULSI circuits [4–6]. 
Several research groups have successfully demonstrated 
large scale fabrication of III-V GAA FETs in last few years 
[7–10]. Note that the GAA FETs are realized in different 
geometries (cylindrical (Fig. 1a) and cuboid (Fig. 1c)). Fur-
ther, considering the process variations in Sub-10 nm CMOS 
technologies, the cylindrical GAA FETs can also have an 
elliptical cross-section instead of the desired circular one 
(Fig. 1b). Because of these different cross-sectional geom-
etries, the modeling of GAA FET electrostatics is compli-
cated. It is therefore necessary to have a unified model which 
could capture the electrical response of GAA FETs with 

different geometries and dimensions. The unified model will 
reduce the effort during the model implementation at the 
circuit level.

Most of the industry standard compact models for GAA 
FETs are semi-classical in nature. These models are not suit-
able for simulating the III-V channel GAA FETs. The reason 
behind this is high quantum confinement in the GAA FETs 
and lower DOS of III-V materials [11–14]. The significant 
separation between energy levels and the sub-band forma-
tion results in a quasi 1D system. Also, due to lower DOS, 
the Fermi level penetrates into the conduction band render-
ing the Boltzmann approximation ineffective [15]. This 
necessitates solution of the coupled Poisson-Schrödinger 
(PS) equation with full Fermi-Dirac statistics, to model the 
III-V GAA FETs [16]. However, because of the substantial 
computational burden of the coupled PS equation, it is not 
suitable for circuit simulators. The recent revision to BSIM 
model has included the quantum effects on top of the BSIM-
CMG semi-classical core. However, it uses mostly empirical 
equations and a large number of additional fitting parameters 
[17]. Several physics-based compact models treating III-V 
channel transistor electrostatics using energy perturbation 
approach have also been reported [11, 12, 14, 18]. In particu-
lar, these models need sub-band wave-function to calculate 
the charge density. However, it is not always possible to cal-
culate the wave-function (which is also dependent on FET 
geometry) analytically. Our research group have recently 
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reported a constant charge density approximation (CCDA) 
[13]. The CCDA eliminates the need for prior knowledge of 
exact wave-function. Using the CCDA, the electrostatics of 
cylindrical GAA FETs with a perfectly circular cross-section 
had been modeled and reported in [13]. However, there is a 
need to develop a similar model for cuboid GAA FETs (rec-
tangular cross-section) and cylindrical GAA FETs (elliptical 
cross-section). Note that the modeling of a cuboid GAA FET 
is complicated since the insulator-semiconductor interface is 
non-isopotential and hence the conventional MOS transistor 
equations could not be directly applied.

Several attempts had been made in the past to model elec-
trostatics of cuboid GAA FETs. In [12], a model for cuboid 
III-V GAA FET with square cross-section was presented. 
The model used energy values and perturbation terms 
directly from [11], which was calculated for a 1D potential 
well. This is inaccurate for a 2D confined square geometry. 
Also, the sub-band degeneracy inherent in the symmetry of 
a 2D potential well was neglected and the non-isopotential 
nature of the insulator-semiconductor interface was also 
ignored. Similar work in [14], proposed a unified model 
applicable for cuboid and cylindrical (with a circular cross-
section) GAA FETs. The model incorporated the geometry 
change by modifying only the insulator capacitance, which 
obliterates the quantum physics in these confined structures. 
Further, the energy and the perturbation terms were taken 
directly from [11] and thus has all inaccuracies of the model 
presented in [12]. A model for cuboid GAA FET (rectan-
gular cross-section) proposed in [19], addressed some of 
these inaccuracies by considering the non-isopotential insu-
lator-semiconductor interface. However, a pseudo-empirical 
potential function inside the semiconductor channel was 
assumed, which complicated the model equations. In [19], 
the perturbation terms were also derived for an infinite 
potential well structure, which is inaccurate.

In this work, we have used the CCDA, considered the non-
iso-potential insulator semiconductor interface and at the same 
time ensured that the equations have the conventional form. 

The model for GAA FETs with circular and a rectangular 
cross-sections are then combined to present a unified model. 
The CCDA is highly beneficial in this scenario as the most 
significant part of geometry dependence, which comes through 
the wave-function, is resolved. The model proposed in this 
work is mathematically simple, can include higher energy sub-
bands and is computationally efficient for circuit simulations. 
It is also shown that the structural variations in the cylindrical 
GAA FETs will not affect the transistor electrostatics signifi-
cantly. Therefore, by considering the structural variations as a 
perturbation to the symmetric structure, the model is extended 
for an elliptical cross-section GAA FETs by tuning the sub-
band energy levels. The proposed model therefore captures the 
electrostatics of III-V GAA FETs with different cross-sectional 
geometries and dimensions.

The proposed model is further extended to integrate the 
conduction band non-parabolicity and the change in the carrier 
effective mass with channel thickness, crucial for III-V materi-
als. The model is then verified with the simulation data from 
2D PS solver, for GAA FETs with different gate geometries, 
dimensions and channel materials. It is shown that the model is 
valid for rectangular, circular and elliptical cross-section GAA 
FETs. It is also shown that the model could be directly used for 
nanosheet FETs and multi-bridge channel FETs (MBCFETs).

The paper is organized as follow: In section 2, the proposed 
model is described. The model for rectangular cross-section 
GAA FETs is introduced first. This model is then combined 
with the one for circular cross-section to implement a uni-
fied model. The unified model is validated in section 3 with 
the data from 2D PS solver. The applicability of the proposed 
model for elliptical cross-section is also discussed in this sec-
tion followed by conclusion in Section 4.

2  Model

2.1  Electrostatic model for cuboid GAA FETs

Figure 1c shows the cross-section of a generic III-V GAA FET 
with rectangular cross section. Here, H and W are height and 
width of the FET, respectively, tins is the gate insulator thick-
ness. The cartesian coordinates, as shown in Fig. 1c are used 
for the model derivation.

The potential balance equation across H and W of the GAA 
FET can be written as,

Here, VG is the gate voltage, ��
ms

= �m − �  , �m is the 
metal work function, �  is the electron affinity of the 

(1)VG = ��
ms

+ Vins,x(y) +�
(
−
W

2
, y
)

(2)VG = ��
ms

+ Vins,y(x) +�
(
x,−

H

2

)

Fig. 1  Cross-sectional view of the GAA FETs with, a Circular cross-
section, b Elliptical cross-section and c Rectangular cross-section. 
Cartesian coordinate system is considered for modeling of the cuboid 
GAA FETs with rectangular cross-section, while cylindrical coordi-
nate system is considered for cylindrical GAA FETs with circular and 
elliptical cross-sections
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semiconductor, Vins,x(y) and Vins,y(x) are potential drops 
across the gate insulator in x and y directions, respectively. 
�(x, y) is the potential inside the semiconductor channel. 
The �(x, y) can be written as �(x, y) = −(Ec(x, y) − Ef)∕q , 
where Ec(x, y) is bottom of the conduction band, Ef is the 
Fermi level and q is the electronic charge. Ef = 0 is assumed 
as the reference for energies unless otherwise specified.

The potential at the insulator-semiconductor interface 
(�(x,−H∕2)) and (�(−W∕2, y)) is not constant along W or 
H. Therefore, a single value of the surface potential or insula-
tor voltage drop cannot be directly defined. However, if we 
take the average across W and H, an effective surface potential 
(�s,eff) and effective insulator drop (Vins,eff) can be defined as 
follows.

B y  d e f i n i n g ,  1∕H ∫ H∕2

−H∕2
Vins,x(y)dy = Vins,eff  a n d 

1∕H ∫ H∕2

−H∕2
�(−W∕2, y)dy = �s,eff , we can write,

Same can be written by taking an average over W in (2). 
Equation (4) is a more conventional form of the potential 
balance equation. It also leads to the observation that,

The correctness of both (5) and (6) is verified using data 
from the PS solver.

To find �(x, y) inside the channel, the following 2D Poisson 
equation is solved.

Here, �s is the permittivity of channel material and n(x, y) is 
the volume charge density, given by,

In (8), gv is the valley degeneracy ( gv = 1 for the �  valley), 
kB is the Boltzmann constant, m∗ is the effective mass, T is 
the temperature, ℏ is the reduced Plank’s constant, F-1/2 is 
the Fermi Dirac integral of order −1/2, Ei,j is the sub-band 

(3)
∫

H

2

−
H

2

VGdy = ∫
H

2

−
H

2

�msdy + ∫
H

2

−
H

2

Vins,x(y)dy + ∫
H

2

−
H

2

�
(
−
W

2
, y
)
dy

(4)VG = ��
ms

+ Vins,eff +�s,eff

(5)
1

H ∫
H

2

−
H

2

Vins,x(y)dy =
1

W ∫
W

2

−
W

2

Vins,y(x)dx

(6)
1

H ∫
H

2

−
H

2

�
(
−
W

2
, y
)
dy =

1

W ∫
W

2

−
W

2

�
(
x,−

H

2

)
dx

(7)
�2�(x, y)

�x2
+

�2�(x, y)

�y2
= q

n(x, y)

�s

(8)

n(x, y) =
∑
i,j

gv

√
2m∗kBT

�ℏ2
F−

1

2

(
−
Ei,j − q�c

kBT

)
|�i,j(x, y)|2

energy level (with reference to Ec(0, 0) ) and �c is the center 
potential (at (x,y) = (0,0)) and �i,j(x, y) is the sub-band wave 
function. To calculate both Ei,j and �i,j(x, y) , the Schrödinger 
equation needs to be solved for each VG . This couples the 
Poisson and the Schrödinger equation thus increasing the 
computational cost of the model. However, using CCDA, the 
|�i,j(x, y)|2 can be approximated as |�i,j(x, y)|2 = 1∕WH (refer 
Appendix 1). The CCDA relies on the fact that from a com-
pact model perspective, the n(x, y) profile can be approxi-
mated if the terminal charges, i.e., the charge per unit length 
( Qs ) is known with considerable accuracy. Therefore, in the 
CCDA, the n(x,y) is assumed to be constant inside the chan-
nel such that Qs is accurate i.e., −qn(x, y) = Qs

WH
 . Here, the 

Qs is given by,

Since, the source term qn(x, y)∕�s in (7) is approximated with 
a constant profile inside the channel, it is safe to assume 
�(x, y) to be parabolic. Therefore,

Here, A, B, C, D and E are arbitrary constants to be deter-
mined by using the boundary conditions. Substituting (10) 
in (7) and using appropriate boundary conditions, �(x, y) 
can be derived analytically as a function of Qs as (details in 
Appendix 2),

Applying the definition of �s,eff , a relation between �s,eff and 
�c can be established as below.

Now, using the Gauss law one can also write,

Here, Fx,s and Fy,s are the surface electric fields calcu-
lated as ��(x, y)∕�x|x=−W∕2 and ��(x, y)∕�y|y=−H∕2 , 
respectively. Substituting the dielectric boundary condi-
tion CinsVins,x = �sFx,s in (13) and using (5), Vins,eff can be 
expressed as a function of Qs as,

(9)Qs = −q
∑
i,j

gv

√
2m∗kBT

�ℏ2
F−

1

2

(
−
Ei,j − q�c

kBT

)

(10)�(x, y) = Ax2 + By2 + Cx + Dy + E

(11)�(x, y) = �c −
Qs

2�s
(
W2 + H2

)
[
H

W
x2 +

W

H
y2
]

(12)�s,eff = �c −
QsWH

6�s
(
W2 + H2

)

(13)Qs = 2�s

[
∫

H

2

−
H

2

Fx,sdy + ∫
W

2

−
W

2

Fy,sdx

]

(14)Vins,eff = −
Qs

2Cins(W + H)
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Using (14) and (12), (4) can be re-written as,

In (15), Cins,eff is the effective insulator capacitance and it 
captures the effect of charge centroid. It is similar to the 
conventional method of introducing the oxide thickness cor-
rection based on the charge centroid, which is given by,

Finally, the sub-band energies Ei,j can be written as,

Here, Egi,j is the sub-band energy considering geometrical 
confinement and �Eei,j is the perturbation term added to 
model the electrical confinement due to band bending. To 
calculate the Egi,j , the following Schrödinger equation for a 
constant potential is solved,

Since Egi,j considers only the geometrical confinement, the 
potential inside the channel is �c and the same is used as 
a reference to solve the Schrödinger equation. The sepa-
ration of variable method can be used to solve (18). The 
Schrödinger equation, therefore, can be split into two 1D 
equations and the Egi,j can be written as a sum of Exi and 
Eyj . Here, Exi and Eyj are the energy level of a finite poten-
tial well equivalently in x- and y-directions, respectively, and 
can be calculated as in [11]. The �Eei,j can be calculated as,

In (19),  the per turbing potential is given by 
�̃(x, y) = �(x, y) −�c . Here, �c is used as a reference to 
calculate Egi,j as specified above. Using the CCDA, (19) can 
be calculated analytically as (details in Appendix 3),

Note that the perturbation term in (20) is scalable to any 
number of sub-bands without increasing the mathematical 
complexity. Using (15) for Qs in (20) and substituting �Eei,j 
in (9),

(15)Qs = −2Cins,eff(VG −��
ms

−�c)

(16)Cins,eff =
Cins(W + H)

1 +
Cins(W+H)WH

3�s(W
2+H2)

(17)Ei,j = Egi,j + �Eei,j

(18)−
ℏ2

2m∗

[
�2�i,j

�x2
+

�2�i,j

�y2

]
= Egi,j�i,j(x, y)

(19)𝛥Eei,j =< 𝛹 ∗
i,j
| �𝛷|𝛹i,j >

(20)�Eei,j =
qQsWH

12�s
(
W2 + H2

)

H e r e ,  Cq = qgv

√
2m∗kBT∕�ℏ

2  a n d 
Cx = 2Cins,effWH∕12�s(W

2 + H2) . The equations (21) and 
(15) can be equated for �c which can then be used in (15) 
and (12) to get Qs and �s,eff , respectively.

2.2  The unified model

The equations (15) and (21) are the final model equations 
for a cuboid GAA FET. These equations are similar to the 
one derived for a cylindrical GAA FET with circular cross-
section ((9) and (13) in [13]). Therefore, an unified model 
can be easily constructed by defining a geometry parameter 
GEO. Equation (22) and (23) describes the unified model. In 
these equations, GEO = 1 for cuboid and GEO = 0 for cylin-
drical GAA FETs. The unprimed terms are for the cuboid 
GAA FETs and carries the same definition as in sec II (A), 
whereas the primed terms are for cylindrical GAA FETs and 
are defined as,

Here, tins is the insulator thickness and R0 is the semiconduc-
tor radius (refer Fig. 1a).

It is important to note that changing the insulator capaci-
tance is not sufficient to capture geometry variation of the 
GAA FETs. The energy levels and the potential profile also 
vary with the geometry and cross-section. The proposed 
model considered explicitly the physics embedded in the 
GAA FET geometries and have presented a unified model.

(21)

Qs = −Cq

∑
i,j

F−
1

2

(
q�c(1 − Cx) − Egi,j + qCx(VG −��

ms
)

kBT

)

(22)
Qs = −

{
GEO(2Cins,eff) + (1 − GEO)C�

ins,eff

}[
VG −��

ms
−�c

]

(23)

Qs = −

[
GEO

{
Cq

∑
i,j

F−
1

2

(
q�c(1 − Cx) − Egi,j + qCx(VG −��

ms
)

kBT

)}

+ (1 − GEO)

{
Cq

∑
j

F−
1

2

(
q�c(1 − C�

x
) − E�gj + qC�

x
(VG −��

ms
)

kBT

)}]

C�
ins,eff

= C�
ins
∕(1 + C�

ins
∕4��s),

C�
x
= C�

ins,eff
∕8��s,

C�
ins

= 2��ins∕ln(1 + tins∕R0)
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3  Results and discussions

In this section, the proposed model is compared and vali-
dated with simulation data from 2D self-consistent Poisson-
Schrödinger (PS) solver [20, 21]. The results are shown for 
GAA FETs with different geometries, dimensions and chan-
nel materials. 1.5 nm Al2O3 is used as gate insulator for 
all the simulations. The material parameters are taken from 
[22] and [23]. The expression for F−1∕2 , as proposed in [24], 
is used to solve (23). This eliminates the need to uses any 
tabular function.

Figure  2a, b shows the normalized �s,eff and �c for 
In0.53Ga0.47 As GAA FET with H = 5 nm and different W (the 
simulated and the modeled data are shown with symbols and 
solid lines, respectively). For clear visualization, the values 
of �s,eff and �c for In0.53Ga0.47 As are normalised with W. As 
shown, the model agrees well with the PS solver data. Unlike 
the silicon channel transistors, �s,eff in III-V channel GAA 
FETs does not saturate at higher VG . This confirms the lower 
DOS in III-V channel materials. Figure 2c, d compares mod-
eled �s,eff and �c for InAs, In0.53Ga0.47 As and GaAs GAA 
FETs (W = H = 5 nm) with the PS solver data. As shown, 
the model is valid for different III-V channel materials. It 
is worthwhile to note that the averaging takes care of any 

error introduced by the assumed potential. Therefore, the 
calculated �s,eff from the model shows an excellent match 
with the PS solver data.

Figure 3a–c compares the modeled Qs with the PS solver 
data for GAA FETs (rectangular cross-section) with differ-
ent dimensions and channel materials. Figure. 4a, b com-
pares modeled Cgg of the same samples with the PS solver 

Fig. 2  a Effective surface potential, �s,eff and b Center potential, �c 
for In0.53Ga0.47 As GAA FETs with H = 5 nm and varied W. c �s,eff 
and d �c for InAs, In0.53Ga0.47 As and GaAs GAA FETs with W = H 
= 5 nm. The model matches very well with the simulation data from 
2D PS solver. All data are for cuboid GAA FETs with rectangular 
cross-section (GEO = 1)

Fig. 3  Charge density Qs /q as a function of, a VG for In0.53Ga0.47 As 
GAA FETs with H = 5 nm and varied W, b Gate overdrive voltage 
( VGT = VG − VT ) for W = H = 5 nm InAs, In0.53Ga0.47 As and GaAs 
GAA FETs and c VG for W = H = 5 nm In0.53Ga0.47 As GAA FET in 
log and linear scale. The model shows a good agreement with the PS 
solver data for all applied bias voltages. All data are for the cuboid 
GAA FET with rectangular cross-section (GEO = 1)

Fig. 4  Gate capacitance Cgg as a function of, a VG for In0.53Ga0.47 As 
GAA FETs with H = 5 nm and different W, b Gate overdrive voltage 
( VGT = VG − VT ) for W = H = 5 nm InAs, In0.53Ga0.47 As and GaAs 
GAA FETs. The model could follow the simulated Cgg very well. All 
the data here are for GAA FET with a rectangular cross-section (GEO 
= 1)
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data. As expected, the model matches very well with the 
PS solver data for a wide range of VG . As shown, the Cgg of 
rectangular cross-section GAA FETs have humps because 
of the quasi 1D DOS. Here, each hump corresponds to a 
particular sub-band and the negative slope of the Cgg is due 
to the inverse square root dependence of 1D DOS on energy.

Figures 2, 3 and 4 validated the accuracy of proposed 
electrostatic model for cuboid GAA FETs with different 
channel materials, cross-sections and dimensions. This 
model could also be used for nano-sheet FETs (i.e., struc-
tures with larger W to H ratio) as demonstrated in Fig. 5a. 
The capability of the model to accurately reproduces char-
acteristics of GAA FETs with different cross-sections is 
assessed in Fig. 5b. By changing the GEO parameter, the 
model is able to fit Cgg for cylindrical and cuboid geom-
etries. Note, since the electrostatic model for the cylindri-
cal geometry is discussed in detail elsewhere [13], it is not 
reproduced here.

Further, the fabrication of a cylindrical GAA FET with 
circular symmetric cross-section is often not possible, due to 
variations during fabrication. In this work, it is assumed that 
such variations could lead to an elongated circle or elliptical 
cross-section GAA FET. Such a cross-section can be char-
acterized by length of its semi-major/minor axis Ax and Ay 
(Fig. 1b) and amount of variations can be classified based 
on the difference between Ax and Ay . Assuming that the 
variations are small, the elliptical cross-section has a minor 
impact on the electrical characteristic of the GAA FETs. For 
example, Fig. 6a compares Cgg of an In0.53Ga0.47 As GAA 
FET with circular (D = 10 nm) and elliptical ( Ay = 10 nm 
and Ax = 8 nm) cross-section. As shown, the Cgg vs. VG 
trend is almost similar with a shift in the characteristics. 
This shift is attributed to the change in sub-band energy 
levels because of the structural change. Figure 6b shows 

the sub-band energy level for cylindrical GAA FETs with 
Ay = 10 nm and different Ax . The sub-band energies for the 
circular symmetric cross-section ( Ax = Ay ) are highlighted 
in the same figure. As shown, there is a minimal change in 
the energy level with Ax when compared to their value for 
symmetric cross-section. Note that it is analytically chal-
lenging to exactly calculate the energy levels for the ellipti-
cal geometry due to the complexity involved in solving the 
Schrödinger equation. However, since the variation is not 
large, the energy level can be tuned to get the desired charac-
teristics. Therefore, in our model, the sub-band energy level 
E′gj is modified to E�gj + � . The � is tuned to match the char-
acteristic of the cylindrical GAA FETs with elliptical cross-
section. Figure 7 plots the modeled and the simulated Qs 
and Cgg for In0.53Ga0.47 As elliptical GAA FET with Ay = 10 
nm and different Ax . The model matches the PS solver data 
extremely well for the elliptical GAA FETs. Therefore, the 
proposed unified model could be efficiently applied to the 
cylindrical geometry (elliptical cross-section) without affect-
ing the model complexity. For elliptical cross-section FETs, 

Fig. 5  Cgg as a function of VG for, a In0.53Ga0.47 As GAA FETs with 
smaller H and larger W, resembling the nanosheet FETs and b for 
In0.53Ga0.47 As cuboid GAA FETs with rectangular cross-section of W 
= H = 10 nm and Cylindrical GAA FETs with circular coss-section 
of D = 10 nm. Here, the unified model equations with GEO = 1 is 
used for the cuboid GAA FET and GEO = 0 for the cylindrical GAA 
FET. The model matches very well for both the geometries

Fig. 6  a Comparison of the simulated Cgg of the GAA FET with D = 
10 nm circular cross-section and Ay = 10 nm and Ax = 8 nm elliptical 
cross-section. Cgg shows similar behavior with a shift in the character-
istics and b Sub-band energy levels for elliptical GAA FETs with Ay 
= 10 nm as a function of Ax . The sub-band energy level shows mini-
mal change with Ax with reference to value for Ax = Ay

Fig. 7  a Semiconductor charge density, Qs /q as a function of VG and 
b Gate capacitance, Cgg as a function of VG for In0.53Ga0.47 As GAA 
FETs (elliptical cross-section) with Ay = 10 nm and different Ax
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only the geometrical sub-band energies are adjusted, which 
are bias independent. Therefore, � is a process dependent 
model parameter.

It is worthwhile to note that the model derived in this 
work is based on the assumption of a parabolic Energy-
wavevector (E-k) dispersion relation. However, for the III-V 
materials, the conduction band E-k dispersion relation is 
highly non-parabolic. Also, the lower DOS causes the Fermi 
level to penetrate well above the conduction band edge [25]. 
Due, to which, the parabolic dispersion approximation can 
introduce relevant inaccuracies into the model [25]. Inciden-
tally, the assumptions used in the model derivation, which 
led to standard form of the model equation and later to unifi-
cation of the model, also presents a way to include the band 
non-parabolicity into the model. One of our previous works 
has presented an approximate E-k relation to include the 
conduction band non-parabolicity efficiently into the model, 
while preserving both the accuracy and simplicity of the 
compact model [25]. The model in [25] was presented for 
a cylindrical GAA FETs with circular cross-section. How-
ever, the dispersion relation presented there was independent 
of the channel geometry and hence can directly be applied 
to the unified model (derived in this work), to include the 
band non-parabolicity in the cuboid GAA FETs as well. 
Figure 8a shows the Cgg data for an In0.53Ga0.47 As channel 
cuboid GAA FET with different dimensions considering 
band non-parabolicity. The modified model after consider-
ing the band non-parabolicity agrees very well with the PS 
solver data. A dotted line in Fig. 8a shows the data with the 
parabolic dispersion approximation for comparison. It can 
be seen that with the parabolic approximation the Cgg val-
ues are underestimated. Therefore, it is important to include 

the band non-parabolicity into the model. And the proposed 
model efficiently addresses that.

It is also, important to note that the effective mass (m*) 
changes with the semiconductor channel thickness. It is 
crucial especially in lower channel dimension and highly 
confined devices such as the ones considered in this work. 
Since, the m* is an input parameter of the model, the 
change in m* can seamlessly be integrated into the model. 
Figure 8b shows the model and the PS solver Cgg data for 
an In0.53Ga0.47 As channel cuboid GAA FET with different 
dimensions. Here, the model is shown to capture the m* 
variation well. The dotted line in Fig. 8b shows the Cgg for 
the same device with the bulk m* value. It can be seen that 
the Cgg changes after considering the change in the m* with 
confinement, where the m* increases compare to its bulk 
value. Note that the value of the m* changes is incorporated 
into the model using the empirical relation proposed by [26] 
together with the non-parabolic dispersion relation.

4  Conclusion

To summarize, a unified compact electrostatic model for 
III-V GAA FETs was presented. The model was developed 
in 2 parts. First, a comprehensive model for rectangular 
cross-section GAA FETs was derived using the CCDA. It 
was ensured that the developed model has same mathemati-
cal formulation as that of our previous model for cylindrical 
GAA FETs. Both models were then combined to present a 
unified model for cylindrical and cuboid geometries. The 
developed model employed 1D DOS and full Fermi-Dirac 
statistics, to capture the essential physics of III-V channel 
with confined geometry. The model was validated by com-
paring with the data from 2D PS solver for different geom-
etries, dimensions and III-V channel materials and found to 
be accurate. The model is mathematically simple, analyti-
cal, can include higher energy sub-bands without increasing 
mathematical complexity and is computationally efficient 
to be used in circuit simulators. The model also includes 
the structural variations which can occur during the fabrica-
tion of GAA FETs, the conduction band non-prabolicity and 
dimension induced effective mass change.

Appendix 1

According to the CCDA, the |�i,j(x, y)|2 can be approxi-
mated, to satisfy the condition of normalization as,

(24)∫
W∕2

−W∕2 ∫
H∕2

−H∕2

|�i,j(x, y)|2dxdy = 1

Fig. 8  Gate capacitance, Cgg as a function of VG for In0.53Ga0.47 As 
cuboid GAA FETs with a non-parabolic E-k dispersion relation for 
different channel dimensions. Symbols and the solid line represent 
the PS solver data and the model, respectively. The dotted line shows 
the PS solver data with parabolic E-k approximation for comparison. 
and b considering the change in effective mass (m*) with channel 
thickness. Here, the dispersion relation is non-parabolic. The dotted 
line represents the PS solver data with the bulk value of the m* for 
comparison
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Equation (24) is written with the assumption that the 
entire wavefunction lies within the semiconductor channel. 
Neglecting the wavefunction penetration in the oxide for 
the normalization of the wavefunction has little impact on 
the physics that are more sensitive to the calculation of the 
quantized energy levels. The finite height of the semicon-
ductor-dielectric barrier is considered in the model via the 
values of Ei,j . Since with CCDA, n(x,y) is assumed to be 
constant within the semiconductor channel, |�i,j(x, y)|2 will 
also constant.

Evaluating (24) |�i,j(x, y)|2 can be written as,

Appendix 2

Equation (7) with CCDA can be written as,

Since the  source  term −Qs∕�sWH  i s  a  con-
stant, �(x, y) can be assumed to be of the form 
�(x, y) = Ax2 + By2 + Cx + Dy + E . Substituting in (26),

The boundary conditions for �(x, y) in a III-V GAA FETs 
are

Also,

Using the above conditions and analytical solution of �(x, y) 
can be written as,

(25)|�i,j(x, y)|2 = 1

WH

(26)
�2�(x, y)

�x2
+

�2�(x, y)

�y2
= −

Qs

�sWH

(27)A + B = −
Qs

2�sWH

(28)
��(x, y)

�x

||||x=0 = 0

(29)
��(x, y)

�y

||||y=0 = 0

(30)�(x, y)
||||x=0,y=0 = �c

(31)
1

H ∫
H∕2

−H∕2

�(−W∕2, y)dy =
1

W ∫
W∕2

−W∕2

�(x,−H∕2)dx

(32)�(x, y) = −
Qs

2�sW
2 + H2

[
H

W
x2 +

W

H
y2
]
+�c

Appendix 3

The perturbation term can be written as,

where the per turbing potent ial  is  given by, 
�̃(x, y) = �(x, y) −�c . Here �c is used as the reference to 
calculate Egi,j . Using (11) �̃(x,y) can be written as,

Using (34), (33) can be written as,

Substituting |�i,j(x, y)|2 = 1∕WH and integrating (35), the 
perturbation term can be derived as,
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