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Abstract: Acute myeloid leukemia (AML) is an aggressive bone marrow malignancy that
can be cured only by intensive chemotherapy possibly combined with allogeneic stem cell
transplantation. We compared the pretreatment proteomic profiles of AML cells derived
from 50 patients at the time of first diagnosis with normal CD34+ bone marrow cells. A
comparison based on all AML and CD34+ normal cell populations identified 121 differen-
tially abundant proteins that showed at least 2-fold differences, and these proteins included
several markers of neutrophil differentiation (e.g., TLR2, the integrins ITGM and ITGX,
and downstream mediators including RHO GTPase, S100A8, S100A9, S100A22). However,
the expression of these 121 proteins varied between patients, and a subset of 28 patients
was characterized by increased long-term AML-free survival, signs of myeloid AML cell
differentiation, and favorable genetic abnormalities. These two main patient subsets (28
with differentiation versus 22 with fewer signs of differentiation) also differed with regard
to the phosphorylation of 16 differentially abundant proteins. Furthermore, we also clas-
sified our patients based on their expression of 16 proteins involved in the regulation of
iron metabolism/ferroptosis and showing differential expression when comparing AML
cells and normal CD34+ cells. Among the 22 patients with less favorable prognosis, we
could then identify a genetically heterogeneous subset characterized by adverse prognosis
(i.e., death from primary resistance/relapse) and an iron metabolism/ferroptosis protein
profile showing similarities with normal CD34+ cells. We conclude that proteomic profiles
differ between AML and normal CD34+ cells; especially, proteomic differences reflecting
differentiation and regulation of iron metabolism/ferroptosis are associated with risk of
relapse after intensive conventional therapy.

Keywords: acute myeloid leukemia; normal CD34+ bone marrow cells; hematopoiesis;
differentiation; integrin; Toll-like receptor; patient heterogeneity; intracellular signaling;
cellular communication; proteomics; mass spectrometry

1. Introduction
Acute myeloid leukemia (AML) is an aggressive malignancy characterized by the

proliferation of immature leukemia cells in the bone marrow [1]. Its incidence increases
with age [1–3], and the only potentially curative treatment is intensive chemotherapy
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possibly combined with allogeneic hematopoietic stem cell transplantation (allo-HSCT) [2].
However, such treatment is not possible for unfit patients and in the large group of elderly
patients due to the unacceptable risk of severe or fatal toxicities [4–6]. Thus, there is a
need for new therapeutic strategies to improve both the survival of younger patients with
resistant/relapsed AML and elderly/unfit patients with a high risk of severe toxicity [2,4–6].
New targeted therapies are therefore tried in the treatment of AML [4–9].

AML is a heterogeneous malignancy with regard to AML cell morphology/differentiation,
genetic abnormalities, and communication with neighboring nonleukemic cells in the bone mar-
row [1,2]. This heterogeneity is the basis for the subclassification of AML described in the WHO
2022 classification [1]. Despite the heterogeneity, there are also fundamental common biological
characteristics, e.g., bone marrow homing, limited signs of AML cell differentiation, and rapid
progression without treatment [1]. These last characteristics justify the therapeutic similarities
between the various patient subsets when using conventional intensive chemotherapy as well
as allo-HSCT [2]; the only exception being the acute promyelocytic (APL) variant [2].

The aim of this present study was to characterize the molecular consequences of
AML transformation by comparing primary AML cells with normal CD34+ bone mar-
row cells, i.e., a normal counterpart for this bone marrow malignancy that also shows
limited differentiation [10–15]. Furthermore, the acceptable intensity of AML therapy is
determined by the balance between antileukemic efficiency versus the risk of severe/fatal
toxicity, especially hematological toxicity, which is often dose-limiting and contributes to
treatment-related mortality [2,4,16–20]. One hypothesis could then be that an unfavorable
balance between anti-AML efficiency versus the risk of severe/lethal hematological toxicity
for certain therapeutic approaches is due to biological similarities between normal and
leukemic hematopoietic cells [20,21]. We would also expect proteomic differences between
normal and leukemic hematopoietic cells to reflect fundamental AML cell characteristics
and important mechanisms involved in leukemogenesis and possibly also chemoresistance
against conventional as well as new targeted therapies [2,22,23]. Finally, proteomic profiling
may become an alternative strategy for the evaluation of differentiation in AML cells. In this
context, we performed a preliminary/pilot study where we investigated whether proteins
showing differential expression when comparing normal and leukemic hematopoietic cells
can be used for patient subclassification and the identification of patient subsets that differ
in prognosis/survival after conventional intensive therapy. The present results suggest
that our identification of distinct patient subsets is relevant for the prognostication of
AML patients receiving conventional intensive chemotherapy, but this needs to be further
investigated and confirmed in larger clinical studies.

2. Materials and Methods
2.1. Patient and Cell Samples

We reanalyzed a previous liquid chromatography with tandem mass spectrometry
(LC–MS/MS)-characterized proteomic cohort including AML cells from 50 Caucasian
patients with non-APL variants of AML at the time of first diagnosis (Table 1) [24]. This
study included (i) all consecutive patients (acute promyelocytic leukemia being excluded)
from the same geographical area during a defined time period (1995–2012) and receiving
intensive conventional AML therapy (ii) with a high percentage of AML blasts among
circulating leukocytes (see below) who (iii) completed the planned intensive and potentially
curative antileukemic treatment. All patients had >20% AML cells among nucleated bone
marrow cells. The patient cohort did not include patients with the uncommon erythroid
and megakaryocytic AML variants.
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Table 1. A summary of important clinical and biological characteristics of the 50 AML patients
included in this present study.

Age (median, range, and IQR) 55 years (18–80) Cytogenetics (number) Favorable 6
IQR: 60 − 41 = 19 Intermediate 7

Adverse 8
Sex (male/female, number) 27/23 Normal 26

Unknown 3
Secondary AML (number) Chemotherapy 3

MDS 2 FLT3-ITD (number) 2 12
FLT3-TKD mutation (number) 2 4

FAB classification (number) M0 6 NPM1 insertion (number) 15
M1 9
M2 8 ELN 2022 classification Favorable 14
M4 15 Intermediate 5
M5 12 Adverse 13

Intermediate/adverse 12 3

CD34 positivity (number) 1 29 Unclassified 6 3

1 CD34 positivity defined as ≥20% positive cells by flow cytometry; four patients not examined. 2 Three patients
not tested for FLT3-ITD, five not tested for FLT3-TKD mutation, and three not tested for NPM1 insertions (TKD,
tyrosine kinase domain). 3 Extended mutational analyses were available only for 26 of the 50 patients. The group
intermediate/adverse prognosis means that these patients did not fulfill any of the ELN criteria for favorable
prognosis but they were not examined in an extended mutational analysis with regard to additional adverse
mutation as defined by ELN [2]. Unclassified means that the patients were examined neither for all ELN-defined
favorable prognostic factors nor for additional adverse prognostic mutations in an extended analysis (i.e., missing
karyotype or NPM1/FLT3/CEBPA analyses).

None of the patients received autologous stem cell transplantation. Some patients
received allogeneic stem cell transplantation according to national Norwegian guidelines;
the time for allotransplantation is indicated in Tables S8 and S13.

The patients were classified according to the 2022 ELN risk classification by genetics
at initial diagnosis [2] (Table 1). Only 26 patients were investigated with an extended
panel of AML-associated mutations, and for this reason, 11 patients were classified as
intermediate/adverse (i.e., absence of favorable genetic abnormalities) or unclassified
(missing karyotyping or analysis of NPM1/FLT3/CEBPA genetic abnormalities).

Enriched primary AML cells could be prepared by density gradient separation alone
from peripheral blood; all patients had ≥80% AML blasts among circulating leukocytes,
and gradient-separated cells therefore included ≥95% AML blast cells. After gradient
separation, the AML samples were cryopreserved according to a standardized protocol [25]
and stored in liquid nitrogen until use. Briefly, cells were dissolved in standardized RPM1
1640 culture medium (Stem Cell Technologies, Vancouver, BC, Canada) supplemented with
40% heat-inactivated fetal calf serum (FCS) (Stem Cell Technologies) before being placed
on ice; thereafter, an equal volume of cold medium with 20% dimethylsulfoxide (DMSO)
was gradually added over 5 min to reach the final concentrations of FCS 20% and DMSO
10%. The cells were thereafter transferred to storage for 24–72 h at −70 ◦C before being
transferred to liquid nitrogen. Cells were thawed at 0 ◦C and immediately transferred to
the proteomic solution (see also Section 2.2) [24,26].

Cryopreserved normal CD34+ bone marrow cells were derived from eight healthy
Caucasians (four men and four women; PromoCell GMBH; Heidelberg, Germany); their
age did not differ from the AML patients (median age, 50.5 years; range, 41–55 years;
interquartile range (IQR), 50.5 − 43.25 = 7.25). These cells were also cryopreserved in
10% DMSO. The proteomic analyses of the normal CD34+ cells have not been published
previously but are available at ProteomeXchange, data identifier PXD058846.
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2.2. Proteomic Analysis

Our methods have been described in detail previously [24,26,27], and we thus tested
several sample preparation workflows [27]. These experiments included double ver-
sus single-digestion and in-solution versus filter-based digestions for proteome analysis,
metal oxide affinity chromatography (MOAC), immobilized metal affinity chromatography
(IMAC), and sequential elution from IMAC (SIMAC) for phosphoproteome analysis [28–31].
The results showed that FASP procedures produced the highest number of quantified pro-
teins with a reduced number of missed cleavages. IMAC was selected because it produced
the highest number of quantified phosphopeptides, even though MOAC, IMAC, and
SIMAC protocols isolated different phosphoproteoforms.

Quantitative proteomics of the AML patients and CD34+ cells was performed accord-
ing to the label-free quantification (LFQ) approach. Proteome extraction was carried out in
4% sodium dodecyl sulfate (SDS) and 0.1 M Tris-HCl (pH 7.6) with immediate boiling to
inactivate proteases and phosphatases. Samples were reduced with 0.1 M of dithiothreitol
(DTT) and alkylated with 50 mM iodacetamide (IAA) before being digested in a filter
unit according to the filter-aided sample preparation (FASP) procedure, adding trypsin to
50 mM ammonium bicarbonate in a 1:50 ratio [32,33]. Quantitative phosphoproteomics
was carried out with samples spiked with a super-SILAC (stable isotope labeling by amino
acids in cell culture) mix [34]. The phosphoproteomics samples were FASP-processed
and enriched for phosphopeptides using the IMAC approach [24]. LC–MS/MS runs were
carried out with a Q Exactive HF Orbitrap mass spectrometer coupled to an Ultimate 3000
Rapid Separation liquid chromatography (LC) system. LC–MS/MS methods have been
described in detail previously as Supplementary Information [24]. In brief, LC–MS/MS
raw files for primary AML cells and normal CD34+ bone marrow cells were processed
with MaxQuant software (version 1.5.2.8). The spectra were searched against the concate-
nated reverse-decoy Swiss-Prot Homo sapiens database (downloaded on 5 November 2015)
utilizing the Andromeda search engine. Relative label-free quantification was performed
using the MaxLFQ algorithm [35], with the LFQ count set to 1. This algorithm normalizes
protein intensities based on peptide ratios measured in all pairwise comparisons within
the entire sample batch. The MaxQuant parameters were configured as follows: cysteine
carbamidomethylation was set as a fixed modification, while methionine oxidation, pro-
tein N-terminal acetylation, and Gln→pyro-Glu were included as variable modifications.
Trypsin was stated as the digestion protease. The false discovery rate (FDR) was set at
0.01 for both peptides and proteins, and a minimum peptide length of six amino acids was
required. Additionally, the match-between-runs and re-quantify options were enabled.

All proteomic raw data and MaxQuant output files together with the phosphopro-
teomic raw data can be found in the ProteomeXchange consortium with the dataset identi-
fiers PXD014997 and PXD058846.

2.3. Morphological, Cell Surface Marker and Genetic Subclassification of AML Patients

The FAB classification is regarded as a standardized and well-described system to
characterize and classify patients with regard to AML cell differentiation [36,37]. In our
present study, we defined monocytic differentiation as FAB-M4/M5, neutrophil differenti-
ation as FAB-M2, and undifferentiated as FAB-M0/M1. No erythroid or megakaryocytic
variants (i.e., FAB-M6/M7 AMLs) were included.

Cell surface markers were analyzed with flow cytometry and the karyotype with
standard cytogenetic analysis. Analyses of FLT3 and NPM1 mutations have been described
previously [38]. Submicroscopic mutational profiling of 54 genes frequently mutated in
AML was performed using the Illumina TruSight Myeloid Gene Panel and sequenced using
the MiSeq system and reagent kit v3 (Illumina, San Diego, CA, USA) [38].
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2.4. Statistical and Bioinformatical Analyses

Our various bioinformatical analyses are summarized in the flow chart in Figure 1.
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The Perseus 2.0.7.0 platform was used for functional and statistical analyses of pro-
teomics and phosphoproteomics data [39]. Patient subset data were normalized by using
width adjustment. A Welch’s t-test with Benjamini-Hochberg correction (i.e., FDR < 0.01)
was performed to test for significant difference between means of compared groups. Z-
statistics were carried out on the Welch’s t-test regulated proteins to identify proteins with
significantly different fold changes [40]. A flow chart summarizing the various bioinfor-
matical analyses and their presentation in our study is given in Figure 1.

Welch’s t-test with p-value < 0.05 was performed to test for significantly differentiated
phosphorylation sites between compared groups. Reactome pathway, Gene Ontology (GO),
and KEGG pathway enrichment analyses were obtained with the Enrichr gene set search
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engine [41–44]. Protein–protein interaction (PPI) network analyses were performed with
the STRING database version 11.5. Networks were visualized using the Cytoscape platform
v3.10.0 [45]. GraphPad v8.0.1 and the Perseus platform were used to make the volcano plot
and the heatmap, respectively.

3. Results
3.1. Primary AML Cells at the Initial Diagnosis Show Increased Abundance of Several Neutrophil
Differentiation Biomarkers Compared with Normal CD34+ Bone Marrow Cells; Results from an
Initial Statistical Comparison

The total proteomic profiles for all 50 AML patients and eight normal CD34+ bone
marrow cell populations were compared. We first used Welch’s t-test with Benjamini–
Hochberg correction (i.e., FDR < 0.01) based on only those proteins with at least 70% valid
values both for leukemic and normal cells. A total of 891 proteins showed a statistically
significant difference (i.e., p < 0.05); this included 184 proteins with at least a 2-fold median
increase for the AML cells (Table S1) and 199 proteins showing at least a 2-fold increase for
the CD34+ normal bone marrow cells (Table S2).

The 10 top-ranked Reactome terms for the 184 significant proteins with at least 2-fold
increased levels in AML cells are listed in Table S3 together with the corresponding dif-
ferentially abundant proteins for each of these terms. The terms reflecting neutrophil dif-
ferentiation/innate immunity included a relatively large number of overlapping proteins,
whereas fewer proteins were included in terms reflecting integrin function, endothelial cell
function, and RHO signaling, respectively. There was a considerable overlap of proteins be-
tween each of these last minor groups and the terms reflecting neutrophil functions/innate
immunity. These top 10 Reactome terms included 79 of the 184 proteins with increased
levels in the AML cells.

The top-ranked Reactome terms for the 199 proteins with an at least 2-fold in-
crease in normal CD34+ bone marrow cells reflected nucleotide metabolism/synthesis
(purine ribonucleotide monophosphate biosynthesis, metabolism of nucleotides, nucleotide
biosynthesis), regulation of DNA functions/mitosis (DNA strand elongation, activation
of pre-replicative complex, mitotic G1 phase, and G1/S transition), and integrin signal-
ing (p130CAS linkage to MAPK signaling for integrins, BRB2:SOS provides linkage to
MAPK signaling for integrins) (Table S4). However, these terms included only 33 of the
199 proteins with high levels in the CD34+ cells.

We conclude that the differentially abundant protein identified in this initial com-
parison of AML and normal CD34+ cells shows extensive biological diversity. The main
difference was that proteins with increased levels in AML cells mainly reflected limited
myeloid/neutrophil differentiation, whereas proteins with increased levels in normal
CD34+ cells reflected a different regulation of cellular proliferation and integrin-associated
intracellular MAPK signaling.

3.2. Proteomic Comparison of AML Cells at Initial Diagnosis and Normal CD34+ Bone
Marrow Cells: High Expression of Neutrophil Markers in the AML Cells and High Levels
of Platelet/Coagulation Biomarkers in Normal Cells

Our initial strategy was the comparison of the protein levels for all 50 AML patients
and the eight normal CD34+ bone marrow cell populations by using Welch’s t-test with
Benjamini–Hochberg correction (i.e., FDR < 0.01) as described in Section 3.1. As an alterna-
tive and additional statistical strategy to our previous use of a fold change cut-off value
(i.e., 2-fold; see Section 3.1) we conducted a significant fold change difference analysis
(Z-statistics) of the 891 proteins identified in the initial step analysis described in Section 3.1.
By using this approach, we identified only 48 proteins with significantly increased levels in
AML cells and 73 proteins with increased levels in the normal CD34+ bone marrow cell
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populations (Table S5; see also Figure 2); all these proteins were among the most significant
in Welch’s t-test with Benjamini–Hochberg correction (as indicated in Tables S1 and S2).

Proteomes 2025, 13, 11 7 of 32 
 

 

3.2. Proteomic Comparison of AML Cells at Initial Diagnosis and Normal CD34+ Bone Marrow 
Cells: High Expression of Neutrophil Markers in the AML Cells and High Levels of 
Platelet/Coagulation Biomarkers in Normal Cells 

Our initial strategy was the comparison of the protein levels for all 50 AML patients 
and the eight normal CD34+ bone marrow cell populations by using Welch’s t-test with 
Benjamini–Hochberg correction (i.e., FDR < 0.01) as described in Section 3.1. As an al-
ternative and additional statistical strategy to our previous use of a fold change cut-off 
value (i.e., 2-fold; see Section 3.1) we conducted a significant fold change difference 
analysis (Z-statistics) of the 891 proteins identified in the initial step analysis described in 
Section 3.1. By using this approach, we identified only 48 proteins with significantly in-
creased levels in AML cells and 73 proteins with increased levels in the normal CD34+ 
bone marrow cell populations (Table S5; see also Figure 2); all these proteins were among 
the most significant in Welch’s t-test with Benjamini–Hochberg correction (as indicated 
in Tables S1 and S2). 

 

Figure 2. Proteomic differences between primary AML cells derived from 50 patients and normal 
CD34+ bone marrow cells derived from eight healthy individuals. A total of 891 differentially 
abundant proteins were identified in the initial statistical analysis but only 121 of these proteins 
showed significant fold change differences (Z-statistics). The analyses presented in the figure are 

Figure 2. Proteomic differences between primary AML cells derived from 50 patients and normal CD34+

bone marrow cells derived from eight healthy individuals. A total of 891 differentially abundant proteins
were identified in the initial statistical analysis but only 121 of these proteins showed significant fold
change differences (Z-statistics). The analyses presented in the figure are based on these 121 proteins.
(A) The figure presents the Gene Ontology (GO), Reactome, and KEGG analyses for the 48 (upper plot)
and 73 (lower plot) proteins that showed increased and decreased (i.e., increased in normal CD34+ cells)
levels in primary AML cells, respectively. (B) The volcano plot is based on all 891 differentially abundant
proteins. The colored dots represent proteins with adjusted p-values < 1 × 10−6 (see the y-axis); red dots
represent increased levels in primary AML cells (i.e., AML cell/CD34+ cell > 1.0); blue dots represent
proteins with increased levels in the normal CD34+ bone marrow cells. Abbreviations: BP, biological
process; CC, cellular compartment; FC, fold change; MF, molecular function.

Reactome analysis (Figure 2A) of the 48 AML-associated proteins showed enrichment
of proteins reflecting neutrophil degranulation (21 proteins) and innate immunity (17 over-
lapping proteins). The cellular compartment (CC) GO terms also reflected differences
consistent with neutrophil differentiation, i.e., granular/vesicular lumen. Furthermore, the
top four Reactome terms for the AML cells also included the terms RHO GTPases activate
NADPH oxidases (four proteins) and antimicrobial peptides (five proteins) (Figure 3).
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The top-ranked terms from the other GO term analyses (biological process, BP; molecular
function, MF) and the KEGG analysis showed lower significance than the Reactome/CC
terms (Figure 2A).
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marrow cell fold change comparison (Z-statistics, p < 0.05)—an overview of proteins included in
the top-ranked Reactome terms (see Figure 2A,B). The Reactome terms are given at the top of
the figure. The left part of the figure shows the proteins included in the two overlapping terms
neutrophil degranulation (R-HSA-6798695, 21 proteins) and innate immune system (R-HAS-168249,
17 overlapping proteins), presented in yellow as a single column, and the two terms (left middle)
RHO GTPases activate NADPH oxidase (middle–left, R-HAS-5668599) and antimicrobial peptides
(middle–right R-HAS-6803157) presented in green. All these terms were enriched in the primary
AML cells. The right column in purple shows all proteins with increased levels in normal CD34+ cells
and included in the overlapping Reactome terms p130Cas linkage to MAPK signaling for integrins
R-HAS-372708, platelet aggregation (plug formation) R-HAS-76009, integrin signaling R-HAS-354192,
and signaling by high-kinase activity BRAF mutants R-HAS-6802948 (see Figure 2A).

The analyses of normal CD34+ bone marrow cells reflected increased levels of a
relatively small number of proteins involved in coagulation/platelet activation; the four top-
ranked Reactome terms included a total of six proteins out of the seventy-three significantly
increased proteins in CD34+ cells (Figure 3). The terms identified by GO, Reactome,
and KEGG analyses of these 73 proteins showed generally lower significance than the
Reactome/CC terms for the AML cells (Figure 2).

Based on these analyses, our conclusion is the same as for the analysis described
after the first statistical analysis described in Section 3.1—differentially abundant proteins
between AML and normal CD34+ cells show large biological diversity with the main char-
acteristic being an increased expression of proteins reflecting limited myeloid/neutrophil
differentiation of the AML cells, whereas the increased levels of regulators of the prolifera-
tion/cell cycle possibly reflect the immature/stem cell status of the CD34+ cells.

3.3. Analysis of Differentially Abundant Proteins by Volcano Plot Analysis; Identification of
Neutrophil Differentiation Markers as Well as Regulators of Cellular Metabolism Including
Iron Metabolism

We conducted a volcano plot analysis of the 121 differentially abundant proteins iden-
tified after the fold change significance analysis (Figure 2B). Only ten biologically diverse
proteins (five increased in AML and five in CD34+ cells) showed a marked differential
expression, including myeloid differentiation markers (HBA1, HBB, PRG2, and possibly
the antimicrobial PRGT); regulators of lipid (ALDH1A1, PLBD1), amino acid (PHGDH,
possibly APCS), and iron (TF) metabolism; and transcriptional regulators (HIST1H1E,
possibly APCS) (Table S6). Thus, this analysis also identified several differentiation markers
but, in addition, a few metabolic and functional DNA/transcriptional regulators.

3.4. Analysis of Protein–Protein Interaction Networks; Identified Networks Involve Regulators of
Intracellular Signaling, Platelet Function, and Iron Metabolism, as Well as Transcription and
DNA Repair

Protein–protein interaction (PPI) network analyses based on the 121 differentially
abundant proteins from the fold change significance analysis identified only four networks
with at least three members (Figure 4):

• Regulation of MAPK cascade. This network included nine proteins, three of them
showing increased levels in primary AML cells. Differences in regulators of integrin-
associated MAPK regulators were also identified in our first global analysis (see
first Section 3.1 of Results and Table S4, right columns).

• Nitric oxide transport. The network included the two hemoglobin chains also identified
in the volcano plot together with the hemoglobin-binding protein haptoglobin.

• Base excision repair. This network included three proteins with decreased levels in
AML cells.
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• Aldehyde dehydrogenase. This network included three proteins with decreased levels in
AML cells.
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Figure 4. Significant protein–protein interaction networks (upper part) and pairs (lower part)
identified based on the analysis of 121 regulated proteins showing fold change (FC) significance
between primary AML cells derived from 50 patients and normal CD34+ bone marrow cells derived
from eight healthy individuals.

Thus, only one relatively large network was identified, suggesting that the intracellular
molecular context of MAPK signaling is different for primary AML cells compared with
normal CD34+ bone marrow cells. Only 18 out of 121 differentially abundant proteins were
included in these four networks.

We identified seven additional pairs of interacting proteins. Three pairs included
proteins that were increased in the AML cells, including (i) one pair with two integrin alpha
chains and (ii) two pairs with three proteins (S100A8, S100A9, and AHNAK) involved in
signaling/calcium metabolism. Furthermore, four pairs were decreased in AML cells, and
these are referred to as platelet-associated proteins (GP1BA and GP1BB), iron metabolism
(transferrin and its receptor), cell cycle/histone regulation (CDK1, H1F0), and two members
of the family structural maintenance of chromosomes (SMC) that modulate chromosome
structure during mitosis (SMC2, SMC4). However, only 33 of the 121 proteins were included
in interacting networks/pairs, an observation suggesting that the identified 121 proteins
show a considerable biological heterogeneity.

3.5. Even Proteins Showing Strong Differential Abundance When Comparing AML and CD34+

Cells, in General, Vary Between Individual Patients and Can Be a Basis to Identify AML
Patient Subsets

We conducted an unsupervised hierarchical clustering analysis based on the 121
differentially abundant proteins identified after Z-statistics (Figure 5). The differentially
abundant proteins were separated into two main clusters (see left part of the figure, referred
to as platelet activation and neutrophil degranulation, respectively), and both main clusters
could be further subdivided into two subclusters. The upper main cluster included those
proteins that reflected platelet activation/function in the Reactome analysis (Figure 2A;
Table S6), and all these proteins were located in the lower subcluster (Table S7). On the other



Proteomes 2025, 13, 11 11 of 30

hand, the lower main protein cluster included the large majority of proteins reflecting the
terms neutrophil degranulation/innate immune system, RHO GTPases activate NADPH
oxidases and antimicrobial peptides in the Reactome analysis (Figure 2B, Table S6), and the
large majority of these proteins were included in the lower subcluster (Table S7).
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Figure 5. Hierarchical clustering analysis based on the proteomic profile for primary AML cells
derived from 50 patients and eight CD34+ bone marrow cell populations derived from healthy
individuals (HI). The clustering of normal and leukemic cells is shown at the top of the figure; the
clustering of the 121 differentially abundant proteins after analysis of fold change significance (Z-
statistics) is shown in the left part of the figure. The ranking of patients from left to right is presented
in Table S7 and the ranking of the proteins from the top to bottom is presented in Table S8. The two
main protein clusters are referred to as platelet activation and neutrophil degranulation due to their
inclusion of proteins classified in Reactome terms that reflect these processes (see Tables S6 and S7).

The normal CD34+ bone marrow cell samples formed a separate main cluster in this
analysis; see the top of Figure 5 to the right. The primary AML cell samples formed the large
left main cluster that could be further subdivided into several subclusters. Furthermore,
this analysis showed that patients could be divided into two main subsets based on the
expression of a subset of proteins showing generally high levels when comparing the total
AML and CD34+ cell populations (the lower protein main cluster; see left part of Figure 5).
The 22 patients on the left showed a generally lower expression of these proteins compared
with a higher expression in the 28 patients on the right.

The clinical and biological characteristics of these two patient subsets are presented
in Table S8 and are compared/summarized in Table S9. The 28-patient subset on the
right had a significantly lower age (Table S9; Fisher’s exact test, p = 0.00076), a lower
frequency of undifferentiated FAB-M0/M1 leukemic cells (p = 0.0003), a lower frequency
of CD34+ AML cell populations (p = 0.0307), higher frequencies of favorable (p = 0.0312)
and favorable/normal karyotypes (p = 0.0299), a lower frequency of refractory/relapsed
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disease (p = 0.0365), and a higher frequency of long-term AML-free survival (p = 0.0016)
compared with the 22-patient subset on the left. These associations are mainly caused by
several patients with a favorable karyotype (i.e., inv(16)) who clustered close to each other
among the 28-patient subset on the right.

We compared the two clusters with regard to peripheral blood blast count and the
percentage of AML blast cells among the nucleated bone marrow cells. The 28 patients
in the neutrophil degranulation/differentiation cluster showed a significantly higher pe-
ripheral blood blast count (median 42.5 × 109/L, range 4–357 × 109/L, IQR 71.0 − 29.5 =
41.5 × 109/L) than the other 22 patients (median 23 × 109/L, range 5–231 × 109/L, IQR
47.25 − 10.75 = 36.5 × 109/L; Mann–Whitney U test, p = 0.026). In contrast, the percentage
of bone marrow blasts did not differ between the 28 neutrophil differentiation patients
(median 76.5%, range 30–97%, IQR 85.75 − 60.50 = 25.25) and the other 22 patients (median
83.5%, range 25–99%, IQR 95.00 − 58.25 = 35.25).

Cryopreservation and storage in liquid nitrogen can lead to a reduced abundance of mem-
brane molecules [46]. Several of the identified neutrophil differentiation markers included
in the clustering analysis are cell surface molecules. We, therefore, compared the cell stor-
age times for the left 22-patient main cluster (median 86 months, range 60–240 months, IQR
139 − 66 = 73 months) and the right 28-patient main cluster with the neutrophil differentiation
patients (median 131 months, range 60–245 months, IQR 225.00 − 72.25 = 152.25 months).
This difference was not statistically significant.

3.6. Additional Phosphoproteomic Differences of the 121 Differentially Abundant Proteins from the
AML/CD34+ Cell Comparison: A Comparison of the Two Patient Subsets Identified in the
Proteomic Clustering Analysis of These 121 Proteins

Primary AML cells derived from 41 of the 50 patients were included in a previous
phosphoproteomic study [24]; 23 of these patients belonged to the larger main subset
(Figure 5, the 28 patients on the right) and the other 18 patients belonged to the smaller
main subset (Figure 5, the 22 patients on the left). We observed detectable phosphorylation
for 38 of the 121 differentially abundant proteins identified in our proteomic comparison of
primary AML cells and normal CD34+ bone marrow cells (i.e., proteins with a fold differ-
ence exceeding 2.0; see above). These 38 proteins had 174 detectable phosphorylated sites.
Next, we conducted a statistical comparison (Welch’s t-test) of the phosphorylation level for
these 174 phosphosites/38 differentially abundant proteins between the two patient subsets
identified in the unsupervised hierarchical clustering analysis presented in Figure 5 (i.e.,
23 of the 28 right patients versus 18 of the 22 left patients; see first chapter of this section).
This analysis identified a total of 53 differentially phosphorylated sites in 16 proteins that
differed significantly between these two patient subsets. These differing phosphosites are
presented in Tables 2 and S10; important characteristics of the 16 phosphoproteins are
presented in Table S11.
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Table 2. Protein phosphorylation of primary human AML cells derived from two patient subsets
(see Figure 5); the identification of protein phosphorylation sites that (i) were detected in a subset
of the 121 differentially abundant proteins (i.e., 38 proteins) that showed at least a 2-fold difference
when comparing the levels in AML cells and normal CD34+ cells; (ii) in addition, a statistically
significant difference when each identified phosphosite was compared between the two patient
subsets identified in the clustering analysis is presented in Figure 5 (i.e., 23/28 right versus 18/22 left
patients). The first criterion (i) identified 174 phosphosites in 38 of the 121 differentially abundant
proteins; 53 of these phosphosites in 16 of the differentially abundant proteins also fulfilled the second
criterion (ii) and are listed in the table. The table presents the gene name, protein name, number of
phosphosites, and the possible functional importance of the protein phosphorylation status for each
of these 16 proteins. The gene names for proteins showing increased levels in normal CD34+ cells are
underlined and marked in italics (see the left column).

Gene Name Protein Name Number of Sites Effects of Protein Phosphorylation

AHNAK Neuroblast differentiation-
associated protein AHNAK 25

Altered compartmentalization and
molecular interactions; modulates stem

cell differentiation [47–50]

ANXA2 Annexin A2; Putative annexin
A2-like protein 1 Effect on chemosensitivity, possibly also

AML prognosis [51–53]

APOBR Apolipoprotein B receptor 3 -

DBN1 Drebrin 1 Actin organization, Mg2+ transport [54–56]

DUT Deoxyuridine 5′-triphosphate
nucleotidohydrolase, mitochondrial 1 Possibly no effect on the

enzymatic activity [57]

GP1BB Platelet glycoprotein Ib beta chain 1 -

ITPR1 Inositol 1,4,5-trisphosphate
receptor type 1 1 Cellular calcium homeostasis [58,59]

KCTD12 BTB/POZ domain-containing
protein KCTD12 1 Cell cycle regulation;

cancer support [60]

MSL1 Male-specific lethal 1 homolog 1 Epigenetic regulation in cancer [61]

PBXIP1 Pre-B-cell leukemia transcription
factor-interacting protein 1 1 -

PLEC Plectin 7 Mitosis/centrosome localization [62]

PRKCD Protein kinase C delta type 2 Phosphorylation profile is important for
molecular interactions [63–65]

RCOR3 REST corepressor 3 3 -

SMC4 Structural maintenance of
chromosomes protein 4 1 Multisite mitosis-associated

phosphorylation [66–69]

STMN1 Stathmin 2

Cancer chemoresistance and progression,
stemness marker, and PI3K target.

Possibly an adverse prognostic impact in
hematological malignancies,

including AML [70–74]

TOP2A DNA topoisomerase 2-alpha 2 Regulation of S phase entry, targeted by
etoposide and mitoxantrone [75,76]

Based on the data presented in Table 2 and Tables S10 and S11, the following main
observations were made:

• Three of these 16 proteins are regarded as markers of neutrophil differentiation
(ANXA2, ITPR1, and PRKCD; see Figure 3).
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• For seven of these sixteen proteins, differences were detected for at least two phospho-
sites, i.e., the phosphorylation profile differed and not only in the phosphorylation of
a single site.

• For certain proteins, opposite differences/effects on various phosphosites were ob-
served, i.e., AHNAK, PLEC, and TOP2A (see Table S10).

• For other proteins, the total protein level was increased/decreased in one direction
between the two patient subsets, whereas the level of (certain) phosphorylations
was altered in an opposite direction (AHNAK, ITPR, PBXIP1, PLEC, TOP2A); these
observations show that altered phosphorylation reflects the altered regulation of
phosphorylation and not the difference in total protein level.

• Some of these phosphosites seem important for molecular compartmentalization (AH-
NAK) or molecular interactions/intracellular signaling (AHNAK, ANXA2, GP1BB,
ITPR1, PLEC, PRKCD, STMN1).

• The phosphorylation status also seems important for the regulation of fundamental
cellular processes, especially cell cycle regulation/cell growth (ANXA2, KCTD12,
PLEC, PRKCD, SMC4, TOP2A) but also stemness/stem cell differentiation (AH-
NAK, STMN1), survival/chemosensitivity (ANXA2, DUT, PRKCD, TOP2A), cy-
toskeleton functions (DBN1, PLEC), electrolyte balance/transport (DBN1, ITPR1),
nucleotide metabolism (DUT), cell migration (AHNAK), nutrition (APOBR), and
epigenetic/transcriptional regulation (MSL1, PBXIP1, RCOR3, TOP2A).

• Some of the proteins seem to be implicated in carcinogenesis (KCTD12, MSL1, PBXIP1,
PRKCD, STMN1) and even AML chemosensitivity (ANXA2, STMN1, TOP2A).

To conclude, primary AML cells and normal CD34+ bone marrow cells show com-
plex differences in their proteomic profiles, and this complexity is further increased by
additional variations between patient subsets with regard to post-translational modula-
tion/phosphorylation for 16 of the 121 differentially abundant proteins.

3.7. Variation of the Biological Context of Transferrin and Transferrin Receptors That Are Both
Differentially Abundant When Comparing Normal and Leukemic Hematopoietic Cells;
Identification of a Patient Minority Whose AML Cells Show Similarities with Normal Cells in
Regulation of Cellular Iron Utake

Our statistical comparison of primary AML cells and normal CD34+ bone marrow cells
showed that both transferrin and the transferrin receptor were differentially abundant with
low levels in the leukemic cells; transferrin was then the protein with the lowest p-value
and its receptor also showed a highly significant decrease (Figure 4, Table S2). Transferrin
and its receptor constitute the main mechanism for the cellular uptake of iron [77–79].
Furthermore, iron metabolism and the regulation of iron-dependent ferroptosis seem to
have a prognostic impact on human AML [80–88]. For these reasons, we compared iron
metabolism in AML cells and normal CD34+ bone marrow cells in more detail.

The Reactome term “Iron metabolism” and the KEGG term “Ferroptosis” included
only three of the 121 differentially abundant proteins showing at least a 2-fold difference
when comparing AML cells and normal CD34+ bone marrow cells and, in addition, being
identified in the z-score analysis (Tables S1, S2 and S5). However, 13 additional iron
metabolism/ferroptosis proteins also showed statistically significant (Welch’s t-test with
Benjamini–Hochberg correction) but without being identified in the z-score analysis (see
figure legend). Our comparison of iron metabolism/ferroptosis regulation in primary AML
cells and normal CD34+ bone marrow cells was, therefore, based on these 16 proteins
(Table S12). The identified proteins are involved in the regulation of cellular iron uptake
and intracellular endosomal release (TFRC, TF, ACO1, several V-ATPase components),
regulation of iron homeostasis (ACO1), and/or various steps/characteristics of ferroptosis—
i.e., altered regulation of cellular iron metabolism/handling (TFR, TFRC, ACO1, CUL1,
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CAND1), altered redox balance (GLRX3), altered lipid metabolism (ACSL1), and protein
ubiquitination/degradation (RPS27A, CAND1, CUL1, NED8, ATG7) (Table S12, [80–94]).

We conducted an unsupervised hierarchical clustering analysis based on the 16 differ-
entially abundant metabolic/ferroptotic proteins identified as described above (Figure 6).
The proteins are listed to the left in the figure. Only three proteins, TF, TFRC (both in-
creased in normal cells), and ATP6V0D1 (higher in AML cells), showed ≥2-fold differences
when comparing leukemic and normal cells, whereas the other 13 differentially abundant
proteins showed <2-fold differences that still reached statistical significance (p < 0.05) when
comparing the two complete groups. It can be seen that the left main cluster included a
majority of 40 AML patients (indicated by blue color), whereas the right minor main cluster
had one right subcluster that included the eight normal CD34+ cell populations (indicated
by corn silk color at the top of the figure) and another subcluster that included 10 AML
patients (blue color).
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normal cells (although the common clustering reflects certain similarities) and from the 
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Figure 6. Hierarchical clustering analysis based on the 16 metabolic/ferroptotic proteomic profiles
for primary AML cells derived from 50 patients and eight CD34+ bone marrow cell populations
derived from healthy individuals (HI). This analysis is based on the expression of 16 proteins
(i) that were abundant in at least 70% of the AML cell populations or normal CD34+ bone marrow
populations, and (ii) differed significantly in the Welch’s t-test with Benjamini–Hochberg correction
when comparing leukemic and normal cells. The clustering of normal (corn silk color) and leukemic
cells (blue color) is shown at the top of the figure. The ranking of patients from left to right is shown
at the top of the figure and is also presented in Table S13. All proteins included in the analysis are
known regulators of iron metabolism/ferroptosis according to the Reactome/KEGG classifications.
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They included (i) three proteins showing significance after the Z-statistics analysis (TF, TFRC,
ATP6V0D1); (ii) five proteins showing significance in the Welch’s t-test with Benjamini–Hochberg cor-
rection and, in addition, a fold change corresponding to >2.0 (ACO1, ACSL1, ATP6V1G1, ATP6V1E1,
ATG7); and (iii) eight proteins showing significance in the Welch’s t-test with Benjamini–Hochberg
correction but having a lower fold change (RPS27A, GLRX3, CAND1, CUL1, PCBP1, NEDD8,
ATP6V1A, ATP6V1B2).

It can be seen from Figure 6 that the minority of 10 patients clustering together with
the normal CD34+ bone marrow cells differed in their proteomic profile both from the
normal cells (although the common clustering reflects certain similarities) and from the
40 other AML cell populations. Thus, we identified a minority of 10 AML patients whose
leukemic cells showed a different iron metabolism/ferroptosis protein profile compared
with cells derived from the other 40 patients and from the eight normal individuals. The
similarities between the 10 exceptional AML patients and the healthy individuals especially
included the absorption pair transferrin/transferrin receptor and V-ATPase components
that are important for vacuolar acidification and thereby intracellular iron release [77–79].

We compared the clinical and biological characteristics of this minority of 10 AML
patients (i.e., the right AML subcluster) with the other 40 patients (the left main cluster).
First, all 10 of the exceptional patients had high-risk/chemoresistant AML (i.e., primary
resistance or death from later resistant relapse), whereas 18 of the 40 other patients reached
long-term AML-free survival (Fisher’s exact test, p = 0.0085). Second, the minority of
10 patients (median age 62 years; range 29–80 years; IQR 67.25 − 57.50 = 9.75) had a higher
age than the 40 patients in the left main cluster (median 46 years; range 18–67 years; IQR
57.00 − 37.25 = 19.75; Mann–Whitney U-test, p = 0.00214). Finally, the 10 AML patients
in the right main cluster and the 40 other patients in the left main cluster did not differ
significantly with regard to:

• Male versus female ratio.
• A low frequency of secondary AML.
• Morphological signs of differentiation, i.e., frequency of monocytic FAB-M4/M5 AML

variants (Fisher’s exact test, p = 0.1548).
• Number of patients with at least 20% AML cells expressing the CD34 stem cell marker

(p = 0.0706).
• Even though all six patients with the favorable inv(16) karyotype were localized in

various subclusters among the left 40 patients, this difference did not reach statisti-
cal significance.

• Other cytogenetic abnormalities did not differ significantly between the two main
AML patient subsets; both subsets showed heterogeneity with regard to karyotype.

• The frequencies of FLT3-ITD or NPM1-INS did not differ.
• Both groups were heterogeneous with regard to the ELN risk classification by genetics

at the time of initial diagnosis [2] (see Tables 1 and S13). The minority of 10 patients
in the right main cluster included three patients with ELN adverse prognosis, four
patients with intermediate/adverse prognosis, and one patient for each of the three
groups: favorable, intermediate, and unclassified.

• The peripheral blood blast count of the 10 patients that were clustered together with
normal CD34+ cells (median 26.0 × 109/L, range 5–71 × 109/L, IQR 49.75 − 9.75 =
40.0 × 109/L) did not differ significantly from the other 40 AML patients (median
33.5 × 109/L, range 4.0–351 × 109/L, IQR 99.5 − 27.5 = 72.0 × 109/L). Similarly,
the percent AML blasts in the bone marrow did not differ between the minor subset
of 10 patients (median 63.5%, range 25–99%, IQR 95.00 − 49.25 = 45.75%) and the
majority of 40 patients (median 83.5%, range 25–99%, IQR 86 − 53 = 33) in the other
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main cluster. These observations suggest that there is no major difference between the
two patient subsets with regard to AML cell burden.

• All 10 patients clustering together with the normal CD34+ cells belonged to the left
22-patient cluster/subset identified in Figure 5 (see Table S8). Thus, in the 121-protein
clustering a subset of 22 patients was identified that showed few signs of differentiation
and adverse prognosis (i.e., decreased frequency of long-term survival), and in this sec-
ond clustering analysis (Figure 6) based on regulators of iron metabolism/ferroptosis,
a subset among these 22 patients (i.e., patients with fewer signs of differentiation) was
identified with a particularly high-risk disease/adverse prognosis.

To summarize, our iron metabolic/ferroptotic clustering analysis based on these
16 differentially abundant proteins identified a heterogeneous minority of elderly patients
with chemoresistant AML; these patients were heterogeneous both with regard to AML
cell differentiation, CD34 expression, karyotype, FLT3-ITD, and NPM1-INS. Thus, the
significant difference in long-term AML-free survival between these two patient subsets
cannot be explained by different frequencies of other prognostic parameters.

4. Discussion
We compared the proteomic profiles for primary human AML cells and normal CD34+

bone marrow cells. Even though the two groups differed with regard to the expression
of several neutrophil markers and regulators of iron metabolism/ferroptosis, the patients
were heterogeneous even with regard to the expression of these markers.

4.1. Methodological Considerations

Our study included 50 consecutive patients receiving intensive AML therapy; they
came from a defined geographical area during a defined time period [24]. Our study should,
therefore, be regarded as a population-based study of AML patients with a high percentage
of AML cells among circulating leukocytes. The morphological classification of differentia-
tion was performed according to the FAB/WHO 2016 classification that represents a stan-
dardized system describing detailed and updated morphological/biological/diagnostic
criteria for the subset “AML not otherwise specified”, including how various subsets in
this class correspond to the previous FAB classification [95].

We also classified our patients according to the ELN risk classification by genetics
at initial diagnosis (Table 1). Because the genetic analyses were incomplete for several
early patients and additional biological material was not available, twelve patients were
classified as intermediate/adverse and six patients could not be classified. We would
expect most of the intermediate/adverse patients to have an intermediate risk [2].

Our study did not include patients with the uncommon erythroid (FAB-M6) and
megakaryocytic (FAB-M7) variants [1,95]. The higher levels of platelet/megakaryocyte
markers in the normal CD34+ cells probably reflect the heterogeneity of CD34+ cells includ-
ing immature erythroid/megakaryocytic stages [11,13–15,96].

The use of gradient-separated AML cells from peripheral blood in our study has been
discussed in detail in a previous study. The reasons for this methodological approach and
its possible limitations are as follows [24]:

• As discussed in previous methodological publications, more extensive cell separation
procedures can alter the functional characteristics of AML cells [97,98]; by selecting
patients with a high percentage of circulating AML blasts, we could prepare highly
enriched AML cell populations by using simple gradient separation alone. This
would not be possible with relatively low but still diagnostic percentages of bone
marrow blasts.
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• A previous methodological study showed that cryopreservation had only a limited
influence on the proteomic profiles of AML cells [34].

• The AML cell population has a hierarchical organization, and leukemic stem cells
are possibly responsible for how mortality relates to AML chemoresistance [98], but
despite this, we investigated the whole AML cell population. However, several
previous studies have also demonstrated that biological characteristics of the whole
AML cell population reflect the risk of resistance after chemotherapy, e.g., cytokine
release, gene expression, and epigenetic and pathway activation profiles (for reference,
see ref. [24].

• Previous studies have shown that AML patients with and without peripheral blood
leukemization have comparable frequencies of various genetic abnormalities [99], i.e.,
there is no strong enrichment of certain (high-risk) abnormalities when using our
strategy for inclusion of patients.

• Previous studies suggest that leukemization may have an adverse prognostic impact,
and if so, our inclusion of only patients with leukemization may cause an enrichment
of patients with a more aggressive disease compared with AML in general. However,
studies of the possible independent prognostic impact of high peripheral blood AML
blast counts have given conflicting results [100,101]; if an effect is present, it must
be weak [102] and/or may be present only for certain minor patient subsets [100]
and/or be present only when counts exceed 50–100 × 109/L [100,103,104] (most of
our patients had lower counts).

• Finally, all our patients had >20% blasts in the bone marrow, whereas certain forms of
AML can now be diagnosed by lower blast percentages in bone marrow or peripheral
blood [1].

Even though it can be argued that our observations are relevant for AML in general,
our results should be interpreted with great care, and, due to our selection of patients with
leukemization, they may be representative only for patients with >20% blasts in the bone
marrow and/or peripheral blood leukemization.

4.2. Increased Neutrophil Differentiation of Primary AML Ells Compared with Normal CD34+

Bone Marrow Cells

We identified 121 differentially abundant proteins that should be regarded as markers
of neutrophil differentiation (Figure 2A Reactome terms, Tables S1–S4). However, the low
number of proteins included, the lower statistical significance of other GO/Reactome/KEGG
terms (Figure 2A), the results from the volcano plot analysis (Figure 2B), and the relatively
few and small identified protein interaction networks (Figure 4) possibly reflect a biological
heterogeneity of those differentially abundant proteins not associated with neutrophil differ-
entiation. However, the differentially abundant proteins included cross-communicating cell
surface molecules and their downstream mediators:

• TLR2 and TLR2 signaling in AML. Primary AML cells express functional TLRs, includ-
ing TLR2 and TLR4 [105]. Both of these receptors can bind endogenous agonists [106],
although these observations have been questioned and may at least partly be due to a
function as assistants due to their binding of other ligands [107]. The transmembrane
TLR2 protein was increased in our AML cells (Figure 2). The downstream TLR2 sig-
naling includes MYD88, various IRAKs, TAK1, TAB1/2, and TRF6 adaptor molecules;
IRAK-6 thus seems responsible for recruitment to the receptor complex that moves
to the cytoplasm and activates NFκB and the AP-1 transcription factor [108]. This
MYD88-dependent downstream signaling is not specific for TLR2 but seems common
for various TLRs, including TLR4.
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• Alternative signaling downstream to TLR2. Alternative TLR2/MyD88 downstream tar-
gets are PI3K-Akt with the enhancement of ERK1/2, p38 MAPK, JNK1/2, and focal
adhesion kinase (FAK) activation/phosphorylation [106]. Many of these targets are
also important for the downstream signaling of TLR4 [108], a receptor that interacts
with S100A9 (see below) and thereby regulates AML cell differentiation by targeting
p38 and ERK1/2 [109,110]. Thus, there are functional links between TLR2, TLR4, and
S100A9/S100A10.

• Integrins and integrin signaling including RHO GTPases. Our study suggests that the inte-
grin expression profile is altered in AML cells, especially ITGAX, ITGAL, and ITGA2B
(Figure 2, Table S7). Integrins bind a wide range of cell adhesion and extracellular
matrix molecules, and their outside-in signaling modulates the activation of several
intracellular mediators including FAK, PI3K, AKT, mTOR, ERK, and JNK [111–114] as
well as RHO-GTPases that are also involved in inside-out signaling and the regulation
of the proliferation, differentiation and possibly chemosensitivity of malignant cells,
including AML cells [111,115–120]. Thus, integrins share downstream target TLR2
and/or S100 proteins (see below).

• S100 proteins in AML. Our results suggest that S100A8/9/11, especially, shows in-
creased levels in primary AML cells. Both S100A8 and S100A9 are regarded as differ-
entiation markers in AML but also seem to limit/inhibit further AML cell differentia-
tion [121]. A high mRNA expression of S100A8 is associated with adverse prognosis
in AML with a normal karyotype, and this prognostic impact may depend on its
effects on autophagy, the production of reactive oxygen species, and the mitochondrial
regulation of apoptosis [121,122]. Furthermore, S100A8 and S100A9 exist both as
homodimers and heterodimers, and the effect of the heterodimer is difficult to predict.
Thus, there is a crosstalk both between S100A8 and S100A9 [121] and also between
S100A8 and TLR4 [109]. Finally, S100A11 is also a regulator of cellular proliferation
and seems to have a prognostic impact on certain malignancies, but this is the first
report to suggest a role in human AML [123].

• Fibrinogen. Fibrinogen is a hexameric glycoprotein that consists of two sets of three α,
β, or γ chains [124]; it is mainly synthesized in hepatocytes but can also be abundant
in certain other cells [125]. The expression of all the fibrinogen α, β, and γ chains
was generally higher for normal CD34+ bone marrow cells than AML cells (Figure 2,
Table S4). Fibrinogen can bind to αMβ2 and αXβ2 integrins [126] as well as soluble
ferritin [127], whose systemic levels can be increased and predict adverse prognosis
in AML [128]. These observations further support our hypothesis that AML cells
and normal CD34+ bone marrow cells differ with regard to integrin function but also
iron metabolism (Figure 4) due to an increased expression of transferrin–transferrin
receptors in CD34+ cells.

Taken together, these observations suggest that the differentially abundant proteins
(Tables S5–S7) include TLR2 and several integrins together with certain common and inter-
acting downstream mediators. Several of the proteins are regarded as potential therapeutic
targets in AML, including the integrin system [116,117,129] with the downstream MAP
kinases [130–136], S100A molecules [121,122,137,138], and TLR2/4 with their downstream
mediators [106,108], including the RHO GTPases [111,115–120,139,140]. Finally, aldehyde
dehydrogenase is also regarded as a possible therapeutic target in AML [141–144], and
the biological context of this enzyme seemed to differ between AML cells and normal
CD34+ cells.

Future studies have to clarify whether the high levels of possible therapeutic targets in
our present study represent a high dependency on these mediators and, thereby, suscepti-
bility to targeted therapy, or whether resistance to targeting due to the high levels requires
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high inhibitor concentrations for antileukemic efficiency. Furthermore, the therapeutic
targeting of these differentially abundant mediators would probably also influence the
function of various immunocompetent cells known to infiltrate the leukemic bone marrow
microenvironment [145,146]; they may thereby influence the balance between antileukemic
and AML-supporting immune activity. Thus, the therapeutic targeting of these mecha-
nisms may have direct effects on AML cells and additional indirect effects via neighboring
immunocompetent or bone marrow mesenchymal/stromal cells [108].

Previous studies have investigated the possible prognostic impact of differentiation
markers in AML, including CD34 expression and Sudan black staining; these early studies
suggested that such markers had no/uncertain prognostic impact [147,148], whereas certain
recent studies suggest that CD34 expression is important in certain AML subsets [149,150].
Furthermore, minimal residual disease has now become important for clinical prognostica-
tion in AML [151–153], and the pretreatment burden of immature/undifferentiated cells
(i.e., the degree of differentiation within the AML cell population) can be combined with
MRD evaluation to improve prognostication [154]. In this context, we conclude/suggest
that the evaluation of AML cell differentiation with proteomic profiling rather than the use
of single or a limited number of differentiation markers, and possibly in combination with
MRD estimation, should be regarded as a possible strategy for prognostication in AML. Fu-
ture clinical studies then have to clarify whether other patients with a similar differentiation
marker profile as described for patients with a favorable karyotype in our present study
(Figure 3, right patient subset; see also Table S8) also have a similar favorable prognosis.

We identified 121 proteins that showed differential expression when comparing all
50 primary AML cell populations with the normal CD34+ bone marrow stem/progenitor
cells. However, even the expression of these differentially abundant proteins showed
a considerable variation between individual patients with regard to protein levels, and
these markers could therefore be used for further subclassification of our 50 patients
into two main subsets (see Figure 5). Furthermore, our phosphoproteomic studies il-
lustrate that the proteomic complexity is further increased by differences in the degree
of post-translational phosphorylation between the two main patient subsets for 16 of
the 121 differentially abundant proteins (see Section 3.6). Previous studies suggest that
these phosphoproteomic differences (see Tables 2, S10 and S11) are functionally important,
although it should be emphasized that most of these functional studies have not been
performed in normal or malignant hematopoietic cells [94,106–136].

We conducted a clustering analysis based on the 121 proteins, showing at least a
two-fold difference when comparing AML cells and CD34+ bone marrow cells (Table S5),
and this analysis identified a subset of 28 patients characterized by neutrophil differentia-
tion and favorable prognosis (Table S7 for details). These 28 patients were also characterized
by higher peripheral blood blast counts than the other patients, whereas the bone marrow
blast percentages did not differ. These observations are consistent with the hypothesis
that the degree of peripheral blood leukemization is mainly determined by the biologi-
cal characteristics of the AML cells rather than the AML cell burden. Furthermore, this
hypothesis is further supported by the previous observation that hyperleukocytosis is
also more common in patients with myelomonocytic AML cells [155,156]. Finally, it is not
unexpected that AML cells sharing biological characteristics with a mature normal myeloid
cell type that is determined to enter the circulation also show a similar and higher degree
of migration/leukemization compared with more undifferentiated ML cells.

4.3. Iron Metabolism and Regulation of Ferroptosis in Primary AML Cells; Comparison with
Normal CD34+ Bone Marrow Cells and the Variation Between Patients

Ferroptosis is a form of programmed cell death characterized by altered iron
metabolism together with the formation of reactive oxygen species and altered lipid
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metabolism; it should thus be regarded as iron-dependent cell death [80–88]. We ob-
served several differences between AML cells and normal CD34+ bone marrow cells with
regard to iron uptake. First, decreased AML cell levels of the transferrin receptor suggest de-
creased uptake of iron-containing transferrin, and decreased receptor-mediated transferrin
uptake is possibly reflected by the decreased AML cell transferrin levels. Second, V-ATPase
is important for endosomal acidification, which is essential for intracellular iron release
after endosomal uptake both in the cytoplasm and possibly also in mitochondria [79]. In
our clustering analysis based on the 16 differentially abundant proteins involved in iron
metabolism/ferroptosis (Figure 4), we identified a patient subset characterized by adverse
prognosis (i.e., primary chemoresistance or later relapse) that clustered together with the
normal CD34+ cells and showed relatively low levels of most iron metabolism/ferroptosis
proteins. These observations are also consistent with a previous study describing increased
mRNA levels of V-ATPase components and different iron metabolism for primary AML
cells derived from patients with favorable prognosis [157], as well as another study de-
scribing an association between increased relapse risk and decreased protein levels of
V-ATPase components [24]. Finally, in contrast to the patients identified based on the
clustering analysis of all highly differing proteins (i.e., more than 2-fold and including
several differentiation markers; see Figure 2), the patient subsets with adverse prognosis
identified in the clustering analysis of iron/ferroptosis markers (Figure 3) did not differ
from the other patients with regard to age, morphological AML cell differentiation, AML
cell expression of the CD34 stem cell marker, or genetic abnormalities. Taken together, these
observations suggest that the regulation of iron metabolism/ferroptosis should be further
investigated as a possible independent prognostic marker for AML patients receiving
intensive conventional therapy.

4.4. Limitations of This Present Study

The complexity of cellular proteins far exceeds that of the approximately 20,000 protein-
encoding genes in humans [158]. The term proteoform is therefore used to describe the
complexity of the protein system [158–160], and it is defined as all the different molecular
forms in which the protein product of a single gene can be found [159]. This variation
is created by several mechanisms and includes (i) the protein-encoding gene and its ge-
netic variants, (ii) the various alternatives for RNA splicing, and (iii) variations in fold-
ing/function compared with the canonical protein due to genetics/amino acid sequence
differences, splice variants, posttranslational modification (e.g., phosphorylation, methy-
lation, acetylation, glycosylation, lipidation), and protein truncation (e.g., activation by
proteolytic cleavage) [158–165]. Our present study has only investigated a part of this
complexity, i.e., an estimate of the total protein level and for the differentiation studies of
posttranslational phosphorylation. We did not, for example, investigate splicing variants
(also referred to as isoforms in the previous literature and the gene database) that are
important for the function of the iron metabolism/ferroptosis regulators examined in our
present study (Figure 4) [165]. Many of these proteins are abundant as various proteoforms;
this is exemplified by the proteins listed in Table S11. Future studies, therefore, have to
address the limitations of our present study and (i) investigate the complexity of AML also
in the uncommon erythroid, megakaryocytic, and myelofibrotic AML variants that were not
present among our patients (see Table 1), as well as (ii) additional post-translational modu-
lations and/or the presence of various proteoforms that may differ between leukemic and
normal CD34+ cell and/or between AML patient subsets. Finally, our study included rela-
tively few patients and our observations therefore need to be verified in larger prospective
clinical studies.
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Our studies on iron metabolism/ferroptosis show a significantly increased risk of re-
lapse/resistance for a relatively small subset of AML patients having similarities in cellular
iron metabolism when compared with normal CD34+ bone marrow cells. The patients
within this subset are heterogeneous with regard to ELN genetic risk classification [2] but
the number of patients in our study is too low to allow for a reliable additional biological
characterization of the patients included in this minor subset.

As discussed in Section 4.1, our present observations may be relevant only for AML
patients with relatively high levels of AML blasts in bone marrow and peripheral blood.

5. Summarizing Conclusions
We compared the proteomic profiles of pretreatment AML (a bone marrow malignancy)

cells derived at the first time of diagnosis with a normal counterpart, i.e., normal CD34+

bone marrow cells. Based on differentially abundant cellular proteins, we identified three
patient subsets that only partially reflected the AML-associated genetic abnormalities.
(i) One subset was identified based on the expression of neutrophil differentiation markers
and included patients with favorable karyotypes. (ii) Among the other patients without
extensive differentiation, we identified a subset with a particularly adverse prognosis and
an AML cell profile of iron metabolism/ferroptosis regulators showing similarities with
the normal CD34+ cells. (iii) The remaining subset showed few signs of differentiation but
an altered expression of iron metabolism/ferroptosis regulators.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/proteomes13010011/s1, Table S1: Proteins showing increased
levels in primary AML cells compared with normal CD34+ bone marrow cell; Table S2: Proteins
showing increased levels in normal CD34+ bone marrow cells compared with primary AML cell;
Table S3: Reactome classification of differentially abundant proteins when comparing 50 primary
AML cell populations and CD34+ bone marrow cells derived from eight healthy individuals, an
overview of proteins showing at least a median 2-fold increase in primary AML cells; Table S4:
Differential expression of protein when comparing 50 primary AML cell populations and CD34+

bone marrow cells derived from eight healthy individuals, an overview of proteins showing at least a
median 2-fold increase in normal CD34+ cells compared with AML cells; Table S5: Proteins showing a
differential expression when comparing AML cells derived from 50 patients and normal CD34+ bone
marrow cells derived from eight healthy individuals; an overview of identified proteins after analysis
based on Welch’s t-test with Benjamini correction and fold change significance (z-score test); Table S6:
Proteins showing differential expression when comparing AML cells derived from 50 patients and
normal CD34+ bone marrow cells derived from eight healthy individuals; an overview of identified
proteins after analysis based on Welch’s t-test with Benjamini correction and fold change significance
(z-score test); Table S7: Hierarchical clustering analysis of 121 differentially abundant proteins when
comparing AML cells and normal CD34+ bone marrow cells; the protein subclassification into
two main clusters as shown in Figure 5; Table S8: Clinical and biological characteristics of the 50 AML
patients included in the study. Patients are listed according to the clustering analysis presented
in Figure 5 (listed from left to right, see the top of the figure) in the article, i.e., the upper part of
the table represents the left 22 patients in the cluster analysis and the lower part the right subset
of 28 patients; Table S9: Clinical and biological characteristics of 50 AML patients included in the
study; a comparison of two patient subsets identified by unsupervised hierarchical clustering analysis
(Figure 5). Table S10: Protein phosphorylation of primary human AML cells, the identification of
protein phosphorylation sites that (i) are localized on a subset (a total of 38 proteins) of the 121 proteins
that showed differential expression (i.e., at least 2-fold difference) when comparing primary AML
cells and normal CD34+ bone marrow cells; and (ii) in addition a statistically significant difference
when each identified phosphosite was compared between the two patient subsets identified in the
unsupervised hierarchical clustering analysis presented in Figure 5 (i.e., 23/28 right versus 18/22 left
patients); Table S11: Differentially abundant proteins showing additional differences in protein
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phosphorylation; Table S12: Proteins involved in the regulation of iron homeostasis/metabolism
and/or ferroptosis and showing differential expression when comparing primary AML cells and
normal CD34+ bone marrow cells; Table S13: Clinical and biological characteristics of the 50 AML
patients included in the study; patient subclassification in an unsupervised hierarchical clustering
analysis based on 16 differentially abundant proteins involved in regulation of iron metabolism
and/or ferroptosis (Figure 6) (listed from left to right, see the top of the figure).
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