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Cancer remains a major global health concern, responsible for over 19 million new 

cases and nearly 10 million deaths annually. Breast cancer (BC) is the most commonly 

diagnosed cancer in women, while colorectal cancer (CRC) ranks third worldwide. 

Despite substantial advancements in research, these diseases continue to pose significant 

challenges, due to their molecular heterogeneity and varied clinical outcomes.  

Precision medicine has transformed cancer care by enabling more personalized 

therapies. However, there still exists an unmet need for enhanced diagnostic and 

prognostic tools, particularly for managing advanced disease, recurrence and treatment 

resistance. One promising solution is the identification of circulating biomarkers 

through metabolomics, which provides insights into disease mechanisms and offers new 

candidate biomarkers for early detection of residual disease and prediction to treatment 

response. This approach will enhance precision oncology and improve clinical decision-

making. 

This thesis aimed to analyse the metabolomic profiles of BC and CRC using 

untargeted metabolomics to discover metabolites in plasma that could be applied as 

potential biomarkers in clinical practice. To achieve this, we utilized liquid 

chromatography (LC) methods coupled to high-resolution mass spectrometry (HRMS). 

This high-resolution technique facilitated comprehensive metabolite detection, 

deepening our understanding of cancer biology. 

Our research resulted in three original studies that demonstrated the ability of 

untargeted LC-HRMS-based metabolomics to identify potential cancer biomarkers in the 

following clinical contexts: 1) metabolomic differentiation of BC subtypes, 2) BC 

subtype-specific metabolomic changes in response to neoadjuvant chemotherapy, and 

3) CRC metabolomics-based prediction of recurrence and survival following liver

metastasis resection. These findings underscore the value of metabolomics in 

distinguishing cancer subtypes, predicting therapeutic outcomes, and improving post-

surgical prognosis. 

In conclusion, this work establishes untargeted metabolomics as a powerful tool for 

cancer biomarker discovery, laying the groundwork for integrating metabolomic data 

into future molecular models to guide personalized cancer treatment, making 

metabolomic profiling a valuable resource in medical oncology practice.
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El cáncer es una constante amenaza contra la salud global, con más de 19 millones 

de casos nuevos y casi 10 millones de muertes anuales. El cáncer de mama (CM) es el 

tipo más común entre las mujeres, mientras que el cáncer colorrectal (CCR) es el tercer 

tumor más prevalente a nivel mundial. A pesar de los avances en investigación, estas 

enfermedades presentan grandes desafíos debido a su heterogeneidad molecular y la 

diversidad en la respuesta terapéutica. 

La medicina de precisión ha transformado la clínica del cáncer, permitiendo terapias 

más personalizadas; sin embargo, aún existe una necesidad insatisfecha de herramientas 

diagnósticas y pronósticas para manejar pacientes con enfermedad avanzada, con 

recurrencias y resistencia a los tratamientos. Una solución prometedora es la 

identificación de biomarcadores mediante metabolómica, la cual ofrece información 

sobre los mecanismos moleculares de la enfermedad, permitiendo la detección temprana 

de enfermedad residual y la predicción de la respuesta al tratamiento. Este enfoque 

mejorará la toma de decisiones clínicas en la práctica habitual. 

El objetivo principal de esta tesis es el de analizar los perfiles metabolómicos del CM 

y el CCR, utilizando metabolómica no dirigida para descubrir metabolitos en plasma 

que puedan aplicarse como potenciales biomarcadores en la práctica clínica. Para ello, 

utilizamos métodos diferentes de cromatografía líquida acoplados a espectrometría de 

masas de alta resolución. Esta estrategia facilita la detección de una amplia gama de 

entidades moleculares, lo que permite profundizar en el entendimiento de la biología 

del cáncer. 

Como resultado, presentamos tres estudios originales que demuestran la capacidad 

de la metabolómica no dirigida para identificar posibles biomarcadores de cáncer en los 

siguientes contextos clínicos: 1) diferenciación metabolómica de los subtipos del CM, 

2) cambios metabolómicos en respuesta a la quimioterapia neoadyuvante en el CM, y

3) predicción, mediante metabolómica, de la recurrencia y supervivencia del CCR tras la

resección de metástasis hepáticas. 

En conclusión, se establece la metabolómica no dirigida como una herramienta 

valiosa para el descubrimiento de biomarcadores en cáncer, sentando las bases para la 

integración de los datos metabolómicos en futuros modelos moleculares que guíen el 

tratamiento personalizado, convirtiendo el perfilado metabolómico en un nuevo recurso 

para la oncología médica de precisión. 
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1. INTRODUCTION 
1.1 Cancer 

Globally, cancer is a major public health and economic concern being the second 

deadliest and most pervasive malignancy in modern times, after cardiovascular 

diseases, affecting more than 30 million people in the world by 2050. However, in Spain, 

a paradigm shift occurred in 2023 as tumours became the leading cause of death for the 

first time, accounting for 26.6% of total deaths. According to the provisional data from 

the National Institute of Statistics (INE for its acronym in Spanish), this fact is not due to 

an increase in tumours, but to a significant decrease in cardiovascular diseases (INE 

2024). Worldwide, 19.3 million new cases of cancer were diagnosed and almost 10 

million cancer-related deaths occurred in 2020. By 2040 it is estimated that we will face 

a 47 % increase with 28.9 million new cancer cases and 16.2 million deaths a year (Siegel 

et al. 2023; H. Sung et al. 2021). Due to its insidious increase in the last decade, it may 

appear as a modern disease. However, this, is far from reality. The first case of human 

malignant neoplastic disease was found 1.7 million years ago in a South African bone 

(Odes et al. 2016). Indeed, cancer existed on Earth even before men appeared as 

evidenced by paleopathological findings in animal fossils (Ekhtiari et al. 2020). 

Nevertheless, very little is known about cancer in ancient times (Figure 1). 

F I G U R E 1. Timeline from Ancient to Modern cancer course and peculiarities on cancer 

etymology. The earliest mention known about cancer was found in the Edwin Smith Papyrus 

from ancient Egypt; Hippocrates was who first used the terms karkinos and karkinoma to refer to 

the similarity of the tumour to a crab; Celsus translated the Greek term into the Latin word for 

crab: cancer; Galen used the term oncos from the Greek term for swelling to refer to the disease, 

and implemented the humoral theory of Hippocrates (McAleer 2022; Hajdu 2011). In Occident, it
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was at the end of the 19th, beginning of the 20th century, when Rudolf Virchow stated that cancer 

cells were the body’s own cells (Virchow 1989) and Theodor Boveri laid the groundwork for 

modern cancer research and our understanding of the genetic basis of cancer  (di Lonardo, Nasi, 

and Pulciani 2015; Boveri 1914). A.D: Anno Domini; A.C: Ante Christum. Figure created with 

Canva.co, adapted from the original books, cover pages, and publications of Ekhtiari et al. (2020). 

Nowadays, cancer could be considered as a set of complex diseases which differ from 

the genotype aetiology to the vast complexity in their phenotype expression, being some 

of its distinctive marks the uncontrolled growth and the possibility of metastasis or 

spread of cancer cells to damage normal tissues and organs. Multiple factors such as 

genetic mutations, environmental agents or lifestyle factors, can interact to each other 

determining the risk, type and outcome of the disease. Therefore, for cancer prevention 

and treatment management it must be taken into account its multifactorial character 

(Stein and Colditz 2004). Regarding cancer onset, various theories of cancer origins have 

emerged (Figure 2) which emphasize the acquisition of different molecular alterations 

in a multistep process, and that have failed to show a unique initiator factor (Jassim et 

al. 2023): 1) the somatic mutation theory, 2) the tissue organization field theory, 3) the 

cancer stem cells (CSCs) theory, and 4) the ground state theory. 

 

F I G U R E 2. Theories of cancer origin. 1) Universally accepted somatic mutation theory (SMT), 

defines that tumours’ initiation is a cell problem due to gene alterations and independent of 

external environmental factors. 2) The tissue organization field theory (TOFT) enunciates that the 

interactions of tissue components such as fibroblasts, extracellular matrix (ECM) or immune cells 
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drives carcinogenesis. 3) The cancer stem cells theory (CSCsT) proposes that cancer cells come from 

a mutated progenitor stem-like cell which has the unique ability to promote tumour growth and 

progression. 4) Finally, the ground state theory (GST) integrates all contributions from the previous 

theories to explain cancer risk. Herein, tissue exposure to ageing or other extrinsic factors can 

result in: normal tissue tolerating mutations (left bottom corner); abnormal growth like pre-

cancerous lesions (middle); or full malignant transformation into cancer (right bottom corner). 

Figure created with Canva.com and BioRender.com, adapted from Jassim et al. (2023). 

To simplify the understanding of cancer cells transformation, the hallmarks of cancer 

describe the common capabilities that healthy human cells acquire through the 

neoplastic process, while the enabling capabilities are those involved in activating these 

traits. At the beginning of the 21st century, one main activating feature and six cancer 

hallmarks were identified by Hanahan and Weinberg (Hanahan and Weinberg 2000). 

Since 2011, two more hallmarks have been sufficiently validated to be part of the set, as 

well as a second enable characteristic (Hanahan 2022; Hanahan and Weinberg 2011). 

Thus, during the last two decades, the set of cancer-essential characteristics have grown 

as research itself which denotes the complexity of the disease behaviour (Figure 3). 

F I G U R E 3. Hallmarks of cancer. Characterization of cancer acquired capabilities through the 

neoplastic process has evolved during the last decades. Initially, one activating feature and six 

hallmark were identified. Currently, two more hallmarks and a second enable characteristics 

have been well-evidenced to be part of the set. Beyond these characteristics, emerging hallmarks 

have been recently proposed for further investigation. Figure created with Canva.com and 

BioRender.com based on Hanahan and Weinberg (2000, 2011, 2022).
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Importantly, investigations on the molecular mechanisms underlying tumorigenesis 

have evidenced genotypic and phenotypic variations between the same type of cancer 

from different patients what it is called inter-tumour heterogeneity, and within the own 

tumour or intra-tumour heterogeneity. Hence, intra-tumour heterogeneity may exhibit 

an uneven distribution of genetically diverse malignant cells occupying different sites of 

the tumour, as well as genetic and morphological transformations over time. These 

spatial and temporal changes can be explained by two principal models: 1) the clonal 

evolution, and 2) the CSC models (Figure 4a).  

 

 

 

 

 

 

 

F I G U R E 4. Biological and metabolic heterogeneity during carcinogenesis. a) Different theoretical 

models explain intra-tumour heterogeneity based on clonal evolution and cancer stem cells 

(CSCs). According to the clonal evolution model, any cell under the influence of an oncogenic 

factor may acquire stochastic mutations, becoming a cancer cell with unlimited division and 

differentiation abilities. On the contrary, the CSC model limits the division and differentiation 

abilities to a group of cells with self-renewal properties. Both models seem to converge into a 
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more flexible one, in which the tumour microenvironment (TME) facilitates unlocking 

phenotypic cells plasticity for epithelial-mesenchymal transition and viceversa. b) The metastatic 

process exemplifies how cancer cells adapt metabolically to enhance invasiveness. First, 

epithelial-mesenchymal transition stimulates angiogenesis and extracellular matrix remodelling 

for cellular detachment. Second, anoikis-resistant cells enter bloodstream and adjust 

theirmetabolism to survive migration. Third, platelets protect metastatic cells and aid 

preconditioning the niche. Fourth, malignant cells that evade immune surveillance, enter the pre-

metastatic niche and form micrometastasis. Finally, mesenchymal-epithelial transition favors the 

metastatic outgrowth and colonization. Figure created with Canva.com and BioRender.com.  

Consequence of this biological heterogeneity, cancer metabolism should not be 

studied as a homogenous process (Danhier et al. 2017). The diversity in cancer cells 

activities occurring in each area of the tumour, and along the process of carcinogenesis 

and dissemination, will require them to adapt their metabolism to their necessities in a 

dynamic spatio-temporal way. This flexibility results in both intertumoral and 

intratumoral metabolic heterogeneity. Herein, mutational dynamics and epigenetic 

plasticity are key hallmarks in remodelling the niche during carcinogenesis, which 

define the importance for further investigations exploring metabolic reconfiguration 

with profound implications for the progression to metastasis (Figure 4b) that seriously 

affects therapy response and patients’ prognosis (Jinesh and Brohl 2022; Nascentes Melo 

et al. 2022; Zhu et al. 2021; Prasetyanti and Medema 2017).  

In relation to cancer diagnosis, lately with the emergence of genomics, there has been 

a substantial change in the traditional tumour stratification, which it was based on its 

histology and the site of origin: bladder cancer, breast cancer (BC), colorectal cancer 

(CRC), kidney cancer, lung cancer, lymphoma, melanoma, oral and oropharyngeal 

cancers, ovarian cancer, pancreatic cancer, prostate cancer, stomach cancer, thyroid and 

uterine cancers. However, the use of next-generation sequencing (NGS) of the tissue, has 

provided with a more precise molecular classification at a single-person level for each 

type of cancer as well as with genetic targets for a more personalized anticancer drug 

development (Nakagawa and Fujita 2018; Tobin et al. 2015; Roukos and Ku 2012). 

Furthermore, a great and recent advance in high-throughput methodologies such as 

multiplexed imaging, single-cell metabolomics or spatial -omics allows to profile the 

molecular expression of the phenotypic cells’ heterogeneity preserving tissue 

architecture. This novel approach represents an outstanding method for cancer 
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characterization in a more comprehensive and high-dimensional manner (Wan et al. 

2024; S. Lee et al. 2024). 

Thus, in the era of precision medicine, cancer therapy research has paved the way 

for more effective, accurate and minimally invasive treatments when comparing with 

the conventional approaches (Kaur, Bhardwaj, and Gupta 2023). Nevertheless, 

chemotherapy and radiotherapy still play pivotal roles in the current clinical practice 

along with surgery, being the cornerstone therapies in cancer management. In this 

regard, two main therapy settings may be defined according to the time point in which 

they are carried out: 1) the regimen of treatment used before the surgery or neoadjuvant 

(NA), and 2) the regimen of treatment used after the surgery or adjuvant (AD). Moving 

forward, the combination of conventional with novel targeted and immunotherapeutic 

approaches has led to synergistic effects that enhance treatment outcomes in various 

types of cancers (Qi et al. 2021; Dailah et al. 2024). Continued research and innovation 

will be essential for further refining novel therapies such as: stem cell therapy, gene 

therapy, nanoparticle-based therapy, natural products’ therapy and exosome-based 

therapy, with the aim to overcome the traditional drawbacks of cancer therapy and to 

usher in a new period of personalized medicine (A. X. Wang et al. 2023; Pezzani et al. 

2019; Yong et al. 2019; Y. Li, Atkinson, and Zhang 2017).  

Despite the burgeoning comprehension of the fundamental biology of cancer, and 

the improvements achieved in the realization of a better precision oncology, there still 

exists relatively limited efficacy of the current treatments and frequently associated side 

effects (Lustberg et al. 2023; Anand et al. 2023). In this regard, the early detection of 

minimal residual disease (MRD) could define the risk to relapse and the choice for 

further therapeutic strategies after a curative procedure. Thus, improving programs for 

early detection of cancer is essential since it would increase the likelihood of cure, as the 

disease can be treated with less aggressive and invasive therapies, reducing side effects 

and improving the patient's quality of life. Additionally, early diagnosis can significantly 

reduce the personal, social and financial impact of this devastating disease, thereby 

enhancing the overall efficiency of the healthcare system through better resource 

allocation. 

1.1.1 Breast cancer  

According to the Spanish Network of Cancer Registries (REDECAN for its acronym 

in Spanish) it is estimated that BC is the second most incident type of tumour in the 
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general population while the most frequently detected in Spanish women (REDECAN 

2024). In 2020, BC was the most diagnosed type of cancer around the world with 2.3 

million of new cases, exceeding lung cancer rates. The rising incidence of BC in 

developing and developed countries is the result of the convergence of drastic changes 

in lifestyle such as unbalanced diet intake, alcohol and smoke consumption, poor 

physical activity, obesity, the late age for first childbirth and menopause (Amato, 

Guarneri, and Girardi 2023). Although mortality rates have decreased during the last 

years due to the improvements in early detection by screening programs and targeted 

therapies, BC ranks as the second most common cause of cancer-related deaths in 

women worldwide and the first in Spain (Siegel, Giaquinto, and Jemal 2024; H. Sung et 

al. 2021).  

Nowadays, early detection BC programs consist on breast self‑examination and 

clinical breast examination, which are often inconclusive and controversial for the 

detection of the disease Moreover, any of these techniques provide with tissue 

malignancy, nor discrimination between BC subtypes, whereas the bases to define the 

molecular and genetic information for the BC taxonomy tend to be time-consuming, 

invasive or unspecific (Alcaide Lucena et al. 2021). Thus, breast imaging by 

mammography screening is the only effective method for the detection of the disease 

decreasing mortality rates by 41%. However, it also has disadvantages as the 

cost‑expensive resources, exposition to radiation, the breast compression and the final 

biopsy of the tissue (Ginsburg et al. 2020). So that, it urges to define a less invasive 

method for early detection and monitoring of BC behaviour. 

It is noteworthy that improvements in molecular biology have provided with a more 

precise stratification of this heterogeneous type of cancer. Indeed, BC prognosis and the 

treatment of choice vary according to the combination of the histopathological 

classification with three main molecular factors: the expression of hormone receptors 

(progesterone and estrogens), the overexpression of the human epidermal growth factor 

receptor-2 (HER2) gene and the proliferation marker Kiel 67 (Ki-67). Figure 5 

summarizes the BC morphological and molecular classification, while Table 1 shows the 

eighth edition of cancer’s staging system for BC (Giuliano, Edge, and Hortobagyi 2018), 

standardized by the American Joint Committee on Cancer (AJCC) in 1959. Considering 

these criteria, in clinical practice, BC is stratified in Luminal (A or B), HER2+ or triple 

negative (TN):
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1) Luminal: it is the most common BC molecular subtype, characterized by the 

expression of estrogens and / or progesterone receptors (ER/ PR). Within this 

group it can be found two subtypes, luminal A (LA) and luminal B (LB) which 

mainly differ from each other in the percentage expression of hormonal 

receptors, frequency and prognosis. 

2) HER2+: it accounts for ~ 15-25% of BC cases and it is characterized by the 

overexpression of the receptor tyrosine-protein kinase erbB-2, due to ERBB2 

amplification or somatic mutations (Oh and Bang 2020; Yarden and Sliwkowski 

2001). They have worse prognosis in comparison with luminal tumours and 

higher response rates to chemotherapy. HER2+ tumours are effectively treated 

with targeted therapies in combination with chemotherapy, such as: 

trastuzumab, pertuzumab or lapatinib. It is the molecular subtype most 

frequently affected by metastasis in the central nervous system. 

3) TN: it is the most aggressive subtype of BC and it affects about 20% of the BC 

cases. It may express < 1% hormone receptors and the HER2 non-amplified. It 

normally affects a younger population of women. Chemotherapy is the only 

available treatment following the scheme of antrathiclines plus taxanes. TN 

management is an actual challenge for precision oncology. Although response 

rates to chemotherapy are high, early therapy resistance occurs. Recent studies 

have demonstrated that within the TN phenotype can be observed very 

heterogeneous lesions that might be subclassified for a much-personalized 

management (Lehmann et al. 2011).  
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F I G U R E 5. Summary of breast cancer (BC) classification according to their histopathological 

affection (1), and their molecular characteristics (2). 1) Morphological categorization of BC is 

mainly based on the normal breast structures, ducts and lobules, that may be partially or 

completely filled with tumour cells. Depending on the aggressiveness, we find in situ BC tumours 

or invasive. The histologic grade is an independent prognostic factor of the invasive carcinomas 

and it is determined by malignant cells’ differentiation. 2) BC molecular subtypes are stratified 

based on the expression of: hormone receptors - estrogen (ER) or progesterone (PR) -, the 

proliferative marker Ki-67, and the human epidermal growth factor receptor-2 amplification 

(HER2+). TN phenotype is considered the most aggressive molecular subtype with less tailored 

therapeutical options and lower survival rates. Figure created with Canva.com and BioRender.com based 

on BC classification published elsewhere.  

T A B L E 1. Key points of the AJCC eighth BC staging edition and examples of stage migration. 

Since the AJCC Cancer Staging Manual creation, cancer stages have been determined by cells’ 

progression or spread in the body and relied on anatomic methods, using population-based 
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survival data to predict clinical outcomes. Up-to-date manual edition has been modified 

according to the precision medicine era, including two staging systems: (a) the traditional 

anatomic stage -primarily based on the size of the tumour (T), nodal status (N), and distant 

metastasis (M)- to be used when biomarker analysis is not available; and the prognostic stage (b), 

which considers tumour grade, hormone receptor -estrogen (ER) or progesterone (PR)-, the 

human epidermal growth factor receptor-2 (HER2) overexpression and multigene panel testing. 

As a result of the 8th edition, anatomic stages are “upstaged” or “downstaged” depending on the 

tumor biology: triple negative tumours tend to have upstaging prognosis due to the survival rates 

comparable with patients with disease one anatomic stage higher, whereas HER2 overexpression 

is generally a downstaging factor given the success of anti—HER2 targeted therapy. Tis: Tumour 

in situ; Nmi: micrometastasis; N/A: not applicable. 

In BC, understanding each molecular profile of the disease is crucial for tailoring to 

a particular, more accurate and personalized treatment. In this regard, the treatment 

regimen in BC is driven by combination of (Figure 6): 

- Surgery: it is the initial treatment in case of an AD chemotherapy setting. It may 

involve breast-conserving surgery (lumpectomy) or mastectomy; lymph node 

removal can also be performed to assess the sentinel lymph node or axillary 

lymph nodes.  

- Radiotherapy: it may be used before surgery in a NA regimen or recommended 

following surgery (AD) to destroy any remaining cancer cells in the breast or 

nearby the lymph nodes to reduce the risk of recurrence.  

- Chemotherapy: it is classified according to chemical drugs nature, molecular 

target, mechanism/mode of action, or effectiveness. NA chemotherapy (NACT) 

it is used in order to make operable those tumours that might be inoperable, 

increasing the breast-conserving surgery rate, and allowing determine the short-

term efficacy. AD chemotherapy is used to prolong survival in those potential 

cases of latent micro-metastases. 

- Hormonal therapy: it is used in case of hormone-receptor positive BC to block 

the effects of estrogen or progesterone on cancer cells.  

- Targeted therapy: it is used in the HER2+tumours to specifically target cancer 

cells which overexpress the HER2 protein.  

- Immunotherapy: it is typically used in combination with other chemotherapy 

drugs for advanced or metastatic BC, stimulating the body’s immune system to 

recognize and attack cancer cells (Debien et al. 2023). 
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F I G U R E 6. Conventional, targeted and emerging therapies in the breast cancer setting. 

Chemotherapy, radiotherapy and hormonal therapy can be administered before the surgery in 

the neoadjuvant (NA) regimen or after the surgery in the adjuvant regimen (AD). Targeted 

therapies are approved as AD therapies or in combination with NA chemotherapy. Figure created 

with Canva.com. 

While multiple advances achieved in diagnosis, surgical and radio-

chemotherapeutic strategies have improved BC survival rates, this malignancy remains 

a significant clinical challenge when relapse occurs (Amato, Guarneri, and Girardi 2023). 

Metastasis cause the dissemination from the primary site to a secondary organ, implying 

main vital organ disfunctions and subsequent cancer-related deaths (Dillekås, Rogers, 

and Straume 2019). In BC, 5-20% of patients at early or late stage will have metastatic 

disease and 20-30% of early BC patients still die from metastasis (Courtney et al. 2022; 

Riggio, Varley, and Welm 2021). Therefore, there is an urgent need to define more 

personalized-based strategies to discriminate response to treatment according to each 

BC molecular subtype which may ultimately lead to a more accurate diagnosis, 

prognosis and therapy selection for a tailored follow-up. 

1.1.2 Colorectal cancer  

Colorectal cancer was the most frequently diagnosed type of cancer in Spain in 2022, 

followed by breast and lung cancers (SEOM 2022). In 2020, CRC was the third most 

commonly diagnosed cancer, with more than 1.9 million of new cases per year and the 

second leading cause of cancer-related deaths, with almost 1 million deaths worldwide 
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(H. Sung et al. 2021). About 55% of CRC cases are diagnosed in global developed areas 

and the mortality rate is considerably higher in men than in women. Although age 

remains the major unchangeable risk factor of colon cancer onset, by 2030 it is expected 

a 90% increase of colon cancer and 124.2% for rectal cancers in Americans aged 20-34 

years of age (Spaander et al. 2023). As shown in Figure 7, the increase in this young onset 

CRC represents a drastic change to be taken into account in the behaviour of the disease 

(Siegel, Giaquinto, and Jemal 2024; Saad et al. 2020). Interestingly, it is estimated that 

80% of CRC cases in Western countries are caused by dietary factors (Sawicki, 

Ruszkowska, and Danielewicz 2021; Vernia et al. 2021), whereas it is well-established 

that combination of a healthy diet along with avoiding smoking, overweight, being 

sedentary and alcohol consumption, might decrease CRC risk (Botteri et al. 2023).  

F I G U R E 7. Temporal patterns of (a) early-onset colorectal cancer (CRC) burden, and (b) late-

onset CRC worldwide (left), in the United States of America (USA, middle) and Western Europe 

(right), 1990-2020. Males experienced higher increases in CRC incidence than females all over the 

world. Furthermore, a disturbing increase in early-onset CRC from 15 to 49 years old (yo) differs 

from the stabilized-decreased tendency of late-onset CRC incidence in the last three decades. Data 

source: Global Burden of Diseases, Injuries, and Risk Factors Study 2019.  

The initial phase of the standard preventive protocol for CRC involves 

immunochemistry to detect fecal occult blood. This first stage is characterized by a 

significant percentage of false positive results due to its limited sensitivity and leads to 

unwarranted patients’ selection for subsequent screening by colonoscopy (Figure 8). In 

response to this issue, recent investigations propose the inclusion of additional 

biomarkers in the first stage of screening, such as molecular risk signatures coupled with 
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pertinent clinical-demographic parameters of the patients (Arnau-Collell et al. 2022). 

Nevertheless, to date, there is a dearth of validated tools enabling the tracking of markers 

associated with tumour progression or the presence of MRD in CRC. In this sense, serum 

levels evaluation and monitoring of the carcinoembryonic antigen is highly 

recommended before surgery and during post-operative follow-up for an early detection 

of metastasis (Konishi et al. 2018; Duffy et al. 2003). 

F I G U R E 8. Colorectal cancer (CRC) typical screening. Normal-risk people should start CRC 

screening at age 50 by fecal immunochemical test (FIT) or fecal occult blood test (FOBT) every 

year. The FIT-DNA (Cologuard test) needs to be taken once every 3 years. When stool-based 

results are negative, normal-risk people may have a sigmoidoscopy or computed tomographic 

colonography every 5 years or colonoscopy every 10 years. Further monitoring of blood 

biomarkers remains controversial in clinical practice due to the low sensitivity and specificity. 

Nevertheless, carcinoembryonic antigen is the most frequently examined marker to predict early 

recurrence in post-operative patients. DNA: deoxyribonucleic acid. Figure created with Canva.com. 

The liver stands as the primary site of metastatic dissemination in this malignancy 

(Biller and Schrag 2021). Approximately two-thirds of CRC cases manifest metastatic 

spread to various organs, while roughly 30% of CRC patients exhibit exclusive liver 

metastasis (CRLM) (Xi and Xu 2021). Despite achieving a five-year survival rate as high 

as 90% through early detection by the standard protocol, advanced CRC stages correlate 

with a survival rate less than 10% and a pronounced escalation in associated economic 

burdens (Kamel et al. 2022; Gornick et al. 2022). In the CRLM scenario, only one-third of 

the patients are eligible for surgery or ablative treatments but, still, disease recurrence 

occurs in more than a half of the cases (H. Sung et al. 2021; Kawaguchi et al. 2019; Creasy 

et al. 2018). For that reason, it would be essential the identification of prognostic and 
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predictive biomarkers by a simple blood extraction during the monitoring of the disease 

for risk stratification of these patients. 

The management of CRC has been pioneer moving forward to precision oncology 

due to the application of molecular profiling, biomarkers’ identification and the use of 

targeted therapies or immunotherapy in clinical practice (Ahluwalia et al. 2024). In this 

regard, main clinicopathological criteria for CRC assessment is based on staging by TNM 

(O’Sullivan et al. 2017) and the status of the mismatch repair, microsatellite instability, 

as well as the gene mutations in RAS or BRAF in the metastatic colorectal cancer (mCRC). 

Further validation is pending for other realizations of personalized medicine such as 

testing mutations in PIK3CA, ERBB2, ALK, ROS1 or NTRK, which are yet only 

recommended in clinical trials (Cervantes et al. 2023). Despite these mainstay factors, the 

molecular biology of CRC is especially complex and heterogeneous which results in 

remarkable differences in disease progression and treatment response (Punt, Koopman, 

and Vermeulen 2017). So, a taxonomy of CRC was developed in 2015 basically based on 

tumour heterogeneity at the gene-expression level: the consensus molecular subtypes 

(CMSs) (Guinney et al. 2015), which could be used to guide drug development, to 

estimate patient survival and for tailoring therapy options (Hoorn et al. 2022). With the 

main aim to define a standard method for CRC subtyping and translate it into the clinic, 

this classification system coalesced two dominant genomic alterations (microsatellite 

and chromosomal instability) into four CMSs with their own (epi)genomic 

distinguishing features (Table 2): 

1) Microsatellite instability immune or CMS1:it is characterized by the infiltration 

of tumour microenvironment and immune cells, mainly differentiated by the 

overexpression of DNA damage repair proteins/defective DNA mismatch 

repair, subsequent pattern of hypermutation and CpG island hypermethylation, 

it shows distinctive microsatellite instability, enriched of BRAF mutations and 

low somatic copy number alterations. 

2) Canonical or CMS2: it has epithelial characteristics with high chromosomal 

instability, strong upregulation of WNT and MYC signalling; it shows the most 

frequently gained copy number in oncogenes and losses in tumour suppressor 

genes.
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3) Metabolic or CMS3: it has the distinction of the metabolic reprogramming, 

although it also has an epithelial character, enriched for KRAS– activating 

mutations. 

4) Mesenchymal or CMS4: it shows a clear upregulation of pathways related to the 

epithelial-to-mesenchymal transition and the activation of transforming growth 

factor – β signalling, extracellular matrix remodelling and the complement-

mediated inflammatory system. 

T A B L E 2. Colorectal cancer (CRC) consensus molecular subtypes (CMSs) 

 SUBTYPE 

FREQUENCY 

AND 

LOCATION 

MAIN HALLMARKS PROGNOSIS* 
TAILORED 

THERAPY 

CMS1 Immune 

14% 

Proximal 

colon 

Immune infiltration: 

CD8+ cytotoxic T 

lymphocytes, CD4+ T 

helper 1 and natural 

killer 

Distinctive MSI, CIN 

and CIMP 

BRAF enriched 

SCNAs low 

Worst 

survival in 

mCRC 

Immunotherapy 

in mCRC 

Second-line 

regimen of 

chemotherapy 

combined with 

bevacizumab 

CMS2 Canonical 

37% 

Distal colon 

and rectum 

Epithelial 

characteristics 

CIN high 

Upregulation WNT 

and MYC 

Most 

favorable 

prognosis in 

both local 

and mCRC 

AD 

chemotherapy 

Cetuximab 

benefits 

KRASwt mCRC 

CMS3 Metabolic 

13% 

Without 

predominance 

Metabolic 

reprogramming 

KRAS activation 

- 
AD 

chemotherapy 

CMS4 Mesenchymal 

23% 

Distal colon 

and rectum 

Epithelial-

mesenchymal 

transition 

TGFβ activation 

Worst 

prognostic 

value in 

local disease 

than CMS1 

and CMS2 

Irinotecan-

based first-line 

regimen in 

mCRC 

also in 

combination 

with cetuximab 

(KRASwt 

tumours) and 

bevacizumab 

(KRAS) 
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After colonoscopy and biopsy, colorectal cancer (CRC) diagnosis undergoes subsequent 

stratification by tumor-node-metastasis (TNM) staging system and further molecular 

characterization by genome sequencing to detect proto-oncogene mutations, microsatellite 

instability (MSI), chromosomal instability (CIN), CpG island methylator phenotype (CIMP) and 

somatic copy number alterations (SCNAs). *The consensus molecular subtypes (CMSs) can be 

used to evaluate prognosis as demonstrated by Hoorn et al. (2022). 

Despite major discoveries of (epi)genetic influence on CRC behaviour, these findings 

have limitations in clinical practice, as they vary with patients’ race and ethnicity (Ping 

et al. 2022). In fact, the most effective risk model, QCancer-10, relies on non-genetic 

factors (Hippisley-Cox and Coupland 2015). Polygenic risk scores may fall short due to 

factors beyond DNA or epigenetic changes contributing to CRC pathogenesis. In this 

regard, recent studies emphasize the importance of combining intrinsic and extrinsic 

factors for better risk prediction (Briggs et al. 2022; Kachuri et al. 2020). Hence, 

integration of multiple -omics data provides deeper insights into CRC molecular 

heterogeneity, potentially overcoming the limitations of single-omics approaches and 

offering clinical utility for developing new diagnostic and prognostic tools (Díez-

Villanueva et al. 2022; Sardo et al. 2022).  

1.2 Precision Medicine 
In medical oncology practice, the evolution of medicine is a constant process, driven 

by the increasing understanding of the complex health-disease status of a patient. 

Concerning this, the timeline towards the conquest of personalized medicine illustrates 

how the medical perception of health and disease has evolved, albeit practicians have 

always sought to personalize therapy to their patients. Specifically, Western medicine 

has recently transitioned from a “one-size-fits-all approach” based on population 

averages to a more individualized scenario. This medical paradigm can be traced back 

to thousands of years (Figure 9). 
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F I G U R E 9. Timeline of Western medicine evolution rooted in ancient traditions such as those of 

the Greek gods Asclepius and the goddess Hygeia (Tannock 2006; Pizzorno 2018), evolving from 

Egyptian medicine to Hippocratic medicine (Jouanna 2012), scientific medicine, evidence-based medicine 

and reaching its latest iteration of personalized medicine (Madden and Bhandari 2020). Figure created 

with Canva.com. 

Then, at the present we are witnessing a transition to personalized or precision 

medicine, defined by the individualization of the treatment for each patient, prioritizing 

their unique epidemiological, clinical and molecular characteristics. This philosophy is 

grounded on principles of personalization, prediction, prevention and patient 

participation, with the aim to enhance early disease detection, facilitate treatment 

selection with optimal dosing, mitigate adverse effects, improve therapeutic adherence 

for a better quality of life, and to reduce overall healthcare costs (Visvikis-Siest et al. 

2020). Over the past two decades the paradigm shift towards a patient-centric approach 

in medical practice has been driven by advancements in targeted therapies which results 

from technological progress in biomedical research. As previously mentioned, genomics 

has played a pivotal role in the evolution of precision medicine, particularly in the field 

of medical oncology, with significant applications in cancer therapy. Consequently, 

significant milestones have been achieved (di Lonardo, Nasi, and Pulciani 2015), 

culminating in the emergence of precision cancer medicine or precision oncology (Figure 10). 
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F I G U R E 10. Timeline with remarkable strides made over the past three decades to achieve 

precision oncology. These key milestones have collectively transformed oncology from a one-

size-fits-all approach to a more personalized, data-driven field, improving outcomes for countless 

cancer patients. Figure created with Canva.com. 

Contemporary medicine has undergone a conceptual change to conceive pathology 

as individual-specific molecular alterations that interact with biological systems and the 

environment. Understanding each person’s molecular idiosyncrasy, based on their 

(epi)genetics, proteomics, transcriptomics, metabolomics and microbiome enables a 

comprehensive assessment of their biological status. In this sense, the rise of -omics 

sciences alongside high-throughput analytical platforms, has clarified cancer’s 

molecular aberrations, improving prognostic and predictive insights into tumour 

subgroups, identifying biomarkers, and uncovering therapeutic targets (Putignani, 

Gasbarrini, and Dallapiccola 2019; Carneiro et al. 2020).  

Precision medicine contributes to a more holistic view of cancer biology by 

emphasizing the intricate interactions of small molecules in modulating cellular 

organelles, organs, and organismal functions. This underscores the necessity of 

integrative biomedical approaches to fully comprehend complex multi-factorial 

conditions such as cancer. In this context, it is fundamental to elucidate the individual 

components of biological systems and the specific functions of biomolecules through 

what is commonly known as basic research. This first stage of research is essential, as it 

explores the underlying mechanisms of health and disease, to form the basis for 

hypothesis generation and validation. Lately, biomedical advances accelerate the 

translation of basic discoveries to improve clinical outcomes across a range of 

pathologies. Thus, basic research serves as the cornerstone of personalized medicine and 

the process to implement results from the “bench-to-bedside” is facilitated by 

translational research (TR). 
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1.2.1 Translational research

TR is a relative new concept in the medical framework. Indeed, when we have a look 

into the bibliography, it can be observed the exponential growth of peer-reviewed 

articles related to TR from the first decade of the 21st century (Figure 11). 

F I G U R E 11. Changing trends in translational research, translational oncology and cancer 

metabolomics literature on PubMed database from the last three decades.

In the healthcare system, TR commonly refers to human studies aimed at translating 

laboratory findings into clinical applications, improving public health outcomes with 

new targets, drugs, devices or biomarkers. To achieve this, the Institute of Medicine's 

Clinical Research Roundtable defined two main “translational blocks” at the beginning 

of the century  (described by N. S. Sung et al. 2003): T1 for translating new disease 

mechanism insights into diagnosis, therapy, and prevention by their initial human

testing; and T2 for applying clinical research into routine practice and healthcare 

decisions. To address these challenges, the National Institutes of Health launched the 

Clinical and Translational Science Award program, facilitating research translation into 

clinical practice. However, over the years, the scope, goals, and methodologies of TR 

models have evolved, leading to inconsistent terminologies across the literature (Rajan 

et al. 2012). Thus, the need to redefine these translational blocks became evident (Woolf 

2008), and gradual development of TR has ended up in the following key elements: 

phases, data transfer and gaps (Figure 12).
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F I G U R E 12. Key elements of translational research are broadly established as phases, scientific 

content transition between phases, and challenges found during the translational research phases 

due to issues related to ethical data confidentiality, resources or financial conflicts to data transfer. 

Figure created with Canva.com. 

In this regard, clinical research provides evidence-based medicines, and TR produces 

evidence-based biomarkers which are increasingly considered in the design of a clinical 

trial for improving patient management and essential for achieving real personalized 

medicine. However, a main issue is faced in this “knowledge transition”: the wide period 

from discovery, development and implementation. In order to manage this, we still lack 

a common and well-established massive TR infrastructure to lead the integration and 

good communication between the multi-disciplinary stakeholders that may interplay 

such as: the clinical specialists, biobanks, basic researchers, bioinformatics, statistics, 

data analysis, publication or reporting, project and resource coordinators, healthcare 

administrations.  

Specifically in the medical oncology scenario, the emergence of high-throughput 

methods that enable the molecular characterization of tumours yielded to the 

implementation of TR for achieving the long-awaited precision cancer medicine. In this 

sense, beyond the outstanding (epi)genetic cancer-driven factors, different onco-omics 

have demonstrated that the integration of the biomolecular interplay is crucial for the 

understanding of the disease. The study of the disease from a more comprehensive 

perspective would facilitate the development of new high-resolution, effective and low-



Introduction |

37 | P a g e

cost diagnostic and prognostic tools that are potentially useful for implementation in the 

clinical setting (Lu and Zhan 2018). In this sense, the goal to bring the gap between basic 

sciences and clinical care through a practical application of TR might be reached by the 

development of molecular risk scores rather than (epi)genetic scores alone.  

1.2.2 Omics and biomarkers’ discovery 

TR has significantly advanced precision oncology by enabling the identification of 

genes, proteins and metabolites that serve as biomarkers for disease initiation, 

prognosis, and monitoring cancer recurrence or prevention. According to the US Food 

and Drug Administration (FDA), biomarkers are measurable indicators used for 

patients’ stratification (Atkinson et al. 2001; https://www.fda.gov/drugs/biomarker-

qualification-program/about-biomarkers-and-qualification). While traditionally early 

cancer biomarker identification relied on empirical observations and histopathological 

methods, personalized medicine has surpassed the limitations of these strategies (Henry 

and Hayes 2012; Sarhadi and Armengol 2022). To date, molecular biomarker discovery 

leverages high-throughput technologies including: 

- Genomics. NGS detects germline and somatic variants, as well as mutations

involving single nucleotide variants or small nucleotides insertions and

deletions. Table 3 lists common genetic variants associated to BC and CRC.

- Epigenomics. Techniques such as methylation-specific polymerase chain

reaction (PCR), methylation-sensitive high-resolution melting or

pyrosequencing, DNA methylation analysis or histone protein modifications.

- Transcriptomics. Reverse transcription PCR, microarray or sequencing are used

to study both coding and non-coding ribonucleic acid (RNA). Known transcripts 

variants are detailed in Table·3.

- Proteomics. It is the field responsible for the study of cancer-related protein

alterations which may not always correlate with the gene expression. Proteomic

biomarkers were among the initial utilized in cancer diagnostics. Table 3

highlights key protein biomarkers in BC and CRC.

- Metabolomics. It provides with potential biomarkers at the metabolome level,

identifying candidate metabolites linked to the presence of tumour or treatment

response. Table 3 summarizes notable candidate metabolites identified in the

context of BC and CRC.
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T A B L E 3. Molecular alterations in breast cancer (BC) and colorectal cancer (CRC) evidenced by 

multi-omics high-throughput technologies. 

 Some of these variants have not yet been extensively applied as biomarkers in the clinic due to 

the lack of reproducibility. Hence, it is essential to seek more specific biomarkers to improve the 

accuracy of their diagnosis. The most frequently mutated genes per type of cancer are publicly 

available on “the Cancer Genome Atlas Program”: 

https://www.cancer.gov/ccg/research/genome-sequencing/tcga. miRNA: micro ribonucleic 

acid; mRNA: messenger ribonucleic acid; HER2: human epidermal growth factor receptor 2; ER: 

estrogen receptor; PR: progesterone receptor; CA: cancer antigen; CEA: carcinoembryonic 

antigen breast cancer; CRC: colorectal cancer; Ki-67: marker of proliferation Kiel 67. 

Biomarkers are classified based on their applications, characteristics, genetics or 

molecular biology. These categories often overlap, reflecting the diverse uses of 

biomarkers in different contexts. In the clinical setting, we can broadly classify them into 

three primary categories: 

- Diagnostic biomarkers are used for screening, early detection or confirmation of 

the presence of a disease or condition. 

- Prognostic biomarkers provide information about likely course and outcome of 

a disease, risk assessment or patient prognosis. 

- Predictive biomarkers allow prediction of the likely response to a particular 

treatment, monitoring the therapy plan. 

However, the translation of biomarkers from the bench to bedside is a current 

drawback in precision oncology, since biomarker qualification requires the adherence to 

 BC CRC 

GENOMICS 

TP53, PIK3CA, CDH1, MUC16, 

GATA3, KMT2C, MAP3K1, 

PTEN, NCOR1, FAT3, CSMD3, 

MAP2K4, TEKT4, BRCA1/2  

APC, TP53, KRAS, MUC16, FAT4, PIK3CA, 

CSMD3, FAT3, LRP1B, FBXW7, KMT2D, 

ARID1A, NBEA, BRAF 

TRANSCRIPTOMICS 

miR-124, 125b, 127, 132, 1307-3p, 

940, 340-3p, hsa-miR-503, 1307, 

212, and hsa-miR-592  

miR-21, miR-31, miR-143, miR-145, 

LGR5mR 

PROTEOMICS 
HER2, ER/PR, CA27.29, CA15-3, 

CEA, Ki-67 

CEA, KRAS, BRAF, MMR, 

fibrin/fibrinogen degradation product 

(DR-70), human hemoglobin 

METABOLOMICS 

Tryptophan, histidine, taurine, 

docosahexaenoate, 

propionylcarnitine 

3-hydroxybutyric acid, L-valine, L-

threonine, 1-deoxyglucose, glycine, 

hypoxanthine 
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guidelines laid by the National Cancer Institute (Srivastava and Wagner 2020; 

Purkayastha et al. 2022). Hence, the main phases for systemic discovery and evaluation 

of biomarkers are:  

I. Exploratory or pre-clinical. 

II. Establishment of a clinical validation assay. 

III. Assessment of retrospective longitudinal specimens of subjects before the 

onset. 

IV. Evaluation of sensitivity and specificity in a prospective screening. 

V. Evaluation of overall benefits and risks in a cancer control study. 

Finally, the ideal biomarker should be quantifiable, robust, have a significant 

over/down expression in the condition under study, correlate with the outcome 

progression, be consistent across gender and ethnic groups and be cost-effective 

(Purkayastha et al. 2022). In addition, the identification, validation and clinical 

translation must involve a multidisciplinary strategy to obtain a reliable integrative 

model capable of stratifying patients at risk to develop the disease or guiding clinical 

decision-making to improve patient outcomes in a comprehensive manner. 

1.2.3 Liquid biopsy and minimal residual disease 

In clinical practice, one of the major accomplishments of TR advances in precision 

oncology is the increase in survival rates and improvements in quality of life. In this 

sense, early detection of cancer is the most important factor for an optimal treatment of 

the disease, as it substantially influences the patient’s likelihood of survival. Likewise, 

prior knowledge of treatment response is another key factor to consider when planning 

and administering the anti-tumour therapeutic regimen. In some cases, when the disease 

is asymptomatic, there is a delay in diagnosis that results in treatment initiation when 

criteria for radical therapy is no longer met.  

Other major milestone in this revolutionary era is the advent of liquid biopsy for 

assessing cancer status, which has overcome some limitations of the traditional methods 

such as tissue biopsies and imaging techniques (Figure 13). Within the advantages of 

liquid biopsy (Pantel and Alix-Panabières 2019) it is worth noting the detection of MRD 

or micrometastases, which refers to the presence of small number of cancer cells 

remaining after the treatment which do not cause clinical symptoms. Thus, the set of 

tumour-derived biomarkers that are currently assessed in the context of MRD are 
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basically circulating tumour cells, cell-free DNA, circulating tumour DNA (ctDNA), 

exosomes and ctRNA. For the analysis of these cancer cells components, there exist 

various liquid biopsy techniques such as NGS, digital PCR, and multiplexed assays 

(Bayle et al. 2023; Pascual et al. 2022). Advances in these technologies and biomarkers’ 

discovery hold promise to enhance the clinical utility of liquid biopsy in cancer 

management. It should be noted that, future research will require to integrate multiple 

biomarkers and complementary technologies to enhance the sensitivity and specificity 

of MRD detection. So that, integration of other -omics such as metabolomics and 

epigenomics with the collaborative efforts among researchers, clinicians and industry 

partners are essential to accelerate the translation of liquid biopsy into routine clinical 

practice for an earlier and more accurate assessment of residual disease and personalized 

cancer management (Johnston et al. 2023; Ge et al. 2022). 

F I G U R E 13. Advantages and applications of liquid biopsy in medical oncology practice: 1) liquid 

biopsy offers a real-time and dynamic assessment for screening of cancer status; 2) this technique 

is minimally invasive, reducing patient discomfort and the risk of complications associated with 

tissue biopsies at diagnosis; 3) liquid biopsy enables the sampling of tumour heterogeneity, 

capturing genetic and molecular changes in cancer cells that may not be represented in a single 

tissue biopsy or by imaging, improving clinical stratification of prognosis or therapy selection; 4) 

it can be easily repeated over time, facilitating longitudinal monitoring of disease progression 

and treatment response. ctDNA: circulating tumour deoxyribonucleic acid; CSCs: cancer stem 

cells. Figure created with Canva.com, adapted from Kulasinghe et al. (2018). 

Although MRD detection is widely established in haematological malignancies, 

liquid biopsy faces several limitations in patients with solid tumours. One of the major 

challenges is the low abundance of tumour-derived biomarkers in circulation, requiring 

sensitive and specific detection methods. Additionally, standardization of sample 
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collection, processing and analysis protocols is essential to ensure the reproducibility 

and reliability of the results. Furthermore, the accessibility of liquid biopsy assays in 

clinical settings needs to be addressed to enable widespread adoption. Last, to ensure 

clinical relevance and accuracy, the results obtained from liquid biopsy must be 

validated and correlated to the traditional diagnostic methods (Lone et al. 2022). By 

overcoming these drawbacks, the full potential of this encouraging technique could be 

realized, allowing to identify and monitor patients with poorer prognosis using a 

minimally invasive and cost-effective tool that may even guide selection of the most 

appropriate treatment, thereby avoiding unnecessary toxicities, costs and loss of 

survival opportunities for patients (Pich et al. 2022). 

1.3 Metabolomics 
Metabolomics is a rapidly expanding -omics science that aims to detect and identify 

the global set of small molecules or metabolites that may be related to a biological status 

or system. Metabolites, the byproducts of metabolism, are low to medium molecular 

weight compounds (<1500 Da) that participate in cellular processes and reveal how 

metabolism works in living organisms. Recent discoveries made through metabolomics 

yielded new insights into the influence that metabolites may have on both normal 

physiology and disease pathophysiology (Qiu et al. 2023; Wishart 2019). Given that 

metabolites are the ultimate product of the -omics cascade, changes and interactions 

among gene expression, proteins and the environment are directly reflected in the 

metabolome. For that reason, metabolomics emerges as a powerful tool for biomarker 

discovery with advantages over other -omics since it is able to represent the genotype-

phenotype correlation. In consequence, it appears as the burgeoning science that best 

represents the molecular phenotype of health and disease (Aderemi et al. 2021). 

According to the desired level of detail or the ability to detect a certain number of 

metabolites, the methodologies in metabolomics might be categorized into two 

distinctive groups (Cajka and Fiehn 2016): 1) untargeted metabolomics, which aims to 

conduct a comprehensive analysis using scan mode of all measurable analytes in a 

sample, including unknown chemicals; and 2) targeted metabolomics, which focuses on 

measuring well-defined groups of biochemically characterized metabolites. In this 

dissertation, untargeted metabolomics is evaluated as a potential tool for biomarker 

discovery in cancer. Although compound identification remains a bottleneck in this 

approach, the steadily increasing structural information available in databases, along 
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with the growing availability of new analytical standards, and the advent of artificial 

intelligence (AI) is mitigating this challenge (Table 4). 

T A B L E 4. Characteristics of the two main metabolomic methodologies. 

 

The platforms utilized for metabolomic applications encompass mass spectrometry 

(MS) and nuclear magnetic resonance (NMR), each possessing their strengths and 

weaknesses depending on the type of analysis needed in metabolomics. MS is generally 

preferred for its high sensitivity and ability to detect a wide range of metabolites at low 

concentrations. On the other hand, NMR is valued for its high reproducibility and ability 

to provide structural information without extensive sample preparation (Table 5). 

CHARACTERISTICS UNTARGETED TARGETED 

Objective 
Profiling all detectable metabolites in 

a sample. 

Quantifying specific, pre-

selected metabolites. 

Scope 
Broad, comprehensive coverage of the 

metabolome. 

Focused on a defined set of 

metabolites. 

Sensitivity 

Variable. 

It may miss low-abundance 

metabolites. 

High for the selected 

metabolites. 

Reproducibility 
Lower since depends on experimental 

and analytical conditions. 

High due to standardized 

methods. 

Quantification Relative. Absolute. 

Data analysis 

Complex. 

Requires extensive data processing 

and statistical analysis. 

Simpler and easier 

interpretation with predefined 

targets. 

Time and cost 
Time-consuming and expensive due 

to the broad analysis. 

Quicker and less expensive due 

to the focused analysis. 

Biological insight 
Potential for discovering unknown 

metabolites and related pathways. 

Limited to known metabolites 

and specific pathways. 

Applicability 
Hypothesis generation, 

comprehensive profiling. 

Hypothesis-driven research, 

biomarker validation. 
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T A B L E 5. Advantages and disadvantages of mass spectrometry (MS) and nuclear magnetic 

resonance (NMR) for metabolomics. 

CHARACTERISTICS MS NMR 

Sensitivity 

High. 

Detects metabolites at very low 

concentrations. 

Low. 

Requires relatively high 

concentrations of metabolites. 

Selectivity 

Very high. 

Identifies and quantifies specific 

compounds. 

High. 

Provides detailed information 

about the molecular structure, 

including arrangement of atoms. 

Metabolite coverage 

Broad. 

Detects a wide variety of 

metabolites, including low 

molecular weight compounds. 

Limited. 

Detects mainly more abundant 

and high molecular weight 

metabolites. 

Absolute 

quantification 

Difficult. 

Requires internal standards and 

can be affected by differential 

ionization. 

Good. 

Allows direct quantification of 

concentrations without the need 

for internal standards. 

Reproducibility 

Good, though it can be affected 

by variability in ionization and 

instrumental environment. 

Very high, due to the stability of 

the magnetic field. 

Structural 

identification 

Good. 

Allows identification based on 

fragmentation analysis but it 

struggles between isomers. 

Very high. 

Distinguishes between different 

compounds with similar masses 

or related structures. 

Sample 

requirements 
Low sample amount required. 

Larger sample amount required 

in comparison to MS. 

Sample preparation 
More complex, with multiple 

steps: extraction, derivatization… 

Generally simple, with few 

preparation steps. 

Equipment cost 

High. 

Especially if instruments like 

UHPLC or GC are included. 

Very high, due to installation and 

maintenance costs. 

Analysis time 
Relatively fast, depending on the 

spectrometer. 

Slow compared to MS, especially 

for complex analyses. 

Applications in 

metabolomics 

Ideal for both targeted and 

untargeted metabolomics studies. 

More commonly used for 

untargeted metabolomics studies 

and profiling. 
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UHPLC: ultra-high performance liquid chromatography; GC: gas chromatography; MS: mass 

spectrometry; NMR: nuclear mass resonance. 

Typically, MS is coupled with chromatography to facilitate prior separation of the 

compounds present in a sample. Then, metabolites’ ionization is followed by 

compounds’ detection according to their ionic mass-to-charge (m/z) ratio. The selection 

of analytical technique for a metabolomics study is contingent upon both the nature of 

the sample type and the study approach (Alseekh et al. 2021). Liquid biopsies such as 

plasma, urine or saliva are particularly suited for cancer metabolomics due to be 

promising sources for the detection of high number of metabolites reflective of the 

cancerous metabolic dysregulation. However, the diverse origins of samples pose a 

challenge in metabolomics, since it is necessary the adherence to specific protocols 

tailored to each sample type.  

In addition, it is essential to choose the appropriate technique to identify the 

maximum number of metabolites in a biological sample and their level correlation to the 

behaviour of the disease. To this end, the chromatography-based and coupled 

techniques most frequently used in biomedical cancer research are the gas 

chromatography (GC)-MS, liquid chromatography (LC)-MS, and to a less extent the ion 

chromatography, affinity chromatography and capillary electrophoresis (Kałuzna-

Czaplińska and Jóźwik 2014). Notably, GC and LC coupled to MS are employed in 

metabolomics due to their advantages when analyzing body fluids. Both 

chromatography-based approaches are characterized by minimal sample handling 

requirements, and large dynamic range of molecular characterization achieving high 

sensitivity and selectivity. Nevertheless, some methodological differences between these 

Quantitative 

analysis 

Strong in relative quantification, but 

challenging when absolute quantification. 

Strong in absolute 

quantification, though 

limited by sensitivity. 

Compatibility 

with complex 

matrices 

Good, but the matrix may influence 

ionization and accuracy. 

Very good and less 

affected by complex 

matrices of the sample. 

Resolution and 

accuracy 

Both techniques offer high accuracy and 

resolution in their respective domains: MS in 

mass determination and NMR in the chemical 

environment of atoms within a molecule. 

Resolution and 

accuracy. 
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separative techniques have driven LC-MS as the most suitable methodology in cancer 

metabolomics (Table 6) (Asensio et al. 2021; Jacob et al. 2019).  

T A B L E 6. Differences between liquid chromatography-based mass spectrometry (LC-MS) and 

gas chromatography. 

DIFFERENCES LC-MS GC-MS 

Sample 

compatibility 

Non-volatile. 

Low to high weight 

compounds. 

Volatile. 

Small molecular weight compounds. 

Sample 

preparation 

Proteins’ precipitation to 

handle wide range of polarities 

and sizes. 

Samples’ derivatization to obtain 

volatile compounds. 

Separation 

principle 

Based on interaction with the 

stationary and mobile phases 

in LC. 

Based on volatility and interaction 

with stationary phase. 

Chromatographic 

columns 

Reversed-phase, ion exchange, 

hydrophilic interaction… 
Long capillary columns. 

Ionization 

methods 

Electrospray ionization, 

atmospheric pressure chemical 

ionization. 

Electron ionization, chemical 

ionization. 

Sensitivity 

Highly sensitive, for polar and 

high molecular weight 

compounds. 

Highly sensitive for volatile and 

semi-volatile compounds. 

Specificity 

High, enhanced with tandem 

MS. 

 

High, due to extensive fragmentation 

and GC separation. 

Typical 

applications 

Pharmaceuticals, 

metabolomics, proteomics, 

complex mixtures. 

Environmental pollutants, pesticides, 

food flavors. 

Advantages 

Broad applications range, 

adaptable to various chemical 

properties, suitable for large 

molecules. 

 

Oldest technique in targeted 

metabolomics, with large number of 

mass spectral databases/libraries to 

identify metabolites. 

 

Disadvantages 

Requires liquid-phase 

compatibility and more 

complex instrumentation. 

Limited to volatile, thermally stable 

compounds. 
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LC-MS: liquid chromatography mass spectrometry; GC-MS: gas chromatography mass 

spectrometry.

On the other hand, ionization sources and chromatographic columns are also diverse 

and must be chosen according to the metabolomics platform or technique used in order 

to improve the ionization efficiency and separation among different types of metabolites

(Figure 14) (González Olmedo et al. 2024; Nordström et al. 2008). Lately, the electrospray 

ionization (ESI) technique has been widely used in combination with liquid 

chromatography high-resolution mass spectrometry (LC-HRMS) providing with the 

detection of polar to medium polar molecules (Ghosson et al. 2021).

F I G U R E 14. Total ion chromatograms (TICs) obtained from plasma samples analysed using two 

different liquid-chromatographic (LC) modes: a) reverse-phase (RP)LC with positive electrospray 

ionization (ESI+); and b) hydrophilic interaction liquid chromatography with negative ionization 

mode (HILIC, ESI-). TICs above show the different molecular families that can be retained in each 

chromatographic column and how differ the elution time ranges between these modes according 

to the polarity molecular characteristics.
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1.3.1 Cancer metabolomics 

Over the last decade, research into cancer as a metabolic disease has expanded 

significantly, leading to the emergence of a new field of study known as cancer 

metabolomics (Schmidt et al. 2021). Cancer metabolomics is grounded in the hypothesis 

that differences in central carbon metabolism exist between cancerous and normal cells 

(Figure 15), as initially demonstrated by Otto Warburg in the 1920s (DeBerardinis and 

Chandel 2020; Warburg 1956). The alteration in cancer metabolism causes that certain 

metabolites change their serum concentrations, defining a distinct metabolic 

characteristic of the disease state. This molecular pattern, often referred to as a 

metabolomic signature, holds potential as biomarker for early disease detection and 

analysis in liquid biopsies. 

F I G U R E 15. Differences in carbon metabolism between normal and cancer cells. a) Whereas 

normal cells prefer to perform oxidative phosphorylation which produces 38 molecules of ATP 

per molecule of glucose in the presence of oxygen (O2), b) Warburg effect is grounded on the fact 

that tumour cells take up glucose and converted it to lactate even when there is sufficient oxygen 

to convert glucose to carbon dioxide (CO2). This process is similar to the anaerobic glycolysis of 

normal cells where 2 molecules of ATP are produced per molecule of glucose. acetyl-CoA, acetyl 

coenzyme-A; ATP: adenosine triphosphate; DHAP: dihydroxyacetone-phosphate; GA3P: 

glyceraldehyde-3-phosphate; GLUT: glucose transporter; MCT: monocarboxylate transporter; 

MPC: mitochondrial pyruvate carrier; NAD+: oxidized nicotinamide adenine dinucleotide; 

NADH/H+: reduced nicotinamide adenine dinucleotide; OAA: oxaloacetate; Succ-CoA: 

succinyl-coenzyme A; 3PG: 3-phosphoglycerate; α-KG: α-ketoglutarate. Figure created with 

Canva.com and BioRender.com, adapted from DeBerardinis and Chandel (2020). 

a) b) 
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The heightened metabolic demands of malignant cells, driven by their accelerated 

cell proliferation, leads to a profound metabolic reprogramming characterized by 

modifications in biosynthetic and bioenergetic pathways to fulfill cancer cells 

requirements, exceeding those of normal proliferating cells (Yang et al. 2024). This 

metabolic shift represents an adaptation to support cell survival, tumour growth, tissue 

remodelling and cancer metastasis. Some evidence suggests that this metabolic 

rearrangement is regulated by a genetic program and influence by the tumour 

microenvironment while, under certain circumstances, the metabolic alteration may 

play a primary role in oncogenesis (Hirschey et al. 2015; Ge et al. 2022). Furthermore, 

metabolism can also dictate the course of the cancer process or even trigger and adverse 

response to medication. Therefore, investigating metabolism in cancer patients 

represents a fundamental approach to identify specific metabolic dependencies of 

tumour cells to be exploited as therapeutic targets (Cheung et al. 2019).  

The characterization of molecular changes associated with the imbalance between 

growth, apoptosis and differentiation in tumours is crucial for enhancing early detection 

of cancer (Jové et al. 2017). Cancer metabolomics focuses on two main objectives in the 

search for biomarkers: establishing the metabolic profile of cancer samples for prognosis 

and diagnosis across different disease stages; and identifying early biomarkers through 

liquid biopsy for clinical application (S. Huang et al. 2021). These biomarkers are 

valuable for early detection, monitoring treatment response, and predicting metastatic 

potential (Díaz-Beltrán et al. 2021; Diaz et al. 2022; González‐Olmedo et al. 2024). 

Thus, metabolomics offers a minimally-invasive and cost-expensive approach, 

providing circulating biomarkers when other diagnostic tests are inconclusive. As a 

result, it facilitates more efficient use of the current therapeutic arsenal including 

standard chemotherapy, biological agents and targeted treatments (Debik et al. 2019; 

Ghini et al. 2020). Overall, the greatest advantage of metabolomics lies in its ability to 

provide clear insights into a patient’s health status, supporting risk factor detection, 

accurate diagnosis, and enhanced cancer treatment strategies.  

1.3.2 Metabolic biomarkers and oncometabolites 

Assessment of classical metabolic-associated biomarkers in clinical practice is widely 

utilized for several disorders such as diabetes, cardiovascular disease, 

hypercholesterolemia, chronic kidney disease, uremia, and metabolic syndrome. 

Aberrant levels of circulating glucose, hemoglobin A1c, insulin, cholesterol, creatinine, 
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and urea are well-established indicators for diagnosis, patient monitoring, and risk 

prediction of those pathological conditions (Califf 2018; X. H. Chen, Huang, and Kerr 

2011). In this context, advances in clinical metabolomics have yielded critical 

understanding about novel candidate metabolites through biomarker discovery 

(Wishart 2019). For instance, untargeted metabolomics has revealed promising 

biomarkers like Trimethylamine N-oxide for cardiovascular risk, although such 

discoveries require time to reach sufficient maturity to be integrated into routine clinical 

practice (Tang et al. 2013; Z. Wang et al. 2011).  

In cancer, it is foreseen that metabolomics-based biomarkers may offer a faster, 

cheaper, and more comprehensive method to identify novel cancer-associated 

metabolites or oncometabolites (L. Dang et al. 2009). This term refers to the molecular 

intermediates of essential metabolic pathways which aberrant concentrations may lead 

to pro-oncogenic mechanisms. To date, key oncometabolites identified by metabolomics 

include fumarate, succinate, sarcosine and the well-established 2-hyroxyglutarate, as 

well as other emerging candidates such as secondary bile acids, glutamine, glutamate, 

glucose and lactate (Luo, Brooks, and Wicha 2018; Sreekumar et al. 2009; L. Dang et al. 

2009).  

To leverage metabolomics for cancer biomarker discovery, statistical tools like the 

area under the receiver-operating characteristic (AUROC) curves are used to evaluate 

the diagnostic accuracy of candidate metabolites (Pang et al. 2022). Specifically, the 

performance of the AUROC to discriminate between the experimental groups ranges 

from 0.5 (random chance) to 1 (excellent diagnostic performance) (Çorbacıoğlu and 

Aksel 2023). After identifying potential biomarkers, validation in an independent cohort 

is critical to ensure model’s robustness and generalizability across populations, reducing 

the risk of overfitting, and enhancing clinical reliability. Given the complexity and 

multifactorial character of cancer, it is crucial to use panel of metabolites as biomarkers 

since relying on individual compounds may lack diagnostic accuracy (Firpo et al. 2023). 

Hence, in cancer metabolomics, key individual metabolites are selected based on their 

area under the curve (AUC) performance and combined into ensemble models for 

improved classification. This strategy allowed us to assess the diagnostic ability of 

several candidate metabolites identified by untargeted LC-MS in the current 

dissertation. 
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2. HYPOTHESIS

Metabolomics has revealed the existence of alterations in the normal metabolic 

processes that occur in cancer cells and do not occur in healthy cells. This leads to 

changes in normal blood concentrations of certain metabolites that can be detected and 

analysed from liquid biopsy. Metabolites represent the final expression of biochemical 

processes from an organism and, thus, could be used to classify cancer patients during 

the course of their disease. The emergence of precision medicine in the oncological 

practice to provide a better personalized cancer treatment, raises the question of 

characterizing the metabolome of these patients.  

Thereby, the hypothesis of this thesis proposal is that the set of circulating metabolites 

altered in patients with a specific type of cancer will constitute the representative 

"signature" of the presence of the tumour that would provide the most specific prognosis 

for each patient, aiding to optimize the selection of a personalized therapy and a tailored 

follow-up. 
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3. OBJECTIVES

The main objective of this doctoral thesis is to analyse the metabolomic profile of 

various types of cancer to enhance the understanding of specific predictive or prognostic 

biomarkers. The goal is to identify new candidate metabolites that could be integrated 

into clinical practice as part of a predictive model for treatment response or the detection 

of residual disease. 

The following secondary objectives are also proposed: 

1. To analyse the differential metabolic signature of the BC disease according to the

molecular subtype.

2. To determine the predictive value of response to neoadjuvant chemotherapy of

an identified metabolomic model depending on the BC phenotype.

3. To assess the metabolomic profile of recurrence in CRC after surgery of liver

metastasis.
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4. METHODOLOGY

4.1 Inclusion and exclusion criteria 
Two different types of cancer were analysed in the present doctoral thesis. Therefore, 

the inclusion and exclusion criteria were specific to each clinical scenario. 

4.1.1 Chapters 1 and 2: breast cancer 

For the recruitment of BC patients, the project protocols followed were the “PI-0455-

2016” approved by the Research Ethical Committee of the University Hospital of Jaén 

the 27th of October, 2016; and the protocol code “ONCO-CHJ-UNICAJA-P1” approved 

the 25th of November, 2021. 

Inclusion criteria 

- Signature of the informed consent form prior to perform any study-specific

procedure.

- Female sex and age ≥ 18 years.

- Histologically confirmed invasive breast carcinoma with the following

characteristics: primary tumour larger than 2 cm in diameter (T1-T4), measured

by clinical examination and mammography or ultrasound, with any lymph node

involvement (N0-N2), with no evidence of metastasis (M0).

- BC suitable for primary surgery after neoadjuvant therapy.

- Availability of tumour tissue obtained by biopsy of the breast tumour.

- Eastern Cooperative Oncology Group (ECOG) functional status of 0 or 1.

- Absence of any psychological, family, sociological or geographical problems

that may prevent compliance with the study protocol and follow-up schedule.

- Ability and willingness to comply with study visits and testing, at the

investigator's discretion.

Exclusion criteria 

- Any prior treatment for primary invasive BC.

- Bilateral invasive BC.

- Patients requiring immediate surgical intervention.

- Inability to comply with study procedures and follow-up.

- History of other malignancy within 5 years prior to screening, except adequately

treated carcinoma in situ of the cervix, non-melanoma skin carcinoma or stage I

uterine cancer.



| Methodology 

 

4.1.2 Chapter 3: metastatic colorectal cancer 

Liver metastatic CRC patients met the recruitment criteria of the protocol code: 

“6.2.05.2017”, approved by the Research Ethical Board of the University Hospital of Jaén 

in May, 2017. 

Inclusion criteria 

- Subjects of both sexes. 

- Age over 18 years old. 

- Diagnosis of CRC and metastasis limited to liver suitable for radical hepatic 

resection. 

Exclusion criteria 

- Patients with different histology from adenocarcinoma. 

- Unresectable liver metastases. 

- No data from post-surgery follow-up. 

4.2 Sample collection  
The sample chose to the untargeted metabolomics analyses carried out in the present 

dissertation was plasma. All samples were obtained from patients under fasting 

conditions using standard venipuncture processes and collected in EDTA tubes. Plasma 

was obtained by centrifugation at 1400 x g for 10 min at 4 °C. All samples were kept at -

80 °C until the metabolomic analysis. 

4.2.1 Chapters 1 and 2: breast cancer 

The BC patients recruited in these studies required treatment prior to surgery with 

NACT. So, according to the specific goal of each study, plasma samples were collected 

and compared in several timepoints: 

1. Chapter 1. Blood samples were obtained at basal time before the patients 

received the first therapy cure with anthracyclines. 

2. Chapter 2. Blood samples were obtained at three different timepoints: t1 or basal, 

pre-treatment; t2 or pre-surgery, once they received taxol, and t3 or post-

surgery.  

The tissue sample obtained during the surgical procedure after the NACT was 

analysed following the protocol from the Anatomical Pathology Unit of the UHJ for the 
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evaluation of the response by using the Miller & Payne (M&P) grading system (Ogston 

et al. 2003): 

- M&P1. It is the grade that indicates minimal or no response to NACT. There is

no significant change in size or structure of tumour cells in comparison with pre-

treatment biopsy. There may be minimal tumour cell necrosis.

- M&P2. This grade indicates partial response. There exits reduction in tumour

size or cellular changes. Tumour cells may show evidence of degeneration,

necrosis or decrease in cellularity.

- M&P3. It indicates significant response with marked reduction in tumour size

or extensive changes in morphology. Tumour cells often exhibit extensive

degeneration, necrosis and decrease in cellularity.

- M&P4. It is the category related as a complete response with no evidence of

residual invasive tumour cells, although some residual ductal in situ carcinoma

may be present.

- M&P5. It represents the most favorable outcome: the pathological complete

response (pCR) with no residual tumour cells neither invasive nor ductal.

4.2.2 Chapter 3: colorectal cancer 

Paired plasma samples were obtained one before liver metastasis resection, at the 

time of the surgery, and the second 48-72 hours post-surgery. 

4.3 Metabolomics processing 
Untargeted metabolomics analyses were performed as detailed elsewhere (Díaz C. 

and González-Olmedo C. 2022), following the next steps: 

1) Metabolite extraction and LC-HRMS analysis.

1.1 Metabolite extraction. 

1.2 Separation of molecules performed on an Agilent UHPLC 1290 system, 

coupled to a quadrupole-time-of-flight 5600 mass spectrometer (Q-TOF-

MS/MS) in positive and negative ESI modes. 

1.3 Identification of metabolites and molecular signatures with clinical prognostic 

and predictive potential. 

1.4 Structural validation of the significant signature.
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2) Statistical analysis 

Statistics on the metabolomic data were based on the following main approaches 

2.1 A statistically significant p-value < 0.05 (corrected by false discovery rate - 

FDR) and fold change (FC) value > 1.3 between the groups under study.  

2.2 Variable importance in projection (VIP) from the partial least square 

discriminant analysis (PLS-DA) set at > 1 (Akarachantachote, Chadcham, and 

Saithanu 2014; I. G. Chong and Jun 2005).  

2.3 AUROC curve > 0.75 for the reliability of the detected metabolites as potential 

prognostic biomarkers, allowing the selection of the optimal diagnostic or 

predictive models for the study. 

2.4 For temporal metabolomic analysis, the analysis of variance (ANOVA)-

simultaneous component analysis (ASCA) was performed as previously 

detailed (Smilde et al. 2005; Thiel, Féraud, and Govaerts 2017; Madssen et al. 

2020; Camacho, Díaz, and Sánchez-Rovira 2022). 

2.5 Survival analysis was performed using the Kaplan-Meier curves with the 

support of the expert technician in Research Methodology and Biostatistics 

from the Foundation for Biomedical Research of Eastern Andalucía – 

Alejandro Otero (FIBAO). 

3) Bioinformatic analysis of the data. 

For the bioinformatic analyses, the following software were used:  

- MarkerView software (version 1.2.1, AB SCIEX, Concord, ON, Canada): for LC-

HRMS raw data processing; it performs peak detection, alignment and data 

filtering, providing a data matrix where the m/z, retention time (R.T) and 

intensities of the metabolomic features are measured. 

- PeakView (version 1.2 with the add-on Formula Finder version 1.1, AB SCIEX, 

Concord, ON): to predict the elemental formula of selected candidates based on 

the accurate mass, isotopic clustering and fragmentation patterns. 

- CEU Mass Mediator, MassBank, NIST2014 (version 2.2): for structural 

identification of the molecular formula by comparing the experimental 

fragmentation spectra with the spectra provided by these databases. 

- Metaboanalyst 4.0 and 5.0 (Web Server software): 
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i) Module “Statistical Analysis” for univariate and multivariate statistical

analyses including t-tests, ANOVA, principal component analysis (PCA) or

PLS-DA.

ii) Module “Biomarker Analysis” to perform univariate or multivariate ROC

curves of a single or multiple biomarkers.Module “Pathway Analysis” to

determine the biological related pathways of the candidate biomarkers.





67 | P a g e

RESULTS 





69 | P a g e

Chapter 1 





Chapter 1 | 

71 | P a g e

5. RESULTS

Chapter 1: Original Research Article.

Human Plasma Metabolomics for Biomarker Discovery: Targeting the 

Molecular Subtypes in Breast Cancer 

Leticia Díaz-Beltrán, Carmen González-Olmedo, Natalia Luque-Caro, Caridad Díaz, 

Ariadna Martín-Blázquez, Mónica Fernández-Navarro, Ana Laura Ortega-Granados, 

Fernando Gálvez-Montosa, Francisca Vicente, José Pérez del Palacio and Pedro 

Sánchez-Rovira 

doi: 10.3390/cancers13010147 

Cancers (Basel). 2021;13(1):147. 

Impact Factor (Clarivate): 6.57 (2021); Q1 

CiteScore (Scopus): 5.8 (2021) 

Simple Summary. Breast cancer is the leading cause of female cancer-related deaths 

worldwide. New technologies with enhanced sensitivity and specificity for early 

diagnosis and tailored monitoring are in critical demand. Thus, metabolomics appears 

to be a growing tool in order to detect molecular differences between distinct groups. In 

this case, an untargeted analytical approach was used to identify metabolomics 

differences between molecular subtypes of breast cancer in comparison with healthy 

matched controls. Footprints for each breast cancer subtype provided diagnostic 

capacities with an area under the receiver-operating characteristic curve above 0.85, 

which suggests that our results may represent a major advance towards the 

improvement of personalized medicine and precise targeted therapies for the various 

breast cancer phenotypes. To validate these molecular profiling as potential therapeutic 

strategies for the different breast cancer subtypes, further analysis and larger cohorts 

would be necessary in the near future. 
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Abstract 

Purpose: The aim of this study is to identify differential metabolomic signatures in 

plasma samples of distinct subtypes of breast cancer patients that could be used in 

clinical practice as diagnostic biomarkers for these molecular phenotypes and to provide 

a more individualized and accurate therapeutic procedure. Methods: Untargeted LC-

HRMS metabolomics approach in positive and negative electrospray ionization mode 

was used to analyse plasma samples from LA, LB, HER2+ and TN breast cancer patients 

and healthy controls in order to determine specific metabolomic profiles through 

univariate and multivariate statistical data analysis. Results: We tentatively identified 

altered metabolites displaying concentration variations among the four breast cancer 

molecular subtypes. We found a biomarker panel of 5 candidates in LA, 7 in LB, 5 in 

HER2 and 3 in TN that were able to discriminate each breast cancer subtype with a false 

discovery range corrected p-value < 0.05 and a fold-change cutoff value > 1.3. The model 

clinical value was evaluated with the AUROC, providing diagnostic capacities above 

0.85. Conclusion: Our study identifies metabolic profiling differences in molecular 

phenotypes of breast cancer. This may represent a key step towards therapy 

improvement in personalized medicine and prioritization of tailored therapeutic 

intervention strategies. 

Keywords: human plasma metabolomics; breast cancer; molecular subtypes; metabolic 

profiling; personalized medicine 
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1. Introduction

Breast cancer (BC) is currently the most 

common malignancy in women, both in 

developed and less developed 

countries, and the leading cause of 

cancer-related deaths among women 

worldwide, with a high incidence rate 

[1,2]. Every breast cancer subtype is 

characterized by intrinsic molecular 

features and metastatic lesions, and 

their natural het- erogeneity leads to a 

high diversity in prognosis and clinical 

responses to available medical 

treatments, even for patients with 

similar diagnosis, histology and stage of 

disease [3–9]. Therefore, determining 

the molecular subtypes of breast cancer 

becomes crucial for personalized 

treatment. In fact, there is evidence 

reporting that patients receiving 

molecular-matched therapy have an 

increased overall response rate, longer 

period of time to treatment failure and a 

longer survival rate in comparison to 

patients with non-matched therapy 

[3,9]. Successive biopsy procedures and 

subsequent histopathological analysis 

are normally used to study molecular 

and genetic information from tumour 

cells in order to diagnose and classify BC 

into a subtype. This analytical technique 

is invasive and time consuming [3]. 

Thus, non-invasive, fast, sensible and 

precise analytical methods for 

distinction of different BC subtypes are 

in critical demand [10,11]. In this sense, 

metabolomics has quickly arisen as a 

novel approach in the cancer biomarker 

field to overcome the current limitations 

of standard diagnostic techniques [12]. 

This expanding research area provides a 

dynamic portrait of an individual 

overall metabolic status, assessing the 

final products of the myriad of intrinsic 

molecular processes and intercellular 

pathways that may be altered in 

response to genetic, pathological and/or 

environmental factors [3,13]. Hence, the 

end products of the diverse biological 

processes known as metabolites can be 

analysed from high-throughput 

screening technologies such as nuclear 

magnetic resonance (NMR) and mass 

spectrometry (MS) enabling the 

discovery of altered pathways that may 

give us new insights into dysregulated 

metabolism in tumour development and 

progression. Therefore, the altered 

metabolites reflecting these 

pathophysiological changes might be 

considered as potential new therapeutic 

targets for breast cancer diagnosis, 

prognosis, early recurrence and drug 

efficacy [14–16]. Several studies have 

already been conducted to explore the 

possibility of using metabolite panels as 

biomarkers for early diagnosis, tumour 

characterization and clinical outcome 
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prediction [3,14–20]. Human body fluids 

such as saliva, urine, serum and plasma 

have been re-discovered as a great 

source of potential biological markers, 

and hence analysed in the search of a 

metabolic profile that may be 

representative of systemic metabolic 

dys- regulation in breast cancer patients 

[19–23]. However, up to today, efforts 

on proving highly accurate markers or 

proven targets for tailored therapeutic 

treatments have not yet delivered the 

expected results [24–28] due to the high 

heterogeneity displayed by breast 

cancer, from histology to prognosis, 

early recurrence, risk of metastatic 

progression or response to treatment 

and survival rates [29]. With this aim in 

view, we explore whether metabolomics 

is able to provide an accurate 

pathological diagnosis, phenotypic 

classification and a tailored follow-up of 

individuals with this malignancy. A 

high-throughput untargeted metabolic 

approach was used to identify the 

capacity of different metabolic profiles 

to predict various BC subtypes. Based 

on a liquid chromatography-mass 

spectrometry (HPLC/Q-TOF 5600) 

platform-based metabolomics study, we 

propose and test the notion that a 

differential metabolic signature 

representative of the distinct breast 

cancer subtypes exists, and it can be 

ultimately detected in plasma of 

individuals with this disease. 

2. Results  

2.1. Patients’ Characteristics 

To avoid the effect of potential 

confounding variables like age and 

Body Mass Index (BMI), the 

homogeneity of BC group and its 

corresponding HC subjects was 

evaluated. Normality’s distribution was 

checked with a Shapiro-Wilk normality 

test and the equality of variances of both 

study groups was studied with the 

Levene´s test when corresponded. 

Finally, the appropriated t test was 

applied without significant differences 

observed in any case. 

2.2. LC-HRMS Analysis  

Four different liquid chromatography-

high resolution mass spectrometry (LC-

HRMS) analyses were carried out for 

each ionization mode, in order to 

determine the molecular differences 

between the major subtypes of breast 

cancer (luminal A (LA), luminal B (LB), 

triple negative (TN) and human growth 

factor receptor 2 positive (HER2) and the 

healthy control (HC) groups. The 

reverse phase (RP) column is 

recommended for the separation of 

medium-polar metabolites (such as 

phospholipids, lysophospholipids or 

steroids) and non-polar metabolites. 
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Total ion chromatograms (TICs) in 

positive electrospray ionization mode 

(ESI+) are shown in Figure 1, where 

clear differences are observed between 

BC subtypes and HC groups 

corresponding to the most significant 

discriminatory features detected: very 

polar metabolites eluted in the first 3 

min (Figure 1a, c); medium-polar 

metabolites were found to elute from 8.5 

to 12.5 min (Figure 1a,b,d); non-polar 

metabolites were not found in our work 

to be discriminatory after all the 

statistical analysis. 

2.3. Chemometric Analysis  

Different data matrices were obtained 

depending on the ionization mode and 

the set of BC molecular subtype 

analysed. Retention time (RT) windows 

and mass tolerances were determined 

for each analysed set based on the data 

of selected chromatographic peaks. 

After monoisotopic selection, 

contaminants were removed based on 

the organic solvent (OS) filtration and 

several features presented in the quality 

control (QC) samples were excluded for 

unacceptable variability (relative 

standard deviation > 30%). Remaining 

variables were evaluated by 

multivariate statistical analysis (Table 

S1). The close clustering of the QC 

samples in Figure 2 indicates that the 

separation observed between the 

corresponding study groups was mainly 

due to biological reasons in ESI−. The 

authors found that PC1 and PC2 

explained 54.6%, 47.9%, 40.5% and 39% 

of the total of variance in LA, HER2, TN, 

LB in the ESI− mode analysis, 

respectively. The variance obtained with 

PC1 and PC2 was 42.5%, 40.5%, 44.8% 

and 43% in LA, HER2, TN, LB in the 

ESI+ mode analysis, respectively. 

Unsupervised principal component 

analysis (PCA) score plots obtained by 

ESI+ are shown in Figure S1. Score plots 

of the partial least squares-discriminant 

analysis (PLS-DA) models illustrated a 

marked separation between the HC 

group and BC molecular subtypes by 

both ESI modes (Figure 3 and Figure S2); 

the “goodness” of the PLS-DA model, 

measured by R2 and Q2, showed that no 

over-fitting was observed and, 

consequently, these models are 

acknowledged for successful 

discernment between HC patients and 

the LA, LB, TN and HER2 BC molecular 

subtypes [30] (Table S1). Signals with 

false discovery range (FDR) corrected p-

values < 0.05 were selected as altered 

metabolites; those with a fold-change 

(FC) value of at least 1.3 between the 

study groups were selected as potential 

biomarkers (BM) to identify. 

2.4. Differential Metabolomic Profiling 

A tentative identification of the final 
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candidates was achieved as it was 

previously reported by the Schymansky 

classification. All identified metabolites 

were classified at level 1 and 2, 

therefore, their identities or probable 

structures are confirmed [31,32]. Hence, 

5 metabolites were defined for the LA 

phenotype, 7 for LB, 5 for HER2 and 3 

for TN (Table 1). The rest of metabolites 

(Table S2) met the criteria established for 

potential biomarkers of BC, although 

they could not be identified due to their 

MS/MS pattern, which did not match 

any of the queries of the compound 

databases searched (Metlin, Human 

Metabolome Database, Lipid Maps, 

PubChem, MassBank and NIST) or 

commercial standards used. This is 

likely to happen since the major part of 

the identity queries belonged to a 

similar molecular family whose virtual 

MS/MS spectra differences needed to be 

clarified, or because some of the signals 

have not been discovered yet. Thus, RT 

and MS/MS spectra of L-Tryptophan 

and Glycoursodeoxycholic acid 

(GUDCA) could be compared with their 

commercial standards under the same 

analytical conditions (Figure 4a, b and 

Figure S3). The experimental pattern of 

these metabolites matched with their 

standards so that the tentative identity 

could be confirmed. 

2.5. Biomarker Evaluation and Model 

Creation  

The diagnostic ability of the final 

tentatively identified candidates was 

evaluated with a multivariate receiver-

operating characteristic (ROC) analysis. 

In this regard, we applied a PLS-DA 

model to combine our set of biomarkers 

to obtain the area under curve (AUC), 

which is a measure of how well a 

parameter can distinguish between two 

diagnostic groups. The AUC values 

obtained for each set of metabolites 

(Table 1) to discriminate between 

healthy patients and subtypes of breast 

cancer were 0.870, 0.919, 0.961 and 0.954 

in LA, HER2+, TN and LB respectively. 

The performance of this biomarker 

model was evaluated using a balanced 

Monte Carlo cross-validation 

procedure. Although the model might 

improve when adding more of the 

potential biomarkers proposed in our 

work (Table S2), these features did not 

have a reliable structure ID since they 

could be only identified by their m/z 

and RT. Therefore, we preferred to use 

those metabolites based on the FDR 

corrected p value < 0.05, FC value > 1.3 

and a tentative identification with a 

level classification of 1 or 2 by 

Schymansky (Table 1). The outcomes 

obtained for diagnostic potential of the 

selected biomarkers are summarized in
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 Figure 5  and Table 2. MetaboAnalyst 

4.0 Web Server software (Wishart 

Research Group at the University of 

Alberta, Alberta, Canada) provided an 

average of predicted class probabilities 

of each sample in the 100 cross-

validations. Confusion matrix in LA_BC 

revealed 14 BC and 16 HC samples 

correctly classified. Concurrently, 26 

HER2_BC samples were correctly 

classified, whereas 28 samples were 

correctly distributed in the HC group. In 

TN_BC samples 13 BC and 11 HC 

samples were correctly classified; while 

50 BC and 54 HC samples were properly 

assigned in LB_BC molecular subtype. 

2.6. Pathway Analysis 

We have found a set of biomarkers, 

which were able to discriminate each 

breast cancer subtype significantly. 

These first finding to distinguish at 

molecular level using untargeted 

metabolomics may improve the 

treatment of breast cancer and move 

towards to the priority of personalized 

medicine and customized therapeutic 

intervention strategies. According to the 

deregulated metabolites tentatively 

identified in each BC molecular subtype 

by ESI+ and ESI−, we determined the 

major altered pathways implicated in 

the four different subtypes. The 

outcomes were obtained by analyzing 

results in ESI+ and ESI−, differentiating 

by phenotypes. Thus, pathway analysis 

revealed that porphyrin and chlorophyll 

metabolism, glycerophospholipid 

metabolism, tryptophan metabolism 

and aminoacyl-tRNA biosynthesis 

appeared to be altered (Table S3). 

Statistically significant pathways (p < 

0.05) are shown in Table 3. 

3. Discussion

The advent of the –omics techniques is 

substantially accelerating predictive, 

preventing and personalized medicine. 

Next-generation sequencing (NGS), 

genomics and transcriptomics provide a 

better understanding of the genomic 

architecture of cancer and allow the 

discovery of differentially expressed 

genes that drive and maintain 

tumourigenesis. Genomic profiling has 

yielded potential biomarkers clinically 

relevant for early diagnosis of breast 

cancer, but these analytical platforms 

have some disadvantages, like shorter 

read lengths that challenges genome 

alignment and assemble, how to 

navigate through mega-datasets and, 

additionally, their cost is still high in 

comparison with other techniques. In 

contrast with the gene panels 

discovered by other techniques, 

metabolites are closer to the phenotype 

of the organism than genes and proteins, 

so the metabolome can be a point of 

convergence for genetic variation 
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influencing complex traits, and can 

efficiently elucidate the mechanisms 

underlying phenotypic variation. Thus, 

metabolomics profiling is considered as 

a relatively more rapid, accurate and 

non-invasive method to discover diag- 

nostic and prognostic biomarkers. In 

this work, we applied an untargeted 

high-throughput metabolomics 

approach to compare the plasma 

metabolic profiling changes associated 

with the distinct BC molecular subtypes 

(LA, LB, TN and HER2) versus healthy 

controls. By using RPLC-HRMS in ESI+ 

and ESI− modes, we were able to detect 

statistically significant differences in 

certain metabolites with high diagnostic 

capacity in the four different BC 

phenotypes, which are involved in 

relevant biological cancer-related 

pathways such as: glycerophospholipid 

metabolism, porphyrin and chlorophyll 

metabolism, tryptophan metabolism 

and aminoacyl-tRNA biosynthesis. Otto 

Warbug described in great detail how 

cancer cells increase their glucose con-

sumption as a fuel source to support the 

anabolic processes that promote their 

uncontrolled proliferation. Not only 

have Warburg’s findings been 

confirmed, but other catabolic pathways 

have demonstrated their fundamental 

role in cancer progression [33,34]. Our 

findings go in accordance with the 

essential necessity of upregulating the 

energy supply in breast cancer cell 

growth and proliferation. Interestingly, 

a significant decreased concentration of 

L-Tryptophan (Trp) was observed in 

plasma of LA, TN and HER2 molecular 

subtypes of BC in comparison with 

healthy controls (FDR corrected p value 

< 0.05, FC < 0.6). Decreased tryptophan 

in plasma and serum of BC patients has 

also been reported in several studies 

[35–38]. Although the role of Trp 

catabolism in tumour proliferation is 

still unclear, it has been discovered to 

indirectly promote the degradation of 

the extracellular matrix and invasion on 

cancer cells [39]. Two main enzymes 

catalyze tryptophan into metabolites of 

the kynurenine (Kyn) pathway: 

tryptophan-degrading dioxygenases 

indoleamine-2,3- dioxygenase (IDO1) 

and tryptophan-2,3-dioxygenase 

(TDO2) [40,41]. Kyn activates the aryl 

hydrocarbon receptor (AhR) which 

contributes to cancer immune escape 

since it promotes an 

immunosuppressive tumour 

microenvironment by an increase of IL-

10, Treg cells and suppressing immune 

activation cells [42]. Therefore, in cancer 

with an overexpression of IDO1/TDO2, 

increased Trp catabolism could lead to 

the depletion of its serum concentration 

and the accumulation of Kyn 
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metabolites, which enhanced cancer 

scenario [43–46]. Nevertheless, up to 

date there are no IDO1/TDO2 inhibitors 

currently approved by the US Food and 

Drug Administration. The most recent 

clinical trial publishing the effect of an 

IDO1/TDO2 inhibitor, Indoximod (D-

1MT/NLG-8189), did not show a clinical 

benefit in metastatic BC patients when 

combined with taxane chemotherapy 

[47]. In fact, a lot more research is 

needed in order to warrant the efficacy 

of these inhibitors in clinical practice 

[48]. The reprogramming of lipid 

metabolism is a hallmark of many 

cancers, including breast cancer. Several 

lipoids were identified to be 

differentially altered in LA, LB, TN and 

HER2 molecular subtypes when 

comparing with healthy controls, which 

emphasize the importance of 

investigating the lipid metabolism 

differences in breast cancer. 

Phospholipids are a main component of 

cell membranes, they play a major role 

in cell signaling and cycle regulation 

and are a source of fatty acids (FA) 

which oxidative metabolism and ATP 

production is critical, not only in normal 

cells but also in cancer function [49]. In 

particular, a decreased plasma 

concentration of phosphoethanolamines 

(LysoPE (16:0), (18:1), (18:2) FDR < 0.05 

and fold change < 0.6) and 

phosphocholines (LysoPC (14:0), (16:0), 

(20:3) FDR < 0.05 and fold change < 0.7) 

was observed. Our findings are in line 

with the already suggested distinction 

in membrane dynamics across 

molecular subtypes of breast cancer, 

where the acyl-chain constituents of PC 

and PE is remodeled by the action of 

phospholi- pases and lysohpospholipid 

acyltransferases with the delivery of 

fatty acid molecules for structural, 

signaling, and energy-producing 

purposes of breast cancer cells [50]. 

However, in accordance with other 

studies, breast cancer cells adapt to 

metabolic stress under given 

experimental conditions (glutamine 

deprivation or serum deficiency), by 

changing PE and DAG homeostasis. In 

both cases, an accumulation of 

phosphoethanolamine (PEtn) was 

observed in breast cancer cells with 

reduced expression of PCYT2, 

suggesting tumour progression in 

response to glutamine deprivation 

[51,52]. Moreover, in conformity with a 

recent prospective study where 1624 

first primary incident invasive breast 

cancer cases were compared by their 

molecular phenotypes with 1624 

matched controls, a 

phosphatidylcholine (LysoPC (20:3)) 

was found to have a negative association 

with risk of breast cancer as we found in 
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our analysis [53]. These biomarkers 

might open the possibility of identifying 

an early poor prognosis as well as 

detecting residual disease after 

neoadjuvant treatment (NAT). 

Furthermore, only two non-related 

metabolites were found to be differently 

expressed under our experimental 

conditions in luminal A, luminal B and 

HER2 molecular subtypes: biliverdin 

and glycoursodeoxycholic acid. High 

levels of biliverdin (FDR < 0.05 and FC > 

1.5) were detected in plasma of luminal 

B and HER2 cancer patients. Although 

both biliverdin (BV) and its catabolite 

bilirubin (BR) are non-toxic molecules 

that, under most conditions, act as anti-

oxidants by scavenging or neutralizing 

reactive oxygen species (ROS) [54], they 

are also endogenous activators of 

aromatic hydrocarbon receptors [aryl 

hydrocarbon receptor (AhR)] [55]. So, 

the increment of BV in plasma of LB and 

HER2 cancer patients would suggest its 

implication in signaling and gene 

expression related to cell growth and 

cancer progression either by its 

increased plasma concentration, an up-

regulation of the heme oxygenase-1 

(HO-1) or a dysregulation of its catabolic 

enzyme biliverdin reductase (BLVR-A 

or BLVR-B) [56–58]. Moreover, not 

many studies have had an impact on our 

understanding on how the bile acid 

pattern differs in BC subtypes until now. 

Although an influence of bile acids on 

the development of breast cancer cells 

and the estrogen receptor function had 

been suggested [59], both pro and anti-

proliferative effects of bile acids in 

different breast cancer cell models have 

been determined. Plasma deoxycholic 

acid (DA) concentrations were found to 

be higher in breast cancer patients than 

in controls without considering the BC 

molecular differences [60], while 

deoxycholate (DC) inhibited human 

luminal A breast cancer cell lines 

proliferation and 

glycochenodeoxycholate (GCDC) 

enhanced patient survival in another 

study [61]. In this aspect, our results 

show low levels of GUDCA in plasma of 

21 luminal A cancer patients when 

compared with 21 healthy controls (FDR 

< 0.05 and FC < 0.06), which makes it 

interesting for further study in order to 

clarify its function in breast cancer 

development. Finally, this study 

demonstrated that the four major BC 

subtypes could be discriminated using 

an untargeted metabolomics approach. 

Precise classification of these pheno- 

types has important implications in 

breast cancer personalized treatment, 

tailored follow up and detection of early 

recurrence. 
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4. Materials and Methods

4.1. Participants and Ethics 

A total of 131 breast cancer patients and 

134 healthy control subjects were 

recruited over 12 months at the Medical 

Oncology Unit of the University 

Hospital of Jaén (Spain). The study was 

approved by the Institutional Review 

Board of the Clinical Research Ethics 

Committee of Jaén and all clinical 

investigations were conducted under 

the Helsinki Declaration guidelines and 

the International Conference on 

Harmonization-Good Clinical Practices 

(ICH-GCP) guidelines. Every patient 

provided written informed consent for 

participation prior to blood sample 

extraction. The patient selection 

protocol was set as follows: female 

subjects being at least 18 years old with 

histological confirmation of BC, no 

detectable macro metastases and no 

previous anticancer treatment. 

Demographic details and clinical 

diagnosis of studied subjects are 

summarized in Table 4. The cancer stage 

was classified according to the 2002 

Tumour Nodes Metastasis (TNM) 

system. Particularly, those BC patients 

diagnosed with HER2- and ER+ with 

Ki67 > 20% were defined as luminal B 

group and patients diagnosed with 

HER2- and ER+ with Ki67 < 20% were 

categorized as luminal A. As for non-

luminal subtypes, all BC patients who 

neither expressed hormone receptors 

(PR-, ER-) nor overexpressed human 

epidermal growth factor 2 (HER2-) were 

considered as triple negative breast 

cancer patients; and finally, patients 

overexpressing human epidermal 

growth factor 2 were diagnosed as 

HER2+ breast cancer patients. 

4.2. Plasma Sample Preparation  

Samples were collected in EDTA tubes 

after at least 8 h fasting using standard 

venipuncture procedures. Blood was 

then centrifuged at 1400× g for 10 min at 

4 ◦C and the supernatant was carefully 

aspirated and transferred into new vials, 

and immediately stored at −80 ◦C until 

the analysis. 

4.3. Metabolite Extraction 

An aliquot of 600 μL of acetonitrile 

(AcN) was added to 75 μL of plasma and 

the mixture was shaken for 2 min. Then, 

samples were centrifuged at 15,200× g 

for 10 min at 4 ◦C. The supernatant was 

collected in HPLC analytical vials. After 

that, it was evaporated in a GeneVac 

HT-8 evaporator (Savant, Holbrook, 

NY, USA) and kept frozen at −80 ◦C till 

the analysis. Finally, dry residues were 

reconstituted in 210 μL of water:AcN 

(50:50) with 0.1% formic acid and 250 

ppb of L-leucine (1–13C, 99%), 

Roxithromycin, Caffeine-d3, Creatine 
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(methyl-d3) monohydrate, L-abrine 

(methyl-d3) monohydrate and 

Bisphenol A-d16 as internal standards. 

4.4. LC-HRMS Analysis  

Samples were analysed using an Agilent 

1290 LC system (Agilent Technologies, 

Santa Clara, CA, USA) coupled to a 

quadrupole-time-of-flight 5600 mass 

spectrometer (AB SCIEX Q-TOF 5600, 

Concord, ON, Canada) in positive and 

negative electrospray ionization modes 

(ESI+, ESI−). A high performance liquid 

chromatography (HPLC) mode 

separation in ESI+ was carried out using 

an Atlantis T3 HPLC C18 column (2.1 

mm × 150 mm, 3 μm; Waters 

Corporation, Milford, MA, USA) kept at 

25 ◦C. Organic Solvent (OS) consisted of 

water:AcN (90:10) with 0.1% formic acid 

(eluent A) and AcN:water (90:10) with 

0.1% formic acid (eluent B). The column 

was eluted with the following gradient: 

0–0.5 min 1% eluent B; 0.5–11 min 99% 

eluent B; 11–15.50 min 99% eluent B; 

15.50–15.60 min 1% eluent B and 15.60–

20 min 1% eluent B. The elution flow rate 

was set at 300 μL/min [62]. Then, 

chromato- graphic separation was 

performed using a Gemini HPLC C18 

column (100 mm × 2 mm, 3 μm; 

Phenomenex, CA, USA) kept at 25 ◦C in 

ESI− mode. The flow rate was 300 

μL/min with mobile phases A (90% 

water: 10% AcN) and B (10% water: 90% 

AcN), both containing 0.1% ammonia at 

20%. The gradient consisted of 0–0.3 min 

1% eluent B; 0.3–7.3 min 99% eluent B, 

7.3–10.3 min 99% eluent B and 10.3–13.3 

min 1% eluent B. The TOF method 

operated with the Q-TOF 5600 allowed 

mass selection (80–1600 Da) with high 

resolution, in combination with an 

information dependent acquisition 

(IDA) method, which enabled the 

fragmentation of the eight most intense 

ions, to collect full-scan HRMS and 

MS/MS information simultaneously. 

The exact mass calibration was 

automatically performed for every 10 

injections of 5 μL of randomly injected 

plasma samples. Organic solvent 

samples were analysed along the 

sequence for every 30 injections; quality 

control samples were analysed for every 

10 injections. The analysis of OS samples 

provided high impurity identification 

on either organic solvents or extraction 

procedure, and allowed discarding of 

carryover contamination. System 

stability and performance are evaluated 

by QC samples—a pool of equal volume 

of all plasma samples used in the study. 

4.5. Data Processing  

MarkerView software (version 1.2.1, AB 

SCIEX, Concord, ON, Canada) was used 

for LC-HRMS raw data processing. This 

tool performs peak detection, alignment
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and data filtering, providing a data 

matrix where the measured mass-to-

charge ratio (m/z), retention time (RT) 

and intensities are defined for each 

sample. Afterwards, to minimize mass 

redundancy and enhance the true 

molecular feature selection, only 

monoisotopic peaks were considered. 

Background and contaminants were 

removed from the OS by applying an 

additional filtering procedure with fold 

change (<1.5) and a t test (p > 0.05) 

between OS samples and study samples. 

Finally, according to FDA criteria for 

untargeted metabolomics, features with 

relative standard deviation higher than 

30% were discarded because of their 

unacceptable variability in the QC 

samples [63]. The next steps were 

carried out using MetaboAnalyst 4.0 

Web Server software (Wishart Research 

Group at the University of Alberta, 

Alberta, Canada) [64]. 

4.6. Normalization and Analytical 

Validation  

Prior to the statistical analysis, 

normalization by a QC reference sample 

(probabilistic quotient normalization), 

transformation and scaling were 

applied to convert data set into a more 

Gaussian-type distribution [65,66]. 

Then, the PCA was used to assess the 

quality of the analytical system 

performance [67]. Analytical system 

stability was validated by QC samples 

presentation on a PCA plot. In parallel, 

the PLS-DA score plot showed possible 

outliers. Parameters R2 and Q2, which 

estimate goodness of fit and goodness of 

prediction respectively, were calculated 

to evaluate the statistical quality model 

description. 

4.7. Statistical Analysis 

Univariate analysis (UVA) was carried 

out using the non-parametric Wilcoxon 

rank- sum test to evaluate differences 

between BC patients and HC subjects. 

Benjamini-Hochberg false discovery 

rate (FDR) correction was performed 

afterwards to minimize the expected 

proportion of false positives (Type I 

errors) [68]. In this regard, a p value of 

0.05 (corrected by FDR) for the t test is 

generally used in metabolomics as a 

cutoff threshold. Signals selected as 

potential candidates for a final 

discriminatory model were selected also 

based on their fold change (FC > 1.3). 

Eventually, a multivariate analysis was 

applied to identify features responsible 

for discriminating both study groups 

[30,69]. 

4.8. Metabolite Identification 

PeakView software (version 1.0 with 

Formula Finder plug-in version 1.0, AB 

SCIEX, Concord, ON, Canada) was used 

to predict the elemental formula of 
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selected candidates from accurate mass, 

isotopic clustering and fragmentation 

patterns. The assignment of a tentative 

identification for each selected 

metabolite was possible by searching 

different compound databases (Metlin, 

Human Metabolome Database, Lipid 

Maps, Pub- Chem [70–73]) for accurate 

mass values. Structural identification of 

the molecular formula was achieved 

comparing the experimental 

fragmentation spectra against spectral 

databases (MassBank [74], NIST2014: 

version 2.2, Scientific Instrument 

Services, Inc, Ringoes, NJ, USA). 

4.9. Biomarker Evaluation  

Clinical relevance of the candidate 

metabolites was evaluated with the area 

under the receiver-operating 

characteristic curves (AUROC). In order 

to check the classifier performance of the 

biomarkers proposed for the diagnostic 

model, a multivariate ROC analysis was 

performed. 

4.10. Pathway Analysis  

MetaboAnalyst 4.0 Web Server software 

was used for the identification of altered 

metabolic pathways [64]. The metabolite 

ID matching was performed with 

Human Metabolome Database and 

KEGG database [71,75]. The analysis 

was adjusted by a hyper- geometric test 

and the impact on pathway topology 

was based on relative-betweenness 

centrality. 

5. Conclusions  

Here we present an untargeted LC-

HRMS metabolomics approach as a non-

invasive technique to identify 

differential metabolomics signatures for 

BC subgroups. We found distinct 

molecular profiles representative for 

LA, LB, HER2 and TN BC phenotypes, 

which may act as crucial biomarkers for 

accurate diagnosis, phenotypic 

discrimination and personalized 

therapeutic intervention. It is worth 

highlighting the importance of a deep 

understanding of the molecular 

differences among BC subtypes within 

the realm of personalized medicine to 

avoid unnecessary side effects or 

inadequate target engagement. The 

metabolomics profiles discovered could 

be used as a powerful tool in clinical 

practice, not only to determine the 

existence of residual disease after 

neoadjuvant therapy and, thereby, 

contribute to the identification of 

patients who will absolutely benefit 

from additional treatment, but also to 

enlighten the development of new 

therapeutic strategies for each BC 

molecular subtype and tailored follow-

up. Finally, our findings reinforce a 

foundation to identify new biological 

targets in key metabolic pathways that
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may help to identify early subsequent 

relapses in the different BC phenotypes. 

Further analyses in larger prospective 

cohort of patients would be necessary to 

validate the prognostic/diagnostic 

capability of the different metabolomics 

profiles found among the four major BC 

subtypes. 

Supplementary Materials: The 

following are available online at 

https://www.mdpi.com/2072-

6694/13/1/147/s1. Figure S1: 2D score 

plots of the unsupervised PCA of HC 

group (green) and LA_BC (light blue) 

(a), HER2_BC (orange) (b), TN_BC 

(yellow) (c) and LB_BC (pink) (d) 

patients by ESI+ showed that the 

separation observed between the groups 

was due to biological reasons according 

to the close clustering of the QC samples 

(dark blue). Figure S2: 2D score plots of 

the supervised PLS-DA of HC group 

(green) and LA_BC (light blue) (a), 

HER2_BC (orange) (b), TN_BC (yellow) 

(c) and LB_BC (pink) (d) patients by

ESI− determined a notably separation 

between BC molecular subtypes and 

matched controls. Figure S3: 

Characteristic MS/MS spectra of m/z 

448.3066 in a biological sample (green) 

(a) and the glycoursodeoxycholic acid

(GUDCA) standard (blue) (b) at 3.24 

min. MS/MS spectra revealed the 

characteristic fragmentation pattern of 

GUDCA in ESI−. Table S1: Extracted 

peaks from RPLC ESI+ and ESI− HRMS, 

significant altered metabolites and 

quality model description. Table S2: 

Features identified by accurate mass 

(m/z) and retention time (RT). Table S3: 

Altered non-significant pathways 

associated with BC molecular subtypes 

by ESI+ and ESI−. 
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F I G U R E 1. Representative RPLC-ESI+-HRMS TICs of a LA_BC (light blue) (a), 

HER2_BC (orange) (b), TN_BC (yellow) (c) and LB_BC (pink) (d) sample compared to a 

HC sample (green). Remarkable differences were observed between BC and HC 

samples. 
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F I G U R E 2. 2D score plots of the unsupervised PCA of HC group (green) and LA_BC 

(light blue) (a), HER2_BC (orange) (b), TN_BC (yellow) (c) and LB_BC (pink) (d) patients 

by ESI− showed that the separation observed between the groups was due to biological 

reasons according to the close clustering of the QC samples (dark blue).
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F I G U R E 3. 2D score plots of the supervised PLS-DA of HC group (green) and LA_BC 

(light blue) (a), HER2_BC (orange) (b), TN_BC (yellow) (c) and LB_BC (pink) (d) patients 

by ESI−determined a notably separation between BC molecular subtypes and matched 

controls. 
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I G U R E 4. (a.1) and the L-Tryptophan standard at 3.73 min in ESI + (blue) (a.2) and m/z 

203.0824 at 1.27 min in a biological sample (green) (b.1) and the L-Tryptophan standard 

in ESI− (blue) (b.2). MS/MS spectra revealed the characteristic fragmentation pattern of 

L-Tryptophan both in ESI+ and ESI−.

b.1

b.2

a.1

a.2
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F I G U R E 5. ROC curves for combined biomarkers model in LA_BC (a), HER2_BC (b), 

TN_BC (c) and LB_BC (d) by ESI+ and ESI−; 100 cross-validations were performed, 

and the results were averaged to generate the plot. 
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T A B L E 2. AUC scores of selected biomarkers (BM) for the proposed models and 

confusion matrices of the BC subtypes. 

T A B L E 3. Altered pathways associated with BC molecular subtypes by ESI+ and ESI−. 

Altered pathways BC molecular subtype p value 

Porphyrin and chlorophyll metabolism LB and HER2 0.038347 

Glycerophospholipid metabolism LA, LB, TN and HER2 0.045927 

BC molecular subtype     BM     AUC    95% CI Confusion Matrix 

BC HC 

LA 5 0.87 0.651-0.992 14/20 16/21 
HER2 5 0.919 0.819-0.985 26/31 28/34 

TN 3 0.961 0.8-1 13/15 14/15 
LB 7 0.954 0.886-0.995 50/56 54/62 
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T A B L E 4. Demographic and clinical characteristics of breast cancer patients and healthy 

control subjects. 

LB HC LA HC TN HC HER2 HC 

Subjects 61 64 21 21 15 15 34 34 

Age 

(Range) 

49 

(27-75) 

50 

(42-56) 

50 

(32-81) 

49 

(34-60) 

49 

(29-71) 

51 

(26-63) 

51 

(33-70) 

49 

(28-62) 

BMI (Kg·m-2) 
25.63 

(16.9-40.5) 

25.35 

(19.8-30.0) 

24.90 

(20.0-37.2) 

25.00 

(18.0-28.3) 

27.60 

(21.60-41.23) 

26.5 

(21.3-30.0) 

26.10 

(21.0-33.3) 

25.30 

(20.80-29.80) 

HER2 Negative - Negative - Negative - Positive - 

PR Neg/Pos - Neg/Pos - Negative - Neg/Pos - 

ER Positive - Positive - Negative - Neg/Pos - 

Ki67 >20% - <20%  - -  - - - 

TNM-stage IA 0 - 1 - 0 - 1 - 

TNM-stage IIA 26 - 10 - 9 - 9 - 

TNM-stage IIIA 12 - 0 - 0 - 3 - 

TNM-stage IIB 19 - 9 - 3 - 19 - 

TNM-stage IIIB 2 - 1 - 2 - 1 - 

TNM-stage IC 2 - 0 - 1 - 1 - 

HC and BC patients were matched in terms of age and BMI. BC: breast cancer; LB: luminal B; HC: healthy control; LA: luminal A; TN: triple 

negative; HER2: human epidermal growth factor receptor 2 positive; BMI: body mass index; PR: progesterone receptor; ER: estrogen receptor; 

TNM: tumor nodes metastasis. 
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T A B L E S1. Extracted peaks from RPLC ESI+ and ESI- HRMS, significant candidates 

and statistical quality model description. 

Marker View software provided a data matrix containing the extracted peaks. This software allowed us to 

apply different filter steps to finally detect the features responsible for the discrimination between the 

groups. The non-parametric Wilcoxon rank-sum test (p, FDR< 0.05) was used to validate the significance of 

the difference in intensities between variables. R2 and Q2 parameters were calculated to evaluate the 

statistical quality model description. 

BC molecular 

Subtype 
Total Monoisotopics RSD>30% 

OS 

filtering 

PCA 

evaluation 

Altered 

metabolites 
R2 Q2 

ESI + 

LB 1497 542 168 255 119 80 0.76 0.6 

LA 1322 419 99 152 168 62 0.75 0.49 

TN 2129 529 261 93 175 7 0.95 0.38 

HER2 2384 646 108 344 194 115 0.84 0.55 

ESI - 

LB 1584 410 8 154 248 197 0.99 0.98 

LA 821 144 17 77 50 32 0.98 0.96 

TN 1254 309 5 52 252 10 0.96 0.59 

HER2 1467 442 5 80 357 164 0.7 0.45 
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T A B L E S2. Features identified by accurate mass (m/z) and retention time (RT). 

BC molecular 

Subtype 
m/z RT p (FDR) FC (BC/HC)* 

 

 
ESI+ 

 

LB 

 

 

 

188.0694 3.54 0.000181 0.661659764 

424.3436 9.88 0.047649 0.720931714 

494.3241 10.94 0.016454 0.696788467 

500.2729 11.35 1.01E-09 0.567782517 

502.2877 12.43 2.93E-09 0.526618524 

508.3396 11.77 0.047049 0.765045405 

516.3074 10.96 0.036772 0.702130928 

518.3239 10.68 0.00633 0.649721236 

520.3401 11.53 5.43E-07 0.632905958 

522.3486 11.44 4.61E-05 0.62972251 

522.3588 12.72 0.022614 0.719381574 

539.3099 11.51 2.70E-08 0.548812571 

541.3302 12.7 7.17E-06 0.605368254 

544.3354 12.61 0.044136 0.707257547 

544.3392 12.74 0.027313 0.730365454 

548.3685 13.28 0.049492 0.747556702 

558.2988 11.52 0.001147 0.702232228 

566.3205 11.46 0.031742 0.721545192 

762.981 12.2 0.001961 0.719055992 
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798.9749 11.47 3.73E-09 0.420999989 

801.9816 11.53 3.36E-09 0.447644268 

991.6758 12.19 0.000488 0.681636976 

1002.6569 12.22 8.65E-05 0.651087195 

1010.6433 12.21 3.75E-05 0.660973934 

1014.157 12.17 0.00117 0.688398189 

1017.6837 12.31 2.45E-07 0.603190274 

1041.69 12.19 1.71E-06 0.610901465 

1043.6957 12.72 9.83E-07 0.493623718 

1061.6563 11.51 3.73E-09 0.426939569 

1062.6515 11.52 3.10E-09 0.41806545 

1063.6633 11.5 2.53E-09 0.45355252 

1065.689 12.7 1.56E-07 0.477682583 

1085.6556 11.51 3.31E-07 0.533432221 

1261.3227 12.19 0.000185 0.607528629 

1508.9915 12.22 0.000198 0.613783086 

LA 

482.3212 10.63 0.008477 0.612964935 

518.6578 10.86 0.034272 0.635888274 

521.3444 10.88 0.039792 0.638710336 

522.3439 10.61 0.011563 0.59654187 

542.3196 10.61 0.037448 0.604686277 
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758.4347 10.61 0.02503 0.605662817 

798.9807 10.86 0.016881 0.457333326 

801.982 10.86 0.032804 0.541499037 

810.978 10.87 0.008477 0.510034942 

991.6718 11.4 0.005927 0.607791282 

997.6209 10.81 0.014809 0.451747844 

1002.659 11.4 0.014809 0.658313957 

1010.643 11.41 0.014809 0.646775446 

1062.65 10.85 0.007173 0.472831286 

1063.661 10.87 0.003475 0.412957109 

1085.646 

 

10.88 

 

0.011563 

 

0.573309571 

 

HER2 

    

329.2457 15.87 0.001163 1.329118996 

450.3221 9.66 0.015067 0.573750651 

476.2761 10.45 0.014926 0.68770148 

480.3111 12.01 0.043154 0.67273135 

496.3396 12.06 0.019999 0.712534412 

502.2883 12.31 0.033225 0.683612 

515.3145 12.05 0.019433 0.727539976 

515.2627 4.15 0.002221 0.374716794 

521.3429 11.31 0.017469 0.689239322 

522.3458 11.11 0.02931 0.701052267 
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524.3716 13.97 0.039263 0.706184276 

542.3228 11.31 0.011049 0.639305036 

542.3228 11.31 0.011049 0.639305036 

585.2708 7.3 7.34E-05 1.527313773 

599.4391 12.14 0.000144 0.658826728 

610.3079 11.11 0.007454 0.68190286 

623.4416 11.38 0.048891 0.661109942 

754.992 12.09 3.65E-07 0.615305186 

762.9782 12.09 3.66E-06 0.617498696 

765.9881 12.05 0.00019 0.695053185 

771.9705 12.05 0.002302 0.650196234 

798.9802 11.37 0.011482 0.591346447 

801.9857 11.41 0.014926 0.642295525 

805.0046 12.57 0.003006 0.615981099 

810.9778 11.39 0.003427 0.621959193 

932.5261 11.72 2.56E-05 0.62900932 

955.5781 11.23 0.00458 0.626984118 

956.5262 11.12 0.007454 0.558480779 

991.6731 11.72 4.66E-08 0.350103215 

991.6721 12.06 8.50E-08 0.512209654 

1002.661 12.05 4.66E-08 0.508449895 

1010.637 12.06 1.21E-07 0.519220446 

1013.6497 11.71 8.50E-08 0.312418306 

1013.6568 12.08 5.74E-05 0.689294135 
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1014.1575 12.06 2.25E-07 0.583683555 

1017.6787 12.24 2.53E-05 0.564801879 

1039.6682 11.37 0.003546 0.522726991 

1039.6638 12.19 8.01E-05 0.63472339 

1041.7014 12.02 0.000903 0.605781811 

1043.6986 12.59 0.012336 0.629198894 

1061.6562 11.37 0.011482 0.642010974 

1063.6685 11.39 0.002633 0.574875198 

1065.667 11.37 0.005994 0.601601277 

1065.6847 12.59 0.010275 0.627315539 

1073.6651 11.38 0.00458 0.589103205 

1085.6489 11.39 0.044253 0.694602855 

1258.3102 12.08 6.52E-07 0.447635622 

1258.81 12.07 6.52E-07 0.427070417 

1261.3215 12.05 4.66E-08 0.442607045 

1261.8226 12.05 2.25E-07 0.458332604 

1508.9825 

 

12.08 

 

2.25E-07 

 

0.445220732 

 

     

TN 
409.1587 9.31 0.03043 1.807452654 

425.1359 9.33 0.03043 1.820459243 
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ESI - 

LB 

199.1707 3.72 1.45E-11 1.438373242 

225.1863 3.93 6.11E-11 1.443604784 

238.0805 2.32 1.05E-05 1.582350023 

241.1963 5.6 6.49E-16 1.310097924 

303.2349 4.73 1.53E-14 1.596269769 

305.2499 4.87 2.43E-10 1.388192357 

331.1923 4.53 3.17E-16 2.292562288 

355.1701 6.64 5.46E-20 3.17342607 

367.1612 3.32 1.35E-06 1.649502118 

369.1765 3.11 9.42E-06 1.40701092 

369.1744 3.54 5.75E-08 1.824429281 

383.1538 2.9 1.96E-07 1.616166787 

385.1716 2.64 6.24E-08 1.696586057 

385.1812 6.64 5.46E-20 3.108817515 

391.289 3.52 0.000788 0.317178793 

395.1914 3.71 2.88E-11 2.197940531 

397.2086 3.51 1.70E-10 2.168436878 

397.206 3.87 0.000182 2.005603465 

399.2234 3.6 9.02E-07 2.615232098 

407.2795 3.27 0.000429 0.203073672 
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409.2392 7.56 6.15E-07 0.661343969 

 

413.2028 3.21 1.45E-11 1.720133144 

421.1571 6.64 5.46E-20 2.96387748 

427.2173 3.54 8.52E-05 1.426932244 

435.2545 7.57 3.40E-07 0.674320154 

435.2536 7.8 0.000462 0.688626077 

436.2862 5.89 3.82E-09 1.395241773 

437.2716 8.46 1.22E-15 0.439588975 

437.2714 8.69 5.55E-07 0.563739994 

448.1777 6.64 5.46E-20 2.920654647 

449.1532 3.73 5.46E-20 12.42037049 

459.2552 7.19 8.99E-06 0.637042437 

460.2592 7.2 1.31E-05 0.630757381 

461.2718 7.86 9.46E-05 0.675847406 

462.3005 6.13 1.03E-12 1.637399978 

465.2536 3.2 5.58E-06 1.514013551 

465.3061 6.45 1.72E-12 1.522051505 

473.3672 4.04 0.040611 0.603563783 

478.2981 5.92 6.27E-14 0.409165151 

479.3729 4.12 2.98E-14 1.45323045 

480.3056 6.43 0.000224 0.605032068 

494.323 7.56 1.49E-06 0.663194812 

495.3005 3.44 0.002154 2.071991354 

498.2624 5.53 6.95E-07 0.586808354 
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500.2796 5.92 5.31E-12 0.446895021 

508.2844 5.68 5.46E-20 2.256078377 

511.2949 3.22 0.000237 1.313327037 

518.3237 7.18 2.88E-06 0.626038938 

537.3326 7.57 0.002128 0.699994088 

540.2727 4.05 1.63E-14 0.466732668 

540.2757 4.59 5.46E-20 0.047582144 

540.3368 7.48 4.63E-06 0.630137922 

540.3315 7.56 6.82E-07 0.66062606 

540.2727 9.88 5.46E-20 0.186376564 

540.8199 1.66 1.05E-09 1.361998162 

554.3434 7.56 2.11E-05 0.672001144 

556.3287 7.55 2.85E-08 0.660066798 

557.4643 4.55 6.33E-10 0.341584753 

558.3401 7.48 3.67E-05 0.655130023 

560.2705 5.53 6.09E-06 0.641304003 

561.3341 7.19 0.000197 0.650665458 

563.3499 7.81 0.046753 0.718724427 

564.337 7.17 6.09E-06 0.631363624 

566.3444 7.81 0.001027 0.695284278 

567.5368 5.24 2.19E-12 1.353710489 

568.3603 8.45 1.92E-15 0.434058749 

568.3675 8.69 1.68E-07 0.516084703 
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570.3444 7.97 0.003009 0.653275679 

573.4619 4.08 0.007093 0.515972634 

573.4588 4.24 0.002642 0.487966171 

578.3528 7.17 4.74E-06 0.628832325 

580.3332 7.17 4.82E-06 0.624295471 

580.371 7.82 0.000207 0.672308285 

582.3374 7.17 7.42E-05 0.651869084 

582.3459 7.8 0.000392 0.686786579 

584.3583 8.45 3.06E-15 0.441814117 

584.3656 8.67 2.97E-07 0.549971899 

585.361 8.65 7.02E-07 0.552641203 

590.3195 7.5 0.000207 0.659589983 

590.3223 7.56 8.39E-05 0.698952048 

591.4696 3.94 0.027099 0.479219449 

593.4829 4.13 0.017147 0.585140289 

602.7984 1.64 2.22E-15 1.337511598 

606.3402 8.49 8.01E-15 0.469353112 

608.3642 8.09 7.02E-07 0.640526956 

614.3166 7.13 5.10E-05 0.656174146 

616.3321 7.82 0.002674 0.705227251 

619.2935 4.72 1.92E-07 0.570427603 

659.4169 8.49 0.000423 0.668615024 

668.3394 8.45 9.26E-15 0.46417904 

668.34 8.68 0.003998 0.666116978 
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671.2656 9.88 9.38E-06 0.586439383 

678.3005 9.88 1.20E-09 0.51610498 

681.3031 9.88 1.93E-10 0.506723816 

695.3179 9.87 8.10E-10 0.508550763 

697.298 9.88 6.47E-11 0.495852767 

698.4262 11.22 5.46E-20 2.459756411 

712.4004 10.93 1.70E-10 0.398465484 

714.4221 10.11 5.46E-20 5.578054658 

714.417 10.91 6.81E-19 1.748179883 

714.4107 11.25 1.31E-13 0.487365074 

730.415 11.12 5.46E-20 0.110698181 

730.4133 9.35 5.46E-20 3.088994098 

730.4138 9.36 0.043704 0.725181709 

730.4107 9.9 1.48E-19 2.159996657 

734.4027 11.22 5.46E-20 2.3543829 

746.4014 10.9 5.46E-20 0.032685023 

746.4076 9.88 1.50E-14 0.398782137 

750.3965 10.09 5.46E-20 4.526014424 

750.3987 11.29 4.63E-12 0.472602827 

757.4203 11.28 6.97E-08 0.5582306 

761.4241 11.23 5.46E-20 2.020445815 

764.3618 10.95 1.46E-17 0.087260903 

766.394 11.11 5.46E-20 0.130556068 
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766.382 9.39 3.22E-16 0.397493252 

768.3951 9.36 8.21E-16 0.386022448 

775.4007 10.9 7.91E-11 0.413058921 

777.4156 10.09 5.46E-20 3.577938579 

777.4163 11.32 1.00E-13 0.457894786 

782.3805 10.86 5.46E-20 0.035440369 

791.3928 10.98 8.25E-18 0.090092625 

793.4098 11.04 5.46E-20 0.129887089 

904.5777 7.55 1.14E-12 0.546884212 

918.5875 7.55 2.06E-12 0.531768963 

952.5745 7.18 3.17E-09 0.481593909 

956.6125 7.84 3.19E-08 0.552639615 

976.5738 7.24 1.24E-05 0.598945011 

989.6758 7.56 2.01E-13 0.54914282 

1035.6755 7.56 6.92E-10 0.551998883 

1037.6753 7.19 9.40E-09 0.493304993 

1041.6998 7.83 1.70E-08 0.538034313 

1051.6721 7.46 1.22E-15 0.353525035 

1051.6559 7.56 5.69E-13 0.552133485 

1073.6529 7.53 0.00057 0.695610816 

1099.6742 7.17 6.75E-09 0.488465793 

1103.698 7.82 1.37E-08 0.532730131 

1121.657 7.17 8.38E-07 0.586531839 

1123.6707 7.2 2.36E-05 0.60350591 
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1135.6532 7.55 0.002642 0.70277207 

1183.6658 7.17 4.74E-06 0.592968652 

LA 

253.2182 4.03 0.01134 1.543582497 

255.2339 4.26 3.72E-06 1.395733146 

281.2487 4.33 0.030446 1.88602715 

286.214 4.27 7.17E-06 1.500205102 

313.2395 4.36 0.001924 1.97821063 

351.2194 4.29 4.71E-06 1.380483283 

367.1581 3.13 0.038789 0.629369591 

377.2347 4.37 0.031318 1.869997431 

389.2745 4.37 0.030446 1.831135114 

391.2821 3.49 0.025021 0.233415595 

407.2761 3.25 0.046014 0.134123139 

413.1983 5.99 6.19E-11 3.122262519 

447.1301 3.56 3.60E-09 0.30481595 

465.3038 5.12 6.19E-11 5.101262081 

500.2743 4.98 0.005684 0.693522754 

523.2927 4.07 0.034844 1.410911548 

524.2733 4.98 0.018667 0.732511821 

540.272 4.02 6.19E-11 0.02640082 

551.3252 4.36 0.031318 1.727496137 
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580.3218 11.84 0.018667 0.577213127 

602.3004 11.82 0.005586 0.582257098 

613.2726 4.07 0.020789 1.44768918 

641.3003 4.38 0.02779 1.791668744 

643.317 4.6 8.42E-09 2.052066351 

653.2979 4.49 5.57E-10 0.157001633 

664.301 11.84 0.002697 0.560615407 

     

     

HER2 

225.1866 3.89 0.002148 1.409120314 

253.2174 4.36 0.002084 1.366445531 

277.2179 4.3 0.041601 1.560883434 

279.2338 4.53 0.004836 1.555074692 

281.2475 4.83 0.009389 1.473024803 

297.2451 4.83 0.004429 1.54607755 

303.2338 4.61 0.003754 1.428186991 

309.2819 5.26 0.006765 1.307058039 

377.236 4.83 0.006123 1.467860128 

409.2356 7.36 0.001598 0.747175491 

416.8413 1.89 9.28E-08 0.638046131 

448.3069 3.57 0.047398 0.747279385 

450.8298 1.94 2.17E-05 0.708987921 

465.8403 1.97 2.38E-08 1.534379444 
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480.3101 7.49 0.031827 0.759247047 

486.2645 3.57 0.002587 0.603816223 

494.3294 7.36 0.000761 0.747991165 

508.3434 8.41 0.020992 0.765569101 

508.3426 8.61 0.017295 0.763137463 

522.804 2.09 4.77E-07 0.628761733 

538.7805 2.11 9.27E-09 0.420443774 

540.3342 7.34 0.005021 0.756415884 

550.7944 2 1.98E-06 0.671107518 

563.5014 4.83 0.014832 2.427858684 

568.3643 8.42 0.021481 0.752554061 

572.7695 2 5.94E-08 0.549397622 

583.7535 2.11 8.14E-08 0.514337475 

584.3601 8.41 0.014095 0.739897009 

584.3567 8.61 0.024108 0.763099038 

593.8019 1.89 2.60E-08 1.356101965 

611.4896 4.82 0.021481 1.772913291 

611.7626 1.94 4.71E-06 0.663956408 

628.7725 1.84 5.31E-05 0.708331848 

643.777 2.04 3.65E-08 1.305538691 

644.7408 2 1.36E-08 0.461977904 

660.7137 2 1.36E-08 0.440777209 

676.694 2.06 1.36E-08 0.428084929 
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678.7327 1.94 3.65E-08 0.586403516 

 

694.7091 2 9.28E-08 0.553390049 

714.7602 1.94 0.000928 0.72510449 

736.7468 2.01 0.002905 0.730976843 

742.747 1.93 0.025722 0.759168768 

750.7213 2.09 6.29E-08 0.605366658 

751.7348 1.84 0.002795 0.703461577 

768.7278 1.93 0.005619 0.745626815 

771.7401 1.89 1.05E-08 1.634477131 

778.6954 1.96 1.65E-07 0.588741679 

784.6968 2.08 3.05E-07 0.644847895 

790.701 1.94 6.26E-05 0.699017898 

796.6584 1.92 0.041601 0.765151292 

817.6818 1.94 9.28E-08 0.523775149 

856.6782 1.93 1.72E-06 0.655711746 

862.6614 1.93 5.83E-07 0.625372605 

872.642 2.11 1.74E-07 0.610930585 

882.699 2 0.046318 0.766298791 

904.5728 7.34 3.34E-05 0.631142893 

904.5692 7.53 0.008125 0.74504555 

918.5862 7.53 0.006592 0.740383453 

952.5661 7.16 0.022024 0.716582334 

952.6562 2 0.001047 0.670422214 
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Potential biomarkers were selected according to the non-parametric Wilcoxon rank-sum test (p, FDR< 0.05) 

and fold change > 1.3. Identification of theses features was based on their accurate mass (m/z) and retention 

time since their tentative ID could not be clarify by comparison of MS/MS spectra or commercial standards. 

*Fold change (FC) expressed as the ratio of two averages (BC/HC); BC varies depending on the molecular

subtype. LA: luminal A; LB: luminal B; HER2: overexpressing human epidermal growth factor 2; TN: triple 

negative. 

953.5715 5.48 0.030844 0.720157173 

960.6318 8.61 0.006765 0.658813078 

978.6174 2.04 6.29E-08 0.603800853 

989.6597 7.53 8.29E-05 0.735065347 

1035.661 7.53 0.001757 0.7445087 

1037.67 7.16 0.014458 0.700021507 

1051.663 7.34 5.56E-05 0.62213411 

1051.658 7.54 0.000394 0.749866322 

1061.651 7.17 0.038037 0.738628266 

1099.674 7.18 0.012703 0.702771133 

1107.727 8.63 0.000539 0.620406573 

1546.993 7.53 0.002005 0.669029124 

TN 
824.7259 1.29 0.001651 2.006859929 
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T A B L E S3. Altered non-significant pathways associated with BC molecular subtypes 

by ESI+ and ESI-. 

Altered pathways 
BC molecular 

subtype 
p value 

Tryptophan metabolism LA, HER2 and TN > 0.05 

Aminoacyl-tRNA biosynthesis LA. HER2 and TN > 0.05 

 

 

F I G U R E S1. 2D score plots of the unsupervised PCA of HC group (green) and LA_BC 

(light blue) (a), HER2_BC (orange) (b), TN_BC (yellow) (c) and LB_BC (pink) (d) patients 

by ESI + showed that the separation observed between the groups was due to biological 

reasons according to the close clustering of the QC samples (dark blue). 
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F I G U R E S2. 2D score plots of the supervised PLS-DA of HC group (green) and LA_BC 

(light blue) (a), HER2_BC (orange) (b), TN_BC (yellow) (c) and LB_BC (pink) (d) patients 

by ESI+ determined a notably separation between BC molecular subtypes and matched 

controls.
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F I G U R E S3. Characteristic MS/MS spectra of m/z 448.3066 in a biological sample 

(green) (a) and the glycoursodeoxycholic acid (GUDCA) standard (blue) (b) at 3.24 min. 

MS/MS spectra revealed the characteristic fragmentation pattern of GUDCA in ESI-. 
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Abstract 

Neoadjuvant chemotherapy (NACT) outcomes vary according to breast cancer (BC) 

subtype. Since pathologic complete response is one of the most important target 

endpoints of NACT, further investigation of NACT out- comes in BC is crucial. Thus, 

identifying sensitive and specific predictors of treatment response for each phenotype 

would enable early detection of chemoresistance and residual disease, decreasing 

exposures to ineffective therapies and enhancing overall survival rates. We used liquid 

chromatography high-resolution mass spectrometry (LC-HRMS)-based untargeted 

metabolomics to detect molecular changes in plasma of three different BC subtypes 

following the same NACT regimen, with the aim of searching for potential predictors of 

response. The metabolomics data set was analysed by combining univariate and 

multivariate statistical strategies. By using ASCA, we were able to deter- mine the 

prognostic value of potential biomarker candidates of response to NACT in the triple-

negative (TN) subtype. Higher concentrations of docosahexaenoic acid and secondary 

bile acids were found at basal and presurgery samples, respectively, in the responders 

group. In addition, the glycohyocholic and glycodeoxycholic acids were able to classify 

TN patients according to response to treatment and overall survival with an area under 

the curve model > 0.77. In relation to luminal B (LB) and HER2+ subjects, it should be 

noted that significant differences were related to time and individual factors. 
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Specifically, tryptophan was identified to be decreased over time in HER2+ patients, 

whereas LysoPE (22:6) appeared to be increased, but could not be associated with 

response to NACT. Therefore, the combination of untargeted-based metabolomics along 

with longitudinal statistical approaches may represent a very useful tool for the 

improvement of treatment and in administering a more personalized BC follow-up in 

the clinical practice. 

Keywords: ASCA; breast cancer; LC-HRMS; neoadjuvant chemotherapy; personalized 

medicine; treatment response 

Abbreviations 

 AcN, acetonitrile; ASCA, ANOVA–simultaneous component analysis; AUC, area under 

the curve; BC, breast cancer; BMI, body mass index; CCs, cancer cells; DHA, 

docosahexaenoic acid; ER, estrogen receptors; FC, fold change; FDR, false discovery rate; 

FISH, fluorescent in situ hybridization; GDCA, glycodeoxycholic acid; GHCA, 

glycohyocholic acid; HER2, human epidermal growth factor 2; IDA, information 

dependent acquisition; Kyn, kynurenine; LB, luminal B; LC-HRMS, liquid 

chromatography high-resolution mass spectrometry; MP, Miller and Payne; MVA, 

multivariate analysis; NACT, neoadjuvant chemotherapy; NR, nonresponders; PCA, 

principal component analysis; pCR, pathological complete response; PL, phospholipids; 

PR, progesterone receptors; QC, quality control; R, responders; ROC, receiver-operating 

characteristic; RP, reverse phase; RSD, relative standard deviation; SVM-linear, linear 

kernel support vector machine; t1, time 1; t2, time 2; t3, time 3; TN, triple negative; TNM, 

tumour nodes metastasis; TOF, time of flight; Trp, tryptophan; UVA, univariate analysis. 
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1. Introduction

Breast cancer (BC) incidence continues 

rising, being the leading cause of cancer 

death in women in the last Global 

Cancer Statistics 2020 [1]. Resistance to 

chemotherapeutic drugs is still the main 

obstacle for any cancer treatment. Some 

cancer cells (CCs) have innate 

chemotherapy resistance while others 

acquire it during exposure. Thus, 

pathological nonresponse to the chemo 

agents facilitates tumour cell survival 

and uncontrolled proliferation or 

metastasis after treatment 

administration [2–4]. Nowadays, 

undergoing surgery after a successive 

combination of drugs is considered the 

gold standard for assessing tumour 

response [5,6]. However, not all BC 

patients benefit from the neoadjuvant 

chemotherapy (NACT) setting and, 

therefore, it is critical to differentiate 

between the subjects that will respond 

positively and those who will not, in 

order to choose alternative and more 

effective therapies. Regarding NACT 

efficacy, recent studies tackle the 

relationship between BC phenotypes 

and treatment outcomes [7–9], revealing 

pathological complete response (pCR) 

as a surrogate biomarker of response 

and survival [10,11]. Nevertheless, this 

procedure is invasive and time-

consuming. Thus, faster, less invasive 

and more sensitive tools are required in 

order to detect useful molecu- lar 

and/or clinical predictors of pCR 

[12,13]. On this point, metabolomics has 

quickly risen up as a novel approach in 

the cancer biomarker field for 

overcoming the current limitations of 

standard diagnostic and prognostic 

techniques [14,15]. This expanding 

research area, combined with high-

throughput screening technologies, may 

help to unravel the subjacent molecular 

factors conferring true chemosensitivity 

to tumour recurrence, yet unknown. 

Indeed, it appears as the -omics science 

that better reflects the complex 

interactions from the genome 

expression to the phenotypic variations. 

Common metabolites directly or 

indirectly involved in the biology of 

cancer may serve as disease evaluators 

in group of patients. Several studies 

have already been conducted to explore 

the possibility of using panels of 

metabolites as biomarkers for early 

diagnosis and tumour characterization 

[16–22]. The abnormally accumulated 

metabolites derived from disrupted 

cancer metabolic pathways are newly 

described as oncometabolites, for 

example, D2-hydroxyglutarate has an 

important function in prognosis and 

diagnosis of breast cancer and leukemia 

patients [23–25]. Thus, although
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 detection of metabolic markers with an 

important role in oncological processes 

is appearing, research focused on 

finding discriminant biomarkers of 

NACT response in BC, and therefore, 

clinical outcome prognosis, is still sparse 

[12,26–28]. Notably, the development of 

metabolic fingerprinting to find a 

molecular pattern that might predict 

chemoresistance depending on the 

molecular BC subtype would support 

the evidence for its use in the clinical 

practice. Large-scale data sets resulting 

from the untargeted metabolomics 

approach, in combination with other 

factors, such as time, are becoming 

increasingly intricate to analyse, and the 

use of traditional biostatistical methods 

cannot be applied straightforwardly to 

extract clear and definite results. Hence, 

the incorporation of advanced methods 

such as ANOVA–simultaneous 

component analysis (ASCA) has become 

crucial for understanding the 

complexity and heterogeneity of 

biological information. ASCA is a direct 

generalization of the analysis of 

variance for univariate data applied to 

the multivariate case [29,30]. In 

consequence, longitudinal intervention 

studies over time, combined with 

untargeted metabolomics, may arise as 

an essential type of experimental 

approach in BC clinical research for 

discovering highly accurate markers or 

proven targets for tailored therapeutic 

treatments, detected in plasma of 

individuals with this disease [12,30,31]. 

However, to date, the definition of best 

practices for the analysis and 

interpretation of longitudinal metabo- 

lomics data is still a matter of research 

[32]. With this aim in view, here we 

explore whether untargeted 

metabolomics is able to determine 

molecular profiles of prediction to 

NACT response in a follow-up of 92 BC 

patients with different phenotypes, 

integrating univariate analysis and 

ASCA. Grounded in a liquid 

chromatography–high-resolution mass 

spectrometry (LC-HRMS) platform-

based metabolomics analysis, plasma 

samples were studied at three differ- ent 

time points. Therefore, we propose and 

test the notion that metabolic 

fingerprinting in a longitudinal study 

may characterize potential clinical 

biomarkers and provide new insights 

into the response to a partic- ular 

treatment according to different BC 

phenotypes. 

2. Materials and methods 

2.1. Participants and ethics  

A total of 92 BC female patients were 

enrolled in our study at the Medical 

Oncology Unit of the University 
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Hospital of Jaén (Spain), in order to 

detect metabolomics changes associated 

with the efficiency of NACT. BC was 

divided into different subtypes by 

immunohistochemical and gene 

expression testing of the human 

epidermal growth factor 2 (HER2), 

hormone receptors of estrogen (ER) and 

progesterone (PR) and Ki-67. 

Specifically, luminal B (LB) patients 

were diagnosed with HER2 negative 

(HER2?) and ER+ with a positive Ki-67 

finding defined as >15%. Patients who 

neither expressed hormone receptors 

(PR-, ER-) nor overexpressed HER2 

were considered as triple-negative (TN) 

patients; and, finally, patients 

overexpressing human epidermal 

growth factor 2 were diagnosed as 

HER2-positive (HER2+) patients. 

Concretely, the evaluation of HER2 was 

done following the ASCO/CAP 2018 

guidelines, by immunohistochemistry 

(IHC) staining and by fluorescent in situ 

hybridization (FISH): scores 0 and 1+ 

were considered negative, 3+ was con- 

sidered HER2+, while a dual-probe 

FISH was carried out for 2+ scores of the 

same specimen, or additional IHC or 

FISH for a new specimen [33]. Cancer 

stage was classified according to the 

2010 Tumour Nodes Metastasis (TNM) 

system [34]. The main characteristics of 

these subjects are summarized in 

Table 1. Evaluation of potential 

confounding variables was performed 

using the Shapiro–Wilk normality test 

and, subsequently, Levene’s test for the 

equality of variances between 

responders (R) and nonresponders 

(NR), depending on age and body mass 

index (BMI) for each BC phenotype. U-

Mann and Whitney Wilcoxon test was 

performed for the data that presented a 

nonparametric distribution. The 

association analysis of the menopausal 

status with treatment response was 

checked with the Pearson chi-square 

test. In addition, this statistical test 

allowed to evaluate whether the overall 

survival was related to the outcome to 

NACT in the TN phenotype. To know 

the intensity of the association, the 

Cramer’s V test was used. Venous blood 

samples were collected under fasting 

conditions at three different time points: 

before the first therapy cure with 

anthracyclines (basal); once they 

received taxol (presurgery); and after 

they went into surgery (postsurgery). 

The blood collection campaign was 

conducted over a timeframe period of 

eight years. Every patient provided a 

signed informed consent for 

participation prior to basal sample 

extraction. This study was approved by 

the institutional review board of the 

Clinical Research Ethics Committee of 
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Jaén. All clinical investigations were 

conducted under Helsinki Declaration 

guidelines and International Conference 

on Harmonization-Good Clinical 

Practices (ICH-GCP). 

2.2. Neoadjuvant chemotherapy 

All patients received NACT consisting 

on bi-weekly dose-dense cycles of 

anthracyclines (epirubicin 90 mg·m-2 

and cyclophosphamide 600 mg·m-2) fo- 

llowed by 12 weekly cycles of taxanes 

(paclitaxel 80 mg·m-2). 

Cycletimeadministrationcouldbemodi- 

fied according to the Common Toxicity 

Criteria (CTC v5.0). Anti-HER2 therapy 

(trastuzumab and pertuzumab) was 

added in HER2-positive BC patients 

[35]. 

2.3. Response evaluation 

Samples obtained during surgery 

underwent a histopathological analysis 

in order to determine the postsurgery 

Miller and Payne (MP) grade [36]. 

Patho- logical complete response was 

assessed from the five- step scale based 

on reduction in malignant cellularity 

after treatment. Following these criteria, 

MP5 is considered as pCR with no 

malignant cells; MP4 is a very good 

response with <10% of malignant cells 

remaining, near the pCR; in MP3 the 

significant loss of tumour cells is too 

variable between 30 and 90%; MP2 

shows a reduction of tumour cells < 

30%, and MP1 has no reduction in 

malignant cells. Herein, we defined a 

response group (MP grades 4–5) and a 

nonresponse group (MP grades 1–3) 

according to the prognostic potential of 

the MP grading system [37–40]. 

2.4. Sample collection and preparation  

Blood samples were extracted using 

standard venipuncture processes and 

collected in EDTA tubes. Plasma was 

obtained by centrifugation at 1400xg for 

10 min at 4 °C. All samples were kept at 

-80 °C until the analysis was made. 

2.5. Metabolite extraction 

An aliquot of 75 μL of plasma was mixed 

with 600 μL of cold acetonitrile (AcN) 

containing the analytical standard 

(roxithromycin). Then, it was shacked 

for 2 min at 2500 r.p.m. All the samples 

were centrifugated at 21 982 g for 10 min 

at 4 °C. Collected supernatants were 

transferred into new vials for 

evaporation and reconstituted in 210 μL 

of water/acetonitrile (50/ 50) with 0.1% 

formic acid. 

2.6. Liquid chromatography coupled to 

high- resolution mass spectrometry 

analysis 

The analytical separation was achieved 

using liquid chromatography (LC) with 

an Agilent series 1290 (Agilent 

Technologies, Santa Clara, CA, USA) in 
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reverse phase mode (RP) using Atlantis 

T3 C18 column (2.1 mm 9 150 mm, 3 μm) 

from Waters (Water Corporation, 

Milford, MA, USA). The mobile phase A 

consisted of water/acetonitrile (90/10) 

and 0.1% formic acid. The mobile phase 

B consisted of acetonitrile/water (90/ 

10) and 0.1% formic acid. The

chromatographic run was 20 min. The 

gradient elution consisted of 0.0– 0.5 

min 1% eluent B; 0.5–11.0 min 99% 

eluent B, 11.0– 15.5 min 99% eluent B 

and 15.5–15.6 min 1% eluent B. and 15.6–

20.0 min 1% eluent B. Mass detection 

was performed using Triple TOF 5600 

quadrupole time-of-flight mass 

spectrometer (SCIEX, Concord, ON, 

Canada). The mass spectrometer was 

operated using electrospray ionization 

in positive mode and an information-

dependent acquisition (IDA) method, 

and the eight most intense signals were 

fragmented. The exact mass calibration 

was automatically performed every six 

injections. Three different LC-HRMS 

analyses were made in positive 

ionization mode, in order to detect 

molecular differences within the 

subtypes of BC (LB, TN, and HER2+) 

depending on their response to 

neoadjuvant chemotherapy after 

surgery. A total of 144 samples were 

analysed for LB phenotype, 69 samples 

for HER2, and 63 for TN, and blanks and 

quality control (QC) samples were also 

used in each metabolomics analysis. 

2.7. Data set creation 

Peak View software (version 1.1.2; AB 

SCIEX) was used to evaluate the 

retention time and mass-to-charge 

(m/z) variability of three peaks over at 

different time points and m/z values. 

This allowed us to determine the ranges 

for the alignment. Peak detection, align- 

ment, and data filtering were achieved 

using Marker view software (version 

1.2.1; SCIEX). Collection parameters 

were set as follows: retention time 

window 0.10 min, noise threshold 70 

cps, and mass tolerance 5.0 ppm. 

Additionally, only monoisotopic peaks 

were considered in order to decrease 

mass redundancy and improve true 

molecular features selection. Blank sam- 

ples were used to remove contaminants 

and signals provided by solvents. 

2.8. Analytical method validation and 

normalization 

Principal component analysis (PCA) 

was used to assess the quality of the 

analytical system performance. QC 

samples clustering representation in this 

multivariate analysis (MVA) were 

useful to validate the analytical system’s 

stability. The relative standard deviation 

(RSD) was calculated for all the features 

in the QC samples after the data set 
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creation. Variables with variability 

higher than 30% were discarded (Table 

S1). Data normalization by a QC 

reference sample (probabilistic quotient 

normalization), logarithmic transfor- 

mation, and autoscaling were 

performed in order to obtain a 

Gaussian-type distribution. 

2.9. Univariate statistical analysis 

Two different statistical approaches 

were used in this work in order to 

determine the broadest range of 

metabolites that might differ between 

the groups of study when comparing 

them at a specific point or over time. 

Univariate statistical analysis was 

performed using the Student’s t-test, 

which enabled assessing differences 

between R and NR patients of the TN, 

LB, and HER2+ molecular subtypes. 

Univariate statistical analysis (UVA) 

was applied at three different time 

points independently: before the first 

therapy cure with anthracyclines (basal, 

time 1), once the patients received 

treatment with taxol (presurgery, time 

2), and after the breast-conserving 

surgery (postsurgery, time 3). A P-value 

< 0.05 was determined as the cutoff 

threshold with a Benjamini–Hochberg 

False Discovery Rate post hoc correction 

(FDR < 0.1). This analysis was carried 

out using Metaboanalyst 4.0 [41]. 

Eventually, discriminant metabolites 

selection was also based on their fold 

change (FC > 1.3). 

2.10. Multivariate statistical analysis 

(ASCA)  

The metabolomics data set shows a 

multilevel structure with multiple types 

of variation: the metabolic dynamism 

within the individual, the statistical 

differences between the subjects, and 

their combination. To deal with such 

complex information, we used ASCA, 

which factorizes the original data set 

into subsets describing the variation 

between response and nonresponse, the 

variation in time and their interaction 

[29]. To deal with unbalanced data, we 

used the ASCA+ version [42]. We tested 

for significance using exact and 

approximated permutation tests for the 

main factors (response, time, and 

patient) and interactions, respectively 

[43]. Significant factorized data were 

visualized using PCA. From statistically 

significant factors, we derived a list of 

relevant metabolites, ordered by the 

sum of squares of the difference 

between R and NR. All computations 

were done with the MEDA Toolbox for 

Matlab [44]. 

2.11. Identification of differential 

metabolites 

Peak View software was used to 

establish a molecular formula according 
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to the experimental exact mass, 

fragmentation spectrum, and isotope 

pattern. The identification of molecular 

components was achieved through 

comparative searches of available mass 

spectra using several databases such as 

Metlin, the Human Metabolome 

DataBase, Lipid Maps, NIST 2012, and 

mass bank mainly. Additional MS/MS 

analysis was carried out when 

necessary. Also, we used the 

information at the experimental 

conditions, ionization behaviour, 

and/or retention time in order to assign 

a tentative identification. In those cases 

in which it was not possible to assign it, 

scientific literature was con- sulted. 

Finally, mass error of all the candidates 

was equal or lower than 5 ppm.  

2.12. Biomarker evaluation 

The area under the receiver-operating 

characteristic curves was used to test the 

clinical relevance of candidate 

metabolites with corrected P-value < 

0.05. Assessment of the classifier 

performance was carried out with linear 

kernel support vector machine (SVM-

linear) and random forest models, using 

the Biomarker Analysis provided by 

Metaboanalyst. 

3. Results

3.1. Patient’s characteristics 

Regarding the patients eligible for 

analysis, a number of 55 BC subjects out 

of 92 were classified as R to NACT, in 

contrast to 37 NR subjects. Considering 

the BC phenotype, 16 out of 23 human 

epidermal growth factor 2 positive 

(HER2+) patients responded (69.56%) 

and 7 out of 23 showed a nonresponse 

according to the MP grading system 

(30.44%). In the case of luminal B (LB) 

molecular subtype, 26 out of 48 

responded (54.16%), while 22 out of 48 

did not show treatment response 

(45.84%). Last, the TN phenotype 

showed 13 out of 21 patients with 

response to NACT (61.9%) and 8 out of 

21 patients with nonresponse (38.1%). 

Assessment of the confounding vari- 

ables, body mass index, age, and 

menopausal status showed no 

significant differences in relation to 

response when the corresponding t-test 

was applied for each BC phenotype 

(Table S2). In the case of the survival 

analysis, a moderate association with 

outcome to NACT was obtained for the 

TN phenotype (Table S3). 

3.2. Metabolomic profiling from 

univariate analysis 

Significant identified metabolites, 

selected according to P-value corrected 

by FDR < 0.1 and FC > 1.3, are shown in 
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Table 2. Other altered metabolites with 

P-value < 0.05 (FDR > 0.1) and FC < 1.3 

are identified in Table S4, and those not 

able to be identified are listed in Table 

S5. However, a lot of spectral infor- 

mation, and the availability of analytical 

standards, is still needed. In this study, 

tentative identities were classified at 

level 2 as reported by the Schymansky 

classification [45], validated by their 

MS/MS spectra (Fig. S1) after several 

searches in diverse databases (Metlin, 

Human Metabolome Database, Lipid 

Maps, NIST 2012 mass spectral library, 

or mass bank). Specifically, in the TN 

molecular subtype, a total of four signals 

were selected as significant at time 1 (t1) 

and time 2 (t2) but none at time 3 (t3). 

Candidate metabolites identified as cis-

4,7,10,13,16,19- Docosahexaenoic acid 

and LysoPE (18:1) were found at t1. At 

t2, 2 significant metabolites were 

tentatively identified as 2 bile acids 

(glycodeoxycholic and glycohyocholic 

acid). The analysis for the LB phenotype 

showed three significant signals at t1 but 

none at t2 or t3. Candidate metabolites 

at t1 were tentatively identified as 

LysoPE (18:2), LysoPC (16:0), and 

tridecanoyl carnitine (Table 2). Signals 

shown in Table S4, corresponding to 23 

different m/z in TN, 2 in LB, and 1 in 

HER2+, would be expected to have 

significant values in larger and balanced 

cohorts. At the three time points, some 

m/z were detected as the same tentative 

identification with different adducts. 

There were 12 signals that could not be 

identified for the TN molecular subtype, 

2 m/z for the LB, and no altered signals 

were detected at basal or at postsurgery 

levels, when comparing the response in 

HER2+ patients, as shown in Table S5. 

3.3. Metabolic profile from multivariate 

analysis  

ANOVA–simultaneous component 

analysis (ASCA) provided the 

statistically significant factors (Table 3) 

from which we drew up a list of 

associated relevant metabolites 

(Table 4). In our multivariate analysis, 

time and patient factors were 

statistically significant for the HER2+ 

and LB molecular subtypes (Figs S2 and 

S3), while response and patient factors 

were statistically significant for the TN 

(Fig. S4). To interpret the time factor, we 

used ASCA score and loading plots, that 

is, the PCA plots of the data factorized 

by ASCA. This is shown in Fig. 1 (A and 

B, respectively). Score plots in Fig. 1 

illustrate samples of HER2+ (A1) and LB 

(A2) subjects corresponding to different 

time points (t1 in red, t2 in blue, and t3 

in green), which can be interpreted in 

combination with the loading plots in 

Fig. 1B1, B2), where only most relevant 

signals are labeled (see also Table 4 and 
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Table S6). Score plots include data 

ellipses at 0.05 significance level, 

although we did not use confidence 

levels, due to unbalanced data [46]. For 

instance, the metabolite 526.2915 

[LysoPE (22:6/0:0)] at the upper right 

corner of Fig. 1 (B1) is correlated with 

the green scores in Fig. 1 (A1), which 

represent HER2+ postsurgery 

measurements. Also, metabolite 188.07 

(tryptophan) is right in the opposite 

direction. These signals can be identified 

as the ones that change the most after 

surgery (Fig. S5): 526.2915 and 188.07 

present a generalized higher and lower 

value, respectively, after surgery. The 

same can be inferred in Fig. 1 (A2 and 

B2) but for 247.1443 (tryptophan 

betaine) and m/z 452.3214, with lower 

and higher values, respectively, after 

surgery in LB patients (Fig. S6). Lastly, 

ASCA of TN showed significance in 

response factor. Following the same 

approach using one PCA score/loading 

plots, we selected metabolites 448.3047 

(glycohyocholic acid), 450.32 

(glycodeoxycholic acid), and 572.3699 

[LysoPC (22:4)] as the most differential 

between R and NR (Fig. 2). Metabolites 

448.3047 and 450.32 in R tend to be 

generally higher than in NR, 

observation that agrees with significant 

results after FDR correction in Table 2. 

Otherwise, m/z 572.3699 tends to be 

mostly higher in NR than in R. 

3.4. Candidate biomarker evaluation 

Significant metabolites were checked for 

their diagnostic potential with a 

multivariate receiver-operating 

characteristic (ROC) analysis. The area 

under curve (AUC) obtained for the 

448.3047 (glycohyocholic acid) and 

450.32 (glycodeoxycholic acid) in 

combination (0.946, 95% CI: 0.875–1) 

indicates how well these candidate 

biomarkers distinguish between our 

groups of study (Fig. S7a). Based on this 

model, only 3 out of 13 TN R were 

wrongly classified as NR, whereas all 

TN NR were correctly classified (Fig. 

S7b). Finally, the prognostic power of 

these bile acids in combination was 

tested with an AUC performance of 

0.777 (95% CI: 0.541–1). The model 

indicates a good classification of patient 

subgroups with survival expectancy of 

more than 2 years (Fig. S8). However, an 

independent cohort would be required 

to validate the prognostic power of these 

promising candidates. 

4. Discussion

Neoadjuvant chemotherapy constitutes 

a standard treatment for the 

management of BC with several 

benefits, although there are yet 

unresolved questions that concern a 
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high percentage of women that suffer 

from this heterogeneous disease. Some 

challenges faced in the clinical practice 

that affect the efficiency of this systemic 

treatment are the lack of early predictors 

of response, as well as the establishment 

of the pCR prognostic value. 

Stratification of BC patients according to 

underlying molecular factors that confer 

NACT resistance would be a great step 

toward personalized medicine. In this 

work, the untargeted LC-HRMS-based 

meta- bolomics approach used enables 

the detection of different small 

molecules that may be involved in the 

behaviour of three BC phenotypes 

against NACT. For this purpose, two 

statistical analyses—univariate and 

multivariate—were carried out. As an 

outcome of UVA, alteration of the 

metabolome in LB and HER2+ subjects 

only appeared at basal or presurgery 

levels, while the TN molecular subtype 

showed the highest variability in 

response to treatment at all time points. 

The use of ASCA is of great relevance for 

better under- standing the greater 

metabolome impact over time and to 

properly select the biomarkers that 

might be potential predictors of the 

chemotherapy response associated with 

the phenotype. This prominent 

multivariate method allows analyzing 

complex metabolomics data sets with 

simultaneously measured covariates 

considering the experimental design 

[26,29,31,32,47]. 

Thus, our longitudinal study analysed 

the influence that factors such as the 

individual itself, response to treatment, 

time, and their interaction, may have on 

the dynamic metabolome of 92 BC 

patients. Clearly, the significance of the 

patient factor, obtained in the ASCA 

results of all the molecular subtypes 

studied, reflects the need for a tailored 

follow-up in BC [14,16,48–50]. On the 

contrary, the significance of the time 

factor (with nonsignificant response) 

should be interpreted as a homogeneous 

change in the metabolome of the HER2+ 

and LB patients after treatment, 

regardless they are classified as R or NR. 

Regarding the outcomes obtained in the 

LB and HER2+ analyses, we highlight 

the reprogramming of cellular 

metabolism as a hallmark of BC. Herein, 

in the UVA of LB molecular subtype, 

lysophospholipids were increased at 

basal levels of responder patients while 

carnitines appeared as decreased. So 

that, we suggest that phospholipids (PL) 

and carnitines may be considered as 

useful targets for cancer therapy and as 

BC biomarkers, as described in previous 

observations [51–55]. In addition, 

alteration of amino acids was also 

found. The lower tryptophan betaine 
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levels detected postsurgery in LB 

patients could give insights into its 

potential role in the phenotype 

behaviour [56,57]. Like- wise, research 

on larger cohorts would help to validate 

whether the increased concentration of 

LysoPE (22:6) at t3 in HER2+ could be a 

decisive biomarker of residual disease. It 

should be especially noted the 

dysregulation of the tryptophan (Trp) 

metabolism in the HER2+ molecular 

subtype. Specifically postsurgery, a 

significant decrease in Trp plasmatic 

concentrations was observed, as 

previously reported in serum and 

plasma of BC patients [58–60]. In this 

regard, Trp catabolism dysregulation is 

known to indirectly contribute to cancer 

progression by the kynurenine (Kyn) 

pathway [61–63], although no 

associations with response or sen- 

sitivity to chemotherapy were observed 

in previous studies, which coincides 

with our observations [22,64]. In this 

line, further investigating the 

metabolome alteration related to 

treatment response is still needed to 

better understand the behaviour of the 

LB and HER2+ molecular subtypes in 

response to NACT. Unlike the molecular 

subtypes LB and HER2+, this approach 

notably differentiates TN patients that 

respond to NACT and those who do not. 

From the ASCA results, given that 

treatment response is statistically 

significant, but time is not, we could 

conclude that there is a difference 

between R and NR sustained across the 

three time points in the TN phenotype. 

In particular, this metabolic difference 

may relate to treatment effectiveness 

and, if validated in future analyses, to 

treatment selection. It should be pointed 

out that, while response over time was 

not found to be significant, the effect size 

of this interaction in TN doubles the one 

obtained in HER2+ and triples the one in 

LB. Hence, it may be of great interest to 

further investigate the interaction 

between time and response in order to 

determine the prognostic applicability 

of the candidate biomarkers proposed 

for treatment efficiency prediction in BC 

phenotypes. In our findings, both 

statistical strategies supplement the 

results in the TN analyses in relation to 

response. At basal plasma levels, the 

docosahexaenoic acid (DHA) 

concentrations are significantly higher 

in TN R than in NR. The dysregulation 

of DHA is of great importance since it 

has been shown to be involved in cell 

signaling, leading to the reduction in 

cancer cell viability and proliferation 

both in vivo and in vitro [65–67]. Indeed, 

DHA supplementation in combination 

with NACT is being explored in the 

interventional study NCT03831178 
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(ClinicalTrial.gov). This observation 

clearly supports that the measurement 

of this fatty acid may be considered as a 

biomarker for an early detection of 

chemoresistance at the diagnosis of the 

disease. Furthermore, two bile acids 

(BAs), glycodeoxycholic acid (GDCA) 

and glycohyocholic acid (GHCA), were 

significant in TN presurgery R. The 

predictive biomarker model with these 

candidates was evaluated with a multi- 

variate ROC analysis, which showed 

excellent performance since all the TN 

NR were correctly classified at t2. Their 

prognostic power was also assessed, 

obtaining a good classification between 

patients with survival expectancy of 

more than 2 years. Additionally, the role 

of bile acids in carcinogenesis is 

increasingly being studied. Thus, 

paradoxical functions of these bioactive 

molecules have been observed 

depending on the tissue affected and BA 

receptor activation (FXRa, TGR5) in 

cancer [68,69]. However, not many 

studies have been able to shed light on 

how their dysregulation may affect BC 

development and behaviour [70–72]. 

Nonetheless, we observed that plasma 

levels of conjugated secondary bile 

acids, GDCA and GHCA, are higher in 

TN R when compared to NR at pre- and 

postsurgery time points. Nevertheless, 

GDCA and GHCA were not found at 

basal levels, which may be the reason 

why interaction between response and 

time factors is not significant in our 

ASCA outcome. Being secondary BAs 

directly related to the intestinal 

microbiota, the study of its potential role 

in the behaviour of BC should be 

investigated to a greater extent [73]. In 

this regard, different clinical trials 

gather more information about the effect 

of chemotherapy on gut bacteria and the 

affection that gut microbiota might have 

on the NACT-induced 

immunosurveillance in TN patients 

(NCT02370277 and NCT03586297, 

ClinicalTrial. gov). Notwithstanding 

these promising results, further analysis 

would be needed in order to better 

understand the effects of medical 

interventions on the microbiome, as well 

as the relevance of independent bile 

acids as constituents of the BC tumour 

microenvironment. Thus, a good 

noninvasive prognostic strategy for the 

aggressive TN phenotype is suggested 

in this study by detection of BAs in 

plasma using LC-HRMS. On the 

contrary, variations in the composition 

of plasma phospholipids compared with 

the treatment response appeared at 

different time points in our analyses. 

Specifically, the increased concentration 

of phos- phatidylethanolamines 

[LysoPE (18:1) and (18:2)] at t1 in TN NR 
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is supported by the increased demand 

for PE in BC cells under metabolic stress 

[74,75]. Other- wise, the 

phosphatidylcholine LysoPC (22:4) was 

deter- mined from the ASCA results as a 

significantly increased metabolite for 

nonresponder TN patients. In line with 

our findings, it could be inferred that 

evolving knowledge of these candidate 

metabolites’ behaviour in the BC 

process would improve the stratification 

of the BC patients for better therapy 

decision- making. 

5. Conclusion

In conclusion, our work presents 

dynamic metabolic changes at the 

individual level in all the phenotypic 

analyses carried out during disease and 

treatment. The complete set of small 

molecules within a biological sample 

can be influenced by pathological 

processes, treatment, as well as the 

microbiome, thus affecting its 

consequent relationship with the 

metabolome. The high level of 

individual variability makes it difficult 

to find a single metabolic signature to 

classify our groups of patients. 

Nevertheless, the results obtained in TN 

sub- type between R and NR may point 

toward new approaches in the fight 

against cancer. A larger sample size and 

number of balanced cohorts would help 

to corroborate and validate the findings 

reported in this work. Lastly, the 

combination of untargeted 

metabolomics and ASCA appears to be 

a highly valuable tool for deciphering 

the behaviour of BC treated with NACT 

and, thus, open up the possibility of an 

early modification of this therapy 

according to the future response to 

treatment, improving prognosis for 

these patients. 
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article.  

Fig. S1. Experimental MS/MS spectrum 

obtained in our analysis for the 

secondary bile acids a) gly- 

codeoxycholic acid and b) 

glycohyocholic acid. 

Fig. S2. Reference distribution for 

HER2+ significance testing with 

resampling in ANOVA–simultaneous 

com- ponent analysis: time factor (left, 

P-value = 0.002) and patient factor

(right, P-value = 0.013). 

Fig. S3. Reference distribution for LB 

significance testing with resampling in 

ANOVA–simultaneous component 

analysis: time factor (left, P-value = 

0.001) and patient factor (right, P-value 

= 0.001).  

Fig. S4. Reference distribution for TN 

significance testing with resampling in 

ANOVA–simultaneous com- ponent 

analysis: time factor (left, P-value = 

0.031) and patient factor (right, P-value 

= 0.002).  

Fig. S5. Differential expression of 

526.2915 [LysoPE (22:6) and 188.07 

(tryptophan)] according to the 

pathological response group (R, 
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responders; NR, non- responders) in 

HER2+ at time 1 (t1, basal), time 2 (t2, 

presurgery) and time 3 (t3, postsurgery) 

detected using ANOVA–simultaneous 

component analysis. 

Fig. S6. Differential expression of 

247.1443 (tryptophan betaine) and 

452.3214 (not identified) according to 

the pathological response group (R, 

responders; NR, non- responders) in LB 

at time 1 (t1, basal level), time 2 (t2, 

presurgery), and time 3 (t3, postsurgery) 

detected using ANOVA–simultaneous 

component analysis.  

Fig. S7. ROC curve plot for the model 

obtained from combination of the 

significant candidates identified in TN 

breast cancer molecular subtype 

[448.3047 (glycohy- ocholic acid) and 

450.32 (glycodeoxycholic acid)]: (a) ROC 

curve plot was created from the 

averaged results of 100 cross-

validations; (b) as an outcome the model 

provides with the distinction of all 

nonresponders TN patients and 3 out of 

13 responders misclassified.  

Fig. S8. ROC curve plot for the 

prognostic model obtained from 

combination of the significant candi- 

dates identified in TN breast cancer 

molecular subtype [448.3047 

(glycohyocholic acid) and 450.32 (gly- 

codeoxycholic acid)]: (a) ROC curve plot 

was created from the averaged results of 

100 cross-validations; (b) as an outcome 

the model provides with the distinction 

of 2 out of 7 patients from the 

nonsurvival group and 5 out of 14 

survivors misclassified.  

Table S1. Selected variables from the 

untargeted meta- bolomics analysis for 

each breast cancer molecular subtype. 

Table S2. Values of significance for 

normality and homoscedasticity tests of 

the continuous variables: age and BMI; 

and for association tests of the 

categorical variable: menopausal status. 

Table S3. Association tests of the 

survival and treat- ment response data 

in the TN phenotype.  

Table S4. Tentative identification of the 

differential metabolites between 

response groups in UVA.  

Table S5. Differential signals between 

response groups without a tentative 

identification according to the breast 

cancer molecular subtype detected in 

UVA.  

Table S6. Differential signals without a 

tentative identification detected in 

ASCA according to time and patient 

factors. 
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T A B L E 1. Pathological and clinical characteristics of the subjects of study. N, nodes; 

P.R, pathologic response; post, postmenopause; pre, premenopause; T, tumour.

BC molecular subtypes LB TN HER2+
Subjects 48 21 23

P.R R NR R NR R NR

MP grading system 25 23 13 8 16 7

MP1
MP2
MP3
MP4
MP5

-
-
-
14
11

1
3
19
-
-

-
-
-
5
8

2
2
4
-
-

-
-
-
5
11

1
1
5
-
-

Age (range) 49 (33-62) 52 (34-76) 53 (31-76) 48 (33-58) 48 (35-63) 58 (34-70)

BMI (Kg·m-2) 26 (19.3-38.7) 27 (20.1-36.5) 30 (22.1-41.7) 32 (22.1-38.9) 28 (19.6-40.6) 26 (19.0-32.5)

Menopausal
Status

pre
post

16
9

12
11

7
6

6
2

10
6

2
5

HER2+
Status

Negative Negative Positive

PR
Status

Neg/Pos Negative Neg/Pos

ER
Status

Positive Negative Neg/Pos

Ki-67 > 15% - -

Stage

T1 5 2 0

14

0 0 0

T2 18 16 5 14 5

T3-4 2 5 2 2 2 2

N+ 10 10 8 3 8 3

N- 14 13 6 4 6 4
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T A B L E 2. Tentative identification of the significant metabolites detected in the 

comparison between response groups in UVA. ppm, mass error; FC, fold change > 1 

indicates that the average normalized peak area ratio in R patients is larger than that in 

NR patients; RT, retention time; t1, before starting the therapy cure, basal level; t2, once 

the patients received taxol, presurgery; UVA, univariate analysis (Student’s t-test).  

 

 

 

 

T A B L E 3. Significant factors detected in ASCA. 

 

 

 

 

 

 

 

 

 

 

 

BC molecular subtype Factor P–value 

TN 

 
Patient 

 
Response 

 

 
0.0020 

 
0.0310 

 

HER2+ 

 
Patient 

 
Time 

 

0.001 
 

0.001 

LB 
 

 
Patient 

 
Time 

 

 
0.013 

 
0.002 

 

Time 
point 

BC molecular 
subtype m/z RT  

(min) Molecular formula Tentative identification Δppm Adduct P–value  
(FDR) 

 
 

FC 

t1 TN 
 

329.246 14.39 C22H32O2 

 
cis-4,7,10,13,16,19-

Docosahexaenoic acid 
 

0.3 [M+H] 0.059 2.198 

502.287 
 

11.59 
 

C23H46NO7P 
 

LysoPE(18:1/0:0) 
 

3.2 
 

[M+Na] 
 

0.059 
 

-1.351 
 

t1 LB 

 
358.295 

 

 
8.11 

 

 
C20H39NO4 

 

 
Tridecanoyl carnitine 

 

 
1.2 

 

 
[M+H] 

 

 
0.032 

 

 
-1.742 

 
478.293 

 
10.79 

 
C23H44NO7P 

 
LysoPE(18:2/0:0) 

 
0.4 

 
[M+H] 

 
0.084 

 
1.352 

 
518.323 

 
10.17 

 
C24H50NO7P 

 
LysoPC(16:0/0:0) 

 
0.2 

 
[M+Na] 

 
0.032 

 
1.694 

 

t2 TN 

 
448.305 

 
8.45 

 
C26H43NO6 

 
Glycohyocholic acid 

 
-1.5 

 
[M+H-H2O] 

 
0.004 

 
3.404 

450.320 9.19 C26H43NO5 
 

Glycodeoxycholic acid 
 

0.7 [M+H] 0.004 3.967 
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T A B L E 4. Tentative identification of the metabolites significatively detected in ASCA. 

ppm, mass error; RT, retention time. 

BC molecular subtype m/z RT (min) Molecular formula Tentative identification Δppm Adduct

TN

448.3047* 8.45 C26H43NO6 Glycohyocholic acid -1.5 [M+H-H2O]

450.3200* 9.19 C26H43NO5 Glycodeoxycholic acid 0.7 [M+H]

572.3699 11.87 C30H54NO7P LysoPC(22:4/0:0) 0.6 [M+H]

HER2+

188.0700 3.57 C11H12N2O2 Tryptophan 0.5 [M+H-NH3]

454.2922 11.19 C21H44NO7P LysoPE(16:0/0:0) -0.9 [M+H]

566.3175 10.54 C28H50NO7P LysoPC(20:4/0:0) -1.3 [M+Na]

583.2567 8.39 C33H34N4O6 Biliverdin -0.9 [M+H]

526.2915 10.62 C27H44NO7P LysoPE(22:6/0:0) -1.7 [M+H]

568.3416 10.68 C30H50NO7P
LysoPC(22:6/0:0)

-2.2 [M+H]

590.322 10.69 C30H50NO7P -2.7 [M+Na]

LB

247.1443 3.86 C14H18N2O2 Tryptophan-betaine 0.8 [M+H]

342.2631 7.38 C19H35NO4 Dodecenoylcarnitine -0.5 [M+H]

363.2163 6.96 C21H30O5 Cortisol 0 [M+H]

454.2935 11.36 C21H44NO7P LysoPE(16:0/0:0) 0.2 [M+H]

502.2921 10.5 C25H44NO7P LysoPE(20:4/0:0) -2 [M+H]

a m/z found also as significant in univariate analysis. 
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F I G U R E 1. HER2+ and Luminal B phenotype longitudinal study using ANOVA–

simultaneous component analysis (ASCA). The score plots represent the variation of the 

patient samples over time (basal, presurgery and postsurgery) in relation to the 

concentration of metabolites present in each of them, and the loading plots show the 

metabolites that are contributing to the significant differences over time in patients with 

luminal B and HER2+ phenotypes. (A1) 2D score plot of HER2+ patient samples over 

time. (A2) 2D score plot of Luminal B patient samples over time. (B1) The molecular ion 

at m/z 526.2915 [LysoPE (22:6/0:0)] and 188.07 (tryptophan) represent the metabolites 

most differential over time for the HER2+ phenotype. (B2) The molecular ion at m/z 

247.1443 (tryptophan betaine) and 452.3214 represent the metabolites most differential 

over time for the luminal B phenotype. The red, blue, and green dots correspond to the 

basal, presurgery, and postsurgery time, respectively.
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F I G U R E 2. Differential metabolites according to the pathological response to 

neoadjuvant chemotherapy in triple-negative breast cancer using phenotype ANOVA–

simultaneous components analysis (ASCA). The molecular ions at m/z 448.3047 

(glycohyocholic acid) and 450.32 (glycodeoxycholic acid) were found elevated in 

responders. The molecular ion at m/z 572.3699 [LysoPC (22:4)] appeared decreased in 

responders. R, responders; NR, nonresponders; t1, basal time; t2, presurgery; t3, 

postsurgery time.
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S U P P L E M E N T A R Y  T A B L E 1. Selected variables from the untargeted metabolomics 

analysis for each breast cancer molecular subtype. 

BC molecular 

subtype 
Total Monoisotopics 

Contaminant’s 

filtering 

Discarded 

(RSD>30%) 

LB 2670 946 124 117 

TN 2378 968 113 112 

HER2+ 2537 775 71 70 

BC: breast cancer; LB: luminal B; TN: triple negative; HER2+: human epidermal growth 

factor receptor 2 positive; RSD: relative standard deviation 

S U P P L E M E N T A R Y  T A B L E 2. Values of significance for normality and 

homoscedasticity tests of the continuous variables: age and BMI; and for association tests 

of the categorical variable: menopausal status. 

BC Molecular 

Subtype 
Shapiro-Wilk Levene's Test U Mann Whitney 

Pearson  

Chi 

Square 

Cramer’s 

V 

Age 

TN 0.362 0.401 NA NA NA 

LB 0.495 0.111 NA NA NA 

HER2+ 0.424 0.124 NA NA NA 

BMI 

TN 0.159 0.989 NA NA NA 

LB 0.016 NA 0.09 NA NA 

HER2+ 0.109 0.21 NA NA NA 

Menopausal 

Status 

TN NA NA NA 0.112 NA 

LB NA NA NA 0.281 NA 

HER2+ NA NA NA 0.134 NA 

BC: breast cancer; TN: triple negative; LB: luminal B; HER2+: human epidermal growth 

factor receptor 2 positive; BMI: body mass index; NA: not applicable
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S U P P L E M E N T A R Y  T A B L E 3. Association tests of the survival and treatment 

response data in the TN phenotype. 

BC Molecular Subtype TN 

Subjects 21 

P.R R NR 

13 8 

Overall 

Survival 

> 24 months

exitus 

11 

2 

3 

5 

(median) follow up time, months 53 39 

Association 

tests 

Pearson 

Chi 

Square 

0.026 

Cramer’s 

V 
0.485 

BC: breast cancer; TN: triple negative; R: responders; NR: non-responders; P.R: 

pathologic response 
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S U P P L E M E N T A R Y  T A B L E 5. Differential signals between response groups without 

a tentative identification according to the breast cancer molecular subtype detected in 

UVA. 

UVA: univariate analysis (Student’s t-test); BC: breast cancer; TN: triple negative; LB: 

luminal B; m/z: mass-to-charge ratio; RT: retention time; p – value*: p-value which FDR 

> 0.1; FC: fold change > 1 indicates that the average normalized peak area ratio in

responder patients is larger than that in non-responder patients; t1: basal level; t2: pre-

surgery; t3: post-surgery. 

Time 

point 

BC molecular 

subtype 
m/z RT (min) p–value* FC 

t1 LB 
546.7947 10.83 0.028 1.515 

1041.681 11.43 0.018 1.350 

t2 TN 

754.9921 11.29 0.021 -1.567

755.9839 11.27 0.044 -1.519

762.9844 11.27 0.045 -1.516

765.9889 11.27 0.011 -1.413

1010.65 11.29 0.044 -1.980

1013.65 11.32 0.019 -1.926

1258.309 11.29 0.032 -1.442

t3 TN 

754.9921 11.29 0.023 -1.515

755.9839 11.27 0.049 -1.515

1002.6574 11.29 0.018 -1.786

1013.6496 11.32 0.023 -1.449

1258.3088 11.29 0.018 -2.128
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S U P P L E M E N T A R Y T A B L E 6. Differential signals without a tentative identification 

detected in ASCA according to time and patient factors. 

BC: breast cancer; HER2+: human epidermal growth factor receptor 2 positive; LB: 

luminal B; m/z: mass-to-charge ratio; RT: retention time 

BC molecular 

subtype  
m/z 

RT 

 (min) 

HER2+ 576.3276 10.75 

LB 

452.3214 8.99 

515.2623 3.86 

409.1604 9.3 
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S U P P L E M E N T A R Y  F I G U R E 1 Experimental MS/MS spectrum obtained in our 

analysis for the secondary bile acids a) glycodeoxycholic acid and b) glycohyocholic acid. 

 

 

S U P P L E M E N T A R Y  F I G U R E 2. Reference distribution for HER2+ significance testing 

with resampling in ANOVA-simultaneous component analysis: time factor (left, 

p – value = 0.002) and patient factor (right, p - value = 0.013). 
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S U P P L E M E N T A R Y  F I G U R E 3. Reference distribution for LB significance testing 

with resampling in ANOVA-simultaneous component analysis: time factor (left, p-value 

= 0.001) and patient factor (right, p-value = 0.001). 

S U P P L E M E N T A R Y  F I G U R E 4. Reference distribution for TN significance testing 

with resampling in ANOVA-simultaneous component analysis: time factor (left, p-value 

= 0.031) and patient factor (right, p-value = 0.002). 
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S U P P L E M E N T A R Y  F I G U R E 5. Differential expression of 526.2915 (LysoPE (22:6) 

and 188.07 (tryptophan) according to the pathological response group (R, responders; 

NR, non-responders) in HER2+ at time 1 (t1, basal), time 2 (t2, pre-surgery) and time 3 

(t3, post-surgery) detected using ANOVA-simultaneous component analysis.

                   

S U P P L E M E N T A R Y  F I G U R E 6. Differential expression of 247.1443 (tryptophan-

betaine) and 452.3214 (not identified) according to the pathological response group (R, 

responders; NR, non-responders) in LB at time 1 (t1, basal level), time 2 (t2, pre-surgery) 

and time 3 (t3, post-surgery) detected using ANOVA-simultaneous component analysis.
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S U P P L E M E N T A R Y  F I G U R E 7. ROC curve plot for the model obtained from 

combination of the significant candidates identified in TN breast cancer molecular 

subtype (448.3047 (glycohyocholic acid) and 450.32 (glycodeoxycholic acid)): (a) ROC 

curve plot was created from the averaged results of 100 cross-validations; (b) as an 

outcome the model provides with the distinction of all non-responders TN patients and 

3 out of 13 responders misclassified. 

S U P P L E M E N T A R Y  F I G U R E 8. ROC curve plot for the prognostic model obtained 

from combination of the significant candidates identified in TN breast cancer molecular 

subtype (448.3047 (glycohyocholic acid) and 450.32 (glycodeoxycholic acid)): (a) ROC 

curve plot was created from the averaged results of 100 cross-validations; (b) as an 

outcome the model provides with the distinction of 2 out of 7 patients from the non-

survival group and 5 out of 14 survivors misclassified.
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Graphical 

Abstract 

Headlights 

1. There is an urgent need to define reliable biomarkers of prognosis that allow an

optimal therapeutic decision-making in metastatic colorectal cancer, which causes

the death of almost 1 M patients every year.

2. Liquid chromatography-mass spectrometry provides a non-invasive, cost-effective,

and rapid tool to detect onco-metabolites in plasma that can be used as prognostic

biomarkers of liver metastasis in colorectal cancer patients.
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3. We have identified 13 candidates in plasma samples of colorectal cancer patients 

with liver metastasis that can predict recurrence with an area under the ROC curve 

(AUC) of 0.793 and a metabolomics risk score for survival expectancy with a P ≤ .001. 

4. The detection of prognostic metabolites in plasma after resection of liver metastasis 

confirms the hypothesis that metabolomics can be used to detect minimal residual 

disease and predict survival expectancy. 

Keywords: colorectal cancer, liver metastasis, metabolomics risk score, prognostic 

biomarkers. 
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Dear Editor, 

Colorectal cancer (CRC) is the third 

most common cancer diagnosed 

worldwide, with over 1.9 million new 

cases per year (0.9 million deaths) in 

2020.1 In Spain, CRC was the most 

frequent cancer in 2022, with colorectal 

liver metastasis (CRLM) representing 

the leading cause of death.2 The 

treatment of choice for metastatic 

patients with potential survival benefit 

is surgery, but more than 50% relapse.3 

Therefore, there is an urgent need to 

anticipate disease progression and 

prolong survival by defining predictive 

and prognostic biomarkers in CRLM 

patients after hepatic resection. 

Metabolomics has been previously used 

to detect CRC biomarkers,4 but this is 

the first report that identifies specific 

metabolome alterations related to 

survival expectancy in a metastatic 

setting.5  

In this pilot study (Figure 1), we 

analysed paired plasma samples of 39 

patients with CRLM from the University 

Hospital of Jaén (Supporting 

Information Sections -SIS 1.1, 2.1 and 

Table S1) according to pre- and post-

hepatic resection using untargeted 

metabolomics (Figure S1). Our research 

aims to determine metabolomics 

differences after surgery, when 

metastatic disease is still present versus 

successfully eliminated. This will shed 

light on the specific metabolic changes 

associated with relapse and survival, 

enabling the creation of a risk 

metabolomics score. The risk score 

could help to define which patients need 

close monitoring or more intensive 

treatment, even before the manifestation 

of recurrence symptoms. 

Once we filtered metabolomics data 

matrices, the clustering of quality 

control samples (QCs) in unsupervised 

principal component analysis (PCA) 

confirmed the analytical stability of our 

methodology (SIS 1.2 and Figure S1). 

The ability to discriminate between 

presence or absence of metastasis in 

CRLM patients was determined by 

supervised partial least square-

discriminant analysis (PLS-DA) (Figure 

2A, 2B). Dysregulated metabolites 

between paired samples with a P value 

lower than 0.05 by student t-test with 

Benjamini-Hochberg false discovery 

rate (FDR) correction were selected. 

Metabolites with a fold change (FC) > 1.3 

were identified between pre- and post-

surgery samples (SIS 1.4-1.6 and 2.2). 

Statistical analyses showed that 346 

metabolites were differentially 

expressed pre- and post-surgery, which 

could be used to discriminate the 

metastatic status. Besides the paired 
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analysis, we hypothesized that in 

patients where the disease is still present 

after resection of metastasis, the 

detection of onco-metabolites could 

predict CRC prognosis. For this 

analysis, we considered only post-

surgery samples and metabolites with a 

FC > 1.3 and variable important of 

projection (VIP) > 1 between the groups 

of recurrence. Interestingly, we found 

that PLS-DA could discriminate 

between recurrent and non-recurrent 

patients (Figure 1C, 1D). The 

discrimination was based on 57 

differentially expressed metabolites 

between these groups. Among the 57 

metabolites, 20 candidates were 

identified (Table 1 and SIS 1.5) and the 

rest remained unidentified (Table S6). 

The differences involved molecular 

changes in the metabolism of taurine 

and hypotaurine, the biosynthesis of 

primary bile acids, and the biosynthesis 

of phenylalanine, tyrosine, and 

tryptophan (Figure 2E and SIS 1.7 and 

2.2). 

The results demonstrate that the early 

detection of onco-metabolites could help 

in predicting the risk of disease 

recurrence after surgery and guide 

treatment decisions for optimal clinical 

management in a metastatic scenario. 

We built a metabolomics model with the 

most predictive markers identified 

according to the value of the 

multivariate area under the curve 

(AUC-ROC). A precise model including 

13 compounds showed the highest 

prediction ability (AUC = 0.793, 95% CI: 

0.585-0.974, P = 0.023; SIS 1.7 and Figure 

S2). 

Finally, to assess the prognostic value of 

these candidate metabolites, we used a 

univariate Cox-regression analysis and 

Kaplan-Meier curves (SIS 1.8, 2.3, and 

Table S7). The stratification of patients 

based on a potential metabolomics risk 

score (mRS) revealed that patients with 

an mRS of more than 6 candidate 

metabolites (high risk to relapse) had a 

13-fold increased risk of recurrence 

(crude hazard ratio - cHR = 13.307 

[3.826-46.281], P < 0.001), while patients 

with an mRS of more than 7 candidates 

(high risk to die) had a 4-fold increased 

risk of death (cHR = 4.241 [1.674-10.742], 

P = 0.002). Accordingly, Kaplan-Meier 

curves showed significant differences in 

the survival expectancy of patients per 

metabolomics risk group and event of 

study (P ≤ 0.001) (Figure 3). Detailed 

results and methodologies are described 

in SIS I–II.  

Previous studies have demonstrated 

that cancer cell metabolism is impaired, 

and metabolic rewiring of CRC cells can 

alter the expression of critical energy 
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metabolites, which leads to proliferation 

and spreading to other organs.6 These 

findings line up with the decreased 

levels of circulating 

glycerophospholipids (lysoPCs and 

lysoPEs), taurine, and hypoxanthine 

found in recurrent patients with CRLM 

(Table 1). A possible explanation could 

be (1) a rapid clearance of lysoPC from 

the circulation for the synthesis of 

phosphatidylcholine (the most 

abundant phospholipid of mammalian 

cell types in the liver); (2) a high demand 

of energy for cell membrane-remodeling 

during cancer proliferation, previously 

reported as a shift of lysoPC 

concentrations between cancer tissue 

and blood7, (3) a higher demand for 

hypoxanthine by an up-regulated 

purine metabolism typically associated 

with cellular differentiation and 

aggressiveness.8 Also, inversely 

correlated levels of taurine and taurine-

conjugated bile acids (BAs) may obey to 

a higher metabolism rate of taurine 

required for CRC disease progression. 

According to this hypothesis, it has been 

reported that increased secondary BAs 

metabolites may promote tumourigenic 

signaling pathways in the intestine.9 

Furthermore, changes in the BAs 

metabolism are associated with the 

intestinal microbiota composition, 

heavily influenced by the diet, which 

has a role in CRC tumourigenesis.10 

In conclusion, our study shows that 

easily detectable onco-metabolites in 

plasma samples might be used to 

predict disease recurrence and have a 

prognostic value for CRLM patients 

undergoing surgery. In addition, the 

identification of a model based on 13 

metabolites enables a precise risk 

stratification of disease progression and, 

consequently, a personalized follow-up 

in the clinical setting. Our study is 

limited by a relatively low sample size 

and collection timepoints, therefore, 

validations in larger cohorts are 

required to corroborate the prognostic 

value of the metabolomics signature.  
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F I G U R E 1. Study workflow. In Stage I, out of 346 metabolites found altered between 

paired samples (pre- and post- resection of liver metastasis), 115 were detected by RPLC 

+ mode, 231 by HILIC – mode, and 86 were tentatively identified. In Stage II, the

metabolomics alterations found in plasma that differed if metastases were present, were 

further analysed for their potential association with recurrence. Specifically, 107 

metabolites found by RPLC + mode that discriminated paired plasma samples of 

patients with CRLM, were not associated with disease recurrence. Similarly, 182 

metabolites found by HILIC - mode that differentiated the metastatic status pre- and 

post-surgery were not associated with relapse after surgery. Finally, 57 out of the 346 

metabolites were found to discriminate between recurrent and non-recurrent patients. 
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Importantly, 20 out of the 57 candidates were identified and 13 showed the highest 

prediction ability so were used for the survival analysis. Based on the expression of these 

13 candidate metabolites, we could define two metabolomics risk groups according to 

the event of study. CRLM: colorectal liver metastasis; N: sample size; m: metabolites; 

RPLC ESI +: reverse phase liquid chromatography and positive electrospray ionization 

mode; HILIC ESI -: hydrophilic interaction liquid chromatography and negative 

ionization mode; AUC: area under the curve; mRS: metabolomics risk score. 
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F I G U R E 2. Supervised PLS-DA score plots shows the discrimination between pre- and 

post-surgery plasma samples (red and green dots respectively), using two components 

in RPLC ESI + (A) and three components for HILIC ESI – (B) methods. PLS-DA score 

plots illustrate the differentiation in post-surgery samples of recurrent (red dots, R) and 

non-recurrent (green dots, NR) patients with CRLM, by using three components in RPLC 

ESI + (C) and HILIC ESI – (D) analyses. Molecular pathways significantly altered 

between the experimental groups (E). 
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F I G U R E 3. Survival expectancy in months from surgery of metastasis to death (A) and 

recurrence (B), according to the metabolomics score per group of risk represented by 

Kaplan-Meier curves. The mean overall survival time (A) of the high metabolomics risk 

group (mRS > 7 candidate metabolites) was 20.7 months compared to 43.2 months 

observed in patients with a low metabolomics risk to die (mRS ≤ 7). On the other hand, 

for the disease-free survival (B), the mean survival time of the high metabolomics risk

group (mRS > 6 candidates) was 7.0 months versus 38.7 months for the patients with low 

metabolomics risk to relapse (mRS ≤ 6). mo: months; mRS: metabolomics risk score.
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6. DISCUSSION

6.1 Contribution to current knowledge 

6.1.1 Metabolomics and cancer detection 

Currently, early cancer detection might be delayed, occurring when disease 

symptoms are already visible, being the mortality risk increased a 6 to 13% when the 

treatment is postponed by one month (Hanna et al. 2020). Moreover, cancer detection is 

accompanied of reasonably invasive procedures since population based-screenings such 

as mammograms, human papillomavirus or Pap tests and colonoscopies can cause 

potential harms including physical, psychological, emotional, inaccurate results with 

unnecessary follow-up of the patients and subsequent financial effects (Shieh et al. 2016). 

In this sense, the advent of -omics sciences provide with high-throughput technologies 

leading to the discovery of new potential biomarkers. These innovative chemical entities 

may pave the way for a better understanding of the underlying molecular behaviour of 

the disease as well as for the development of more precise therapeutic agents (Hebar, 

Valent, and Selzer 2013). 

Lately, research in the context of this thesis proposal has shed light into the use of 

untargeted metabolomic approaches to detect and identify candidate biomarkers of 

cancer, both diagnostic and prognostic, with potential value for the clinical practice 

(Clish 2015; Kowalczyk et al. 2020; Vignoli et al. 2021). Whereas genomics, 

transcriptomics or proteomics provide indirect information about cellular function, 

metabolomics offers unique advantages in capturing a more direct and dynamic insight 

into the functional biological system. Thus, the emergence of metabolomics has provided 

with the identification of molecular alterations closely linked to the cellular phenotype 

and physiological status (Stine et al. 2022). Herein, in order to achieve the main objective 

of this doctoral thesis, two Original Research Articles and a Letter to the Journal proved that 

non-targeted metabolomics-based approaches might characterize the metabolic 

idiosyncrasy of cancer behaviour according to three different biological scenarios: 

Chapter 1) metabolomic differentiation of BC subtypes, Chapter 2) BC subtype-specific 

metabolomic dynamism in response to NACT, and Chapter 3) CRC metabolomics-based 

prediction of recurrence and survival after resection of liver metastasis. Nevertheless, 

the early diagnosis of cancer by detection of precancerous changes at the earliest time 

point is still facing some fundamental challenges (Crosby et al. 2022): the understanding 
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of the biology and behaviour of the early disease; determining the risk of developing 

cancer; the discovery and validation of biomarkers for an early detection of the disease; 

the technological capacity and the translation of biological insights into clinical trials. 

In cancer metabolomics, preliminary results have demonstrated alterations in 

normal metabolic processes occurring in cancerous cells that do not occur in healthy cells 

(Griffin and Shockcor 2004; Stine et al. 2022). The metabolism adaptation of malignant 

cells towards glycolysis in the hypoxic microenvironment of tumour tissues generate the 

key metabolic intermediates that provide important building blocks for DNA and the 

synthesis of FAs or redox regulation (Weinberg et al. 2010). However, whereas metabolic 

aberrations are the cause of cancer or the consequence of its development is still a matter 

of debate (Garber 2006). In this sense, the term “oncometabolite” was born to refer to 

that molecules that are increased in tumours relative to normal cells (Khatami, Kazem 

Aghamir, and Tavangar 2019). For instance, the 2-hydroxybutyrate, succinate, and 

fumarate are molecules that can be produced due to the mutation of nuclear encoded 

mitochondrial enzymes. Regarding this, increasing research is focused to prove the 

contribution of other oncometabolites in cancer development and progression (Ježek 

2020; Pan, Li, and Simon 2021).  

6.1.2 Metabolomics and breast cancer 

On the basis of the results presented in the metabolomic differentiation of BC 

subtypes, we proved that untargeted LC-HRMS-based metabolomics clearly 

differentiates the BC molecular subtypes from HC and that main significantly altered 

features were metabolites from the porphyrin metabolism, glycerophospholipid 

metabolism, tryptophan metabolism and aminoacyl-tRNA biosynthesis. Likewise, the 

potential use of metabolomic BC screening was evidenced by a LC-MS fingerprinting 

that showed a 100% accuracy identifying between BC plasma samples and HC (Jové et 

al. 2017). Additionally, the HER2 and luminal BC molecular subtypes significantly 

differed by using the glutamate/glutamine ratio and aerobic glycolysis as biomarkers 

(Budczies et al. 2013; Alakwaa, Chaudhary, and Garmire 2018). Therefore, further 

investigation into the metabolic-associated pathways in BC would enhance 

comprehension of the underlying molecular mechanisms triggering the initiation of the 

disease as well as the BC molecular stratification between the different subtypes. In this 

sense, metabolic reprogramming in cancer is linked to important oncogenes mediating 

energetic pathways (C. V. Dang, Le, and Gao 2009; Matoba et al. 2006; Bensaad et al. 
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2006). So, measuring metabolomics changes might provide with an easy valuable reflect 

of the dynamic response to genetic alterations.  

Additionally, our recent evaluation of untargeted metabolomics warrants its use not 

only for an early detection of BC and molecular stratification according to the phenotype, 

but also as a promising strategy for differentiating BC stages and aggressiveness 

(González Olmedo et al. 2024). In this regard, previous metabolomic analyses 

highlighted the significant alteration of the metabolome in relation to the therapy 

response in BC patients under a NA regimen. In accordance with these findings, 

alteration of phenotype-specific molecular pathways might allow with the prediction of 

response in a more personalized way (Zapater-Moros et al. 2023). Moreover, a wider 

comprehension of the underlying molecular behaviour of therapy resistance or the 

presence of MRD would provide with therapeutical potential targets for a better 

precision oncology. Taking advantage of the study provided by BC subtype-specific 

metabolomic dynamism in response to NACT, we could perform a temporal 

metabolomic approach in combination with ASCA. Herein, the implication of several 

factors on the alteration of the metabolome could be deciphered according to the 

diversity of response to the NACT in BC molecular subtypes. Thus, the factors time, 

response and their interaction were analysed together with the significance at the 

individual level. Interestingly, the patient factor was significant between all the BC 

phenotypes, which points to the importance of improving personalized management of 

BC molecular heterogeneity. 

6.1.3 Metabolomics and colorectal cancer 

Drawing on the results of CRC metabolomics-based prediction of recurrence and 

survival after resection of liver metastasis, a metabolomic signature was revealed to be 

capable of distinguishing recurrence with prognostic value for survival in mCRC 

(González‐Olmedo et al. 2024). Similarly to BC, various metabolomic strategies have 

been successfully applied in CRC to characterize molecular pathways linked to the 

disease, thereby offering potential targets for tailored therapies and better clinical 

management. In this regard, previous research has demonstrated the utility of 

untargeted and targeted metabolomics in CRC detection, identifying tentative 

diagnostic biomarkers, and showing potential as a minimally invasive tool for 

monitoring CRC progression (Tan et al. 2013; Long et al. 2017; Yachida et al. 2019; 

Martín-Blázquez et al. 2019; Martini et al. 2020).  
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For instance, Jonas J. et al. conducted a targeted metabolomic analysis to assess the 

risk of early disease recurrence following CRLM surgery, using pre-surgery plasma 

samples (Jonas et al. 2021). In line with our findings, they suggested that circulating 

metabolites could be useful in detecting early CRC recurrence. However, their model 

was focused on circulating glycerophospholipids, while our approach detected 

significant metabolites involved in the bile acids metabolism and biosynthesis, and the 

metabolism of amino acids,  highlighting the methodological differences and outcomes 

between strategies (González‐Olmedo et al. 2024).  

Additionally, similar to the metabolic reprogramming observed in BC, common 

mutations in oncogenes or tumour suppressors in CRC, such as mutations in RAS and 

BRAF, significantly influence cellular metabolism. Thus, genetically impacted metabolic 

pathways may be reflected in circulating metabolites, making metabolomics a valuable 

tool for identifying potential therapeutic targets. In this sense, genetic profiling of CRC 

patients has greatly improved clinical management by guiding the selection of optimal 

therapies based on these genetic alterations (Heide et al. 2022), and novel therapeutic 

strategies could be developed and validated by integrating genomics with metabolomics 

and using minimally invasive methods such as liquid biopsy (Ullah et al. 2022).  

However, despite these advances, the role of individual genes may not fully explain 

the complexity of our biological system (Krop et al. 2018), neither of CRC biology, 

particularly given that most of CRC cases are sporadic whereas genetic predisposition is 

relatively low (De La Chapelle 2004; Valle et al. 2019). In this scenario, prevention of CRC 

through liquid biopsy-based biomarkers is essential to improve survival rates by 

enabling intervention before tumour detection or metastasis spread.  

 

6.2 Main findings 
To address the main objective of this study, three clinical scenarios were analysed 

throughout the whole dissertation. As a result, our metabolomic findings unveiled that 

some distinctive metabolic features might be correlated across cancers located in 

different anatomical sites, while others could be tumour-specific. In particular, 

employing untargeted metabolomics methodologies, we discerned unique molecular 
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landscapes of BC in comparison to HC, BC responders to non-responders and last, 

recurrent to non-recurrent mCRC patients.  

6.2.1 Association between purine metabolism and cancer 

Purines (adenine and guanine) and pyrimidines (thymine, uracil, and cytosine) are 

the main nitrogenous bases of nucleotides, which are the basic building blocks for the 

biosynthesis of DNA and RNA. Under normal physiological conditions, nucleotide 

metabolism is balanced between the biosynthetic and degradation pathways. In 

cancerous cells, however, large quantities of nucleotides are required to support the 

rapid and uncontrolled cell proliferation characteristic of tumours (Traut 1994). This 

demand implies an upregulation of the metabolic genes and encoded enzymes, which 

are primarily responsible for maintaining the intracellular nucleotide concentrations 

(Mullen and Singh 2023). To meet the increased demand for nucleic acid precursors, 

cancer cells rely predominantly on the de novo biosynthesis pathway and, to a lesser 

extent, the nucleotide salvage pathway. Both routes are metabolite-depending on the 5-

phosphoribosyl-1-pyrophosphate , but involve different regulated genes and enzymes, 

which are discussed in detail elsewhere (Lane and Fan 2015). 

As part of the results from this dissertation, we observed an alteration in purine 

metabolism within the mCRC cohort. Specifically, in our CRC metabolomics-based 

prediction of recurrence and survival after resection of liver metastasis, we found that 

circulating hypoxanthine levels were lower in recurrent mCRC patients compared to 

non-recurrent patients. Hypoxanthine plays a dual role in purine metabolism: 1) it is a 

byproduct of ATP breakdown and an intermediate in the catabolism of inosine, 

adenosine and guanine-monophosphate; and 2) it is a biosynthetic precursor produced 

by the hypoxanthine-guanine phosphoribosyltransferase reaction in the salvage 

pathway. Under normal conditions, most purine nitrogenous bases are recycled through 

the salvage pathway, with 90% of hypoxanthine being reused to form inosine 

monophosphate. However, under hypoxic conditions, hypoxanthine can be further 

metabolized into xanthine and uric acid by xanthine oxidase , resulting in increased 

production of ROS during the final steps of purine catabolism (Kuwabara et al. 2003; 

Saugstad 1988).  

In this context, the enzyme involved in the catabolism of hypoxanthine is the 

xanthine oxidoreductase (XOR) which is activated under hypoxic conditions to degrade 

DNA and RNA. Although XOR regulation in cancer is not well understood, previous 
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studies have shown that: 1) XOR is downregulated in CRC mouse models and cell lines 

as well as in several tumours such as BC, gastric cancer or CRC (Battelli et al. 2016); 2) 

XOR is upregulated during the differentiation and progression of colon cancer cells (H. 

Li et al. 2021; Linder et al. 2009). This dysregulation of XOR could explain that decreased 

hypoxanthine levels observed in our study may be related to the progression of the 

disease. Nevertheless, further research is required to validate whether circulating 

hypoxanthine levels may truly reflect aberrant XOR activity during CRC development. 

6.2.2 Association between tryptophan (Trp) metabolism and cancer 

Imbalances in Trp metabolism have been extensively studied in relation to several 

pathophysiological states. In humans, Trp is exclusively obtained from diet and a 95% 

of it is catabolized in the Kyn pathway  (Platten et al. 2019; Takikawa 2005). The Kyn 

pathway-related enzymes and metabolites play major roles in immune regulation, 

neuronal function and intestinal homeostasis (Platten et al. 2019; Cervenka, Agudelo, 

and Ruas 2017; Turner 2017; Zelante et al. 2013). Regarding Trp catabolism in cancer, it 

is increasingly recognized that this essential amino acid may have an indispensable 

function in immune activation and tolerance, which is largely regulated by expression 

of IDO1. While deficiency of the IDO1 in mouse models lead to autoimmune disease 

(Mellor et al. 2003), aberrant expression of this enzyme in several tumours results in 

immune suppressive effects (Meireson, Devos, and Brochez 2020; Lijie Zhai, Stefani 

Spranger, David C. Binder, Galina Gritsina, Kristen L. Lauing, Francis J. Giles 2015; 

Soliman et al. 2013). Moreover, activation of IDO1, 2 or the tryptophan 2,3-dioxygenase 

regulates the Trp breakdown in several cells and tissues, inducing upregulation of its 

catabolites. In this sense, downstream metabolites such as Kyn  are responsible for T 

regulatory cell infiltration and differentiation through the AhR as well as inhibition of T 

lymphocytes or cytotoxic cells, which permit cancer cell growth (X. han Liu and Zhai 

2021; Onesti et al. 2019; Platten, Wick, and Van Den Eynde 2012).  

Specifically, in our study we observed decreased levels of circulating Trp in the LA, 

TN and HER2 molecular subtypes when compared to HCs. Interestingly, in the LB and 

HER2 phenotypes we could also detect a significant alteration of Trp and Trp-betaine in 

a temporal manner from the diagnosis till the time after surgery. In accordance 
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with these results, reduced expression of plasmatic Trp has been previously associated 

with different types of cancer such as BC, lung cancer or digestive system tumours (Yu, 

Lu, and Du 2024; Eniu et al. 2019; Smith et al. 2012). One main reason for the uptake of 

Trp during cancer growth is its role in the de novo synthesis of nicotinamide adenine 

dinucleotide. This cofactor supports essential metabolic pathways in cancerous cells 

(Navas and Carnero 2020), mitochondrial energy production (Castro-Portuguez and 

Sutphin 2021) and it has been observed that it may also confer resistance to treatments 

via activation of the DNA repair proteins, which help the cancer cell to survive under 

genotoxic stress caused by therapy (Vareki et al. 2014). Nevertheless, although decreased 

levels of Trp were found in BC patients in comparison to HCs, we did not find any 

dysregulation of plasmatic Trp in relation to the NACT factor. This observation may be 

due to the low sample size per molecular subtype as previously described elsewhere 

(Onesti et al. 2019). 

6.2.3 Association between porphyrin metabolism and cancer 

Porphyrin metabolism is the metabolic pathway responsible for the production of 

heme substrates, intermediates and end products. In this context, HO-1 is the key 

enzyme responsible for heme catabolism producing ferrous iron, carbon monoxide and 

BV. BV is then converted to bilirubin by the biliverdin reductase (BVR). Then, BR is 

associated to albumin (indirect bilirubin) in order to become soluble and circulate to the 

liver to be mainly cleared by: 1) reoxidation to BV, or 2) conjugation with glucuronic acid 

(direct BR) by the uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1). Finally, 

direct BR is excreted into the bile conduct where it is reduced to urobilinogen which may 

be: 1) further metabolized into stercobilin, or 2) reabsorbed into the blood circulation to 

form urobilin in the liver (B. Wu, Wu, and Tang 2019). 

Heme-derived compounds are crucial for normal cell physiology, but their over-

down expression may result in harmful effects. Indeed, recently, porphyrin overdrive in 

cancerous cells has been determined as a potential therapeutic target since it appeared 

to be cancer cell-essential and specific, and absent in normal cells (Adapa et al. 2024). 

Herein, our findings show an aberrant porphyrin metabolism in both the BC cohort, and 

the mCRC cohort. Interestingly in the metabolomic differentiation of BC subtypes, we 

found that in the BC plasma samples of the LB and HER2 molecular subtypes, the 

circulating levels of BV were elevated in comparison to HC. Moreover, in the BC 

subtype-specific metabolomic dynamics in response to NACT, the expression of BV 
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showed a temporal change from high plasma levels at diagnosis to lower levels post-

surgery specifically in the HER2 phenotype. Otherwise, in the CRC metabolomics-based 

prediction of recurrence and survival after resection of liver metastasis, we observed 

high levels of circulating BR post-surgery, as well as in plasma of recurrent mCRC 

patients in comparison with non-recurrent. This observation may be due to the increase 

of the porphyrin metabolism in cancer cells or during the progression of the disease. 

In this sense, while bile pigments have traditionally been considered as non-toxic 

molecules that protect cells by reducing ROS (Weaver et al. 2018), their role in cancer 

pathophysiology seems more complex. For instance, BR can paradoxically (hyper) 

activate the ERK1/2 signalling pathway, helping colon cancer cells evade death 

(Öllinger et al. 2007), despite its described ability to evoke apoptosis in vitro (Keshavan 

et al. 2004). More recent evidence highlights the pro-carcinogenic effect of BV and BR, 

since high expression of BVR has also been linked to the epithelial-mesenchymal 

transition in BC, a process that promotes tumour progression (Zhang et al. 2018, 2016). 

Besides, BV and BR have been identified as endogenous activators of the aryl 

hydrocarbon receptor, a transcription factor that regulates tumour growth, survival and 

invasion (Therachiyil et al. 2022; Safe, Lee, and Jin 2013; Phelan et al. 1998). Last, whereas 

total circulating BR  and direct BR  may correlate with poor prognosis in CRC (Jia et al. 

2021), elevated levels of indirect BR  appear to have a protective effect (X. Zheng et al. 

2021; Sticova and Jirsa 2013), possibly due to due to genetic variations such as a 

polymorphism in the UGT1A1 gene (Jirásková et al. 2012). This observation suggests 

that the specific form of BR plays a critical role in cancer outcomes. 

Accordingly, our findings lead to the inference that increment of BV and BR in 

plasma might be potential diagnostic and prognostic biomarkers of BC and CRC 

respectively. Thereby, determining salutary or damaging thresholds for these 

compounds will allow with a more precise stratification of the molecular risk to develop 

each type of cancer or for monitoring the disease. Hence, it is of utmost importance to 

further investigate and clarify the signalling-related pathways or tissue-specific gene 

expression implied in the progression of the disease, either by an up-regulation of the 

HO-1, a dysregulation of the BVR or from variations in the UGT1A1 gene. 

6.2.4 Association between bile acids’ metabolism and cancer 

Bile acids (BAs) are amphipathic compounds which molecular structure in mammals 

is characteristic due to a 24 carbon atoms chain that conforms the steroid nucleus (three 
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six-member rings) and a five-carbon ring with a carboxyl at the C-24 position. BAs 

are classified as primary or secondary according to their synthesis. Primary BAs, cholic 

acid and chenodeoxycholic, are synthesized from cholesterol in the liver by the classical 

or the alternative pathways; then, they are conjugated with glycine or taurine and stored 

in gallbladder. When they are released into the intestine, different enzymes and 

intestinal microbiota deconjugate and modify their molecular structure into the 

secondary BAs: deoxycholic acid, litocholic acid and ursodeoxycholic acid. Most of the 

BAs (95%) are transported to liver while the remaining (5%) is excreted in stool. Last, 

reabsorbed secondary BAs may also be tauro- and glyco-conjugated and stored in 

gallbladder or recycled to the enterohepatic circulation to mainly participate in digestive 

processes as detergent compounds (Monte et al. 2009). 

In the last decades, diverse functions of BAs have been deciphered in 

pathophysiological conditions. Within their roles, BAs act as potent antimicrobial agents 

as well as signalling molecules for cell metabolism and immunity regulation. Through 

activation of a membrane G-protein receptor and the nuclear farnesoid X receptor (FXR), 

BAs lead to tissue-specific effects that may seem paradoxical (Baptissart et al. 2013). In 

BC,  FXR expression was correlated with proliferative markers of the disease in luminal 

subtypes (Journe et al. 2009), while in advanced BC, higher expression of FXR was 

associated with a better prognosis (Y. H. Lee and Song 2013). In liver and CRC has been 

observed that BAs metabolism via the FXR enhance an anti-inflammatory and tumour-

suppressing environment (X. Huang, Fan, and Huang 2022; Di Ciaula et al. 2017; X. F. 

Huang, Zhao, and Huang 2015). Moreover, loss of FXR expression has been linked to 

liver cancer, and its expression in CRC is inversely related to disease progression (Fu et 

al. 2019; Jiang et al. 2013). 

Despite the clear dysregulation of BAs metabolism in several cancers, more research 

is needed to clarify its potential role as a therapeutic target or prognostic marker. This 

dissertation highlights changes in circulating BAs levels in BC and CRC, demonstrating 

tissue-specific associations. For instance, low levels of conjugated-secondary BAs were 

found in plasma of BC patients, while high levels of conjugated-primary BAs were 

detected in recurrent mCRC subjects and after the resection of liver metastasis. Herein, 

a possible diet-microbial link to the origin of BAs dysregulation appeal for attention.  

First, the pool of secondary BAs is regulated by gut microbes, which are tightly 

influenced by diet. Research in BC has shown that intestinal dysbiosis, particularly of 
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beta-glucuronidase-producing bacteria, may affect disease progression through 

estrogen-dependent mechanisms, while other microbes produce protective bioactive 

metabolites (Ruo et al. 2021). In this regard, a plant-based diet can decrease beta-

glucuronidase activity, promoting estrogen excretion and lowering exposure. Within 

our results, we found reduced levels of secondary circulating BAs in BC patients, 

specifically glycoursodeoxycholic acid in estrogen-receptor positive cases, and 

glycohyocholic and glycodeoxycholic acids in non-responder TN patients. It is 

noteworthy that further investigation into diet, dysbiosis and the imbalance of these 

conjugated-secondary BAs may offer new therapeutic or prognostic tools for improving 

BC management.  

Second, our results also demonstrated reduced taurine but increased taurine-

conjugated BAs (taurocholic and taurochenodeoxycholic acids) in the blood of recurrent 

mCRC patients right after the resection of liver metastasis. In this context, CRC risk has 

been previously linked to diets rich in animal products which increase taurine and 

taurine-conjugated BAs, promoting the production of genotoxic secondary metabolites 

(Ridlon, Wolf, and Gaskins 2016). Specifically, taurine-derived compounds support the 

growth of microbes that produce pro-oncogenic molecules like hydrogen sulfide and 

deoxycholic acid (Wolf et al. 2020), which are linked to cancer development. Last, 

growing interest in gut microbiota and its correlation with diet in BC and CRC 

development is reflected in ongoing clinical trials for characterization of microbiota 

modulators as detailed elsewhere (L. Y. Zhao et al. 2023; Álvarez-Mercado et al. 2023). 

6.2.5 Association between lipids’ dysregulation and cancer 

Metabolic reprogramming is a firmly established cancer hallmark (Hanahan and 

Weinberg 2000; Pavlova and Thompson 2016; Salita et al. 2022) consequence of the 

Warburg effect, which implies an exacerbated synthesis of essential biomolecules for cell 

renewal in such a harsh tumour microenvironment. Specifically, lipids’ dysregulation is 

a constant in the BC and CRC metabolomic studies (Ward, Anderson, and Sartorius 2021; 

Costantini et al. 2023). However, lipidomics profiling according to each cancer type is 

underdeveloped in comparison to genomics or proteomics. 

FAs, triglycerids and PL are multifunctional biomolecules that may act as structural 

components for cell membranes, signalling molecules or energy suppliers. The principal 

component of cell membranes are PL (PCs and PEs), glycolipids and sterols (Hishikawa 

et al. 2014). Otherwise, FAs also mediate the storage of energy via triglycerids and 
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provide the precursors for the biosynthesis of PLs. Furthermore,  previous research has 

demonstrated that all these lipidic compounds may play major roles in molecular 

signalling resulting in the aberrant phenotype of cancer cells (Yuan TL; Cantley LC 2008; 

Hannun and Obeid 2008; Y. H. Huang and Sauer 2010). 

Deregulation of lipids’ metabolism is directly related to key metabolic enzymes in 

maintaining cellular lipid homeostasis by control of the de novo biosynthesis of FAs and 

fatty acid oxidation (FAO): adenosine triphosphate citrate lyase convers citrate into 

acetyl-CoA and oxaloacetate for cholesterol and FA synthesis; acetyl-CoA carboxylase 

carboxylates acetyl-CoA to malonyl-CoA which act as substrate for lipogenesis and as 

inhibitor of carnitine palmitoyltransferase 1 to regulate the FAO; fatty acid synthase  

produces the 16-carbon palmitate – PC (16:0) - by adding seven malonyl-CoA molecules 

to one acetyl-CoA. Therefore, a genomics alteration may reflect the aberrant FA, choline 

and ethanolamine phospholipids’ metabolism, since evaluation of these metabolic-

related enzymes has unveiled their involvement in tumorigenesis and cancer 

progression (Menendez and Lupu 2007; Zaidi, Swinnen, and Smans 2012). So, a better 

understanding of the altered associated mechanisms of the above-mentioned enzymes 

would broaden the underlying molecular factors that may lead with cancer origin or 

progression. 

Lysophospholipids 

From the experimental results of this dissertation, the list of identified lipidic 

compounds belonged to several different classes. Overall, we found a decreased 

expression of lysophospholipids (lysoPC and lysoPE) in plasma samples of BC 

molecular subtypes compared to HC: lysoPC (20:3), lysoPEs (18:1 and 18:2) in LB 

molecular subtype; lysoPC (14:0) in the LA; lysoPE (18:1) and lysoPC (16:0) in HER2 

phenotype; and lysoPC (16:0) in the TN. Interestingly, we observed a similar behaviour 

for the lysoPE (18:2) and lysoPC (16:0) in non-responders LB patients whereas the 

expression of lysoPE (18:1) was decreased in plasma of responders LB patients. In this 

context, by using ASCA for metabolomic data analysis, we could add some more 

information about the lysophospholipids’ alteration through the clinical BC process 

under a NACT regimen. Thus, in LB patients the lysoPEs (16:0 and 20:4) varied their 

expression towards the diagnosis, post-treatment and post-surgery while in HER2 

patients we observed alteration of circulating lysoPC (20:4 and 22:6), and lysoPE (16:0 
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and 22:6). Last but not least, we found that plasma levels of lysoPC (22:4) differed 

between TN patients according to their response to NACT.  

In line with our results, higher plasma levels of lysophospholipids are related to 

lower cancer risk throughout the literature. Indeed, decreased circulating lysoPC (16:0, 

18:0, 18:1 and 18:2) have been previously reported in CRC (Z. Zhao et al. 2007) while 

higher expression of lysoPC (18:0) is associated with low risk of BC, prostate cancer and 

CRC (Kühn et al. 2016). In this sense, the common lipidic remodelling may be driven by 

an upregulation of the de novo FA synthesis in cancers such as CRC, lung or liver, 

whereas an increased expression of fatty acid synthase has been associated to a worse 

prognosis in BC or prostate cancer (Thupari, Pinn, and Kuhajda 2001; Brusselmans et al. 

2005; Menendez and Lupu 2007). Moreover, cancer cells are able to obtain extracellular 

FAs under hypoxic conditions in order to maintain their lipids demands. In this instance, 

lysophospholipids may be utilized by cancer cells in several ways: (1) to conform cell 

membranes, (2) for energy storage or (3) as signalling molecules (P. Liu et al. 2020; Z. 

Chen et al. 2023; Jin et al. 2023). So, the uptake of exogenous lysophospholipids provide 

with the fuel for cells’ survival and progression (Koundouros and Poulogiannis 2020). 

Similarly, we found that levels of lysoPEs (16:0, 18:0, 18:2 and 22:6) and lysoPCs (P-

16:0, 20:5, and the unknown LysoPC) were also decreased in plasma samples of recurrent 

mCRC patients after the resection of liver metastasis. In accordance, the largest recent 

study on pre-diagnostic lipid levels and CRC risk demonstrated an inverse relationship 

between these energy compounds and CRC tumorigenesis (Harewood et al. 2024). 

However, it is noteworthy that under our study conditions, the levels of these 

glycerophospholipids were higher in plasma samples of mCRC previous the resection 

of the liver metastasis in comparison with those samples obtained after the surgery. 

Interestingly, in the context of early-stage cholangiocharcinoma, higher levels of lipids 

in pre-operative blood samples were associated with the existence of CSCs, which 

benefits disease recurrence (Padthaisong et al. 2021). Also, in BCSCs the FAO is elevated 

to facilitate cell renewal and chemoresistance. Otherwise, inverse concentrations of  

circulating lysoPC (18:1) have been previously observed in non-advanced CRC (Z. Zhao 

et al. 2007) and mCRC (Martín-Blázquez et al. 2019). Herein, our findings suggest that 

circulating levels of glycerophospholipids in the metastatic setting may vary in 

comparison with that found in localized disease, which denotes the importance for 
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further investigation of this molecular pathway in order to define useful biomarkers of 

the cancer progression or potential new targets for a better precision medicine. 

Acylcarnitines 

Besides the glycerophospholipids above described, the aberrant plasma expression 

of two acylcarnitines (tridecanoyl carnitine and dodecanoyl carnitine) were found to be 

altered in the BC temporal metabolomics-based analysis. In this case, increased levels of 

the long-chain tridecanoylcarnitine were found in the non-responders LB patients at the 

time of diagnosis while the medium-chain dodecenoylcarnitine could not be associate to 

the LB response at the time of diagnosis, but it related to a temporal change within this 

BC phenotype. Consistent with our results, the carnitine system was also altered in the 

LB patients when analyzing this BC cohort of patients with a different metabolomics 

strategy (Zapater-Moros et al. 2023). Accordingly, His M. et al. have demonstrated direct 

associations between plasma acylcarnitine C2 and risk of breast cancer (His et al. 2019). 

In this regard, regulation of the carnitine system is pivotal in supplying energetic and 

biosynthetic demands in malignant cells (Melone et al. 2018). The shuttle of 

carnitine/acylcarnitine from the cytosol to the mitochondria provides with the acyl 

groups for the FAO, one of the main metabolic strategies promoted in some type of 

tumours due to its highest rate of ATP production in comparison to the oxidation of 

other nutrients (Caro et al. 2012; X. Wu et al. 2014). Indeed, it should be noted that recent 

observations in BC tissue pointed to the upregulation of key metabolic enzymes for the 

FAO (Sun et al. 2020). However, the role of acylcarnitines’ circulating levels in the 

aetiology of cancer is not well-described, since they may be influenced by different 

factors such as sex, age, BMI, the intake of certain foods, metabolism of branched-chain 

amino acids and fasting status at blood collection (Wedekind et al. 2022). In this context, 

we could suggest that plasma concentrations of acylcarnitines may be a reflection of 

disease progression in LB patients which requires higher rates of the FAO pathway and 

lipolysis, in a similar way that those higher concentrations of medium and long-chain 

acylcarnitines found during fasting conditions (Dambrova et al. 2022; Liepinsh et al. 

2014; Makrecka et al. 2014).  

Docosahexaenoic acid (DHA) 

Lastly, the detection of significantly altered DHA levels in the most aggressive BC 

phenotype highlights the potential influence of this omega-3 long-chain 

polyunsaturated FA on the disease. Specifically, we found higher baseline DHA levels 
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in plasma of TN responders compared to non-responders (Díaz et al. 2022). In this 

regard, DHA’s anti-cancer effects in the BC-TN molecular subtype have been previously 

described, primarily by inducing cancer cell death via apoptosis and, to a lesser extent, 

pyroptosis. Studies committed to investigate DHA’s role in inhibiting BC growth have 

shown a tight association with cancer cell death through caspase signalling activation: 

gasdermin D cleavage via caspase-1 activation in pyroptosis (Pizato et al. 2018), or 

caspase-3 and poly(ADP-ribose) polymerase activation  via caspase-12 cleavage during 

endoplasmic reticulum stress in apoptosis and autophagy (T. tian Wang et al. 2021).  

Additionally, a recent LC-MS metabolomics-based analysis demonstrated DHA’s 

potential as part of a biomarker model that distinguished BC patients from HC, with 

increased DHA plasma levels correlating with protective or anti-cancer effects (Park et 

al. 2019). Moreover, multiple in vivo and in vitro observations support the evidence about 

DHA’s role in reducing BC cell viability and proliferation, as well as enhancing 

chemotherapy efficacy by integrating into tumour membrane phospholipids (Mason et 

al. 2015; Molfino et al. 2017; Newell, Brun, and Field 2019).  

Although the molecular mechanisms underlying the anti-cancer effects of omega-3 

polyunsaturated FAs are not yet fully understood, ongoing clinical trials (i.e. 

NCT03383835, NCT03831178, NCT01849250 in ClinicalTrial.gov) are investigating DHA 

supplementation alongside the chemotherapy setting. This fact underscores the 

potential therapeutic value of DHA in improving BC outcomes (Newell et al. 2019).   

 

6.3 Methodological considerations 
Discovery-based research has produced big amount of data from several -omics 

high-throughput technologies that claimed to discriminate for cancer diagnosis and 

prognosis. During this dissertation, some strengths and weaknesses were found when 

using untargeted metabolomics-based approaches for biomarkers’ discovery. In spite 

that hundreds of molecular features might differentially discriminate the experimental 

groups under study, many of them could not be tentatively identified and, for those with 

a putative identification, caution is needed for their biological interpretation. 

6.3.1 Study design and sampling 

Sample size determination during design of discovery-based studies using 

untargeted metabolomics copes with some determinant issues due to the nature of 
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global phenotyping. This challenging task requires a priori assumptions, or hypothesis, 

to calculate the minimum expected difference and estimated variability. However, 

global metabolomics is “hypothesis generating” and potential metabolic targets are 

unknown before the analysis is completed. Moreover, metabolome complexity is higher 

than other -omics ensembles and high-resolution platforms do not provide with 

detection of the whole set of known and unknown variables present in a sample. Thus, 

we must be aware about bias from theoretical and measured metabolome differences 

since using metabolomics different signals may correspond to the same molecular 

compound. Last, high-throughput platforms provide with big amounts of data, much 

greater than the number of samples tested, which have to face multiple hypothesis-

testing contexts, estimation of effect size for power analysis while increasing the risk for 

false discoveries (Billoir, Navratil, and Blaise 2014). 

It should be highlighted that in reality, there not exist standardization in the 

statistical methodology for sample size calculations in global metabolomics-based 

analyses. Furthermore, the number of samples analysed will also depend on the costs 

and available funds for patients’ recruitment, clinical follow-up, samples and data 

collection, analysis and interpretation. In this sense, multicentric studies provide with 

higher probability to increase the patients’ ratio, mitigating some of these drawbacks. 

An outstanding tool to address the heterogeneity of metabolomics data and the 

limitations inherent in sample collection is the advent of AI for biomedical research. By 

applying machine learning algorithms and AI-driven analytical tools, it is now possible 

to handle complex and large-scale datasets more effectively. AI enhances pattern 

recognition, allowing for the identification of hidden relationships between variables 

and improving the accuracy of biomarker discovery. Moreover, AI can help optimize 

sample size and minimize bias by predicting variability more accurately and adapting 

analysis in real-time as new data is integrated. This makes AI a powerful tool to 

overcome traditional bottlenecks in metabolomics, ultimately driving forward precision 

medicine initiatives (Camacho, Díaz, and Sánchez-Rovira 2022; W. Chong et al. 2022). 

On the basis of this dissertation, three main types of cancer cohorts were analysed 

with the aim to answer three different questions regarding the utility of untargeted 

metabolomics for detection and identification of diagnostic or prognostic biomarkers of 

cancer for clinical use. In every case, we did expect to find the maximum number of 

metabolomic features as possible to differentiate between the groups under study. In 
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this regard, we are aware that our studies are limited by a relatively low sample size. 

Nevertheless, obtaining a homogeneous cohort can be very difficult to deal with, 

particularly when collecting biological samples at different time points. In the case of the 

TN-BC phenotype is even more challenging since it is the most aggressive of the BC 

molecular subtypes and, unfortunately, for some patients, it was not possible to obtain 

the three samples to meet their eligibility for the study. Similarly, the metastatic and 

surgical setting hinder the collection of biological samples since the eligible population 

for undergoing interventions of hepatic metastasis sin CRC represent approximately 

10% of liver metastatic CRC patients, which would be equivalent to 12 or 15 patients 

annually in our hospital. However, we warrant future recruitments of higher number of 

patients which enable obtaining more rigorous results and to further validate the 

potential of the metabolomic signatures found in larger and external cohorts.  

6.3.2 Confounding and bias 

Metabolome is significantly influenced by intrinsic and extrinsic factors from the 

genome, proteome and their interaction, to the environment, diet, hydration or 

medication. Moreover, during a metabolomic analysis, technical confounders may also 

be a source of bias. So that, confounding factors must be considered in order to reach a 

clear and causal conclusion from the analysis (J. Zheng et al. 2022). In this regard, major 

efforts are made in order to avoid the bias of analysing raw data without considering 

these variables.  

Through this dissertation, tested confounding factors that may affect the set of small 

molecules product from our metabolism were fundamentally age, sex and BMI. Except 

for the mCRC cohort, any of these variables were found to differentially determine the 

outcomes of our studies. In the CRC metabolomics-based prediction of recurrence and 

survival after resection of liver metastasis, though, we could observe that the chance of 

recurrence appeared to be influenced by age. In this regard, it is well-established that 

age is associated with prognosis in CRC (Lund et al. 2018; Álvaro et al. 2019; Mima et al. 

2020; Kunst et al. 2020). Thus, our results confirm that age should be considered when 

performing large observational studies due to: 

1. Comorbidities and general health status (Van Eeghen et al. 2015). Sometimes, 

advanced age implies greater comorbidity that may constrain treatment options as 

well as increase the risk of complications, translating into a worse prognosis and a 

higher probability of relapse.
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2. Immune response (Roxburgh et al. 2013; Thoma, Neurath, and Waldner 2021).

Immunosenescence or the age-related poor capacity for the immune system might

hinder the ability to fight cancer, affecting disease progression.

3. Treatment tolerance (Zare-Bandamiri et al. 2017; Lund et al. 2018). Age may also

influence tolerance to chemotherapy both before and after surgery which may also

promote relapse.

4. Biological characteristics of the tumour (Álvaro et al. 2019; Lan et al. 2021). The

molecular characteristics of the tumour may also vary according to age and these

differences might contribute to an increased rate of recurrence or come along with

a decreased overall survival rate.

6.3.3 Untargeted LC-HRMS metabolomics 

To date, the application of LC-HRMS-based metabolomics in the study of cancer has 

provided with the identification of a myriad of phenotypic variations which are 

necessary for the survival of cancer cells and that can be used to differentiate them from 

healthy cells. However, by using the metabolic phenotyping strategy you may not 

measure every metabolite in the organism of sample under study and the measurements 

are not always biologically informative due to the following issues: 

1. First, the metabolic picture will vary significantly based on the source of the

biological material studied, being crucial to select the most adequate type of fluid

to analyse (Breiding 2014). Under our study conditions, plasma samples were used

in every case and analysed by using untargeted LC-HRMS-based metabolomics.

Regarding the use of plasma samples, this type of biological source is advantageous

in a clinical setting due to its ease of collection. It is minimally invasive and can be

obtained through the same track used for treatment administration, thereby

reducing additional exposure or unnecessary pain for patients. Moreover, the

sample procedure is simpler and faster than that needed when obtaining serum.

2. Second, due to the complexity and the multifactorial character of cancer,

deciphering the molecular aetiology or the triggers of cells’ progression should be

developed by the integration of several approaches and not just limiting to one

methodology. In our case, two main approaches of LC-HRMS, by using RPLC and

HILIC combining different ionization modes, were performed in order to cover the

maximum range of physicochemical molecular features within our samples of

choice. Moreover, analysis of samples collected at several time points should be a
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requisite in order to unravels the dynamism of the disease behaviour. In this sense, 

untargeted longitudinal metabolomics is much more advantageous to provide the 

cascade effects and biochemical amplifications that may occur during cells’ 

metabolism. 

3. Last but no less, the primary bottleneck in data interpretation for untargeted 

metabolomics-based strategies is the identification of metabolomic features. 

Although many novel spectral libraries have emerged over the years, facilitating 

faster and more accurate basic interpretation of metabolomics experiments, further 

spectrum annotation is still needed to enhance the biological knowledge provided 

by untargeted metabolomics (Bittremieux, Wang, and Dorrestein 2023). 

Additionally, the use of AI holds great promise in the data interpretation process 

as it will significantly enhance the elucidation of new structures at a much faster 

pace than in previous years. 

In contrast to the metabolomics approach used in this dissertation, targeted 

metabolomics can detect and identify of hundreds to thousands of metabolites 

simultaneously, along with their quantification. This capability facilitates the 

comparison of metabolomics data with data from different cohorts, research centers and 

-omics technologies. Moreover, as far as targeted metabolomics identifies known 

metabolites based on their comparison with native and isotopically-labelled standards, 

false positives detection decreases. One of the major utilities of targeted metabolomics is 

to establish baseline thresholds for metabolite levels, from which the altered state of an 

individual or signalling pathway could be defined. However, the main disadvantage of 

this methodology is the limited scope for metabolites’ detection, which may lead to the 

omission of potentially important but unknown features (Ribbenstedt Id, Ziarrusta Id, 

and Benskin 2018). 

Thereby, study designs restricted to the use of just one of these main metabolomics 

approaches may decrease the discovery of novel and potential biomarkers or pathways 

for improving tailored therapeutic interventions in the oncological practice. Hence, 

using different approaches by a systematic performance of combined (un)targeted 

metabolomics in cancer research may solve the weaknesses of each of these strategies 

when carried out separately.
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6.3.4 Biomarkers discovery 

Regarding the phases of translational research reviewed in the Introduction of this 

thesis proposal, the findings above-mentioned and exposed would be understood as a 

T1 phase that needs further validation to get proper biological insights before its 

application into the clinical practice as a T2 phase (Fort et al. 2017; Mandal, Ponnambath, 

and Parija 2017). In this sense, accomplishment of three main items would enable us to 

establish our tentatively identified compounds as reliable diagnostic and/or prognostic 

biomarkers of BC or CRC: 

1. Prospective recruitment. In the search of reliable biomarkers, the best source of

samples is prospectively obtained or even collected in the past and properly

banked to be analysed in the future.

2. Independent reproducibility. In order to avoid bias and threat from chance when

finding useful biomarkers, a rigorous validation in a larger and external cohort of

patients must be performed following exactly the same methodology that is object

of validation.

3. REporting recommendations for tumour MARKer prognostic studies (REMARK).

Study design is the most critical point when performing biomarkers’ research;

hence, following REMARK guidelines allows the analytical validity and clinical

utility while promotes structured reporting of analyses (Hayes, Sauerbrei, and

McShane 2023).

A lot of research and published articles have provided with an unprecedent number 

of biological markers for cancer in the last decades. Unfortunately, most of them have 

emerged as clinically not useful due to the inconsistence between the research studies or 

contradiction of the promising results. Hereafter, inadequate conclusions are 

consequence of the lack of standardized and rigorous methodologies with poor study 

designs and small sample sizes (McShane et al. 2005). To address this main issue, the 

National Cancer Institute-European Organisation for Research and Treatment of Cancer 

recommended the development of common guidelines for reporting tumour marker 

studies (First International Meeting on Cancer Diagnostics; From Discovery to Clinical 

Practice: Diagnostic Innovation, Implementation, and Evaluation; Nyborg, Denmark, 

July 2000). However, the last and critical step for translation of potential biomarkers to 

the clinical practice involves their validation in TR-driven clinical trials. This 

combination, though, is full of obstacles and still needs further accurate improvements 



| Discussion 
 

 

from their analytical validation, clinical validation in prospective studies, regulatory 

approval, to their implementation and incorporation into the clinical guidelines and 

practice. 

 

6.4 Further research in pursuit of precision oncology 
In the medical practice, the only way to pursuit a real precision oncology is by 

supporting and improving high quality TR-driven clinical trials as they play a critical 

role at the healthcare system (Shahzad et al. 2011; Gu et al. 2021). A pragmatic and close 

example is the Medical Oncology-TR Unit at the University Hospital of Jaén, where this 

doctoral thesis was performed in collaboration with the Fundación MEDINA. At our 

Medical Oncology-TR Unit, three main labors are carried out by a multidisciplinary 

team: 1) medical oncology practice by oncologists and specialized nurses; 2) clinical trials 

performance by professionals specialized as coordinators or data-entry; 3) translational 

research on clinical samples by biomedical specialists. Each of these labors are essential 

and (indirectly) co-dependent since: 1) the medical oncology practice is based on 

evidence-based research and accurately proved by 2) previous clinical trials which, at 

the same time, aimed to validate 3) scientific observations obtained at a more basic level. 

Thereby, the results presented through this whole dissertation might be understood as 

the future of precision oncology to a more or less extent. 

6.4.1 Implications in precision oncology 

It is noteworthy that targeting the impaired cancer metabolism has opened up new 

avenues for a better precision therapy in cancer (Anand et al. 2023). Nonetheless, despite 

the progress since the use of targeted treatments in precision medicine with higher 

overall survival and free disease survival rates, there are still subjects without response, 

limited clinical applications tailoring tumour-specific metabolic targets while mitigating 

systemic toxicity, neither the disease is eradicated in every case. This phenomenon 

brings to light that current research and understanding of the disease miss some pieces 

in the cancer puzzle. As it can be inferred from our findings, BC and CRC may share 

alterations at some molecular levels while other molecular aberrations appear to be more 

tissue-specific. In this sense, although we did not conduct a direct comparative 

metabolomic analysis between the aforementioned cancer types, main molecular 

similarities and distinctions were elucidated from the different clinical contexts:
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1. Hypoxanthine was found differently expressed between pre- and post-surgery in

mCRC samples.

2. Perturbations in the tryptophan metabolism were predominantly observed in BC

molecular subtypes.

3. The porphyrin metabolism was altered in both BC and mCRC with a similar

metabolic pattern.

4. Differential expression of secondary BAs was observed in the BC cohort;

specifically, we found reduced levels of glycodeoxycholic and glycohyocholic acids

in non-responders TN patients at pre- and post-surgery time points. In this context,

primary BA biosynthesis along with taurine and hypotaurine metabolism exhibited

notable variations primarily in the mCRC cohort.

5. While glycerophospholipid metabolism manifested significantly altered both in BC

and mCRC cohorts, the fatty acid DHA and two acylcarnitines were only identified

as differently expressed in plasma of BC patients in response to NACT.

According to the aberrant molecular compounds determined in our work, previous 

and recent research on BC and CRC could also identify the alteration of the related 

metabolic pathways in several clinical contexts. Hence, further investigation on these 

common features would allow with determining novel molecular targets for precision 

oncology regarding the metabolic hallmark of cancerous cells. In this sense, an 

interesting argument raises from our observations: the detection of circulating 

subproduct metabolites from the different identified pathways in plasma samples of 

cancer patients points to their relevance in the development or progression of the 

disease. Nevertheless, as extensively exposed during this dissertation, the information 

given by a unique biomolecule type should not be considered as an exclusively 

determinant of disease behaviour since many other molecules could interfere in their 

expression. Thus, metabolomic expression patterns in a clinical context should be 

integrated with the proteomics and genomics expression of enzymes and associated-

genes and viceversa in order to obtain the most comprehensive picture of the disease 

molecular basis. Grounded on this argument, an integrative strategy for further 

deciphering the role of the molecular pathways identified as altered through this 

dissertation would consider a targeted analysis of: 1) candidate metabolites, 2) enzymes 

involved in the catabolism of this metabolites, 3) associated and codifying genes of the 

selected enzymes.  
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In this regard, the above-mentioned approach represents a promising line of research 

to enhance precision oncology and it promises to deepen our understanding of cancer 

metabolism, accelerate biomarker discovery, and facilitate the development of 

personalized therapy regimens tailored to the molecular characteristics of individual 

tumours. Thereby, this approach holds significant potential to improve patient outcomes 

and advance the field towards more effective and precise cancer care. 

6.4.2 Future research 

Grounded on the just presented results, different research lines may come up as 

worthwhile to be further developed in the future: 

1. Metabolomics and oncobiosis. The alteration of intestinal and tumour microbiota 

might affect the expression of microbiome-specific metabolites easily detectable in 

faecal and plasma samples during cancer progression.  

2. Cancer metabolomics and proteo-genomics. Aberrant circulating metabolites are 

the result from altered molecular pathways in which several enzymes are involved. 

DNA and RNA sequencing of the oncometabolic enzymes and their codifying 

genes might lead to the confirmation that measuring levels of oncometabolites in 

plasma are a functional reflection of related enzymes activity or gene expression in 

a minimally invasive way. 

3. Cancer metabolomics and big data. Integration of all the above-mentioned data in 

a temporal manner would not be possible without a proper bioinformatic analysis. 

Since high-throughput methodologies are bid data generators per excellence, 

combining multi-omics approaches by machine learning or AI algorithms is 

required. This strategy will facilitate the comprehensive dynamic study of the 

disease behaviour, in order to provide with the most accurate molecular risk score 

that will reveal the presence of tumoural cells, by an easy and cost-effective 

monitoring of MRD in cancer patients. 

In addition, a new hypothesis emerges from the presented observations: molecular 

pan-tumoral aberrations may serve as the basis for a novel cancer nosology, shifting the 

focus away from prioritizing the tissue of origin. Hence, a more rational approach would 

involve universal genomic testing of all tumours, followed by (un)targeted proteo-

metabolomics analyses to detect unexpected druggable alterations or biomarkers. This 

strategy aims to enable a more accurate, personalized, and molecular-based 

management of the disease.
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7. CONCLUSIONS

1. The circulating metabolome of BC molecular subtypes shows significant

differences when compared to HC. This indicates that each phenotype of BC may have 

unique metabolic signatures to be used for both BC subtyping and diagnosis. 

2. Untargeted LC-HRMS-based metabolomics enables the identification of

molecular pathways involved in the metabolic dysregulation of BC phenotypes. The 

most relevant biological routes were the metabolism of glycerophospholipids and 

porphyrin related compounds.  

3. Temporal untargeted metabolomics combined with ASCA data analysis allows a

better understanding of metabolome dynamics during BC pathology process, serving as 

a valuable tool to decipher disease behaviour under a NACT regimen. 

4. Potential predictive biomarkers of response in the TN phenotype were identified

by the temporal untargeted metabolomics using ASCA data analysis. We found higher 

levels of DHA in baseline plasma of responders TN and higher conjugated-secondary 

BAs (glycodeoxycholic and glycohyocholic acids) at pre- and post-surgery time points. 

Assessing these compounds may allow for response monitoring, adjusting therapy to 

ensure that patients receive the most appropriate and effective treatment, tailored to 

their unique molecular profile. 

5. Using untargeted metabolomics, we identified significant differences in the

plasma metabolomic profiles of CRC patients before and after liver metastasis resection. 

The main molecular pathways implicated in these changes were related to the 

metabolism of taurine and hypotaurine, the biosynthesis of primary BAs, and the 

biosynthesis of phenylalanine, tyrosine and tryptophan. 

6. Identifying a predictive and prognostic metabolomic signature in CRLM patients

based on 13 metabolites enables precise risk stratification of disease progression. This 

model may help tailor post-surgical treatments and personalize follow-up strategies, 

ultimately improving patient outcomes and optimizing clinical resources. 

7. Eventually, untargeted metabolomics offers a promising tool for biomarker

discovery in cancer, laying the groundwork for the integration of metabolomic profiling 

into future molecular models that may become new resources to guide personalized 

treatment in precision oncology.  
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8. CONCLUSIONES

1. El metaboloma circulante de los subtipos moleculares del CM muestra diferencias

significativas en comparación con el de sujetos sanos. Esto indica que pueden existir 

firmas metabólicas exclusivas de cada fenotipo, que pueden utilizarse tanto para la 

subtipificación como para el diagnóstico. 

2. La metabolómica no dirigida mediante cromatografía líquida acoplada a

espectrometría de masas posibilita la detección e identificación de rutas moleculares 

involucradas en la desregulación metabólica de los subtipos del CM. Las rutas biológicas 

más relevantes implicadas están relacionadas con el metabolismo de los 

glicerofosfolípidos y los compuestos relacionados con la porfirina.  

3. La metabolómica no dirigida combinada con el análisis de datos longitudinales

mediante ASCA, permite una mejor comprensión de la dinámica del metaboloma 

durante el proceso patológico del CM. Siendo, además, una herramienta valiosa para 

descifrar el comportamiento de la enfermedad bajo un régimen de quimioterapia 

neoadyuvante.  

4. Identificamos potenciales biomarcadores predictivos de respuesta mediante

metabolómica temporal no dirigida y el análisis de datos ASCA. Encontramos niveles 

elevados de DHA en el plasma basal de pacientes TN respondedoras y niveles altos de 

ácidos biliares secundarios conjugados (ácidos glicodeoxicólico y glicohiocólico) en los 

tiempos pre- y postquirúrgicos. La evaluación de estos compuestos podría permitir la 

monitorización de la respuesta, ajustando la terapia para que las pacientes reciban la más 

adecuada y efectiva, adaptada a su perfil molecular único. 

5. Mediante metabolómica no dirigida, identificamos diferencias significativas en

los perfiles metabolómicos del plasma de pacientes con CCR antes y después de la 

resección de metástasis hepáticas. Las principales vías moleculares implicadas en estos 

cambios estaban relacionadas con el metabolismo de la taurina y la hipotaurina, la 

biosíntesis de ácidos biliares primarios y la biosíntesis de fenilalanina, tirosina y 

triptófano.
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6. La identificación de una firma metabolómica predictiva y pronóstica en pacientes 

con CCR y metástasis hepáticas, basada en 13 metabolitos, permite una estratificación 

precisa del riesgo de progresión de la enfermedad. Este modelo puede ayudar a adaptar 

los tratamientos postquirúrgicos y personalizar las estrategias de seguimiento, 

mejorando así los resultados de los pacientes y optimizando los recursos clínicos. 

7. Finalmente, se establece la metabolómica no dirigida como una herramienta 

prometedora para el descubrimiento de biomarcadores en cáncer, sentando las bases 

para la integración del perfilado metabolómico en futuros modelos moleculares que se 

conviertan en nuevos recursos para guiar el tratamiento personalizado en la oncología 

médica de precisión. 
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