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Abstract

The time scales of climate assessments play a crucial role in the development of

climate services, which aim at effectively transforming the results of the scientific

research into solutions to real-world problems. While the seasonal-to-interannual

climate predictions take advance of an accurate description of the initial climate state

to carry out estimations of the actual climate evolution in the near future, the long-

term climate projections represent the potential climate evolution as a response to

anthropogenic external forcings, in scales ranging from several decades to centuries,

along different future scenarios of climate change. The decadal climate predictions

(DCPs), the subject of study in this Thesis, bridge the gap between seasonal-to-

interannual predictions and climate projections. At the decadal time scale, both initial

conditions and external factors jointly contribute to the estimation of the climate

signal, making DCPs valuable sources of climate information for a wide range of

users and decision-makers in the social, environmental and economic spheres.

The main purpose of this Thesis has been to generate a collection of high-resolution

DCPs over the Iberian Peninsula (IP) and evaluate their accuracy and reliability

along with their added value over a global decadal prediction system (DPS) and

a set of high-resolution uninitialized experiments. To address this task, a set of

dynamical downscaling (DD) simulations was conducted with the Weather Research

and Forecasting model (WRF), with data from the global CESM Decadal Prediction

Large Ensemble (CESM-DPLE) as input information for the decadal experiments,

from the global CESM Large Ensemble (CESM-LE) for the uninitialized simulations

and from the ERA-Interim reanalysis for other additional experiments. The DD

simulations were carried out in two nested domains. A coarse-grid domain was

defined to cover the EURO-CORDEX region with an horizontal resolution about

50 km, whereas a fine-grid domain, with an approximate resolution of 10 km, was

centered in the IP. Approximately 4.94 million CPU hours were dedicated to conduct

the DD simulations required to produce a total of 1470 simulated years. To the

best of my knowledge, the research presented here constitutes the first study which

comprehensively assesses the performance of a dynamically downscaled DPS at an

horizontal resolution of 10 km, becoming the maximum resolution attained in this
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Abstract

branch of the climate prediction.

In spite of the huge development achieved in climate modeling during the last

three decades, models are intrinsically based on approximations and, consequently,

contain biases which arise from different sources. Thus, the CESM-DPLE and CESM-

LE datasets were bias corrected before conducting the DD simulations to reduce the

potentially negative impact that those biases may have on the downscaled product.

The simulations were conducted in a context of limited access to computing resources,

so a representative subset of 4 members for each global ensemble was selected to

provide the input information for the simulations, since the task of downscaling the

whole ensembles was not addressable. For each member of the CESM-DPLE subset,

the experiments initialized every year from 1970 to 1999 were downscaled, as well as

the whole 10-member ensemble available for DD along the decade initialized in 2015.

For CESM-LE, however, the simulated period is shorter because the data were only

available from 1990 to 2005.

The evaluation of the downscaled product has been focused on four primary

climate variables: precipitation and maximum, minimum and mean near-surface air

temperature. Before the analysis, the dynamically downscaled decadal experiments

were recalibrated to reduce the unconditional and conditional biases and adjusting

the ensemble spread of the WRF output fields. Significant improvements over the

global CESM-DPLE and the downscaled uninitialized experiments have been found

at both annual and seasonal scales for temperature variables, whereas the added

value of the downscaled DCPs to the predictive skill for precipitation is more limited.

The signal-to-noise paradox is strong in the predictions for precipitation and, to a

lesser extent, also for temperature. The results suggest that high improvements in

the predictive skill may be achieved by adding new members to the downscaled

ensemble to compute larger ensemble averages and thus reduce the unpredictable

background noise in predictions, especially for precipitation.

The sensitivity of WRF simulations to extreme initial conditions of soil moisture

has also been examined. A set of simulations was conducted with ERA-Interim

providing the input information for all variables with the exception of soil moisture.

Three different types of soil moisture initial conditions were considered to represent a

wet, a dry and a very dry soil. These initial conditions were calculated by combining

the soil moisture index with some physical soil properties which depend on the soil

textures. To account for the impact of the initialization date of the simulations, they

started in two different dates, 1990-01-01 and 1990-07-01, covering in both cases the
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10-year periods up to 1999-12-31 and 2000-06-30, respectively. The analysis of these

simulations has been focused on the influence of the initial conditions on the spin-up

requirements for soil moisture, precipitation and the three temperature variables. A

maximum spin-up time of 8 years is needed for soil moisture in some cases, decreasing

down to values generally lower than 3 years and 2 years for maximum and mean

temperature, respectively. The spin-up time is commonly lower than 1 year for

minimum temperature and mostly below 10 months for precipitation.

Since no spin-up time has been considered in the analyses of the downscaled

decadal experiments initialized from 1970 to 1999 (it would have implied the loss

of the first simulated years), the predictive skill might have experienced some dete-

rioration because of the spin-up-related biases, at least during the first years of the

simulations. Therefore, a dynamically equilibrated soil state, taken from a control

WRF simulation, was used to initialize the simulations conducted for the decadal

experiments in the decade 2015–2025 with the aim of improving as much as possible

the predictive skill of the downscaled predictions. In regions with reliable predic-

tions for precipitation at annual scale, the predicted anomalies for this variable are

generally positive at the beginning of the decade and turn into negative during the

second half, with the Pyrenees and the Central System among the areas with the

strongest negative anomalies. The predictions for the temperature variables show

positive anomalies throughout the entire decade over the whole domain at annual

scale. The highest anomalies have been found in summer, with values up to 2 K at

the end of the decade in some southeastern and northeastern locations of the IP.

Finally, a set of alternative correction methods has been examined to improve

the bias correction in CESM-DPLE experiments and thus produce a more skilful

downscaled product in potential future experiments. The correction of the trend

performs well and contributes to producing robust predictions for the North Atlantic

Oscillation, becoming a suitable method to correct the input data for DD simula-

tions focused on Europe or North America. On the other hand, a method based

on considering reference initial conditions in the correction algorithm generally get

overall sligthly better results than the other analyzed methods for the prediction of

the El Niño/Southern Oscillation. This method may be preferable for DD simulations

targeting South America. The dependence of the predictive skill on the ensemble size

has also been analyzed with data corrected with these methods. A modest 3-member

ensemble has shown to be a good alternative to larger ensembles in a context of

limited computing resources for some specific applications.
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The research presented in thisThesis evidences the valuable role that WRF can play

for the generation of high-resolution decadal experiments over the IP, demonstrating

the ability of produce skilful predictions despite the limitations imposed by the

restricted access to computing resources. The multiple applications of DD in the

branch of the DCP and their potential ramifications open a vast field of research

which could be explored in future works by taking the study presented here as a

solid starting point.
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Resumen

Las escalas de tiempo de los estudios climáticos cumplen un papel crucial en el desar-

rollo de servicios climáticos, que tienen como objetivo transformar los resultados de

las investigaciones científicas en soluciones para problemas del mundo real. Mientras

que las predicciones climáticas estacionales–interanuales parten de una descripción

precisa del estado inicial del clima para llevar a cabo estimaciones de su evolución

real en un futuro próximo, las proyecciones climáticas a largo plazo representan la

potencial evolución del clima como respuesta a forzamientos externos de carácter

antropogénico, en escalas que abarcan desde varias décadas hasta siglos, a lo largo de

diferentes escenarios futuros de cambio climático. Las predicciones climáticas dece-

nales (DCPs), el tema de estudio en esta Tesis, hacen de puente entre las predicciones

estacionales–interanuales y las proyecciones climáticas. En la escala decenal, tanto las

condiciones iniciales como los factores externos contribuyen de manera conjunta a la

estimación de la señal climática, convirtiendo a las DCPs en fuentes de información

climática de valor tanto para la ciudadanía como para las autoridades en las esferas

social, medioambiental y económica.

El propósito principal de esta Tesis ha sido generar una colección de DCPs de alta

resolución en la península ibérica (IP) y evaluar su precisión y fiabilidad junto a su

valor añadido sobre un sistema de predicción decenal (DPS) global y un conjunto de

experimentos no inicializados de alta resolución. Para realizar esta tarea, se llevó a

cabo una serie de simulaciones de reducción dinámica de escala (DD) con el modelo

Weather Research and Forecasting (WRF), tomando datos globales del CESM Decadal

Prediction Large Ensemble (CESM-DPLE) como información de entrada para los

experimentos decenales, del CESM Large Ensemble (CESM-LE) para las simulaciones

no inicializadas y del reanálisis ERA-Interim para otros experimentos adicionales. Las

simulaciones DD se llevaron a cabo en dos dominios anidados. Un dominio grande

fue definido para cubrir la región de EURO-CORDEX con una resolución aproximada

de 50 km, mientras que un dominio más pequeño, con una mayor resolución en

torno a los 10 km, se centró en la IP. Se dedicaron alrededor de 4.94 millones de

horas CPU a la realización de las simulaciones DD para producir un total de 1470

años de simulación. Hasta donde alcanza mi conocimiento, la investigación aquí
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presentada constituye el primer estudio que evalúa en profundidad un DPS sujeto a

una reducción dinámica de escala con una resolución de 10 km, convirtiéndose en la

mayor resolución espacial jamás lograda en esta rama de la predicción del clima.

Pese al enorme desarrollo logrado en la modelización de clima durante las últimas

tres décadas, los modelos están intrínsecamente basados en aproximaciones y, en

consecuencia, contienen sesgos que surgen de diferentes fuentes. Por tanto, los datos

del CESM-DPLE y el CESM-LE fueron sometidos a una corrección de sesgo antes de

realizar las simulaciones DD para reducir el impacto potencialmente negativo que

estos sesgos pudieran tener en el producto final. Las simulaciones se realizaron en

un contexto de acceso limitado a recursos computacionales, así que se seleccionó un

subconjunto de 4 miembros representativo de cada conjunto global para proporcionar

la información de entrada para las simulaciones, ya que la tarea de emplear el total de

los miembros disponibles era inabordable. Para cada miembro del subconjunto del

CESM-DPLE se aplicó la reducción dinámica de escala a los experimentos inicializa-

dos cada año desde 1970 hasta 1999, así como al conjunto completo de 10 miembros

disponibles para las simulaciones DD a lo largo de la década inicializada en 2015.

Para el CESM-LE, sin embargo, el periodo de simulación fue más corto, ya que solo

había datos disponibles desde 1990 hasta 2005.

La evaluación del producto de la reducción de escala se ha centrado en cuatro

variables climáticas primarias: la precipitación y las temperaturas máxima, mínima y

media del aire en superficie. Antes del análisis, los experimentos decenales de alta

resolución fueron recalibrados con el objetivo de reducir los sesgos incondicionales y

condiciones y de ajustar la dispersión de los miembros del subconjunto procedente de

las simulaciones con WRF. Se han encontrado mejoras significativas frente al CESM-

DPLE global y a los experimentos no inicializados de alta resolución en las escalas

anual y estacional para las variables de temperatura, mientras que el valor añadido de

los nuevos experimentos decenales es más limitado en el caso de la precipitación. La

presencia de la paradoja señal-ruido es fuerte en las predicciones para la precipitación

y, en menor medida, también para la temperatura. Los resultados sugieren que se

podrían alcanzar grandes mejoras en la habilidad predictora de los experimentos

decenales de alta resolución añadiendo nuevos miembros para tomar promedios de

conjunto mayores y así reducir el ruido de fondo impredecible en las prediciones,

especialmente en el caso de la precipitación.

También se ha examinado la sensibilidad de las simulaciones realizadas con WRF

a condiciones iniciales extremas de humedad del suelo. Se llevó a cabo una serie de
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simulaciones con ERA-Interim proporcionando la información de entrada para todas

las variables excepto para la humedad del suelo. En su caso, se consideraron tres tipos

diferentes de condiciones iniciales para representar un suelo húmedo, uno seco y

uno muy seco. Estas condiciones iniciales se obtuvieron de la combinación del índice

de humedad del suelo y algunas propiedades físicas dependientes del tipo de textura

del suelo. Para tener en cuenta el impacto de la fecha de inicialización de las simula-

ciones, éstas comenzaron en 1990-01-01 y en 1990-07-01, cubriendo en ambos casos

un periodo de 10 años hasta 1999-12-31 y 2000-06-30, respectivamente. El análisis de

estas simulaciones se ha centrado en la influencia de las condiciones iniciales en la

duración del periodo de spin-up para la humedad del suelo, la precipitación y las tres

variables de temperatura. Un tiempo máximo de spin-up de 8 años es necesario en

algunos casos para la humedad del suelo, disminuyendo hasta valores generalmente

menores a 3 y 2 años para las temperaturas máxima y media, respectivamente. El

tiempo de spin-up es comúnmente menor a 1 año para la temperatura mínima y está

mayoritariamente por debajo de los 10 meses para la precipitación.

Dado que no se ha considerado ningún tiempo de spin-up en los análisis de los

experimentos decenales de alta resolución inicializados desde 1970 hasta 1999 (de

haberlo hecho, habría implicado la pérdida de los primeros años simulados), la habil-

idad predictora puede haber sufrido cierto deterioro a causa de sesgos relacionados

con el spin-up, al menos durante los primeros años de simulación. Por tanto, se

utilizó un suelo dinámicamente equilibrado, tomado de una simulación de control

con WRF, para inicializar las simulaciones realizadas para los experimentos de la

década 2015–2025 con el objetivo de mejorar en la medida de lo posible la habilidad

predictora de las predicciones de alta resolución. En regiones con predicciones de

precipitación fiables en escala anual, las anomalías pronosticadas para esta variable

son generalmente positivas al comienzo de la década y negativas durante la segunda

mitad, con los Pirineos y el Sistema Central entre las áreas con mayores anomalías

negativas. Las predicciones para las variables de temperatura en escala anual mues-

tran anomalías positivas durante toda la década en todo el dominio. Las anomalías

más elevadas se han encontrado en verano, con valores de hasta 2 K al final de la

década en algunas localizaciones al sureste y noreste de la IP.

Finalmente, una serie de métodos de corrección alternativos han sido examina-

dos para mejorar la reducción del sesgo en los experimentos del CESM-DPLE y así

conseguir una mayor habilidad predictora en nuevos experimentos decenales de alta

resolución que puedan ser realizados en un futuro. La corrección de las tendencias

ha demostrado funcionar bien para lograr predicciones robustas de la Oscilación
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del Atlántico Norte, convirtiéndose en un método apropiado para ser aplicado sobre

datos de entrada de simulaciones DD en Europa o Norteamérica. Por otro lado, un

método basado en la utilización de condiciones iniciales de referencia en el algo-

ritmo de corrección ha conseguido, en general, mejores resultados que otros métodos

analizados para la predicción de El Niño/Oscilación del Sur. Este método podría

ser preferible para simulaciones DD centradas en Sudamérica. El grado en el que la

habilidad predictora depende del número de miembros del conjunto ha sido también

analizado utilizando datos corregidos con estos dos métodos. Un modesto conjunto

compuesto por 3 miembros ha demostrado ser una buena alternativa a conjuntos de

tamaños superiores para algunas aplicaciones específicas en un contexto de recursos

computacionales limitados.

La investigación presentada en esta Tesis evidencia el valor del papel que puede

cumplir el modelo regional WRF en la generación de experimentos decenales a alta

resolución en la IP, demostrando su capacidad para realizar predicciones precisas y

fiables a pesar de las limitaciones impuestas por el acceso a recursos computacionales.

Las múltiples aplicaciones del DD en el ámbito de la DCP y sus potenciales ramifica-

ciones abren un amplio campo de investigación que podría ser explorado en trabajos

futuros tomando este estudio como un sólido punto de partida.

xiv



Contents

List of figures xix

List of tables xli

Acronyms xlv

1 Introduction 1

1.1 Understanding climate prediction: concepts and tools . . . . . . . . . 1

1.1.1 Weather, climate and the human footprint . . . . . . . . . . . . 1

1.1.2 Near-term climate prediction: the decadal scale . . . . . . . . 3

1.1.3 Regional climate models and dynamical downscaling . . . . . 6

1.2 The Iberian Peninsula . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Objectives and structure of the Thesis . . . . . . . . . . . . . . . . . . 12

2 Data 15

2.1 Global climate model datasets . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 CESM Decadal Prediction Large Ensemble . . . . . . . . . . . 15

2.1.2 CESM Large Ensemble . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Reanalysis datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 ERA-Interim reanalysis . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 ERA5 reanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Observational datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Precipitation and near-surface air temperature in Spain . . . . 21

2.3.2 Global sea level pressure, near-surface air temperature and sea

surface temperature . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Methodology 23

3.1 The Weather Research and Forecasting model (WRF) . . . . . . . . . 23

3.1.1 Domain configuration and nesting approach . . . . . . . . . . 23

3.1.2 Relaxation procedures toward driving fields . . . . . . . . . . 25

3.1.3 Description of the model core and workflow . . . . . . . . . . 26

3.1.4 The physics parametrization schemes . . . . . . . . . . . . . . 30

3.2 Evaluation of the predictive skill of decadal climate predictions . . . 32

xv



Contents

3.2.1 Evaluation of the accuracy with deterministic metrics . . . . . 35

3.2.2 Evaluation of the reliability with probabilistic metrics . . . . . 40

3.2.3 Assessment of the statistical significance . . . . . . . . . . . . 42

3.3 Drift correction and subensemble selection for CESM-DPLE . . . . . 43

3.3.1 Description of the mean drift correction . . . . . . . . . . . . . 43

3.3.2 CESM-DPLE subensemble selection . . . . . . . . . . . . . . . 44

3.4 Bias correction and subensemble selection for CESM-LE . . . . . . . . 47

3.4.1 Description of the mean bias correction . . . . . . . . . . . . . 47

3.4.2 CESM-LE subensemble selection . . . . . . . . . . . . . . . . . 47

3.5 Recalibration of the WRF-DPLE experiments . . . . . . . . . . . . . . 49

3.6 Regionalization of precipitation and temperature in the Iberian Peninsula 52

3.7 Spin-up time and soil initialization . . . . . . . . . . . . . . . . . . . . 54

3.8 Description of the collection of the dynamically downscaled experiments 56

3.9 A note on the software used in this Thesis . . . . . . . . . . . . . . . . 58

4 Retrospective decadal climate predictions for precipitation 61

4.1 Predictive skill of the WRF-DPLE ensemble . . . . . . . . . . . . . . . 61

4.2 Comparison with the CESM-DPLE subensemble . . . . . . . . . . . . 73

4.3 Comparison with the WRF-LE ensemble . . . . . . . . . . . . . . . . . 79

4.4 Predictive skill for regional averages . . . . . . . . . . . . . . . . . . . 81

4.5 Analysis of the spatio-temporal variability of sea level pressure in

CESM-DPLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5 Retrospective decadal climate predictions for near-surface air tem-

perature 97

5.1 Daily maximum near-surface air temperature . . . . . . . . . . . . . . 97

5.1.1 Predictive skill of the WRF-DPLE ensemble . . . . . . . . . . . 97

5.1.2 Comparison with the CESM-DPLE subensemble . . . . . . . . 107

5.1.3 Comparison with the WRF-LE ensemble . . . . . . . . . . . . 112

5.1.4 Predictive skill for regional averages . . . . . . . . . . . . . . . 115

5.2 Daily minimum near-surface air temperature . . . . . . . . . . . . . . 119

5.2.1 Predictive skill of the WRF-DPLE ensemble . . . . . . . . . . . 119

5.2.2 Comparison with the CESM-DPLE subensemble . . . . . . . . 128

5.2.3 Comparison with the WRF-LE ensemble . . . . . . . . . . . . 133

5.2.4 Predictive skill for regional averages . . . . . . . . . . . . . . . 136

5.3 Daily mean near-surface air temperature . . . . . . . . . . . . . . . . . 140

xvi



Contents

5.3.1 Predictive skill of the WRF-DPLE ensemble . . . . . . . . . . . 140

5.3.2 Comparison with the CESM-DPLE subensemble . . . . . . . . 149

5.3.3 Comparison with the WRF-LE ensemble . . . . . . . . . . . . 155

5.3.4 Predictive skill for regional averages . . . . . . . . . . . . . . . 157

5.4 Analysis of near-surface air temperature trends in CESM-DPLE . . . 161

5.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6 Analysis of sensitivity to extreme initial conditions of soil moisture

in WRF simulations 171

6.1 Spin-up time and soil initialization in dynamical downscaling simula-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.2 Noah Land Surface Model and soil properties . . . . . . . . . . . . . . 173

6.3 Experimental design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

6.4.1 Analysis of the spin-up time of soil moisture . . . . . . . . . . 179

6.4.2 Analysis of the spin-up time of precipitation and near-surface

air temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

6.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

7 Decadal climate predictions for the period 2015–2025 193

7.1 Precipitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

7.1.1 Analysis of the WRF-DPLE4 predictions . . . . . . . . . . . . . 193

7.1.2 Comparison with the WRF-DPLE10 ensemble . . . . . . . . . 199

7.1.3 Predictions for regional averages . . . . . . . . . . . . . . . . . 203

7.2 Daily maximum near-surface air temperature . . . . . . . . . . . . . . 205

7.2.1 Analysis of the WRF-DPLE4 predictions . . . . . . . . . . . . . 205

7.2.2 Comparison with the WRF-DPLE10 ensemble . . . . . . . . . 210

7.2.3 Predictions for regional averages . . . . . . . . . . . . . . . . . 213

7.3 Daily minimum near-surface air temperature . . . . . . . . . . . . . . 215

7.3.1 Analysis of the WRF-DPLE4 predictions . . . . . . . . . . . . . 215

7.3.2 Comparison with the WRF-DPLE10 ensemble . . . . . . . . . 220

7.3.3 Predictions for regional averages . . . . . . . . . . . . . . . . . 223

7.4 Daily mean near-surface air temperature . . . . . . . . . . . . . . . . . 225

7.4.1 Analysis of the WRF-DPLE4 predictions . . . . . . . . . . . . . 225

7.4.2 Comparison with the WRF-DPLE10 ensemble . . . . . . . . . 229

7.4.3 Predictions for regional averages . . . . . . . . . . . . . . . . . 232

7.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

xvii



Contents

8 Drift correction techniques for decadal climate predictions 237

8.1 The need for a skilful adjustment of the drift in decadal climate predic-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

8.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

8.2.1 Description of the drift correction methods . . . . . . . . . . . 239

8.2.2 Complements for the conventional formulations . . . . . . . . 241

8.2.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

8.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

8.3.1 Evaluation of the drift correction methods . . . . . . . . . . . 247

8.3.2 Evaluation of single members and subensemble skill . . . . . 257

8.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

9 Conclusions 267

A Supplementary tables 299

A.1 Köppen-Geiger climate classification . . . . . . . . . . . . . . . . . . . 299

A.2 Trends of precipitation and near-surface air temperature fields . . . . 301

B Supplementary figures 307

B.1 Retrospective decadal climate predictions for precipitation . . . . . . 307

B.2 Retrospective decadal climate predictions for near-surface air tempera-

ture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

B.2.1 Daily maximum near-surface air temperature . . . . . . . . . . 317

B.2.2 Daily minimum near-surface air temperature . . . . . . . . . . 332

B.2.3 Daily mean near-surface air temperature . . . . . . . . . . . . 346

B.3 Decadal climate predictions for the period 2015–2025 . . . . . . . . . 360

B.3.1 Precipitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360

B.3.2 Daily maximum near-surface air temperature . . . . . . . . . . 364

B.3.3 Daily minimum near-surface air temperature . . . . . . . . . . 368

B.3.4 Daily mean near-surface air temperature . . . . . . . . . . . . 372

B.4 Drit correction techniques for decadal climate predictions . . . . . . . 376

References 387

xviii



List of figures

Figure 1.1 : Global-mean surface air temperature (GSAT) anomaly (°C) rel-

ative to 1850–1900 for observationally constrained historical simulations

(black) and future projections (coloured) along several shared socioeco-

nomic pathways (SSPs; O’Neill et al., 2016). Solid lines denote 20-year

moving averages, whereas shaded areas show 95%-level confidence inter-

vals for historical, SSP1-1.9 and SSP5-8.5. Confidence intervals at the end

of the 21th century for all SSPs are depicted on the right margin. Data

provided by Fyfe et al. (2021). . . . . . . . . . . . . . . . . . . . . . . . . . 2

Figure 1.2 : Schematic progression from initial-condition problems, with

weather prediction on one end, to boundary-condition problems, with long-

term climate change projections at the other end. Seasonal-to-interannual

and decadal predictions are placed in between. Decadal predictions are

considered both initial- and boundary-condition problems. Adapted with

permission from Kirtman et al. (2013, Box 11.1, Figure 2). . . . . . . . . . 3

Figure 1.3 : Schematic description of the DD technique. In this example, the

GCM runs with a resolution of 5° (∼560 km at equator), whereas the RCM

does with a resolution of 0.88° (∼100 km at equator). The RCM is provided

with large scale information by the GCM through LBCs. The dashed line

denotes the end of the buffer zone. Grey dots show the positions of the

model cell corners. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Figure 1.4 : a) Schematic representation of the main geographical features in

the Iberian Peninsula (IP). The terrain elevation data have been retrieved

from Earth Resources Observation And Science Center (2017). b) Köppen–

Geiger climate classification of IP. The full classification is composed of

30 climate classes, but only those corresponding to IP (and surroundings)

are shown in the legend. Data retrieved from Beck et al. (2023). . . . . . . 11

Figure 3.1 : Domains for the DD simulations conducted with WRF. The do-

main d01, with a ∼ 50 km resolution, is based on the EURO-CORDEX

region, whereas the domain d02 is centered in the IP and spans Spain,

Portugal, part of France and the north of Africa, with a ∼ 10 km resolution.

xix



List of figures

While the solid lines denote the boundaries of each domain, the dashed

lines identify the inner boundaries of the buffer zones. The terrain elevation

data have been retrieved from Earth Resources Observation And Science

Center (2017). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Figure 3.2 : Flow chart for the DD simulations conducted with WRF. . . . . 28

Figure 3.3 : a) Spatially averaged ACC (i.e., 〈ACC〉) in the EURO-CORDEX

domain. b) As a) but for 〈RMSE〉. c) As a) but for 〈CRPSS〉. The metrics

have been calculated for individual members and several ensemble means

ENS-, where - is the ensemble size. The label Raw in ENS10Raw indicates

that the predictions have not been drift corrected, whereas the symbol “*” in

ENS4* indicates that the members of ENS4 have been randomly chosen, as

opposed to ENS4, whose members have been manually selected depending

on their 〈ACC〉. Crosses denote the spatially averaged metric for a given

member or ensemble mean. On the other hand, boxplots represent the

results obtained for the non-parametric bootstrapping. Horizontal lines,

boxes and whiskers identify the median values, 50 % and 90 % confidence

intervals, respectively. The bootstrapping of CRPSS has been done without

allowing member replacement. The results obtained for a given metric are

ordered in terms of decreasing accuracy or reliability (crosses) from left to

right. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 3.4 : a) Spatially averaged RMSE (i.e., 〈RMSE〉) over the EURO-CORDEX

domain in the period from 1979-01 to 2005-12. b) As a) but for the period

from 1990-11 to 2005-10. The metrics have been calculated for individual

members and several ensemble means ENS-, where - is the ensemble

size. Only the results for the selected members of the 40-member CESM-LE

subensemble are shown. The label Raw in ENS10*Raw indicates that the

predictions have not been bias corrected, whereas the symbol “*” indicates

that the members of ENS10 have been randomly chosen among the 40

available members. Crosses denote the spatially averaged metric for a

given member or ensemble mean. On the other hand, boxplots represent

the results obtained for the non-parametric bootstrapping. Horizontal

lines, boxes and whiskers identify the median values, 50 % and 90 % confi-

dence intervals, respectively. The results are ordered in terms of decreasing

accuracy from left to right. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Figure 3.5 : a) Regionalization of the Iberian Peninsula for the AEMET sea-

sonal PR. b) As a) but for )max, )min and )mean together. Labels indicate

xx



List of figures

the nomenclature used to identify each region. The meaning of each label

is detailed in the main text. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Figure 4.1 : Spatial distributions of RMSER (left column) and ACC (right

column) for the WRF-DPLE multiannual mean anomalies of PR in lead

years 1, 2–5, 6–9 and 2–9 (rows) at annual scale. In ACC maps, the absence

(presence) of black dots indicates (not) statistically significant results

different from zero at the 90 % confidence level. . . . . . . . . . . . . . . . 62

Figure 4.2 : Spatial distributions of RMSER for the WRF-DPLE multiannual

mean anomalies of PR for lead years 1, 2–5, 6–9 and 2–9 (rows) in DJF,

MAM, JJA and SON (columns). Note that the colormap used in these

maps follows a binary logarithmic (log2) scale. . . . . . . . . . . . . . . . 65

Figure 4.3 : As Figure 4.2, but for ACC. The absence (presence) of black dots

indicates (not) statistically significant results different from zero at the 90

% confidence level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Figure 4.4 : Spatial distributions of the time averages of the AEMET full-field

PR at annual and seasonal scales for the period 1970-2009. While the annual

series covers the period from 1970-11 to 2009-10, seasonal series span the

period from 1970-12 to 2009-11. . . . . . . . . . . . . . . . . . . . . . . . . 67

Figure 4.5 : Signal-to-noise paradox in the hindcasts for PR over the IP. a)

Spatial distribution of RPC for the multiannual mean anomalies of the

CESM-DPLE PR in lead years 2–9 at annual scale. b) As a) but for WRF-

DPLE. The absence (presence) of black dots indicates (not) statistically

significant results different from 1 at the 90 % confidence level. . . . . . . 68

Figure 4.6 : Spatial distributions of MSSSC (left column), with climatology as

reference, CB (center column) and the same MSSSC calculated for lead time

series with an adjusted CB, i.e., equal to zero (MSSSCBA; right column),

for the WRF-DPLE multiannual mean anomalies of PR in lead years 1,

2–5, 6–9 and 2–9 (rows) at annual scale. In MSSSC and CB maps, the

absence (presence) of black dots indicates (not) statistically significant

results different from zero at the 90 % confidence level. . . . . . . . . . . . 69

Figure 4.7 : Spatial distributions of CRPSS (left column) and LESS (right

column) for the WRF-DPLE multiannual mean anomalies of PR in lead

years 1, 2–5, 6–9 and 2–9 (rows) at annual scale. The absence (presence)

of black dots indicates (not) statistically significant results different from

zero at the 90 % confidence level. . . . . . . . . . . . . . . . . . . . . . . . 72

Figure 4.8 : Spatial distributions of MSSSG (left column), ΔACCG (center

xxi



List of figures

column) and ΔCBG (right column), with CESM-DPLE as reference, for

the WRF-DPLE multiannual mean anomalies of PR in lead years 1, 2–5,

6–9 and 2–9 (rows) at annual scale. The absence (presence) of black dots

indicates (not) statistically significant results different from zero at the 90

% confidence level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Figure 4.9 : Spatial distributions of MSSSG for the WRF-DPLE multiannual

mean anomalies of PR, with CESM-DPLE as reference, for lead years 1,

2–5, 6–9 and 2–9 (rows) in DJF, MAM, JJA and SON (columns). The

absence (presence) of black dots indicates (not) statistically significant

results different from zero at the 90 % confidence level. . . . . . . . . . . . 76

Figure 4.10 : Spatial distributions of ΔCRPSSG (left column) and LESSSG

(right column) for the WRF-DPLE multiannual mean PR anomalies, with

CESM-DPLE as reference, in lead years 1, 2–5, 6–9 and 2–9 (rows) at annual

scale. The absence (presence) of black dots indicates (not) statistically

significant results different from zero at the 90 % confidence level. . . . . 78

Figure 4.11 : Spatial distributions of MSSSU (left column), ΔACCU (center

column) and ΔCBU (right column) for the WRF-DPLE multiannual mean

anomalies of PR, with WRF-LE as reference, in lead years 1, 2–5, 6–9 and 2–9

(rows) at annual scale. The absence (presence) of black dots indicates (not)

statistically significant results different from zero at the 90 % confidence

level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Figure 4.12 : Spatial distributions of MSSSU for the WRF-DPLE multiannual

mean anomalies of PR, with WRF-LE as reference, for lead years 1, 2–5,

6–9 and 2–9 (rows) in DJF, MAM, JJA and SON (columns). The absence

(presence) of black dots indicates (not) statistically significant results

different from zero at the 90 % confidence level. . . . . . . . . . . . . . . . 81

Figure 4.13 : Time series of the spatially averaged multiannual mean anomalies

of PR in the NW region for lead years 1, 2–5, 6–9 and 2–9 at annual scale.

Solid green lines identify the WRF-DPLE ensemble mean, whereas dashed

black lines correspond to AEMET. Shaded green surfaces indicate the 90

% confidence interval for a WRF-DPLE single member, calculated from

the average ensemble spread (Eq. [3.32]). Shaded yellow surfaces show

the ensemble envelope which encloses the trajectories followed by the

members composing the WRF-DPLE ensemble. . . . . . . . . . . . . . . . 84

Figure 4.14 : As Figure 4.13 but for the CN region. . . . . . . . . . . . . . . . 85

Figure 4.15 : Rotated loadings of the ERA5 (left column), the 4-member CESM-

xxii



List of figures

DPLE ensemble mean (ENS4, center column) and the 10-member CESM-

DPLE ensemble mean (ENS10, right column) SLP for each significant

spatio-temporal variability mode (rows). They have been computed for

lead years 2–9 in DJF. The variance ratio explained by each mode is shown

in map headings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Figure 5.1 : Spatial distributions of RMSE (left column) and ACC (right col-

umn) for the WRF-DPLE multiannual mean anomalies of)max in lead years

1, 2–5, 6–9 and 2–9 (rows) at annual scale. In ACC maps, the absence (pres-

ence) of black dots indicates (not) statistically significant results different

from zero at the 90 % confidence level. . . . . . . . . . . . . . . . . . . . . 99

Figure 5.2 : Spatial distributions of ACC for the WRF-DPLE multiannual

mean anomalies of )max for lead years 1, 2-5, 6-9 and 2-9 (rows) in DJF,

MAM, JJA and SON (columns). The absence (presence) of black dots

indicates (not) statistically significant results different from zero at the 90

% confidence level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Figure 5.3 : Signal-to-noise paradox in the hindcasts for )max over the IP. a)

Spatial distribution of RPC for the multiannual mean anomalies of the

CESM-DPLE )max in lead years 2–9 at annual scale. b) As a) but for WRF-

DPLE. The absence (presence) of black dots indicates (not) statistically

significant results different from 1 at the 90 % confidence level. . . . . . . 102

Figure 5.4 : Spatial distributions of MSSSC (left column), with climatology as

reference, CB (center column) and the same MSSSC calculated for lead time

series with an adjusted CB, i.e., equal to zero (MSSSCBA; right column),

for the WRF-DPLE multiannual mean anomalies of )max in lead years 1,

2–5, 6–9 and 2–9 (rows) at annual scale. In MSSSC and CB maps, the

absence (presence) of black dots indicates (not) statistically significant

results different from zero at the 90 % confidence level. . . . . . . . . . . . 104

Figure 5.5 : Spatial distributions of CRPSS (left column) and LESS (right

column) for the WRF-DPLE multiannual mean anomalies of )max in lead

years 1, 2–5, 6–9 and 2–9 (rows) at annual scale. The absence (presence)

of black dots indicates (not) statistically significant results different from

zero at the 90 % confidence level. . . . . . . . . . . . . . . . . . . . . . . . 106

Figure 5.6 : Spatial distributions of MSSSG (left column), ΔACCG (center

column) and ΔCBG (right column), with CESM-DPLE as reference, for

the WRF-DPLE multiannual mean anomalies of )max in lead years 1, 2–5,

6–9 and 2–9 (rows) at annual scale. The absence (presence) of black dots

xxiii



List of figures

indicates (not) statistically significant results different from zero at the 90

% confidence level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Figure 5.7 : Spatial distributions of MSSSG for the WRF-DPLE multiannual

mean anomalies of )max, with CESM-DPLE as reference, for lead years

1, 2–5, 6–9 and 2–9 (rows) in DJF, MAM, JJA and SON (columns). The

absence (presence) of black dots indicates (not) statistically significant

results different from zero at the 90 % confidence level. . . . . . . . . . . . 110

Figure 5.8 : Spatial distributions of ΔCRPSSG (left column), and LESSSG

(right column) for the WRF-DPLE multiannual mean anomalies of )max,

with CESM-DPLE as reference, in lead years 1, 2–5, 6–9 and 2–9 (rows) at

annual scale. The absence (presence) of black dots indicates (not) statisti-

cally significant results different from zero at the 90 % confidence level. . 111

Figure 5.9 : Spatial distributions of MSSSU (left column), ΔACCU (center

column) and ΔCBU (right column) for the WRF-DPLE multiannual mean

anomalies of )max, with WRF-LE as reference, in lead years 1, 2–5, 6–9

and 2–9 (rows) at annual scale. The absence (presence) of black dots

indicates (not) statistically significant results different from zero at the 90

% confidence level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Figure 5.10 : Spatial distributions of MSSSU for the WRF-DPLE multiannual

mean anomalies of )max, with WRF-LE as reference, for lead years 1, 2–5,

6–9 and 2–9 (rows) in DJF, MAM, JJA and SON. The absence (presence)

of black dots indicates (not) statistically significant results different from

zero at the 90 % confidence level. . . . . . . . . . . . . . . . . . . . . . . . 114

Figure 5.11 : Time series of the spatially averaged multiannual mean anomalies

of )max in the CS region for lead years 1, 2–5, 6–9 and 2–9 at annual scale.

Solid green lines identify the WRF-DPLE ensemble mean, whereas dashed

black lines correspond to AEMET. Shaded green surfaces indicate the 90

% confidence interval for a WRF-DPLE single member, calculated from

the average ensemble spread (Eq. [3.32]). Shaded yellow surfaces show

the ensemble envelope which encloses the trajectories followed by the

members composing the WRF-DPLE ensemble. . . . . . . . . . . . . . . . 118

Figure 5.12 : Spatial distributions of RMSE (left column) and ACC (right col-

umn) for the WRF-DPLE multiannual mean anomalies of )min in lead years

1, 2–5, 6–9 and 2–9 (rows) at annual scale. In ACC maps, the absence (pres-

ence) of black dots indicates (not) statistically significant results different

from zero at the 90 % confidence level. . . . . . . . . . . . . . . . . . . . . 120

xxiv



List of figures

Figure 5.13 : Spatial distributions of RMSE for the WRF-DPLE multiannual

mean anomalies of )min for lead years 1, 2-5, 6-9 and 2-9 (rows) in DJF,

MAM, JJA and SON (columns). The absence (presence) of black dots

indicates (not) statistically significant results different from zero at the 90

% confidence level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Figure 5.14 : Signal-to-noise paradox in the hindcasts for )min over the IP. a)

Spatial distribution of RPC for the multiannual mean anomalies of the

CESM-DPLE )min in lead years 2–9 at annual scale. b) As a) but for WRF-

DPLE. The absence (presence) of black dots indicates (not) statistically

significant results different from 1 at the 90 % confidence level. . . . . . . 123

Figure 5.15 : Spatial distributions of MSSSC (left column), with climatology as

reference, CB (center column) and the same MSSSC calculated for lead time

series with an adjusted CB, i.e., equal to zero (MSSSCBA; right column),

for the WRF-DPLE multiannual mean anomalies of )min in lead years 1,

2–5, 6–9 and 2–9 (rows) at annual scale. In MSSSC and CB maps, the

absence (presence) of black dots indicates (not) statistically significant

results different from zero at the 90 % confidence level. . . . . . . . . . . . 124

Figure 5.16 : Spatial distributions of CRPSS (left column) and LESS (right

column) for the WRF-DPLE multiannual mean anomalies of )min in lead

years 1, 2–5, 6–9 and 2–9 (rows) at annual scale. The absence (presence)

of black dots indicates (not) statistically significant results different from

zero at the 90 % confidence level. . . . . . . . . . . . . . . . . . . . . . . . 127

Figure 5.17 : Spatial distributions of MSSSG (left column), ΔACCG (center

column) and ΔCBG (right column), with CESM-DPLE as reference, for

the WRF-DPLE multiannual mean anomalies of )min in lead years 1, 2–5,

6–9 and 2–9 (rows) at annual scale. The absence (presence) of black dots

indicates (not) statistically significant results different from zero at the 90

% confidence level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Figure 5.18 : Spatial distributions of MSSSG for the WRF-DPLE multiannual

mean anomalies of )min, with CESM-DPLE as reference, for lead years

1, 2–5, 6–9 and 2–9 (rows) in DJF, MAM, JJA and SON (columns). The

absence (presence) of black dots indicates (not) statistically significant

results different from zero at the 90 % confidence level. . . . . . . . . . . . 131

Figure 5.19 : Spatial distributions of ΔCRPSSG (left column), and LESSSG

(right column) for the WRF-DPLE multiannual mean anomalies of )min,

with CESM-DPLE as reference, in lead years 1, 2–5, 6–9 and 2–9 (rows).

xxv



List of figures

The absence (presence) of black dots indicates (not) statistically significant

results different from zero at the 90 % confidence level. . . . . . . . . . . . 132

Figure 5.20 : Spatial distributions of MSSSU (left column), ΔACCU and ΔCBU

(right column) for the WRF-DPLE multiannual mean anomalies of )min,

with WRF-LE as reference, in lead years 1, 2–5, 6–9 and 2–9 (rows) at annual

scale. The absence (presence) of black dots indicates (not) statistically

significant results different from zero at the 90 % confidence level. . . . . 134

Figure 5.21 : Spatial distributions of MSSSU for the WRF-DPLE multiannual

mean anomalies of )min, with WRF-LE as reference, for lead years 1, 2–5,

6–9 and 2–9 (rows) in DJF, MAM, JJA and SON. The absence (presence)

of black dots indicates (not) statistically significant results different from

zero at the 90 % confidence level. . . . . . . . . . . . . . . . . . . . . . . . 135

Figure 5.22 : Time series of the spatially averaged multiannual mean anomalies

of )min in the CS region for lead years 1, 2–5, 6–9 and 2–9 at annual scale.

Solid green lines identify the WRF-DPLE ensemble mean, whereas dashed

black lines correspond to AEMET. Shaded green surfaces indicate the 90

% confidence interval for a WRF-DPLE single member, calculated from

the average ensemble spread (Eq. [3.32]). Shaded yellow surfaces show

the ensemble envelope which encloses the trajectories followed by the

members composing the WRF-DPLE ensemble. . . . . . . . . . . . . . . . 138

Figure 5.23 : As Figure 5.22 but for the NO region. . . . . . . . . . . . . . . . 139

Figure 5.24 : Spatial distributions of RMSE (left column) and ACC (right col-

umn) for the WRF-DPLE multiannual mean anomalies of )mean in lead

years 1, 2–5, 6–9 and 2–9 (rows). In ACC maps, the absence (presence)

of black dots indicates (not) statistically significant results different from

zero at the 90 % confidence level. . . . . . . . . . . . . . . . . . . . . . . . 141

Figure 5.25 : Spatial distributions of RMSE for the WRF-DPLE multiannual

mean anomalies of )mean for lead years 1, 2-5, 6-9 and 2-9 (rows) in DJF,

MAM, JJA and SON (columns). The absence (presence) of black dots

indicates (not) statistically significant results different from zero at the 90

% confidence level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Figure 5.26 : Signal-to-noise paradox in the hindcasts for )mean over the IP. a)

Spatial distribution of RPC for the multiannual mean anomalies of the

CESM-DPLE )mean in lead years 2–9 at annual scale. b) As a) but for WRF-

DPLE. The absence (presence) of black dots indicates (not) statistically

significant results different from 1 at the 90 % confidence level. . . . . . . 144

xxvi



List of figures

Figure 5.27 : Spatial distributions of MSSSC (left column), with climatology as

reference, CB (center column) and the same MSSSC calculated for lead time

series with an adjusted CB, i.e., equal to zero (MSSSCBA; right column),

for the WRF-DPLE multiannual mean anomalies of )mean in lead years

1, 2–5, 6–9 and 2–9 (rows) at annual scale. In MSSSC and CB maps, the

absence (presence) of black dots indicates (not) statistically significant

results different from zero at the 90 % confidence level. . . . . . . . . . . . 146

Figure 5.28 : Spatial distributions of CRPSS (left column) and LESS (right

column) for the WRF-DPLE multiannual mean anomalies of )mean in lead

years 1, 2–5, 6–9 and 2–9 (rows) at annual scale. The absence (presence)

of black dots indicates (not) statistically significant results different from

zero at the 90 % confidence level. . . . . . . . . . . . . . . . . . . . . . . . 148

Figure 5.29 : Spatial distributions of MSSSG (left column), ΔACCG (center

column) and ΔCBG (right column), with CESM-DPLE as reference, for

the WRF-DPLE multiannual mean anomalies of )mean in lead years 1, 2–5,

6–9 and 2–9 (rows). The absence (presence) of black dots indicates (not)

statistically significant results different from zero at the 90 % confidence

level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Figure 5.30 : Spatial distributions of MSSSG for the WRF-DPLE multiannual

mean anomalies of )mean, with CESM-DPLE as reference, in lead years

1, 2–5, 6–9 and 2–9 (rows) in DJF, MAM, JJA and SON (columns). The

absence (presence) of black dots indicates (not) statistically significant

results different from zero at the 90 % confidence level. . . . . . . . . . . . 152

Figure 5.31 : Spatial distributions of ΔCRPSSG (left column), and LESSSG

(right column) for the WRF-DPLE multiannual mean anomalies of )mean,

with CESM-DPLE as reference, at lead years 1, 2–5, 6–9 and 2–9 (rows).

The absence (presence) of black dots indicates (not) statistically significant

results different from zero at the 90 % confidence level. . . . . . . . . . . . 154

Figure 5.32 : Spatial distributions of MSSSU (left column), ΔACCU (center

column) and ΔCBU (right column) for the WRF-DPLE multiannual mean

anomalies of )mean, with WRF-LE as reference, in lead years 1, 2–5, 6–9

and 2–9 (rows). The absence (presence) of black dots indicates (not)

statistically significant results different from zero at the 90 % confidence

level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Figure 5.33 : Spatial distributions of MSSSU for the WRF-DPLE multiannual

mean anomalies of )mean, with WRF-LE as reference, in lead years 1, 2–5,

xxvii



List of figures

6–9 and 2–9 (rows) in DJF, MAM, JJA and SON. The absence (presence)

of black dots indicates (not) statistically significant results different from

zero at the 90 % confidence level. . . . . . . . . . . . . . . . . . . . . . . . 157

Figure 5.34 : Time series of the spatially averaged multiannual mean anomalies

of )mean in the CS region for lead years 1, 2–5, 6–9 and 2–9 at annual scale.

Solid green lines identify the WRF-DPLE ensemble mean, whereas dashed

black lines correspond to AEMET. Shaded green surfaces indicate the 90

% confidence interval for a WRF-DPLE single member, calculated from

the average ensemble spread (Eq. [3.32]). Shaded yellow surfaces show

the ensemble envelope which encloses the trajectories followed by the

members composing the WRF-DPLE ensemble. . . . . . . . . . . . . . . . 160

Figure 5.35 : Spatial distributions of a) the trend of the ERA5 multiannual

lead time series of )mean, b) the trend of the difference between the 4-

member CESM-DPLE ensemble mean (ENS4) and ERA5 lead time series

of )mean, and c) as b) but for the 10-member CESM-DPLE ensemble mean

(ENS10). The lead time series have been calculated for the lead years 2–9

in the control period at annual scale. The ERA5 trend is represented by

�- , whereas �.−- denotes the trend in the difference of CESM-DPLE and

ERA5 time series. The absence (presence) of black dots indicates (not)

statistically significant results different from zero at the 90 % confidence

level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

Figure 5.36 : As Figure 5.35 but for DJF, MAM, JJA and SON (rows). . . . . 164

Figure 6.1 : Schematic example of the spin-up stage for soil moisture. The

RCM has been initialized starting from very dry ICs of soil moisture. The

RMSE for soil moisture (solid lines) in a superficial layer A (blue) and a

deep layer B (orange) changes until reaching an asymptotic state, whose

beginning constitutes the end of the spin-up period (blue and yellow

dashed lines). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

Figure 6.2 : Dominant land cover classes used by Noah LSM in WRF simula-

tions. Data retrieved from the modified IGBP MODIS 20-category vegeta-

tion classification (Friedl and Land Team/EMC/NCEP, 2008; Friedl et al.,

2010). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

Figure 6.3 : Dominant soil textures used by Noah LSM in WRF simulations.

a) Chart which shows the composition of the texture classes. Composition

information retrieved from Soil Survey Division Staff (1993). b) Soil texture

distribution in the IP and Balearic Islands. Data retrieved from FAO/USDA

xxviii



List of figures

(2002). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

Figure 6.4 : ICs of soil moisture (�) in the sensitivity experiments for the

a) wet, b) dry and c) very dry soils. These ICs have been obtained by

combining the SMI in Eq. [6.1] with the physical properties of each soil

texture in Table 6.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

Figure 6.5 : Spin-up time for soil moisture depending on the soil layer (rows)

and the soil moisture ICs (columns) for the sensitivity experiments initial-

ized on 1990-01-01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

Figure 6.6 : As Figure 6.5 but for the sensitivity experiments initialized on

1990-07-01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Figure 6.7 : Differences between the ICs of soil moisture for the sensitivity

experiments (columns) and the control simulation in each soil layer (rows).

The sensitivity experiments were initialized on 1990-01-01. . . . . . . . . 183

Figure 6.8 : As Figure 6.7 but for the sensitivity experiments initialized on

1990-07-01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

Figure 6.9 : Spatial distributions of monthly control )mean (left column) and

PR (right column). Top and middle rows correspond to the monthly

fields in the previous months to the initialization dates of the sensitivity

experiments. Panels in the bottom row show the average of the monthly

fields over the control period, which starts in 1990-01-01 (start date of the

experiments initialized in January) and ends in 2000-06-30 (end date of

the experiments initialized in July). . . . . . . . . . . . . . . . . . . . . . . 185

Figure 6.10 : Spin-up time for PR, )max, )min and )mean (rows) depending on

the soil moisture initial conditions (columns) for the sensitivity experi-

ments initialized on 1990-01-01. . . . . . . . . . . . . . . . . . . . . . . . . 188

Figure 6.11 : As Figure 6.10 but for the sensitivity experiments initialized on

1990-07-01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

Figure 7.1 : Spatial distributions of the WRF-DPLE4 multiannual mean anoma-

lies of PR (left column), half the width of the 90 % confidence intervals

for a single WRF-DPLE4 member (±ΔPR90, center column) and the rela-

tive anomaly errors (�R, right column), with AEMET as the observational

dataset, at annual scale for several lead times (rows). The absence (pres-

ence) of black dots denote the locations where the forecast uncertainty is

(not) represented by the confidence intervals. In PR and �R maps, pink

triangles identify the locations where the predictions are reliable but the

confidence intervals do not contain the AEMET anomalies. . . . . . . . . 194

xxix



List of figures

Figure 7.2 : Spatial distributions of the WRF-DPLE4 multiannual mean anoma-

lies of PR for lead years 1, 2–5, 6–9 and 2–9 (rows) in DJF, MAM, JJA and

SON (columns). The absence (presence) of black dots denote the loca-

tions where the forecast uncertainty is (not) represented by the confidence

intervals. Pink triangles identify the locations where the predictions are

reliable but the confidence intervals do not contain the AEMET anomalies. 197

Figure 7.3 : Spatial distributions of the WRF-DPLE10 multiannual mean anoma-

lies of PR in lead years 1, 2–5, 6–9 and 2–9 at annual scale. . . . . . . . . . 200

Figure 7.4 : Spatial distributions of relative anomaly errors (�R, left column)

for the WRF-DPLE10 multiannual mean anomalies of PR, with AEMET

as the observational dataset, and MSSS calculated with WRF-DPLE4 as

reference (MSSS4, right column) in lead years 1 and 2–5 (rows) at annual

scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

Figure 7.5 : Spatial distributions of the MSSS for the WRF-DPLE10 multian-

nual mean anomalies of PR, with WRF-DPLE4 as reference (MSSS4), for

lead years 1 and 2–5 (rows) in DJF, MAM, JJA and SON (columns). . . . 203

Figure 7.6 : Spatial distributions of the WRF-DPLE4 multiannual mean anoma-

lies of)max (left column), half the width of the 90 % confidence intervals for

a single WRF-DPLE4 member (±Δ)max,90, center column) and the anomaly

errors (E, right column), with AEMET as the observational dataset, at

annual scale for several lead times (rows). The absence (presence) of black

dots denote the locations where the forecast uncertainty is (not) repre-

sented by the confidence intervals. In )max and � maps, yellow triangles

identify the locations where the predictions are reliable but the confidence

intervals do not contain the AEMET anomalies. . . . . . . . . . . . . . . . 206

Figure 7.7 : Spatial distributions of the WRF-DPLE4 multiannual mean anoma-

lies of )max for lead years 1, 2–5, 6–9 and 2–9 (rows) in DJF, MAM, JJA and

SON (columns). The absence (presence) of black dots denote the loca-

tions where the forecast uncertainty is (not) represented by the confidence

intervals. Yellow triangles identify the locations where the predictions are

reliable but the confidence intervals do not contain the AEMET anomalies. 209

Figure 7.8 : Spatial distributions of the WRF-DPLE10 multiannual mean anoma-

lies of )max in lead years 1, 2–5, 6–9 and 2–9 at annual scale. . . . . . . . . 211

Figure 7.9 : Spatial distributions of anomaly errors (E, left column) for the

WRF-DPLE10 multiannual mean anomalies of )max, with AEMET as the

observational dataset, and MSSS calculated with WRF-DPLE4 as reference

xxx



List of figures

(MSSS4, right column) in lead years 1 and 2–5 (rows) at annual scale. . . 212

Figure 7.10 : Spatial distributions of MSSS for the WRF-DPLE10 multiannual

mean anomalies of )max, with WRF-DPLE4 as reference (MSSS4), for lead

years 1 and 2–5 (rows) in DJF, MAM, JJA and SON (columns). . . . . . . 213

Figure 7.11 : Spatial distributions of the WRF-DPLE4 multiannual mean anoma-

lies of )min (left column), half the width of the 90 % confidence interval for

a single WRF-DPLE4 member (±Δ)min,90, center column) and the anomaly

errors (E, right column), with AEMET as the observational dataset, at

annual scale for several lead times (rows). The absence (presence) of black

dots denote the locations where the forecast uncertainty is (not) repre-

sented by the confidence intervals. In )min and � maps, yellow triangles

identify the locations where the predictions are reliable but the confidence

intervals do not contain the AEMET anomalies. . . . . . . . . . . . . . . . 216

Figure 7.12 : Spatial distributions of the WRF-DPLE4 multiannual mean anoma-

lies of )min for lead years 1, 2–5, 6–9 and 2–9 (rows) in DJF, MAM, JJA and

SON (columns). The absence (presence) of black dots denote the loca-

tions where the forecast uncertainty is (not) represented by the confidence

intervals. Yellow triangles identify the locations where the predictions are

reliable but the confidence intervals do not contain the AEMET anomalies. 219

Figure 7.13 : Spatial distributions of the WRF-DPLE10 multiannual mean anoma-

lies of )min in lead years 1, 2–5, 6–9 and 2–9 at annual scale. . . . . . . . . 220

Figure 7.14 : Spatial distributions of anomaly errors (E, left column) for the

WRF-DPLE10 multiannual mean anomalies of )min, with AEMET as the

observational dataset, and MSSS calculated with WRF-DPLE4 as reference

(MSSS4, right column) in lead years 1 and 2–5 (rows) at annual scale. . . 222

Figure 7.15 : Spatial distributions of the MSSS for the WRF-DPLE10 multian-

nual mean anomalies of )min, with WRF-DPLE4 as reference (MSSS4), for

lead years 1 and 2–5 (rows) in DJF, MAM, JJA and SON (columns). . . . 222

Figure 7.16 : Spatial distributions of the WRF-DPLE4 multiannual mean anoma-

lies of)mean (left column), half the width of the 90 % confidence interval for

a single WRF-DPLE4 member (±Δ)mean,90, center column) and the anomaly

errors (E, right column), with AEMET as the observational dataset, at an-

nual scale for several lead times (rows). The absence (presence) of black

dots denote the locations where the forecast uncertainty is (not) repre-

sented by the confidence intervals. In )min and � maps, yellow triangles

identify the locations where the predictions are reliable but the confidence

xxxi



List of figures

intervals do not contain the AEMET anomalies. . . . . . . . . . . . . . . . 226

Figure 7.17 : Spatial distributions of the WRF-DPLE4 multiannual mean anoma-

lies of )mean for lead years 1, 2–5, 6–9 and 2–9 (rows) in DJF, MAM, JJA

and SON (columns). The absence (presence) of black dots denote the loca-

tions where the forecast uncertainty is (not) represented by the confidence

intervals. Yellow triangles identify the locations where the predictions are

reliable but the confidence intervals do not contain the AEMET anomalies. 228

Figure 7.18 : Spatial distributions of the WRF-DPLE10 multiannual mean anoma-

lies of )mean in lead years 1, 2–5, 6–9 and 2–9 at annual scale. . . . . . . . . 230

Figure 7.19 : Spatial distributions of anomaly errors (E, left column) for the

WRF-DPLE10 multiannual mean anomalies of )mean, with AEMET as the

observational dataset, and MSSS calculated with WRF-DPLE4 as reference

(MSSS4, right column) in lead years 1 and 2–5 (rows) at annual scale. . . 231

Figure 7.20 : Spatial distributions of MSSS for the WRF-DPLE10 multiannual

mean anomalies of )mean, with WRF-DPLE4 as reference (MSSS4), for lead

years 1 and 2–5 (rows) in DJF, MAM, JJA and SON (columns). . . . . . . 232

Figure 8.1 : Example of the drift correction for the 40-member CESM-DPLE

ensemble mean. The global mean SST is depicted for the raw (i.e., uncor-

rected) CESM-DPLE ensemble mean (coloured dashed thin lines), the

CESM-DPLE ensemble mean corrected with the MDC (coloured solid

thin lines), the raw CESM-LE ensemble mean (black dotted line) and the

observational information provided by ERSST5 (black solid thick line). . 238

Figure 8.2 : Spatially averaged RMSE (〈RMSE〉, left column) and ACC (〈ACC〉,
right column) for the ENS40 SST in lead years 1, 2–5, 6–9 and 2–9 (rows)

over the EUR domain. The results are presented for each drift correction

method and the uncorrected (raw) data. Crosses denote the spatial aver-

ages. Box plots show the results of a bootstrapping (see Section 8.2.3) for

which lines indicate the median value and boxes and whiskers enclose the

confidence intervals at the 50 % and 95 % levels, respectively. . . . . . . . 248

Figure 8.3 : As Figure 8.2 but for the SA domain. . . . . . . . . . . . . . . . . 252

Figure 8.4 : As Figure 8.2 but for the NA domain. . . . . . . . . . . . . . . . 255

Figure 8.5 : Spatially averaged ACC (〈ACC〉) for SST in lead years 2–9 over

the a) EUR domain, b) SA domain and c) NA domain. In the EUR and NA

domains, SST has been corrected with TrDCkNN, whereas ICDCkNN has

been used in the SA domain. The results are depicted for ENS40, ENS3 and

each single member. Crosses denote the spatial averages. Box plots show

xxxii



List of figures

the results of a bootstrapping (see Section 8.2.3) for which lines indicate

the median value and boxes and whiskers enclose the confidence intervals

at the 50 % and 95 % levels, respectively. . . . . . . . . . . . . . . . . . . . 257

Figure 8.6 : On the left axis, the dependence of the spatially averaged RMSE

(〈RMSE〉, left column) and ACC (〈ACC〉, right column) for SST on the

ensemble size over the EUR, SA and NA domains is represented. While SST

has been corrected with TrDCkNN in the EUR and NA domains, ICDCkNN

has been used in the SA domain. Crosses denote the spatial averages for

ENS3, ENS10 and ENS40. Box plots show the results of a bootstrapping

(see Section 8.2.3) for which lines denote the median value and boxes

and whiskers enclose the confidence intervals at the 50 % and 95 % levels,

respectively. On the right axis, the number of years to be simulated per

ensemble size is represented by dots. The ensemble size 3 with the symbol

“*” denotes the manually selected ENS3. . . . . . . . . . . . . . . . . . . . 259

Figure 8.7 : Percentage of score coverage by confidence intervals for different

ensemble sizes. This scores have been calculated for the CESM-DPLE SST.

While SST has been corrected with TrDCkNN in the EUR and NA domains,

ICDCkNN has been used in the SA domain. Dots correspond to the coverage

of the ENS10 scores, whereas the results found for ENS40 are denoted by

crosses. The ensemble size 3 with the symbol “*” represents the manually

selected ENS3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

Figure 8.8 : Spatially averaged CRPSS (〈CRPSS〉) of SST in lead years 2-9

for different ensemble sizes in the a) EUR domain, b) SA domain and

c) NA domain. While TrDCkNN has been used to correct the drift in the

EUR and NA domains, ICDCkNN has been considered for the SA domain.

Crosses denote the averages for ENS3, ENS10 and ENS40. Box plots show

the results of a bootstrapping for which lines identify the median and

boxes and whiskers enclose the confidence intervals at the 50 % and 95 %

levels, respectively. The ensemble size 3 with the symbol “*” represents

the manually selected ENS3. . . . . . . . . . . . . . . . . . . . . . . . . . . 263

Figure B.1 : Spatial distributions of MSSSC, with climatology as reference,

for the WRF-DPLE multiannual mean anomalies of PR for lead years 1,

2–5, 6–9 and 2–9 (rows) in DJF, MAM, JJA and SON (columns). The

absence (presence) of black dots indicates (not) statistically significant

results different from zero at the 90% confidence level. . . . . . . . . . . . 307

Figure B.2 : As Figure B.1 but for CB. . . . . . . . . . . . . . . . . . . . . . . . 308

xxxiii



List of figures

Figure B.3 : As Figure B.1 but for MSSSCBA (MSSSC calculated for lead time

series with an adjusted CB, i.e., equal to zero). . . . . . . . . . . . . . . . . 309

Figure B.4 : As Figure B.1 but for CRPSS. . . . . . . . . . . . . . . . . . . . . 310

Figure B.5 : As Figure B.1 but for LESS. . . . . . . . . . . . . . . . . . . . . . 311

Figure B.6 : As Figure B.1 but for ΔACCG, with CESM-DPLE as reference. . 312

Figure B.7 : As Figure B.1 but for ΔCBG, with CESM-DPLE as reference. . . 313

Figure B.8 : As Figure B.1 but for ΔCRPSSG, with CESM-DPLE as reference. 314

Figure B.9 : As Figure B.1 but for LESSSG, with CESM-DPLE as reference. . 315

Figure B.10 : As Figure B.1 but for ΔACCU, with WRF-LE as reference, only

for lead years 1 and 2–5 (rows). . . . . . . . . . . . . . . . . . . . . . . . . 316

Figure B.11 : As Figure B.1 but for ΔCBU, with WRF-LE as reference, only for

lead years 1 and 2–5 (rows). . . . . . . . . . . . . . . . . . . . . . . . . . . 316

Figure B.12 : Spatial distributions of RMSE for the WRF-DPLE multiannual

mean anomalies of )max for lead years 1, 2–5, 6–9 and 2–9 (rows) in DJF,

MAM, JJA and SON (columns). . . . . . . . . . . . . . . . . . . . . . . . . 317

Figure B.13 : Spatial distributions of the standard deviation (s) of the AEMET

)max at annual and seasonal scales for the period 1970-2009. While the

annual series covers the period from 1970-11 to 2009-10, the seasonal series

span the period from 1970-12 to 2009-11. . . . . . . . . . . . . . . . . . . . 318

Figure B.14 : Spatial distributions of MSSSC, with climatology as reference,

for the WRF-DPLE multiannual mean anomalies of )max for lead years

1, 2–5, 6–9 and 2–9 (rows) in DJF, MAM, JJA and SON (columns). The

absence (presence) of black dots indicates (not) statistically significant

results different from zero at the 90% confidence level. . . . . . . . . . . . 319

Figure B.15 : As Figure B.14 but for CB. . . . . . . . . . . . . . . . . . . . . . . 320

Figure B.16 : As Figure B.14 but for MSSSCBA (MSSSC calculated for lead time

series with an adjusted CB, i.e., equal to zero). . . . . . . . . . . . . . . . . 321

Figure B.17 : As Figure B.14 but for CRPSS. . . . . . . . . . . . . . . . . . . . . 322

Figure B.18 : As Figure B.14 but for LESS. . . . . . . . . . . . . . . . . . . . . . 323

Figure B.19 : As Figure B.14 but for ΔACCG, with CESM-DPLE as reference. 324

Figure B.20 : As Figure B.14 but for ΔCBG, with CESM-DPLE as reference. . . 325

Figure B.21 : As Figure B.14 but for ΔCRPSSG, with CESM-DPLE as reference. 326

Figure B.22 : As Figure B.14 but for LESSSG, with CESM-DPLE as reference. 327

Figure B.23 : As Figure B.14 but for ΔACCU, with WRF-LE as reference, only

for lead years 1 and 2–5 (rows). . . . . . . . . . . . . . . . . . . . . . . . . 328

Figure B.24 : As Figure B.14 but for ΔCBU, with WRF-LE as reference, only for

xxxiv



List of figures

lead years 1 and 2–5 (rows). . . . . . . . . . . . . . . . . . . . . . . . . . . 328

Figure B.25 : Time series of the spatially averaged multiannual mean anomalies

of )max in the MT region for lead years 1, 2–5, 6–9 and 2–9 at annual scale.

Solid green lines identify the WRF-DPLE ensemble mean, whereas dashed

black lines correspond to AEMET. Shaded green surfaces indicate the 90

% confidence interval for a WRF-DPLE single member, calculated from

the average ensemble spread (Eq. [3.32]). Shaded yellow surfaces show

the ensemble envelope which encloses the trajectories followed by the

members composing the WRF-DPLE ensemble. . . . . . . . . . . . . . . . 329

Figure B.26 : As Figure B.25 but for the NE region. . . . . . . . . . . . . . . . 330

Figure B.27 : As Figure B.25 but for the CI region. . . . . . . . . . . . . . . . . 331

Figure B.28 : Spatial distributions of RMSE for the WRF-DPLE multiannual

mean anomalies of )min for lead years 1, 2–5, 6–9 and 2–9 (rows) in DJF,

MAM, JJA and SON (columns). . . . . . . . . . . . . . . . . . . . . . . . . 332

Figure B.29 : Spatial distributions of the standard deviation (s) of the AEMET

)min at annual and seasonal scales for the period 1970-2009. While the

annual series covers the period from 1970-11 to 2009-10, the seasonal series

span the period from 1970-12 to 2009-11. . . . . . . . . . . . . . . . . . . . 333

Figure B.30 : Spatial distributions of MSSSC, with climatology as reference,

for the WRF-DPLE multiannual mean anomalies of )min for lead years

1, 2–5, 6–9 and 2–9 (rows) in DJF, MAM, JJA and SON (columns). The

absence (presence) of black dots indicates (not) statistically significant

results different from zero at the 90% confidence level. . . . . . . . . . . . 334

Figure B.31 : As Figure B.30 but for CB. . . . . . . . . . . . . . . . . . . . . . . 335

Figure B.32 : As Figure B.30 but for MSSSCBA (MSSSC calculated for lead time

series with an adjusted CB, i.e., equal to zero). . . . . . . . . . . . . . . . . 336

Figure B.33 : As Figure B.30 but for CRPSS. . . . . . . . . . . . . . . . . . . . . 337

Figure B.34 : As Figure B.30 but for LESS. . . . . . . . . . . . . . . . . . . . . . 338

Figure B.35 : As Figure B.30 but for ΔCBG, with CESM-DPLE as reference. . . 339

Figure B.36 : As Figure B.30 but for ΔACCG, with CESM-DPLE as reference. 340

Figure B.37 : As Figure B.30 but for ΔCRPSSG, with CESM-DPLE as reference. 341

Figure B.38 : As Figure B.30 but for LESSSG, with CESM-DPLE as reference. 342

Figure B.39 : As Figure B.30 but for ΔACCU, with WRF-LE as reference, only

for lead years 1 and 2–5 (rows). . . . . . . . . . . . . . . . . . . . . . . . . 343

Figure B.40 : As Figure B.30 but for ΔCBU, with WRF-LE as reference, only for

lead years 1 and 2–5 (rows). . . . . . . . . . . . . . . . . . . . . . . . . . . 343

xxxv



List of figures

Figure B.41 : Time series of the spatially averaged multiannual mean anomalies

of )min in the MT region for lead years 1, 2–5, 6–9 and 2–9 at annual scale.

Solid green lines identify the WRF-DPLE ensemble mean, whereas dashed

black lines correspond to AEMET. Shaded green surfaces indicate the 90

% confidence interval for a WRF-DPLE single member, calculated from

the average ensemble spread (Eq. [3.32]). Shaded yellow surfaces show

the ensemble envelope which encloses the trajectories followed by the

members composing the WRF-DPLE ensemble. . . . . . . . . . . . . . . . 344

Figure B.42 : As Figure B.41 but for the NE region. . . . . . . . . . . . . . . . 345

Figure B.43 : Spatial distributions of RMSE for the WRF-DPLE multiannual

mean anomalies of )mean for lead years 1, 2–5, 6–9 and 2–9 (rows) in DJF,

MAM, JJA and SON (columns). . . . . . . . . . . . . . . . . . . . . . . . . 346

Figure B.44 : Spatial distributions of the standard deviation (s) of the AEMET

)mean at annual and seasonal scales for the period 1970-2009. While the

annual series covers the period from 1970-11 to 2009-10, the seasonal series

span the period from 1970-12 to 2009-11. . . . . . . . . . . . . . . . . . . . 347

Figure B.45 : Spatial distributions of MSSSC, with climatology as reference,

for the WRF-DPLE multiannual mean anomalies of )mean for lead years

1, 2–5, 6–9 and 2–9 (rows) in DJF, MAM, JJA and SON (columns). The

absence (presence) of black dots indicates (not) statistically significant

results different from zero at the 90% confidence level. . . . . . . . . . . . 348

Figure B.46 : As Figure B.45 but for CB. . . . . . . . . . . . . . . . . . . . . . . 349

Figure B.47 : As Figure B.45 but for MSSSCBA (MSSSC calculated for lead time

series with an adjusted CB, i.e., equal to zero). . . . . . . . . . . . . . . . . 350

Figure B.48 : As Figure B.45 but for CRPSS. . . . . . . . . . . . . . . . . . . . . 351

Figure B.49 : As Figure B.45 but for LESS. . . . . . . . . . . . . . . . . . . . . . 352

Figure B.50 : As Figure B.45 but for ΔACCG, with CESM-DPLE as reference. 353

Figure B.51 : As Figure B.45 but for ΔCBG, with CESM-DPLE as reference. . . 354

Figure B.52 : As Figure B.45 but for ΔCRPSSG, with CESM-DPLE as reference. 355

Figure B.53 : As Figure B.45 but for LESSSG, with CESM-DPLE as reference. 356

Figure B.54 : As Figure B.45 but for ΔACCU, with WRF-LE as reference, only

for lead years 1 and 2–5 (rows). . . . . . . . . . . . . . . . . . . . . . . . . 357

Figure B.55 : As Figure B.45 but for ΔCBU, with WRF-LE as reference, only for

lead years 1 and 2–5 (rows). . . . . . . . . . . . . . . . . . . . . . . . . . . 357

Figure B.56 : Time series of the spatially averaged multiannual mean anomalies

of )mean in the MT region for lead years 1, 2–5, 6–9 and 2–9 at annual scale.

xxxvi



List of figures

Solid green lines identify the WRF-DPLE ensemble mean, whereas dashed

black lines correspond to AEMET. Shaded green surfaces indicate the 90

% confidence interval for a WRF-DPLE single member, calculated from

the average ensemble spread (Eq. [3.32]). Shaded yellow surfaces show

the ensemble envelope which encloses the trajectories followed by the

members composing the WRF-DPLE ensemble. . . . . . . . . . . . . . . . 358

Figure B.57 : As Figure B.56 the NE region. . . . . . . . . . . . . . . . . . . . . 359

Figure B.58 : Spatial distributions of the confidence intervals of PR at the 90 %

level for a single WRF-DPLE4 member (±ΔPR90) for lead years 1, 2–5, 6–9

and 2–9 (rows) in DJF, MAM, JJA and SON (columns). The absence (pres-

ence) of black dots indicates the locations where the confidence intervals

represent the forecast uncertainty at the 90 % confidence level. . . . . . . 360

Figure B.59 : As Figure B.58 but for the WRF-DPLE4 relative anomaly error

of PR (�R) in lead years 1 and 2–5 (rows). Pink triangles indicate the

locations where the forecast uncertainty is represented by the confidence

intervals but the observational anomalies fall outside them. . . . . . . . . 361

Figure B.60 : Spatial distributions of the WRF-DPLE10 multiannual mean anoma-

lies of PR for lead years 1, 2–5, 6–9 and 2–9 (rows) in DJF, MAM, JJA and

SON (columns). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

Figure B.61 : Spatial distributions of the WRF-DPLE10 relative anomaly error

of PR (�R) for lead years 1 and 2–5 (rows) in DJF, MAM, JJA and SON

(columns). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

Figure B.62 : Spatial distributions of the confidence intervals of )max at the

90 % level for a single WRF-DPLE4 member (±Δ)max,90) for lead years 1,

2–5, 6–9 and 2–9 (rows) in DJF, MAM, JJA and SON (columns). The ab-

sence (presence) of black dots indicates the locations where the confidence

intervals represent the forecast uncertainty at the 90 % confidence level. . 364

Figure B.63 : As Figure B.62 but for the WRF-DPLE4 anomaly error of )max

(�) in lead years 1 and 2–5 (rows). Yellow triangles indicate the locations

where the forecast uncertainty is represented by the confidence intervals

but the observational anomalies fall outside them. . . . . . . . . . . . . . 365

Figure B.64 : Spatial distributions of the WRF-DPLE10 multiannual mean anoma-

lies of )max for lead years 1, 2–5, 6–9 and 2–9 (rows) in DJF, MAM, JJA and

SON (columns). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366

Figure B.65 : Spatial distributions of the WRF-DPLE10 anomaly error of )max

(�) for lead years 1 and 2–5 (rows) in DJF, MAM, JJA and SON (columns). 367

xxxvii



List of figures

Figure B.66 : Spatial distributions of the confidence intervals of)min at the 90 %

level for a single WRF-DPLE4 member (±Δ)min,90) for lead years 1, 2–5, 6–9

and 2–9 (rows) in DJF, MAM, JJA and SON (columns). The absence (pres-

ence) of black dots indicates the locations where the confidence intervals

represent the forecast uncertainty at the 90 % confidence level. . . . . . . 368

Figure B.67 : As Figure B.66 but for the WRF-DPLE4 anomaly error of )min

(�) in lead years 1 and 2–5 (rows). Yellow triangles indicate the locations

where the forecast uncertainty is represented by the confidence intervals

but the observational anomalies fall outside them. . . . . . . . . . . . . . 369

Figure B.68 : Spatial distributions of the WRF-DPLE10 multiannual mean anoma-

lies of )min for lead years 1, 2–5, 6–9 and 2–9 (rows) in DJF, MAM, JJA and

SON (columns). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370

Figure B.69 : Spatial distributions of the WRF-DPLE10 anomaly error of )min

(�) for lead years 1 and 2–5 (rows) in DJF, MAM, JJA and SON (columns). 371

Figure B.70 : Spatial distributions of the confidence intervals of )mean at the

90 % level for a single WRF-DPLE4 member (±Δ)mean,90) for lead years 1,

2–5, 6–9 and 2–9 (rows) in DJF, MAM, JJA and SON (columns). The ab-

sence (presence) of black dots indicates the locations where the confidence

intervals represent the forecast uncertainty at the 90 % confidence level. . 372

Figure B.71 : As Figure B.70 but for the WRF-DPLE4 anomaly error of )mean

(�) in lead years 1 and 2–5 (rows). Yellow triangles indicate the locations

where the forecast uncertainty is represented by the confidence intervals

but the observational anomalies fall outside them. . . . . . . . . . . . . . 373

Figure B.72 : Spatial distributions of the WRF-DPLE10 multiannual mean anoma-

lies of )mean for lead years 1, 2–5, 6–9 and 2–9 (rows) in DJF, MAM, JJA

and SON (columns). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

Figure B.73 : Spatial distributions of the WRF-DPLE10 anomaly error of )mean

(�) for lead years 1 and 2–5 (rows) in DJF, MAM, JJA and SON (columns). 375

Figure B.74 : Spatially averaged RMSE (〈RMSE〉, left column) and ACC (〈ACC〉,
right column) for the ENS40 NSAT anomaly along lead time in the EUR do-

main. The results are presented for each drift correction method. Crosses

denote the spatial averages. Box plots show the results of a bootstrapping

(see Section 8.2.3) for which lines indicate the median value and boxes

and whiskers enclose the confidence intervals at the 50 % and 95 % levels,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376

Figure B.75 : As Figure B.74 but for SLP. . . . . . . . . . . . . . . . . . . . . . 377

xxxviii



List of figures

Figure B.76 : Spatial distributions of ACC for the ENS40 multiannual means

of SLP in lead years 1–4, 2–5, 5–8 and 2–9 in DJF. The data have been drift

corrected with the TrDCkNN method. The absence (presence) of black dots

indicates (not) statistically significant results different from zero at the

95 % confidence level. Yellow boxes denote the regions considered in the

calculation of the NAO index. . . . . . . . . . . . . . . . . . . . . . . . . . 378

Figure B.77 : As Figure B.74 but for the SA domain. . . . . . . . . . . . . . . . 379

Figure B.78 : As Figure B.74 but for SLP and the SA domain. . . . . . . . . . . 380

Figure B.79 : Spatial distributions of ACC for the ENS40 multiannual means

of SST in lead years 1–4, 2–5, 5–8 and 2–9 in DJF. Black boxes denote

the regions considered in the calculation of the ENSO indices. For the

Niño 3, 3.4 and 4 indices, there is a box which encompasses the common

latitudes for their respective regions, whereas the straight lines delimit the

range of longitudes for each one. The absence (presence) of black dots

indicates (not) statistically significant results different from zero at the 95

% confidence level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

Figure B.80 : As Figure B.74 but for the NA domain. . . . . . . . . . . . . . . . 382

Figure B.81 : As Figure B.74 but for SLP and the NA domain. . . . . . . . . . 383

Figure B.82 : Spatial distributions of RMSE (left column) and ACC (right col-

umn) for the ENS40 multiannual means of SST (top row), NSAT anomaly

(middle row) and SLP (bottom row), dritf-corrected with TrDCkNN, in

lead years 2–9 at annual scale. The absence (presence) of black dots in

ACC panels indicates (not) statistically significant results different from

zero at the 95 % confidence level. Black lines denote the boundaries of the

EUR, SA and NA domains. . . . . . . . . . . . . . . . . . . . . . . . . . . . 384

Figure B.83 : As Figure B.82 but for ICDCkNN as the drift correction method. 385

Figure B.84 : As Figure B.82 but for RAW (uncorrected data). . . . . . . . . . 386

xxxix





List of tables

Table 3.1 : Variables used as input information in the DD simulations con-

ducted with WRF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Table 4.1 : Skill scores for the spatially averaged WRF-DPLE multiannual

mean anomalies of PR in lead years 1, 2–5, 6–9 and 2–9 at annual scale. The

subscripts �, � and * denote the reference data used to calculate the skill

score: AEMET climatology, CESM-DPLE global hindcasts and WRF-LE

uninitialized experiments, respectively. The bold formatting indicates re-

sults different from zero at the 90 % confidence level. Dashes denote data

unavailability at that lead time. . . . . . . . . . . . . . . . . . . . . . . . . . 82

Table 4.2 : ACC calculated with the ERA5 and CESM-DPLE rotated principal

components (PCRs) for lead years 2–9 in DJF. The CESM-DPLE PCRs have

been computed for the 4-member and 10-member ensemble means (ENS4

and ENS10, respectively). The variance ratio explained by each significant

spatio-temporal variability mode is shown in brackets below the PCRs. The

bold formatting indicates results different from zero at the 90 % confidence

level. In the evaluation of the statistical significance, the non-parametric

bootstrapping conducted with the PCRs has been applied only for start

dates (see Section 3.2.3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Table 5.1 : Skill scores for the spatially averaged WRF-DPLE multiannual

mean anomalies of )max in lead years 1, 2–5, 6–9 and 2–9 at annual scale.

The subscripts �, � and * denote the reference data used to calculate the

skill score: AEMET climatology, CESM-DPLE global hindcasts and WRF-

LE uninitialized experiments, respectively. The bold formatting indicates

results different from zero at the 90 % confidence level. Dashes denote

data unavailability at that lead time. . . . . . . . . . . . . . . . . . . . . . . 116

Table 5.2 : Skill scores for the spatially averaged WRF-DPLE multiannual

mean anomalies of )min in lead years 1, 2–5, 6–9 and 2–9 at annual scale.

The subscripts �, � and * denote the reference data used to calculate the

skill score: AEMET climatology, CESM-DPLE global hindcasts and WRF-

LE uninitialized experiments, respectively. The bold formatting indicates

xli



List of tables

results different from zero at the 90 % confidence level. Dashes denote

data unavailability at that lead time. . . . . . . . . . . . . . . . . . . . . . . 137

Table 5.3 : Skill scores for the spatially averaged WRF-DPLE multiannual

mean anomalies of )mean in lead years 1, 2–5, 6–9 and 2–9 at annual scale.

The subscripts �, � and * denote the reference data used to calculate the

skill score: AEMET climatology, CESM-DPLE global hindcasts and WRF-

LE uninitialized experiments, respectively. The bold formatting indicates

results different from zero at the 90 % confidence level. Dashes denote

data unavailability at that lead time. . . . . . . . . . . . . . . . . . . . . . . 158

Table 6.1 : Soil moisture values for the wilting point (�WP) and field capacity

(�FC) which correspond to each soil texture class in the IP. . . . . . . . . 178

Table 7.1 : Skill scores for the spatially averaged WRF-DPLE multiannual

mean anomalies of PR in lead years 1, 2-5, 6-9 and 2-9 for the decade

starting in 2015 at annual scale. PR is the anomaly for the WRF-DPLEN

(the N-member WRF-DPLE ensemble) ensemble mean, ±ΔPR90 represents

half the width of the 90 % conficence interval for a single WRF-DPLE mem-

ber, �R is the relative anomaly error, with AEMET as the observational

dataset, and MSSS4 denotes the added value of WRF-DPLE10 over WRF-

DPLE4. Only for the WRF-DPLE4 PR, the bold formatting denotes that

WRF-DPLE4 is able to represent the forecast uncertainty and that the 90

% confidence interval encloses the AEMET anomaly; the symbol “(∗)”,

if any, means that the former is satisfied but the latter is not; finally, the

plain formatting is used when WRF-DPLE4 cannot represent the forecast

uncertainty. Dashes denote data unavailability at that lead time. . . . . . 204

Table 7.2 : Skill scores for the spatially averaged WRF-DPLE multiannual

mean anomalies of )max in lead years 1, 2-5, 6-9 and 2-9 for the decade start-

ing in 2015 at annual scale. )max is the anomaly for the WRF-DPLEN (the

N-member WRF-DPLE ensemble) ensemble mean, ±Δ)max,90 represents

half the width of the 90 % conficence interval for a single WRF-DPLE mem-

ber, � is the anomaly error, with AEMET as the observational dataset, and

MSSS4 denotes the added value of WRF-DPLE10 over WRF-DPLE4. Only

for the WRF-DPLE4 )max, the bold formatting denotes that WRF-DPLE4

is able to represent the forecast uncertainty and that the 90 % confidence

interval encloses the AEMET anomaly; the symbol “(∗)”, if any, means that

the former is satisfied but the latter is not; finally, the plain formatting is

xlii



List of tables

used when WRF-DPLE4 cannot represent the forecast uncertainty. Dashes

denote data unavailability at that lead time. . . . . . . . . . . . . . . . . . 214

Table 7.3 : Skill scores for the spatially averaged WRF-DPLE multiannual

mean anomalies of )min in lead years 1, 2-5, 6-9 and 2-9 for the decade start-

ing in 2015 at annual scale. )min is the anomaly for the WRF-DPLEN (the

N-member WRF-DPLE ensemble) ensemble mean, ±Δ)min,90 represents

half the width of the 90 % conficence interval for a single WRF-DPLE mem-

ber, � is the anomaly error, with AEMET as the observational dataset, and

MSSS4 denotes the added value of WRF-DPLE10 over WRF-DPLE4. Only

for the WRF-DPLE4 )min, the bold formatting denotes that WRF-DPLE4

is able to represent the forecast uncertainty and that the 90 % confidence

interval encloses the AEMET anomaly; the symbol “(∗)”, if any, means that

the former is satisfied but the latter is not; finally, the plain formatting is

used when WRF-DPLE4 cannot represent the forecast uncertainty. Dashes

denote data unavailability at that lead time. . . . . . . . . . . . . . . . . . 224

Table 7.4 : Skill scores for the spatially averaged WRF-DPLE multiannual

mean anomalies of)mean in lead years 1, 2-5, 6-9 and 2-9 for the decade start-

ing in 2015 at annual scale. )mean is the anomaly for the WRF-DPLEN (the

N-member WRF-DPLE ensemble) ensemble mean, ±Δ)mean,90 represents

half the width of the 90 % conficence interval for a single WRF-DPLE mem-

ber, � is the anomaly error, with AEMET as the observational dataset, and

MSSS4 denotes the added value of WRF-DPLE10 over WRF-DPLE4. Only

for the WRF-DPLE4 )mean, the bold formatting denotes that WRF-DPLE4

is able to represent the forecast uncertainty and that the 90 % confidence

interval encloses the AEMET anomaly; the symbol “(∗)”, if any, means that

the former is satisfied but the latter is not; finally, the plain formatting is

used when WRF-DPLE4 cannot represent the forecast uncertainty. Dashes

denote data unavailability at that lead time. . . . . . . . . . . . . . . . . . 233

Table 8.1 : Definition of the regions where the climate indices are calculated. 244

Table 8.2 : ACC calculated for several climate indices from ENS40 along lead

time for each drift correction method and the uncorrected (raw) data. The

bold formatting in the ACC values indicates statistical significance at the

95 % confidence level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

Table A.1 : Definition of the Köppen-Geiger climate classes. Adapted from

Beck et al. (2023). A description of the acronyms and symbols is available

xliii



List of tables

in the next page. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

Table A.2 : Trends of spatially averaged WRF-DPLE multiannual mean anoma-

lies of PR, )max, )min and )mean in lead years 1, 2-5, 6-9 and 2-9 at annual

scale for each region defined in Section 3.6. While �. denotes the trend of

the WRF-DPLE lead time series, �.−- identifies the trend of the difference

between the WRF-DPLE and AEMET series. The bold formatting indicates

that the results are different from zero at the 90 % confidence level. . . . . 301

Table A.3 : As Table A.2 but in DJF. . . . . . . . . . . . . . . . . . . . . . . . . 302

Table A.4 : As Table A.2 but in MAM. . . . . . . . . . . . . . . . . . . . . . . . 303

Table A.5 : As Table A.2 but in JJA. . . . . . . . . . . . . . . . . . . . . . . . . . 304

Table A.6 : As Table A.2 but in SON. . . . . . . . . . . . . . . . . . . . . . . . . 305

xliv



Acronyms

ACC anomaly correlation coefficient

ACM Asymmetrical Convective Model

AEMET State Meteorological Agency (Agencia Estatal de Meterología,

in Spanish)

AMV Atlantic Mutidecadal Variability

ARW Advanced Research WRF

BMJ Betts-Miller-Janjic

CAM Community Atmosphere Model

CB conditional bias

CBA conditional bias adjustment

CDF cumulative distribution function

CDO Climate Data Operators

CESM Community Earth System Model

CESM-DPLE CESM Decadal Prediction Large Ensemble

CESM-LE CESM Large Ensemble

CESM-WACCM CESM Whole Atmosphere Community Climate Model

CICE Community Ice Code

CLM Community Land Model

CMIP{5, 6} Coupled Model Intercomparison Project {Phase 5, Phase 6}

CORDEX Coordinated Regional climate Downscaling Experiment

CRPS continuous ranked probability score

CRPSS continuous ranked probability skill score

DCP decadal climate prediction

DCPP Decadal Climate Prediction Project

DD dynamical downscaling

DeFoReSt Decadal Climate Forecast Recalibration Strategy

DJF boreal winter (December, January and February)

DPS decadal prediction system

ECMWF European Centre for Medium-Range Weather Forecasts

ENS{4, 10, 40} {4, 10, 40}-member CESM-DPLE ensemble

ENSO El Niño/Southern Oscillation

xlv



Acronyms

EOF empirical orthogonal function

ERSST Extended Reconstructed Sea Surface Temperature

EURO-CORDEX European Coordinated Regional Climate Downscaling Experi-

ment

FIT polynomial fitting

GCM global climate model

GHG greenhouse gas

GISTEMP Goddard Institute for Space Studies Surface Temperature Analy-

sis

GSAT global-mean surface air temperature

HadSLP2r Hadley Centre’s near-real-time mean sea level pressure

HIRLAM HIgh Resolution Limited Area Model

IC initial condition

ICDC initial condition-based drift correction

IFS Integrated Forecast System

IP Iberian Peninsula

JJA boreal summer (June, July and August)

JRA-55 Japanese 55-year Reanalysis

kNN k-nearest neighbours

LBC lateral boundary condition

LESS logarithmic ensemble spread score

LESSS logarithmic ensemble spread skill score

LSM land surface model

MAM boreal spring (March, April and May)

MDC mean drift correction

MERRA Modern-Era Retrospective Analysis for Research and Applica-

tions

MiKlip Medium-term Climate Forecasts (Mittelfristige Klimaprognosen,

in German)

MM5 fifth-generation Penn State/NCAR Mesoscale Model

MPI-ESM Max Planck Institute Earth System Model

MSE mean squared error

MSSS mean squared skill score

NAO North Atlantic Oscillation

NCAR National Center for Atmospheric Research

NCO NetCDF Operators

xlvi



Acronyms

NSAT near-surface air temperature

PBL planetary boundary layer

PC principal component

PCR rotated principal component

PCA principal component analysis

PDF probability distribution function

POP Parallel Ocean Program

PR precipitation

RCM regional climate model

RCP representative concentration pathway

RMSE root mean square error

RPC ratio of predictable components

SIP seasonal-to-interannual prediction

SLP sea level pressure

SMI soil moisture index

SON boreal autumn (September, November and December)

SPARC Stratosphere-troposphere Processes And their Role in Climate

SSP shared socioeconomic pathway

SST sea surface temperature

T{max, min, mean} daily {maximum, minimum, mean} NSAT

TNI Trans-Niño Index

TrDC trend-based drift correction

WPS WRF Preprocessing System

WRCP World Research Climate Programme

WRF Weather Research and Forecasting model

WRF-DPLE dynamically downscaled WRF ensemble with CESM-DPLE pro-

viding the input information in DD simulations

WRF-LE dynamically downscaled WRF ensemble with CESM-LE provid-

ing the input information in DD simulations

WSM3 WRF Single-Moment 3-class

xlvii





1
Introduction

1.1. Understanding climate prediction: concepts and tools

1.1.1. Weather, climate and the human footprint

Since Aristotle’s Meteorologica (Aristotle, 1952) was written around 340 B.C., becom-

ing the first compilation of studies on meteorology ever published, our knowledge

on the atmosphere and processes occurring within it has incessantly evolved over

centuries of scientific development. The Aristotle’s inaccurate, although ingenious

explanations of atmospheric phenomena have been substituted by a comprehensive,

theoretical-practical, scientific discipline which heavily relies on state-of-the-art tech-

nology. In atmospheric sciences, meteorology is the branch which studies weather,

i.e., the instantaneous state of the atmosphere at a given time and place. By contrast,

climatology studies climate, which refers to weather conditions, averaged over time, at

a place (Rohli and Vega, 2018). While weather consists of very short-term variations

in the atmosphere which range from minutes to days, the evolution of climate from

months to thousands or millions of years is the result of the interplay between three

factors (IPCC, 2021b):

a) the natural internal variability of the atmosphere and its interaction with the

other components of the climate system (the hydrosphere, the lithosphere, the

cryosphere and the biosphere);

b) the natural external forcing2 mechanisms, such as solar radiation variability,

volcanic eruptions or changes in the Earth’s orbit;

c) the anthropogenic external forcing2 mechanisms, such as changes in the con-

centration of greenhouse gases (GHGs) and aerosols or in land use.

2Radiative forcing is the change in the net, downward minus upward, radiative flux (expressed in watts
per squared metre) due to a change in an external driver of climate change (IPCC, 2021b).
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1. Introduction

The anthropogenic factor is unequivocally the major responsible of the warming

observed in atmosphere, land and ocean from the last century to present. During this

time, the climate system has experienced certain changes, such as the increase of the

global-mean surface air temperature (GSAT) by 1.07℃ in the period 2011–2020 rela-

tive to 1850–1900, which cannot be explained only by natural causes; on the contrary,

they are mainly consequences of the emission of GHGs from human activity (Eyring

et al., 2021). The human-induced climate change is affecting people, ecosystems

and infrastructures through the observed increment in the frequency and intensity

of climate and weather extremes, such as extreme temperatures, drought or heavy

precipitation events, and it is expected to continue in the future, even increasing its as-

sociated risks if no adaptation and mitigation actions are implemented (IPCC, 2022).

The evolution of GSAT from 1950 to 2100 in observationally constrained historical

simulations and future projections along several shared socioeconomic pathways3 (SSPs;

O’Neill et al., 2016) is depicted in Figure 1.1.
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Figure 1.1 : Global-mean surface air temperature (GSAT) anomaly (°C) relative to 1850–1900 for observa-
tionally constrained historical simulations (black) and future projections (coloured) along several shared
socioeconomic pathways (SSPs; O’Neill et al., 2016). Solid lines denote 20-year moving averages, whereas
shaded areas show 95%-level confidence intervals for historical, SSP1-1.9 and SSP5-8.5. Confidence inter-
vals at the end of the 21th century for all SSPs are depicted on the right margin. Data provided by Fyfe
et al. (2021).

3Shared socioeconomic pathways (SSPs) are scenarios of future emissions and land use changes integrated
in the model simulations of the sixth phase of the Coupled Model Intercomparison Project (CMIP6). The
paths followed by these scenarios were established with assumptions about how key climate drivers
(demography, economics, technology, governance, etc.) will evolve in future. More information in O’Neill
et al. (2016) and Chen et al. (2021).
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1.1.2. Near-term climate prediction: the decadal scale

The time scales of climate assessments play a fundamental role in the development

of climate services, which aim at effectively transferring the climate information from

academy to users and decision-makers and transforming the research outcomes into

solutions to real-world problems (Goddard, 2016). It is well known that the accuracy

of weather prediction rapidly decays from approximately seven days onwards because

of the chaotic nature of the atmosphere (Ahrens, 2009). However, when the target is

climate, the prediction horizon can be extended in time (Meehl et al., 2021).

The term climate prediction or climate forecast is used to refer to an estimation of

the actual evolution of the climate in the future (IPCC, 2021b). Climate predictions

are sensitive to initial conditions, that is, the climate state which acts as the starting

point in the forecast. The accuracy in representing that initial state directly influences

on the skill of the prediction, so they are considered as initial-condition problems

(Figure 1.2; Meehl et al., 2009). This sensitivity is higher in seasonal predictions and

progressively decreases across the interannual and decadal scales (Meehl et al., 2021).

The chaotic behaviour of natural variability makes climate predictions probabilistic

in essence (Meehl et al., 2014). On the other hand, the term climate projection de-

notes an estimation of the climate evolution as a response to anthropogenic external

day week month season year decade century
time scale

Initial-condition
problem

Weather
predictions

Seasonal-to-interannual
predictions

Long-term climate
change projections

Forced boundary-
condition problem

Decadal
predictions

Figure 1.2 : Schematic progression from initial-condition problems, with weather prediction on one end,
to boundary-condition problems, with long-term climate change projections at the other end. Seasonal-
to-interannual and decadal predictions are placed in between. Decadal predictions are considered both
initial- and boundary-condition problems. Adapted with permission from Kirtman et al. (2013, Box 11.1,
Figure 2).
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forcings along a future scenario of climate change. Climate projections encompass

time scales from several decades to centuries (Lee et al., 2021). At these time scales,

the estimations fundamentally depend on external information and not on initial

conditions (Hawkins and Sutton, 2009), so they are interpreted as boundary-condition

problems (Figure 1.2; Meehl et al., 2009). Predictions are often referred to as ini-

tialized experiments because they start from an observed climate state, as opposed

to uninitialized experiments, such as historical simulations and future projections

(Meehl et al., 2021).

The decadal climate predictions (DCPs), the subject of study in this Thesis, bridge

the gap between the seasonal-to-interannual predictions (SIPs) and long-term climate

change projections, where both initial and boundary conditions can contribute to the

extraction of the climate signal (Meehl et al., 2009, 2014, 2021). The DCPs have pro-

gressively been receiving much more attention by the scientific community dedicated

to climate studies during the last decade, a consequence of the need to provide users

and stakeholders with climate information at this time scale (Brasseur and Gallardo,

2016; Goddard, 2016; Graham et al., 2011). One of the first worldwide-coordinated

research programs which included DCPs in its investigations was the fifth phase of

the Coupled Model Intercomparison Project (CMIP5; Kirtman et al., 2013; Taylor

et al., 2012). A few years later, the Decadal Climate Prediction Project (DCPP; Boer

et al., 2016) established the experimental protocol for DCPs which was followed in

the sixth phase of CMIP (CMIP6; Lee et al., 2021), built upon the knowledge and

experiences gained from the previous phase.

The main tools used to study and understand the Earth’s climate system are climate

models. Climate models are computational models which, varying in their specific

scope and complexity, help us to understand the physical, chemical and biological

processes and interactions between the different elements which compose the climate

system (Kotamarthi et al., 2021). Climate modeling has experienced an important

development in the last three decades in terms of model accuracy, reliability and

complexity (Randall et al., 2019). Nevertheless, climate models are intrinsically based

on approximations and, therefore, contain biases which emerge from different sources,

such as the model spatial and temporal resolution, the parametrization schemes or

uncertainties in initial and boundary data, among others (Chen et al., 2021). In the

field of DCP, very complex climate models which numerically represent the coupled

system atmosphere-ocean-sea ice are among the most powerful tools used to conduct

the experiments. These models are commonly referred to as atmosphere-ocean general

circulation models, or earth system models if they also incorporate the representation of
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various biochemical cycles and/or vegetation (Kirtman et al., 2013; Lee et al., 2021).

For the sake of simplicity, this sort of models will be generically named as global climate

models (GCMs) hereinafter. GCMs divide the atmosphere, the ocean, the cryosphere

and the land surface into grid cells within the equations which describe the processes

governing the evolving climate are resolved. Parametrizations are used to represent

those processes which occur on scales too small to be directly resolved by the model

or which are computationally too expensive (McFarlane, 2011).

In DCPs, the initialization is focused on the GCM components which contain the

largest sources of decadal climate predictability (Meehl et al., 2014). These compo-

nents are characterized by having a large climate memory or persistence, meaning that

the climate state at a given time influences on the physical mechanisms which deter-

mine the states in future (Yuan et al., 2013). The initialization of these components

allows the production of climate predictions for time scales beyond months and years

(Meehl et al., 2021). The ocean is known to be one of the most important drivers of

decadal climate variability. Its large dynamical and thermal inertia is a consequence

of the existence of low-frequency variability mechanisms which govern its evolu-

tion and operate worldwide (Cassou et al., 2018). Although the ocean is the main

reservoir of memory in the climate system, it is not the only source of predictability.

Sea ice or soil moisture, among other variables, are represented by processes which

could potentially contribute to enhancing the predictability in DCPs (Bellucci et al.,

2015). There are two main strategies to initialize the experiments: the full-field and

anomaly initialization approaches (Meehl et al., 2009, 2014). The full-field approach

(e.g., Yeager et al., 2012, 2018) consists of using observational data to derive the initial

conditions for the model simulation. As the simulation evolves, the modeled climate

drifts away from the observed climate towards the state systematically preferred by

the model, the model climatology, which depends on its configuration (Meehl et al.,

2009, 2014). The anomaly approach (Matei et al., 2012) may be used as an attempt to

avoid this drift by only considering observed anomalies added to the model climatol-

ogy as initial conditions. Afterwards, the model climatology is subtracted from the

output to obtain the predicted anomalies. However, this method does not account

for the inconsistencies which could exist between the model climatology and the

observed anomalies (Meehl et al., 2014) or because of defining a model climatology

under the influence of forced climate trends (Yeager et al., 2012), leading to biases in

the forecasts again. Since none of these two strategies performs consistently better

than the other in terms of predictive skill (Hazeleger et al., 2013), both are considered

in the DCPP contribution to CMIP6 (Boer et al., 2016). In both cases, a correction
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of the model drift is firmly recommended by Boer et al. (2016) to reduce the lead

time-dependent bias prior to carrying out any analysis.

The level of usefulness of climate predictions is linked to the amplitude of climate

signal which can be predicted versus the amplitude of unpredictable background

noise related to the chaotic nature of weather and climate, the uncertainties in initial

conditions and the model formulation. This relationship is known as the signal-to-

noise ratio (Scaife and Smith, 2018). Likewise systematic model errors can be reduced

to some extent through drift correction, an ensemble of experiments generated by

perturbing initial conditions is used to deal with the sensitivity of predictions to

uncertainties in observational initial state (Meehl et al., 2014). A considerable amount

of ensemble members may be needed to reveal the predictable signal masked by the

unpredictable noise (Smith et al., 2019, 2020). By using a conceptual model to analyze

the effect of the ensemble size on the predictive skill, Sienz et al. (2016) concluded

that an ensemble of at least 10 members is required to conduct a robust assessment

of the skill. This is also endorsed by Boer et al. (2016) under the CMIP6 protocol,

who recommend considering an ensemble of 10 members (even more if possible)

for every experiment initialized every year from 1960 onwards. However, there is

a clear trade-off in incrementing the ensemble size: the increase of the computing

resources needed by the simulations. This trade-off may not be worthwhile in some

circumstances where the gain in predictive skill is low compared to the increase of

the required computing time (Rosa-Cánovas et al., 2023).

1.1.3. Regional climate models and dynamical downscaling

Although the mechanisms of climate change operate worldwide, their effects are not

experienced in the same way, for example, in a region characterized by having dry and

hot summers and placed in the Mediterranean basin, and another one in south-eastern

Asia, better described by a tropical rainforest climate and not having dry seasons

(Beck et al., 2023). At local scale, the consequences of climate change are strongly

region-dependent. The use of the so-called regional climate models (RCMs) is very

well-established to describe the evolution of climate change and assess its impacts

at a finer scale than that addressed by GCMs (Doblas-Reyes et al., 2021). RCMs are

dynamical models very similar to their global counterparts in their fundamental

principles. They numerically resolve the equations which describe the processes

occurring in the atmosphere, land surface, ocean and ice, as GCMs do, but they are

only run over a limited area. Since RCMs cover a smaller domain, the simulations

conducted with them are less computationally expensive than those conducted with
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GCMs, so RCMs can be used to obtain climate information at a higher resolution

over a specific region of interest without a large trade-off in terms of computing time

(Doblas-Reyes et al., 2021; Kotamarthi et al., 2021).

The technique used to produce finer-scale climate features with a RCM is com-

monly referred to as dynamical downscaling (DD). While GCMs can describe the global

circulation, which is influenced by large-scale forcings such as changes in GHGs con-

centrations or solar radiation, RCMs enhance this large-scale information by taking

into account the effects of forcings and processes at lower scale, such as complex

topography, coastlines, land cover distribution or dynamical processes occurring at a

GCM subgrid scale (Giorgi, 2019). A schematic representation of the DD approach

is depicted in Figure 1.3. In DD simulations, RCMs take the large-scale information

from a GCM (or a reanalysis of observations) through the meteorological fields

provided as initial and time-dependent lateral boundary conditions (ICs and LBCs,

respectively). In this sense, the domain of a RCM can be interpreted as a domain

nested within the coarser domain of a GCM (or reanalysis), which subsequently

transfers information about the state of the climate system in the surroundings of

RCM through its boundaries (Giorgi, 2019). The LBCs are supplied for the prognostic

model fields, i.e., those fields which are directly calculated by the model. This set

of variables typically includes temperature, the components of wind velocity, hu-

GCM RCM

Lateral boundary
conditions

Inner domain

Buffer zone

Figure 1.3 : Schematic description of the DD technique. In this example, the GCM runs with a resolution
of 5° (∼560 km at equator), whereas the RCM does with a resolution of 0.88° (∼100 km at equator). The
RCM is provided with large scale information by the GCM through LBCs. The dashed line denotes the
end of the buffer zone. Grey dots show the positions of the model cell corners.
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midity, pressure or geopotential. For ICs, more fields may be required depending

on the RCM used, such as soil temperature, soil moisture, surface skin temperature

or snow-related variables. RCMs also need sea surface temperature (SST) as lower

boundary condition over ocean areas, which is recommended to be time-dependent

for simulations spanning from a week onwards (e.g., Giorgi et al., 2023; Skamarock

et al., 2008). If the climate information follows an unidirectional path from GCM to

RCM, i.e., there are no feedbacks between the models which influence on the GCM

climate, an one-way nesting is being applied (e.g., Beck et al., 2004; Denis et al., 2002).

In contrast, if these feedbacks are allowed, the simulation runs with a two-way nesting

(e.g., Beck et al., 2004; Lorenz and Jacob, 2005).

The difference between GCM and RCM grid resolutions leads to mismatches

between the nesting data and RCM results at the domain boundary. This issue is

commonly addressed by defining a lateral boundary or buffer zone in the vicinities of

the boundary, where the RCM results are continuously pushed towards the LBCs

by a relaxation technique (Marbaix et al., 2003). In addition, the RCM results can

also be relaxed to the large-scale fields not only in the boundaries, but also across

the whole domain through a spectral nudging (Storch et al., 2000). This relaxation is

applied in the spectral space, focusing on the large-scale components and leaving

the small-scale components of the RCM fields unaffected, which are calculated by

the RCM following the standard relaxation approach. The spectral nudging might

prevent the inconsistencies between the small-scale processes generated by RCM and

the large-scale circulation from the nesting data. Although studies show that the

use of this technique may be beneficial —for example, eliminating the distortion of

large-scale circulation by the lateral boundaries and the sensitivity of RCM to the

domain geometry and location (e.g. Miguez-Macho et al., 2004; Radu et al., 2008)—

the generation of mesoscale processes by RCM might be hindered if spectral nudging

is too strong (Omrani et al., 2012).

Regardless of the relaxation technique and the nesting approach, the LBCs interact

with the RCM physics and dynamics to generate the climatology in DD simulations.

This climatology is the result of the dynamical equilibrium between both LBCs and

RCM, which is reached after a certain amount of time since the start of the simulation.

This time is known as the spin-up time (Giorgi, 2019; Giorgi and Mearns, 1999). At

the beginning of the simulation, when the information provided by the LBCs start to

spread throughout the domain, the bias the of RCM tends to change and eventually

oscillate around an asymptotic value. When the bias achieves this asymptotic stage,

the RCM reaches the dynamical equilibrium and is able to simulate the climatology
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with a relatively constant skill level. The analysis of the RCM simulations needs to

account for the spin-up time to adequately evaluate their performances. While the

spin-up time is from around several days to weeks for atmospheric variables such as

temperature or precipitation, it may range from months to even several years for soil

variables such as soil moisture (Giorgi and Mearns, 1999).

The regional climate modeling plays a very important role in vulnerability, impact

and adaptation studies. The flexibility of RCMs provides groups or individuals

with tools to investigate a wide variety of situations at regional scale with different

model configurations and approaches. However, this versatility may be also a double-

edge sword, since the lack of common protocols in the use of RCMs could difficult

the transfer of knowledge between different projects. With this background, the

Coordinated Regional climate Downscaling Experiment (CORDEX) was born in 2009,

backed by the World Research Climate Programme (WRCP), as the first international

program establishing a common protocol for downscaling experiments (Giorgi and

Gutowski, 2015; Giorgi et al., 2009). The main goals of CORDEX, listed in Giorgi and

Gutowski (2015), include improving the understanding the relevant climate processes

occurring at regional and local scale, evaluating and improving the downscaling

models and techniques, coordinating the production of downscaled sets of climate

projections worldwide and promoting the exchange of knowledge with the end users

of regional climate information.

The experiments done under the CORDEX framework just encompass long-term

climate change simulations, but do not cover near-term climate predictions, such as

SIPs or DCPs. Only the German research program Medium-term Climate Forecasts

(MiKlip, in its German acronym; Marotzke et al., 2016) has carried out a comprehen-

sive evaluation of the performance of DCPs at regional scale through a DD approach

(e.g. Feldmann et al., 2019; Reyers et al., 2019). In MiKlip, the DD simulations run on

the EURO-CORDEX domain with a resolution of 0.22° (∼ 25 km) and use the Max

Planck Institute Earth System Model (MPI-ESM; Stevens et al., 2013) as the GCM

providing the ICs and LBCs. At the time of writing this Thesis, there are no similar

assessments in published works which have not been carried out in the framework

of MiKlip. To the best of my knowledge, the only study in literature not belonging

to MiKlip which involves DD and DCPs can be found in Strobach and Bel (2019).

However, this study is limited to use only one 30-year decadal experiment to both

evaluate the predictive skill and forecast the future climate with a RCM making use

of eight different parametrization schemes.
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1.2. The Iberian Peninsula

The region of study in this Thesis is the Iberian Peninsula (IP; Figure 1.4), which

encompasses the continental regions of Spain and Portugal. To be precise, most part of

the analyses has been focused on the peninsular territory of Spain, excluding Portugal,

because the observational datasets used in the evaluation of the DD experiments

only contain information for Spain (see Section 2.3 for further details). The Balearic

Islands, which belong to Spain and are located in the Mediterranean Sea, have also

been included in the analyses because of their proximity to the IP. The peninsular

territory of Portugal has been taken into account in the study carried out in Chapter 6,

as reference data are available for this region in that specific case. For the sake of

brevity, the term IP is used to refer to this geographical area hereinafter, regardless of

whether Portugal is included in the analysis or not.

The IP, contained in the longitudes 10° W – 5° E and latitudes 36° N – 44° N, is

placed in the southwesternmost part of Eurasia (Figure 1.4a). It is situated between

the Atlantic Ocean and the Mediterranean Sea, bordering France to the north and

separated from Africa just by the Strait of Gibraltar. The main topographic feature

of the IP is its high terrain elevation (Instituto Geográfico Nacional, 2019), due to

the existence of a large interior plateau: the Central Plateau. The Central Plateau is

divided into two subplateaus (Northern and Southern Subplateaus) by the Central

System and is surrounded by the Cantabrian Range, the Iberian System, Sierra Morena

and the Baetic System. The average elevation in the IP is around 650 m, whereas the

most frequent heights are between 700 and 800 m. The lowest elevation, below 200 m,

is mainly located in narrow regions situated in the Mediterranean coast and wider

areas in the south-western Atlantic coast. On the other hand, the highest elevation

is located in Mulhacén (3,479 m, Baetic System), closely followed by Pico Aneto

(3,404 m, the Pyrenees).

The climate of the IP almost entirely fits into the arid and temperate categories

of the Köppen–Geiger climate classification (Figure 1.4b, Appendix A.1; Beck et al.,

2023). The regions in the west, southwest and south mainly show a temperate

climate characterized by hot and dry summers (Csa), with lower temperatures in the

northwest (Csb). On the other hand, the central and eastern regions have a cold arid

steppe climate in general, defined by low mean annual temperatures and precipitation

(BSk). Some locations close to the Mediterranean coast have a hot arid steppe climate

(BSh), where temperatures are higher than for the previous cold variant. In the

southeast, there are some regions with an arid desert climate (BWh and BWk), where
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Figure 1.4 : a) Schematic representation of the main geographical features in the Iberian Peninsula (IP).
The terrain elevation data have been retrieved from Earth Resources Observation And Science Center
(2017). b) Köppen–Geiger climate classification of IP. The full classification is composed of 30 climate
classes, but only those corresponding to IP (and surroundings) are shown in the legend. Data retrieved
from Beck et al. (2023).
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mean annual precipitation is lower than for the steppe class. The northern regions are

characterized by a temperate climate with no dry seasons and warm/hot summers

(Cfa and Cfb). With respect to the high mountain regions, the Pyrenees and some

locations in the Cantabrian Range are characterized by a cold climate with no dry

seasons (Dfb and Dfc). In the Central or Baetic Systems, climate is also cold, but with

dry summers (Dsb and Dsc). The highest altitudes present a polar climate with very

low temperatures (ET).

1.3. Objectives and structure of the Thesis

The analyses and subsequent conclusions presented here are the result of the evalua-

tion of a collection of experiments generated by approximately 4.94 million CPU hours

of DD simulations, which produced a total of 1470 simulated years. At the moment of

writing this Thesis, it represents the first and the only study which comprehensively

assesses the predictive skill of a dynamically downscaled decadal prediction system

(DPS) at a 10 km resolution, becoming the highest spatial resolution attained with a

DD approach in this branch of the climate prediction.

The main objectives of this study are:

1) To generate a collection of high-resolution DCPs over the IP. This collection is

the product of a set of DD simulations conducted with the Weather Research

and Forecasting model (WRF) and provided with ICs and LBCs by a global

DPS.

2) To evaluate the predictive skill for some of the most relevant downscaled climate

variables in terms of their accuracy and reliability in reproducing the observed

climate in the period 1970–2009, as well as the added value over the global

initialized and downscaled uninitialized counterparts in the IP.

3) To examine the dynamically downscaled DCPs generated for the period 2015–

2025 and evaluate their predictive skill up to 2020 in the IP.

Following this introduction, Chapter 2 presents the datasets used in this Thesis.

Afterwards, Chapter 3 contains a description of the RCM and the methodologies

followed to conduct the simulations and analyze the output product. Chapter 4 is

devoted to evaluate the predictive skill of the downscaled DCPs for precipitation, as

well as the added value over global DCPs and uninitialized downscaled experiments.

In the same line, the results for daily maximum, minimum and mean near-surface air

temperatures are evaluated in Chapter 5. The impact of the soil initialization with

extreme soil moisture conditions on WRF simulations and its potential influence on
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the decadal predictive skill are examined inChapter 6. The analysis of the downscaled

DCPs for the decade 2015–2025 is done in Chapter 7. Additionally, an exploration of

alternative drift correction techniques for global DCPs is made in Chapter 8. Finally,

Chapter 9 contains the main conclusions of this Thesis and suggests some potential

future works to continue the research presented here.
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Data

This Chapter is devoted to describe the datasets used in this Thesis. Firstly, the models

which have been used to provide the ICs and LBCs in DD simulations have been

introduced. Secondly, the reanalysis products considered in drift correction, DD sim-

ulations and the evaluation of DCPs have been presented. Finally, the observational

datasets also used in the analysis of the DCP experiments have been described.

2.1. Global climate model datasets

2.1.1. CESM Decadal Prediction Large Ensemble

The initial and boundary information required to conduct the decadal DD simulations

has been provided by the collection of decadal experiments carried out with the

Community Earth System Model (CESM), version 1.1, by the United States National

Center for Atmospheric Research (NCAR) in the framework of the CESM Decadal

Prediction Large Ensemble (CESM-DPLE; Yeager et al., 2018). The CESM-DPLE is

one of the multiple DPSs which participate in the DCPP contribution to CMIP6 (Boer

et al., 2016; IPCC, 2021a). It encompasses a set of simulations full-field initialized

(see Section 1.1) every year on November 1st with start dates ranging from 1954 to

2015 (62 start dates). For each start date, an ensemble composed of 40 members was

generated by randomly perturbing the initial atmospheric conditions at the round-off

level.

CESM is a coupled model which assembles several submodels dedicated to solve

the physics equations which govern the evolution of each component of the climate

system (Yeager et al., 2018). The atmosphere component is the version 5 of the

Community Atmosphere Model (CAM5; Hurrell et al., 2013), which runs with a

finite-volume dynamical core at 1° resolution and 30 vertical levels. CESM uses the

version 2 of the Parallel Ocean Program (POP; Danabasoglu et al., 2012) for the ocean
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component, with an horizontal resolution of 1° and 60 vertical levels. For the sea ice

component, the version 4 of the Community Ice Code (CICE; Hunke and Lipscomb,

2008) runs at the same horizontal resolution of POP. Finally, the version 4 of the

Community Land Model (CLM; Lawrence et al., 2011) is used as the land component.

The observational information in the start dates is introduced through the ocean

and ice components, whereas the uninitialized atmosphere and land components

take their ICs from the restart files of a single member of the CESM Large Ensemble

(CESM-LE; Kay et al., 2015) on November 1st (see Section 2.1.2). A more detailed

description of the CESM-DPLE experimental design can be found in Yeager et al.

(2018).

For the radiative forcings (which include well-mixed greenhouse gases, short-

lived gases and aerosols), CESM-DPLE considers historical information until 2005

(Lamarque et al., 2010) and the representative concentration pathway (RCP) 8.5 used

in CMIP5 from 2006 onwards (Lamarque et al., 2011; Meinshausen et al., 2011). In the

case of ozone concentrations, a coupled chemistry-climate model, the CESM Whole

Atmosphere Community Climate Model (CESM-WACCM; Marsh et al., 2013), is

used to provide the information instead of CMIP5 CESM (Kay et al., 2015; Yeager

et al., 2018). While CMIP5 CESM ozone forcing is known to underestimate ozone

depletion at stratospheric level under Antarctica, CESM-WACCM provides a more

consistent and realistic representation of the ozone hole (Eyring et al., 2013).

CESM-DPLE was chosen to provide the initial and boundary information in DD

simulations since it is the only DPS which, at the time of writing this dissertation,

publicly supplies all the mandatory fields needed by WRF. WRF requires information

for multiple variables at several height and soil levels with a 6-hourly time aggregation

(see Section 3.1 for further information). The huge computing cost of the simulations

used to produce the DCPs and the large storage requirements needed to save all

mandatory fields to drive a RCM directly impact on the availability of these variables.

Not even CESM-DPLE provides all these fields for the whole 40-member ensemble,

but only for 10 members from the experiments yearly initialized from 1954 to 1999,

along with 2014 and 2015 (48 start dates). A list of the fields available to download

can consulted in “Decadal Prediction Large Ensemble Project output fields list” (n.d.),

whereas the data can be downloaded from “CESM1-CAM5-DP” (n.d.).

The dynamically downscaled decadal experiments conducted in the context of

this Thesis cover two periods: the control period and the decade 2015–2025. The

decadal experiments in the control period, also named retrospective DCPs or hindcasts,
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have been used to assess the predictive skill of the downscaled product and evaluate

its reliability. The computing cost of the production of DCPs does not only affect

simulations at global scale, but also at regional scale when a DD approach is used.

Thus, the number of downscaled decadal experiments conducted here is constrained

by the availability of computing resources. Among the decadal experiments available

for DD, the hindcasts initialized every year from 1970 to 1999 (30 start dates) for

4 members of the CESM-DPLE have been selected to conduct the simulations (see

Section 3.3.2 for more information about the member selection). Hereinafter, this

dynamically downscaled WRF ensemble will be referred to as WRF-DPLE.

In the DCPP contribution to CMIP6 (Boer et al., 2016), the experimental design

required by the Tier 2 phase of the production of decadal hindcasts consisted in

decadal experiments initialized every year from 1960 to present for an ensemble size

of at least 10 members (the Tier 1 phase required the same start dates but for 5-year

experiments) to guarantee robust estimates of the predictive skill. The reduction

of the number of start dates or the sample size in the downscaled experiments may

affect to some extent the predictive skill assessment, since the sample size has been

shown to influence on the magnitude and significance of the skill scores used to

evaluate the performance of the DCPs, improving the consistency of the results with

the increase of the number of start dates (Reyers et al., 2019; Sienz et al., 2016). On

the other hand, decreasing the number of ensemble members may also negatively

affect the predictive skill through the reduction of the signal-to-noise ratio, since

the extraction of the climate signal benefits from taking larger ensemble averages to

remove the unpredictable background noise present in decadal experiments (Reyers

et al., 2019; Scaife and Smith, 2018; Sienz et al., 2016; Smith et al., 2019), as mentioned

in Section 1.1.2. In an effort to improve as much as possible the robustness of the

predictions for the decade 2015–2025, the 10 available members have been considered

to conduct the DD simulations for this period. All the decadal experiments used as

ICs and LBCs have been drift-corrected prior to carrying out any simulation (more

information in Section 3.3).

2.1.2. CESM Large Ensemble

The CESM-LE (Kay et al., 2015) is a set of historial simulations and long-term projec-

tions of climate change carried out at NCAR with CESM, version 1. The CESM-LE

uses the same model configuration which was applied in CESM-DPLE . While the

historical simulations span the period 1850-2005, the climate change projections start

in 2006 and cover the 21th century up to 2100, following the RCP 8.5 for the radia-
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tive forcings. CESM-LE is composed of 40 members which, as for CESM-DPLE, are

randomly generated by perturbing the initial atmospheric conditions. The main

difference between CESM-LE and CESM-DPLE is that observational information is

not used in the initialization stage of the former. The common experimental designs

of both CESM projects allow the analysis of the added value of initialization to predic-

tive skill, avoiding the potential biases which might arise from considering different

model configurations. Further details about the model setup and experimental design

can be found in Kay et al. (2015).

The fields required as input in DD simulations are not available for the whole

CESM-LE simulated period. These fields only cover the period 1990–2005 for historical

simulations and 2026–2100 for long-term climate projections. In this case, the whole

40-member ensemble is available. Only the experiments for the period 1990–2005

have been dynamically downscaled and, therefore, only the hindcasts for the last 10

start dates (those initialized every year from 1990 to 1999) have been used to assess

the added value of WRF-DPLE to predictive skill over the downscaled uninitialized

product. This constraint introduces a large sampling bias in the evaluation which

must be taken into account in the discussion of the results. A selection of 4 ensemble

members has been done to generate this downscaled product (see Section 3.4.2 for

more information about the member selection), which will be referred to as WRF-LE

hereinafter. A list of the available fields and the instructions to download them can

be accessed through “Data Sets Available to the Community” (n.d.). As done for

the decadal experiments, the CESM-LE experiments have been bias-corrected before

using them to run WRF (see Section 3.4 for more details).

2.2. Reanalysis datasets

A reanalysis is the output of a model which has been constrained by observations

through data assimilation techniques (Chen et al., 2021). If the model is a numerical

weather prediction model, the output product is called atmospheric reanalysis. The

model, observations and the assimilation scheme are used in combination to produce

the best gridded estimates, known as analyses, of past atmospheric states. Reanalysis

is the short term to refer to a retrospective analysis. Firstly, the model conducts a

short-term forecast starting from previous analysis of the atmospheric state. Then, the

data assimilation merges the outputs from this forecast, commonly referred to as first

guesses, with observations to produce new analyses of the climate state, which are

used to initialize the next short-term forecast (Fujiwara et al., 2017). Since a model is

involved in the generation of reanalysis data, these products often provide variables
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which are not supplied by observational datasets in a gridded format for the whole

globe, such as hourly instantaneous temperature or soil moisture at several pressure

or soil levels, respectively. This fact makes reanalyses specially suitable to conduct DD

simulations. A comprehensive review of the global atmospheric reanalyses currently

available has been recently published in the context of the Stratosphere-troposphere

Processes And their Role in Climate project (SPARC) of the WRCP. It can be found

in SPARC (2022).

The reanalysis products used in this Thesis, ERA-Interim (Dee et al., 2011) and

ERA5 (Hersbach et al., 2020), are described in the following.

2.2.1. ERA-Interim reanalysis

ERA-Interim (Dee et al., 2011) is one of the full-input atmospheric reanalyses4 pro-

duced by the European Centre for Medium-Range Weather Forecasts (ECMWF).

The forecast model of ERA-Interim is the version Cy31r2 of the ECMWF Integrated

Forecast System (IFS). ERA-Interim has a spectral T255 horizontal resolution, which

is equivalent to a 79 km resolution, approximately, on a reduced Gaussian grid, and

60 vertical levels up to 0.1 hPa. Its archive contains 6-hourly gridded estimates of

three-dimensional meteorological variables and 3-hourly estimates of a large amount

of surface fields and other two-dimensional variables from January 1979 to August

2019.

In this Thesis, ERA-Interim has been used to address three main tasks:

1) To correct the biases in the decadal prediction and uninitialized information

used as input in DD simulations with WRF (see Sections 3.3 and 3.4).

2) To conduct a control DD simulation with WRF for reference purposes in the

analysis and production of other DD experiments (see Section 3.8).

3) To conduct a series of sensitivity experiments and analyze the extent to which

DD simulations are affected by changes in initial soil moisture conditions (see

Section 3.8 and Chapter 6).

ERA-Interim is currently discontinued (“Decommissioning of ECMWF Public

Datasets Service”, n.d.) as it has been superseded by ERA5 (Hersbach et al., 2020), a

new reanalysis which incorporates several improvements over the former, such as an

upgraded forecast model, an improved data assimilation scheme and higher vertical

and horizontal resolutions, among other updates. Although ERA5 is considered one

4A full input reanalysis uses observational surface, conventional upper-air and satellite data in the
assimilation process (SPARC, 2022).
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of the most reliable reanalyses available to the community (Chen et al., 2021), it has

not been used for the aforementioned tasks because they were started before the

ERA5 release.

Other reanalyses could provide an overall performance similar to ERA-Interim

(SPARC, 2022), such as the Japanese 55-year Reanalysis (JRA-55; Kobayashi et al.,

2015) and the version 2 of the Modern-Era Retrospective Analysis for Research and

Applications (MERRA; Gelaro et al., 2017). Nevertheless, ERA-Interim was chosen

instead because it has been widely used and tested in DD simulations in Europe

and, particularly, in the IP (see, e.g., García-Valdecasas et al., 2020a; Jach et al., 2020;

Katragkou et al., 2015).

2.2.2. ERA5 reanalysis

ERA5 (Hersbach et al., 2020) is the latest state-of-the-art full-input atmospheric

reanalysis produced by ECMWF. It incorporates several updates compared to its

predecessor ERA-Interim. Firstly, the forecast model of ERA5 is the version Cy412r

of the ECMWF IFS. With respect to the version Cy31r2 used by ERA-Interim, it

contains new improvements in all of its components (including atmosphere, land,

ocean waves and observations) as well as a new data assimilation methodology.

ERA5 also provides a higher horizontal and vertical resolution. Its model runs with

a spectral TL639 horizontal resolution, which approximately corresponds to a 31 km

resolution, for 137 vertical levels up to 0.01 hPa. In contrast to the 6- and 3-hourly

output frequency of ERA-Interim, ERA5 supplies hourly outputs for an even higher

set of variables. Additionally, these outputs are available from 1950 to present, and not

only from 1979 as those of ERA-Interim. All these updates contribute to improving

the reanalysis product compared to what was offered by the predecessor.

ERA5 has been used for two main purposes:

1) To evaluate some variables from CESM-DPLE used as ICs and LBCs in WRF

simulations (see Sections 4.5 and 5.4). ERA5 is used instead of observational

datasets because it allows working on the CESM-DPLE native resolution, i.e.,

the resolution of the input data used to drive the DD simulations.

2) To conduct the drift correction of some CESM-DPLE fields in an intercomparison

of different correction approaches (see Chapter 8).
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2.3. Observational datasets

2.3.1. Precipitation and near-surface air temperature in Spain

The Spanish State Meteorological Agency (AEMET, in its Spanish acronym), through

the ROCIO_IBEB product, has provided the observational information for daily pre-

cipitation (AEMET, 2019), maximum near-surface air temperature (NSAT; AEMET,

2020a) and minimum NSAT (AEMET, 2020b). These variables will be denoted as

PR, )max and )min, respectively, hereinafter. The three datasets cover the peninsular

territory of Spain and the Balearic Islands with a grid of 5 km resolution. The infor-

mation is presented at daily scale and has been produced from AEMET station-based

measurements which span the period 1951-2022.

The version 2.0 of the PR dataset used in this Thesis incorporates measurements

from 3236 stations, as opposed to the 2213 stations considered in version 1.0. The

methodology followed to represent the in-situ observed data on the 5 km grid is

detailed in Peral-García et al. (2017). An optimal interpolation (Daley, 1991), a sta-

tistical interpolation method appropriate for irregular observation distributions, was

used to produce analyses of PR from observational data and first guesses of zero

value. Since these information sources add biases in the calculation process, a con-

straint consisting of minimizing the variance of the analysis error was imposed in the

algorithm to filter the noise and reveal the signal in the estimations. This procedure

is mainly based on the surface analysis system integrated in the HIgh Resolution

Limited Area Model (HIRLAM; Navascués et al., 2003; Rodríguez et al., 2003; Undén

et al., 2002), a numerical weather prediction system which runs at AEMET and other

European national meteorological services (Navascués et al., 2013). The method was

extended for PR by Quintana-Seguí et al. (2016) and adjusted by Peral-García et al.

(2017) for this dataset to produce daily PR from 07:00 to 07:00 am (local time).

In )max and )min datasets, version 1.0, observations from 1800 stations were used

to generate the 5 km-resolution gridded product. The methodology followed is very

similar to that for the PR dataset, but including the HIRLAM-AEMET operational

analyses for temperature as first guesses after being corrected with observations, as

done in Amblar-Francés et al. (2020). Since no information about the daily mean

NSAT ()mean) is provided by this AEMET product, it has been calculated as the

arithmetic mean of the daily maximum and minimum datasets.

The AEMET datasets have been used to address the following tasks:

1) To recalibrate the WRF-DPLE outputs with the aim of improving as much as pos-
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sible their ability to reproduce the observed climate in the IP (see Section 3.5).

2) To divide the IP into homogeneous regions enclosing the locations with similar

climate variability for PR and NSAT (see Section 3.6).

3) To evaluate the predictive skill of the recalibrated WRF-DPLE experiments in

the IP (see Chapters 4, 5 and 7).

2.3.2. Global sea level pressure, near-surface air temperature and sea surface temperature

A few global observational datasets have been used in this Thesis for evaluation

purposes. These datasets provide gridded information for sea level pressure (SLP),

SST and NSAT. The observational SLP has been supplied by the near-real-time update

of Hadley Centre’s monthly historical mean sea level pressure (HadSLP2r; Allan

and Ansell, 2006). This dataset is presented with a 5° spatial resolution, covering

the period from 1850 to 2019. It combines terrestrial and marine observational data

from 2228 stations. This information is blended and gridded by using a reduced-

space optimal interpolation (Kaplan et al., 2000) to generate the final product. The

GISTEMP version 4 (GISTEMP4; Hansen et al., 2010; Lenssen et al., 2019) has been

chosen for the evaluation of NSAT. It has been generated from in-situ observational

data which have been processed to generate a monthly dataset in a 2°-resolution

grid along the period from 1880 to present. The NSAT data are provided as anomaly

series with respect to the average over the period 1951–1980. There are gaps in time

series which affect some locations, especially in the Southern Hemisphere, so the

grid points considered in the evaluation have at least the 70 % of time steps needed

to calculate the annual and the multiyear means of the lead time windows (see

Section 3.2 for a definition of these lead time windows). Finally, the version 5 of the

Extended Reconstructed Sea Surface Temperature (ERSST5; Huang et al., 2017) has

been used for the SST evaluation. This dataset considers multiple data sources for

in-situ and satellite measurements along with other gridded products of SST and sea

ice to reconstruct the monthly series of the global SST. The information is provided

from 1854 to present with a 2° spatial resolution.

These datasets have been used in the following tasks:

1) In the case of ERSST5, for the evaluation of the individual member performances

in the selection of CESM-DPLE and CESM-LE subensembles which are used in

DD simulations (see Sections 3.3.2 and 3.4.2).

2) The three datasets have been considered for the intercomparison of several drift

correction methods for DCPs (see Chapter 8).
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This Chapter is dedicated to describe the fundamental methodology applied in this

Thesis. Some methodological aspects related to the analyses conducted in Chapters 6

and 8 are only briefly mentioned here, but they are fully detailed in those chapters.

The following sections contain a description of the configuration of WRF and

the workflow of the DD simulations, the methodology applied to evaluate the DD

experiments, the techniques used to correct the biases in the ICs and LBCs of WRF,

the approach followed to recalibrate the WRF-DPLE experiments, a description of

the soil initialization, a complete list of the DD experiments and a mention of the

most relevant software used in the course of this Thesis.

3.1. The Weather Research and Forecasting model (WRF)

The DD simulations have been conducted with WRF by using the version 3.9.1.1 of

the Advanced Research WRF (ARW) dynamics solver (Skamarock et al., 2008; Wang

et al., 2008). The version 3.9.1 of the WRF Preprocessing System (WPS; Wang et al.,

2008) has been used to prepare and write the WRF input data in the appropriate

format to run the simulations. The source code of WRF and WPS is open and freely

available in WRF Developers (2017) and WPS Developers (2017), respectively.

3.1.1. Domain configuration and nesting approach

The DD simulations were conducted over two nested domains (Figure 3.1). The

coarse-grid domain, d01, is based on the region defined for the European Coordinated

Regional Climate Downscaling Experiment (EURO-CORDEX; e.g., Jacob et al., 2014;

Kotlarski et al., 2014), which is widely used for simulations carried out over Europe

in the framework of CORDEX (CORDEX, 2015; Giorgi and Gutowski, 2015; Giorgi

et al., 2009). This domain has a resolution of 0.44° (∼ 50 km) and a size of 126 × 123
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Figure 3.1 : Domains for the DD simulations conducted with WRF. The domain d01, with a ∼ 50 km
resolution, is based on the EURO-CORDEX region, whereas the domain d02 is centered in the IP and
spans Spain, Portugal, part of France and the north of Africa, with a ∼ 10 km resolution. While the solid
lines denote the boundaries of each domain, the dashed lines identify the inner boundaries of the buffer
zones. The terrain elevation data have been retrieved from Earth Resources Observation And Science
Center (2017).

grid points (∼ 6300× 6150 km). It is defined with a latitude-longitude projection and

a rotated pole placed at coordinates 162° W and 39.25° N to maintain a quasi-uniform

resolution in length units over the whole domain. It covers the northeastern Atlantic

Ocean, spans the European continent, including the westernmost regions of Russia,

and extends over the north of Africa. The fine-grid domain, d02, nested in the previous

one, is centered on the IP, extending southwards over northern Africa, northwards

over France and also covering the Balearic Islands. This domain has a resolution of

0.088° (∼ 10 km) and a size of 221 × 221 grid points (∼ 2210 × 2210 km). Previous

studies have shown that resolutions around 10 km are appropriate to reproduce

the observed climate with RCMs, consistently providing more realistic results than

coarser resolutions, especially in the case of precipitation in regions with complex

orography or delimited by the coast (Demory et al., 2020; Prein et al., 2016). The
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resolution jump between both WRF domains is 5, keeping a value below 12, as

suggested by Denis et al. (2003) to guarantee the generation of a reliable regional

climate.

The DD simulations were conducted with a one-way nesting approach (e.g., Beck

et al., 2004; Denis et al., 2002). It means that WRF was forced by LBCs through

an unidirectional communication channel which did not allow feedbacks between

the WRF results and the driving data, as opposed to the two-way nesting (Lorenz

and Jacob, 2005). Due to the weak feedback provided to the GCM by the RCM in

Europe and the complexity of running in a two-way mode, the one-way nesting is

the most common approach in DD simulations (Giorgi, 2019). The LBCs supplied to

WRF were updated every 6 hours. According to Denis et al. (2003), this frequency

is appropriate for DD experiments which use the one-way technique to drive their

45 km-resolution RCM, without appreciable differences with experiments for which

the LBCs are updated every 3 hours. Therefore, a similar behaviour is expected for

the 50-km resolution domain defined here. In any case, the frequency of WRF input

information is restricted by data availability. Here, the maximum output frequency

available in ERA-Interim and CESM-DPLE/-LE datasets for the mandatory fields is

6-hourly, so there is not a higher-frequency alternative.

3.1.2. Relaxation procedures toward driving fields

As mentioned in Section 1.1.3, the difference in grid resolution between the LBCs and

the RCM produces mismatches between the solutions and driving data on the domain

lateral boundaries, which must be addressed by applying relaxation techniques

(Marbaix et al., 2003). A linear-exponential relaxation approach, whose mathematical

formulation is detailed in Skamarock et al. (2008), was followed across the buffer

zone. In this procedure to relax the RCM solutions towards the driving fields, the

LBCs are updated by a function with two linear ramping weight coefficients, both

multiplied by a exponential factor to get a smoother result (Wang et al., 2008). The

relaxation is applied for horizontal wind components, potential temperature, water

vapor, and the perturbed fields of geopotential and pressure (Skamarock et al., 2008).

The buffer zones in both domains have sizes of 5 grid points, the WRF default value

(Wang et al., 2008), which are equivalent to lengths about 250 km and 50 km for the

coarse- and fine-grid domains, respectively.

In addition to the relaxation in the buffer zone, a spectral nudging (see Sec-

tion 1.1.3; Storch et al., 2000) was also applied for some fields across the whole
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coarse-grid domain (but not for the fine one) to prevent the generation of small-scale

processes inconsistent with the large-scale circulation reproduced by the driving data

during the simulations. The spectral nudging contributes to eliminating the distortion

of the large-scale circulation along the lateral boundaries and the sensitivity of RCM

results to the geometry and location of the domain (Miguez-Macho et al., 2004; Radu

et al., 2008). It has been applied on waves roughly longer than 600 km, only for the

coarse-grid domain, to force the RCM to reproduce the large-scale circulation dur-

ing the generation of the fields which provide the fine-grid domain with the lateral

boundary information (Messmer et al., 2017). The nudging has not been conducted

in the fine-grid domain so that the RCM can freely develop the small-scale climate

features over the IP. Temperature, horizontal wind components and geopotential

height have been nudged with a 6-hourly frequency, the same frequency considered

to update the LBCs. Following Miguez-Macho et al. (2004), humidity has not been

nudged because it can present very pronounced horizontal and vertical gradients

which may be missed by coarse GCM or reanalysis data. A typical nudging coefficient

of 3 · 10−4 s−1 has been considered for the spectral nudging, being applied only above

the planetary boundary layer (PBL) to avoid inconsistencies in the simulated climate

as a result of the differences between the surface characteristics of the GCM and RCM

(Gómez and Miguez-Macho, 2017).

3.1.3. Description of the model core and workflow

The dynamical core of WRF, known as the ARW dynamics solver, is the part of the

WRF modeling system which integrates the equations governing the exchanges of

mass, energy and momentum in the simulated system, i.e., the compressible and

non-hydrostatic Euler equations (Skamarock et al., 2008). The solutions of these

equations provide the spatio-temporal fields of the prognostic variables (wind speed

components, potential temperature, humidity, geopotential perturbation and pressure

perturbation). These equations are formulated by using a terrain-following mass

coordinate system proposed by Laprise (1992). They are integrated in time by using a

third-order Runge-Kutta scheme with a time-split approach (Wicker and Skamarock,

2002). The integration time steps were set to 240 s and 48 s for the coarse- and fine-

grid domains, respectively, as considered in “Model” (n.d.) for domains with similar

resolutions to those used in this Thesis. The spatial discretization is done by applying

an Arakawa-C grid staggering, which consists of locating most scalar variables in

the center of the domain grid cells and horizontal wind velocities and geopotential

in horizontal and vertical cell boudaries, respectively. Here, the Euler equations

26



3.1. The Weather Research and Forecasting model (WRF)

were solved in 40 vertical levels with the pressure top located at 10 hPa. Further

information about the ARW dynamics solver is available in Skamarock et al. (2008).

The workflow applied to produce the final output experiments which have been

analyzed in the next chapters can be divided into three phases (Figure 3.2):

A) Input data pre-processing with WPS.

B) DD simulations with ARW.

C) Output data post-processing and storage.

Two types of datasets are used as input information in the phase A. The first type is

the static geographical data which provide the RCM with information about constant

terrestrial information (terrain height, land use categories, soil types, etc.). It can be

downloaded from the WRF Users’ Page (“WRF V3 Geographical Static Data Down-

loads Page”, n.d.). The second type is the information supplied by the bias-corrected

GCM (CESM-DPLE and CESM-LE) or reanalysis (ERA-Interim) data, which contain

the time-varying fields which define the ICs and LBCs in DD simulations (Table 3.1).

While ERA-Interim provides input fields with a 6-hourly aggregation, the time fre-

quency of the GCMs variables is lower for some slow-variant fields, such as soil

moisture or sea surface temperature. In those cases, 6-hourly time series were con-

structed by assigning to each time step the corresponding daily or monthly field

value before correcting the bias (see Sections 3.3 and 3.4 for information about the

bias correction). Both datasets are supplied to WPS, which prepares the data in the

appropriate format to create the ICs and LBCs which are used to conduct the DD

simulations. The WPS environment is composed of three modules:

A.1) The Geogrid module. The role of this module is to create the RCM domains and

interpolate the static geographical information onto them. The file geo_em.d0x

contains the information generated for the domain d0x.

A.2) The Ungrib module. While CESM-DPLE and CESM-LE data are provided in

the WRF intermediate format, the data from ERA-Interim are originally written

in the GRIB format. This module extracts the time-varying meteorological

information from GRIB files and write it in the FILE:<date> files with the

WRF intermediate format, where <date> is the date corresponding to that

information.

A.3) The Metgrid module. The geo_em.d0x and FILE:<date> files are the inputs

of the Metgrid submodule, which horizontally interpolates the meteorological

data onto the domains defined by Geogrid to create the met_em.d0x.<date>
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Figure 3.2 : Flow chart for the DD simulations conducted with WRF.

files. These files contain both static geographical and time-varying meteorologi-

cal information.

The phase B is carried out with ARW, which constitutes the fundamental core of

WRF. It creates the ICs and LBCs and conducts the DD simulations. As WPS, the
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Table 3.1 : Variables used as input information in the DD simulations conducted with WRF.

Variables Component Levels
Original time frequency

CESM-DPLE/-LE ERA-Interim

air temperature atmosphere pressure 6-hourly 6-hourly

zonal wind speed atmosphere pressure 6-hourly 6-hourly

meridional wind
speed

atmosphere pressure 6-hourly 6-hourly

relative humidity atmosphere pressure 6-hourly 6-hourly

geopotential height atmosphere pressure 6-hourly 6-hourly

sea level pressure atmosphere surface 6-hourly 6-hourly

surface pressure atmosphere surface 6-hourly 6-hourly

2-m air temperature atmosphere surface 6-hourly 6-hourly

10-m zonal wind
speed

atmosphere surface 6-hourly 6-hourly

10-m meridional
wind speed

atmosphere surface 6-hourly 6-hourly

2-m relative humidity atmosphere surface 6-hourly 6-hourly

2-m relative humidity atmosphere surface 6-hourly 6-hourly

skin temperature atmosphere surface 6-hourly 6-hourly

snow depth water
equivalent

atmosphere surface monthly 6-hourly

sea ice fraction atmosphere surface daily 6-hourly

sea surface
temperature

ocean surface daily 6-hourly

soil temperature land soil monthly 6-hourly

soil moisture land soil monthly 6-hourly

land sea mask – surface constant constant

terrain elevation – surface constant constant

ARW environment is composed of several modules:

B.1) The Real module. This module reads the static and meteorological informa-

tion from the met_em.d0x.<date> files at first. Then, it prepares the soil and

atmospheric fields which are used in DD simulations by vertically interpolating

them on the RCM soil and height levels, respectively. This module also verifies
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that all mandatory variables are available and that there are not inconsistencies

in the information provided by met_em.d0x.<date> files. The spectral nudging

described in Section 3.1.2 is started at this stage too. The ICs and LBCs are saved

in the wrfinput_d0x and wrfbdy_d0x, respectively. Additional information for

the low boundary of the RCM, referred to time-varying variables which are not

generated by the model but are required to run the simulations (sea surface

temperature, albedo, vegetation fraction, etc.), are saved in wrflowinp_d0x

files. Finally, the fields needed to apply the spectral nudging are saved in

wrffdda_d0x files. Since it has been applied only over the coarser domain, a

single file is generated.

B.2) The WRF module. It contains the ARW dynamics solver, the dynamical core

of the WRF modeling system. Its role is to solve the equations that govern

the physical processes which determine the evolution of the simulated system

and provide the solutions in form of output spatio-temporal fields through the

wrf*_d0x:<date> files.

In the phase C, the fields contained in the wrf*_d0x:<date>files are post-processed

to organize and rewrite the output information with the aim of making it easy to

read and handle. The post-processing is done by combining tools from Climate Data

Operators (CDO; Schulzweida, 2023), Numpy (Harris et al., 2020) and Xarray (Hoyer

and Hamman, 2017). Once this task finishes, the data are sent to a private storage

system from which they can be downloaded by authorized users.

3.1.4. The physics parametrization schemes

In the context of climate modeling, a parametrization is the representation of a phys-

ical process which cannot be directly solved by the climate model but that is still

important for the behaviour of the climate system (Kotamarthi et al., 2021). These pro-

cesses often involve mechanisms which need a higher spatial or temporal resolution

to be explicitly determined or which are computationally too expensive. Parametriza-

tions represent these unsolved processes as functions of quantities which can be

solved in models, considering conceptual approximations or empirical relationships

derived from observations and process studies (McFarlane, 2011).

WRF gives the possibility of choosing among a wide range of parametrization

options. Some combinations of parametrizations may be more suitable than others

depending on the scope of the study, the region of interest or the domain configu-

ration, not only regarding the ability to accurately reproduce the evolving climate
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3.1. The Weather Research and Forecasting model (WRF)

but also in terms the computing cost of the simulations. This RCM has been object

of multiple sensitivity analyses to examine its response to different combinations of

parametrizations schemes in the IP (see, e.g., Argüeso et al., 2011; Borge et al., 2008;

García-Valdecasas, 2018; Santos-Alamillos et al., 2013). The parametrization schemes

chosen in this Thesis are the same that were selected by García-Valdecasas (2018)

in a study carried out for the same domains considered here. Among the options

tested by García-Valdecasas (2018), this selection is generally the most appropriate

configuration of parametrizations to simulate the current climate in the IP, providing

a good compromise between the computing cost of the simulations and their ability

to reproduce the observed climate. This configuration includes parametrizations for

microphysics, cumulus, the land surface, the PBL, radiation and the surface layer:

• Microphysics. Microphysics parametrizations resolve water vapour, cloud and

precipitation-related processes (Skamarock et al., 2008). Here, the WRF Single-

Moment 3-class scheme (WSM3; Hong et al., 2004) has been used. WSM3 ac-

counts for three types of hydrometers (vapour, cloud water/ice and rain/snow).

It provides a realistic representation of ice physics at a 10–30-km model resolu-

tion while being computationally efficient.

• Cumulus. Cumulus schemes represent the effects of convective and shallow

clouds at subgrid scale (Skamarock et al., 2008). The Betts-Miller-Janjic scheme

(BMJ; Janjić, 1994, 2000) has been chosen in this case. It is built upon the

Betts-Miller scheme (Betts, 1986; Betts and Miller, 1986) and includes some

modifications to improve the representation of deep and shallow convection

(Janjić, 1994).

• Land surface. Land surface models (LSMs) take information from surface

layer scheme, radiative forcing from the radiation scheme, precipitation from

the microphysics and cumulus schemes, together with internal land fields and

land surface properties to generate heat and moisture fluxes at a grid cell level

over land and sea ice. Among all available options, the Noah LSM (Chen and

Dudhia, 2001; Ek et al., 2003; Wang et al., 2010) is used here. Noah LSM uses

four soil layers with depths 0–10 cm, 10–40 cm, 40–100 cm and 100–200 cm, and

only a canopy layer. More details about this parametrization are provided in

Section 6.2.

• Planetary boundary layer (PBL). The parametrization of the PBL resolves the

subgrid vertical fluxes associated to eddy transport not only in the PBL but

also in the whole atmospheric column. The flux profiles are determined in the
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boundary and stable layers, whereas the atmospheric tendencies of temperature,

humidity and horizontal momentum are calculated for the entire column. It

takes the surface fluxes from the surface layer and LSM (Skamarock et al., 2008).

The version 2 of the Asymmetrical Convective Model (ACM2; Pleim, 2007)

parametrizes these processes in the WRF simulations conducted here. While the

original version of the model represents the large-scale convective transport but

omit subgrid turbulent mixing, ACM2 incorporates an eddy diffusion scheme

to also account for the small-scale turbulent transport processes.

• Radiation. Radiation schemes represent the atmospheric heating due to the

net radiative flux and the downward long- and short-wave radiation in surface

(Skamarock et al., 2008). The spectral-band schemes used in the version 3 of

the Community Atmosphere Model (CAM3; Collins et al., 2004) have been

chosen for the representation of long- and short-wave radiation. They interact

with cloud fraction and take into account trace gases and aerosols to solve the

radiative processes.

• Surface layer. Friction velocities and exchange coefficients are resolved by

surface layer schemes. They allow the calculation of heat and moisture fluxes by

land surface models and surface stress by the PBL parametrization (Skamarock

et al., 2008). These processes are represented by a revision of the surface layer

scheme for the fifth-generation Penn State/NCAR Mesoscale Model (MM5;

Grell et al., 1994), originally based on the Monin-Obukhov similarity theory

(Monin and Obukhov, 1954). The revision was formulated by Jiménez et al.

(2012).

3.2. Evaluation of the predictive skill of decadal climate predictions

The methodology applied in the evaluation of the decadal experiments is fundamen-

tally described in Goddard et al. (2013), where the authors establish the coordinated

framework for the verification of interannual-to-decadal predictions which is com-

monly followed in this research field.

Let .′
: 9�

be a DCP, where : is the member of the ensemble, 9 stands for the start

date and � denotes the lead time. On the other hand, let -′
9�

be the verification data

used to evaluate the predictive skill of the DCPs. This verification dataset can be

constituted by observational or reanalysis information (see Chapter 2). Note that this

dataset encompasses continuous time series which span the whole period considered

in the evaluation. Thus, it cannot be associated to specific start dates 9 or lead times �
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in the same way as DCPs are. Here, -′
9�

does not denote the verification information at

lead time � in an experiment initialized on the date 9, but the verification information

in that continuous series at the time which corresponds to the start date 9 and lead

time � in .′
: 9�

.

Unless otherwise indicated, the evaluation of the DCPs is focused on field anoma-

lies. The use of anomalies reduces the biases associated to the lead time-dependent

climatological mean of predictions, also known as the mean drift or the unconditional

bias, which may potentially impact on the metrics considered for the evaluation. For

predictions, the lead time-dependent climatology is calculated as

.′
:� =

1

#d

#d
∑

9=1

.′
: 9� , [3.1]

where #d is the sample size, i.e., the number of start dates. For the verification data,

it is given by

-′
� =

1

#d

#d
∑

9=1

-′
9� [3.2]

Therefore, the anomaly of .′
: 9�

is

.: 9� = .
′
: 9� − .′

:� , [3.3]

whereas the anomaly of -′
9�

is obtained from

-9� = -′
9� − -′

� [3.4]

The ensemble mean {.} 9� is calculated as follows:

{.} 9� =
1

#ens

#ens
∑

:=1

.: 9� , [3.5]

where #ens is the number of ensemble members, i.e., the ensemble size.

Considering the ensemble mean {.} 9� and the verification data -9�, the averages

along a given lead time period are
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{.̂} 9 =
1

�2 − �1 + 1

�2
∑

�=�1

{.} 9� [3.6]

-̂9 =
1

�2 − �1 + 1

�2
∑

�=�1

-9� , [3.7]

where �1 and �2 are the first and last time steps, respectively, of the lead time period.

In this Thesis, the evaluation of the DCPs has been done by considering several

lead time periods with lengths of 1, 4 and 8 years. Most part of the analysis of the

DCPs has been focused on lead years 1, 2–5, 6–9 and 2–9, as suggested in Goddard et al.

(2013). The length of the lead time window influences on the frequency noise which

is reduced by averaging. Lead year 1 contains seasonal-to-interannual variability and

presents the largest imprint of initialization. The highest frequencies are reduced

in lead years 2–5, 6–9 and 2–9. Lead years 2–5 and 6–9 provide information of the

dependence of the performance of DCPs on lead time. While DCPs may be still more

influenced by year-to-year variability in lead years 2–5, the contribution of the climate

change signal to the predictions is higher in lead years 6–9. The lead years 2–9 average

represents the decadal scale, excluding the contribution of the initialization contained

in the first year and the interannual variability frequencies.

The predictive skill of the WRF-DPLE hindcasts has been assessed for the control

period, which comprises the experiments initialized every year from 1970 to 1999.

However, when comparing with WRF-LE, only the experiments initialized from 1990

to 1999 has been used to match the period with available WRF-LE data. On the other

hand, the set of WRF-DPLE DCPs initialized in 2015 spans the decade 2015–2025.

The evaluation has been carried out at annual scale as well as for each boreal season.

Winter represents the 3-month average of the monthly field in December, January

and February (DJF); the average of March, April and May is calculated for spring

(MAM); for summer, June, July and August (JJA); finally, autumn is obtained from

the average of September, October and November (SON).

In general, the verification and other reference datasets used in the evaluation

conducted in Chapters 4 to 7 have been interpolated to the WRF-DPLE spatial grid

(described in Section 3.1.1) by using a bilinear approach. In the evaluation conducted

in Sections 4.5 and 5.4, the verification datasets have been interpolated to the coarser

CESM-DPLE grid (described in Section 2.1.1). In Chapter 8, however, CESM-DPLE
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data have been interpolated to the coarser grids of the verification datasets.

3.2.1. Evaluation of the accuracy with deterministic metrics

The term accuracy is usually defined as the degree of correspondence between predic-

tions and observations (Murphy, 1988). The mean squared error (MSE) is used in

this Thesis as the basic measure of the accuracy of DCPs. Following Murphy (1988),

the MSE for the DCPs along the period corresponding to the start dates 9 = 1, ..., #d

is defined from Eqs. [3.6] and [3.7] as

MSE({.} , -) = 1

#d

#d
∑

9=1

({.̂} 9 − -̂9)2 , [3.8]

where the difference between DCPs and verification data for the start date 9 is the

anomaly error:

� 9 = {.̂} 9 − -̂9 [3.9]

Lower values of MSE indicate a better prediction accuracy. The root mean square

error (RMSE) can be calculated from MSE by taking the squared root in Eq. [3.8].

An advantage which RMSE has over MSE is that the former is expressed in the same

units as the evaluated field, so it is more easily interpretable as a measure of the error.

It is defined as

RMSE({.} , -) =

√

√

√

√

1

#d

#d
∑

9=1

({.̂} 9 − -̂9)2 [3.10]

The relative RMSE, or RMSE', is calculated by dividing the anomaly error � 9 by

-′
9

in Eq. [3.10]:

RMSER({.} , -) =

√

√

√

√

1

#d

#d
∑

9=1

(

{.̂} 9 − -̂9
-̂′
9

)2

, [3.11]

with the relative anomaly error as

�R, 9 =
{.̂} 9 − -̂9

�

�

�-̂′
9

�

�

�

[3.12]

While the metrics presented above evaluate the performance of DCPs in terms
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of their ability to predict the magnitude of the verification anomalies, the anomaly

correlation coefficient (ACC) can be used to evaluated the ability to reproduce their

variability. According to Wilks (2006, in Section 7.6.4), the ACC is designed to detect

similarities in the patterns of departures (i.e., anomalies) from the climatological

mean. It is defined as

ACC({.} , -) =
∑#d
9=1

{.̂} 9 · -̂9
√

∑#d
9=1

({.̂} 9)2
√

∑#d
9=1

(-̂9)2
, [3.13]

The ACC is computed as the Pearson correlation coefficient. It has two important

properties. Firstly, ACC ranges from -1 to 1, with ACC = −1 and ACC = 1 indicating

a perfect negative and positive linear association, respectively, between {.̂} 9 and -̂9 .

Secondly, ACC2 denotes the proportion of the variance of one variable explained by

the other (Wilks, 2006, in Section 3.5.2).

In the evaluation of the accuracy of a DPS, sometimes it is useful to conduct the

assessment in terms of its predictive skill, which is the accuracy of the predictions of

interest relative to other reference predictions or experiments. Following Murphy

(1988), a generic skill score  can be defined in terms of a generic measure of accuracy

� as follows:

 =
� − �r

�p − �r
, [3.14]

where �, �p and �r denote the measures of the accuracy of the predictions of interest,

the perfect predictions and the reference predictions or experiments, respectively. The

skill score  represents the improvement in terms of the accuracy of the predictions

over the reference experiments relative to the maximum potential improvement.

The skill score based on MSE is commonly denoted as the mean squared skill

score (MSSS; Goddard et al., 2013). Considering / as the reference experiments and

that MSE({.}p , -) = 0 is satisfied for a perfect prediction, this skill score is calculated

as

MSSS/ = MSSS({.} , /, -) = MSE({.} , -) − MSE(/, -)
MSE({.}p , -) − MSE(/, -) =

= 1 − MSE({.} , -)
MSE(/, -) [3.15]
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The MSSS/ is positive when the accuracy of the test predictions is higher than the

accuracy of the reference experiments, i.e., MSE({.} , -) < MSE(/, -). It is negative

under the opposite conditions, with MSE({.} , -) > MSE(/, -). If MSSS/ = 1, then

MSE({.} , -) = 0 (perfect prediction), whereas if MSSS/ = 0, then MSE({.} , -) =
MSE(/, -). Although MSSS/ is upper bounded by 1, it is not lower bounded (Mur-

phy, 1988).

According to the decomposition that Murphy (1988) applied over MSSS, Eq. [3.15]

can be written as follows:

MSSS/ =
ACC({.} , -)2 − CB({.} , -)2 −

[

ACC(/, -)2 − CB(/, -)2
]

1 − [ACC(/, -)2 − CB(/, -)2] , [3.16]

where CB is the conditional bias of a given dataset with respect to the verification

data. For example, the CB of {.̂} 9 is expressed by

CB({.} , -) = ACC({.} , -) −
B{.}
B-

, [3.17]

with

B{.} =

√

√

√

√

1

#d

#d
∑

9=1

({.̂} 9)2 [3.18]

and

B- =

√

√

√

√

1

#d

#d
∑

9=1

(-̂9)2 [3.19]

as the standard deviations of predictions and verification data, respectively, along

the start dates 9 = 1, ..., #d at a certain lead time average.

Following Murphy and Epstein (1989), the CB is interpreted in terms of the linear

regression between -̂9 and {.̂} 9 :

-̂9 = < · {.̂} 9 + = , [3.20]

where < and = are the slope and intercept of the regression model, respectively.

While the slope < is expressed as

< =
B-
B{.}

· ACC({.} , -) , [3.21]
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the intercept = is written as

= = -̂ − < · {.̂} , [3.22]

where -̂ and {.̂} are the averages of -̂9 and {.̂} 9 along the start dates 9, respectively.

It should be noted that {.̂} = -̂ = = = 0 is satisfied here because all calculations are

done over anomalies, but this relation would not be necessarily satisfied if calculations

were done with full fields. Although these quantities are equal to zero in this case,

they are kept in equations in benefit of a general interpretation of CB.

By substituting Eq. [3.20] in Eq. [3.9], the anomaly error � 9 can be written as

� 9 = {.̂} 9 − -̂9 = {.̂} 9 − < · {.̂} 9 − = = {.̂9} · (1 − <) − = [3.23]

If < ≠ 1, � 9 systematically depends on the value of {.̂} 9 in the start date 9;

therefore, the prediction is conditionally biased. On the other hand, if < = 1 (an

optimal result for a prediction of the verification anomaly -̂9), then � 9 = −= and

CB({.} , -) = 0 in Eq. [3.17], so the conditional bias is removed. The prediction

would also be unconditionally biased if {.̂} − -̂ ≠ 0 (i.e., if the mean drift were not

be removed), but this is not the case because calculations are done with anomalies.

Thus, in absence of CB, � 9 = −= = 0 is always satisfied here. Positive or negative

values of CB are caused by an imbalance in Eq. [3.17] which prevents the desirable

result < = 1.

If MSSS/ in Eq. [3.16] is calculated with climatology as the reference experiment,

it can be written as follows (Murphy, 1988):

MSSSC = MSSS({.} , -, -) = 1 − MSE({.} , -)
MSE(-, -)

= 1 − MSE({.} , -)
B-

=

= ACC({.} , -)2 − CB({.} , -)2 , [3.24]

where ACC({.} , -)2 is a measure of the maximum potential skill which can be

attained by removing the conditional bias. If the calculations were done with full

fields, an additional component representing the unconditional bias would be present

in Eq. [3.24].

In the assessment of the predictive skill, the difference between the performances

of test predictions and reference experiments in terms of ACC is calculated as follows:

ΔACC/ = ACC({.} , -) − ACC(/, -) [3.25]
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On the other hand, the difference in terms of CB is expressed as

ΔCB/ = |CB(/, -)| − |CB({.} , -)| [3.26]

In both ΔACC/ and ΔCB/ , positive (negative) results indicate a better (worse)

performance of the test predictions compared to the reference experiments.

DCPs are characterized by having a very low signal-to-noise ratio over the North

Atlantic latitudes for some variables such as PR or SLP (Smith et al., 2019). In these

cases, very large ensemble sizes are needed to properly extract the climate signal after

removing the unpredictable background noise by calculating the ensemble mean, as

mentioned in Section 1.1.2. The low signal-to-noise ratio may lead to a very curious

phenomenon known as the signal-to-noise paradox, in which the model is better at

predicting the real world than at predicting itself (Scaife and Smith, 2018; Smith et al.,

2019, 2020). The degree of presence of this paradox in DCPs is measured by the ratio

of predictable components (RPC; Scaife and Smith, 2018):

RPC2
=

ACC({.} , -)2
{ACC({.} , .)}2 , [3.27]

where ACC({.} , -) is the correlation between the model ensemble mean and the

verification data, calculated in Eq. [3.13], and {ACC({.} , .)} is the average correla-

tion between the model ensemble mean and a single ensemble member. The ideal

result in Eq. [3.27] is RPC = 1, which means that verification and model climates

contain the same ratio of predictable variance. If RPC < 1, ACC({.} , -) would be

smaller than its desirable value given the ratio of predictable variance of the model.

This can be a consequence of the use of too few ensemble members to remove the

unpredictable noise, low spread of the prediction ensemble, systematic errors in the

predicting signal, etc. The signal-to-noise paradox emerges with RPC > 1, leading to

a counterintuitive situation in which ACC({.} , -)2 > {ACC({.} , .)}2 is satisfied, so

the model is better at replicating the real world climate than its own climate (Scaife

and Smith, 2018; Smith et al., 2019, 2020). The weak model signals associated to the

signal-to-noise paradox negatively affect the predictive skill of DCPs in terms of both

accuracy and reliability (Scaife and Smith, 2018), so it has been taken into account for

the discussion of the results obtained in this Thesis, especially in Chapters 4 and 5.
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Finally, the calculation of trends is done by means of the Theil-Sen’s slope estimator

(Sen, 1968). For a time series composed of pairs (C 9 , �9), with a field anomaly �9 (i.e.,

{.̂9} or -̂9) measured at time C 9 with samples or start dates 9 = 1, ..., #d, this approach

estimates the trend as the median of the slopes �F
8 9

which are calculated as follows:

�F
8 9 =

�9 − �8
C 9 − C8

, [3.28]

with C 9 > C8 and 8 ≠ 9. The advantage of the Theil-Sen’s slope estimator over the

ordinary least squares estimator is that the former is less sensitive to outliers. More

detailed information about its characteristics are available in Sen (1968). The Theil-

Sen’s estimator has been applied by using the Python package provided by Hussain

and Mahmud (2019).

3.2.2. Evaluation of the reliability with probabilistic metrics

Given the probabilistic nature of DCPs, the assessment of the accuracy of a DPS can

be complemented by a quantification of the uncertainty of the predictions. In the

framework described in Goddard et al. (2013), probabilistic metrics are used to test if

the ensemble spread of the DPS is adequate to represent the uncertainty of individual

predictions. In other words, the purpose of the probabilistic metrics is to answer the

question of whether the actual climate can be interpreted as one realization among

all possible realizations of the DPS. If the answer is affirmative, these predictions are

reliable, and the ensemble spread can be used to quantify the true range of possibilities

associated to an individual prediction.

According to Goddard et al. (2013), the probabilistic quality of the predictions,

with a given verification dataset as reference, is measured by the continuous ranked

probability skill score (CRPSS):

CRPSS = 1 −
∑#d
9=1

CRPS.,9
∑#d
9=1

CRPS-,9
[3.29]

where CRPS.,9 and CRPS-,9 are the continuous ranked probability scores for predic-

tion and verification distributions. The CRPS can be interpreted as the mean absolute

error in the probabilistic space. It is given by

CRPS({.̂9} , -̂9) = −
∫ ∞

−∞
[G{.̂9}(H) − ℋ(H − -̂9)]23H [3.30]
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whereG{.̂9} andℋ are the cumulative distribution functions (CDFs) of the predictions

and the verification datasets (as the Heaviside function), respectively. As shown by

Gneiting and Raftery (2007), assuming that the distribution of predictions is Gaussian

with mean {.̂} 9 (Eq. [3.6]) and variance �2, Eq. [3.30] turns into

CRPS(N({.̂} 9 , �2), -̂9) =

= �

[

1√
�

− 2!

(

-̂9 − {.̂} 9
�

)

−
(

-̂9 − {.̂} 9
�

) (

2)

(

-̂9 − {.̂} 9
�

)

− 1

)]

[3.31]

where ! and ) denote the Gaussian probability distribution function (PDF) and

CDF, respectively. Following Goddard et al. (2013), the mean of the prediction and

verification distributions in Eq. [3.29] is {.̂} 9 , while the variance of the prediction

distribution is the average ensemble variance, given by

�2
.
=

1

#d

#d
∑

9=1

�2
.,9 =

1

#d

#d
∑

9=1

1

#ens − 1

#ens
∑

:=1

({.̂} 9 − .̂: 9)2 [3.32]

and the variance of the verification distribution is the squared standard error, denoted

as

�2
- =

∑#d
9=1

({.̂} 9 − -9)2

#d − 2
[3.33]

The average ensemble spread is used instead of the ensemble spread of each ini-

tialized experiment because the sampling errors associated to the small ensemble size

may affect to the estimation of such ensemble spread. The optimal result in Eq. [3.29]

is CRPSS = 0. It is attained for �2
.
= �2

-
, when the prediction and verification distri-

butions are equal and, therefore, the average ensemble spread is certainly adequate to

quantify the prediction uncertainty (Goddard et al., 2013). There may be situations

in which �2
.
≠ �2

-
, indicating that predictions are overdispersive or underdispersive,

depending on the magnitude of �2
.

relative to �2
-

. In accordance with Kadow et al.

(2016), this dispersion can be measured by the logarithmic ensemble spread score

(LESS):

LESS = ln
�2
.

�2
-

, [3.34]

for which positive (negative) values denote overdispersive (underdispersive) pre-

dictions. A combination of CRPSS and LESS provides useful information about the
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magnitude and sign of the dispersion as well as their impacts on the probabilistic

quality of the predictions.

When comparing the performance of test predictions with a reference dataset /,

the differences in terms of CRPSS are evaluated as follows:

ΔCRPSS/ = |CRPSS(/, -)| − |CRPSS({.} , -)| , [3.35]

with positive (negative) values indicating a better (worse) performance for the test

predictions.

In the case of LESS, the logarithmic ensemble spread skill score (LESSS; Kadow

et al., 2016) can be defined from Eq. [3.14] as

LESSS/ = 1 − LESS({.} , -)2
LESS(/, -)2 , [3.36]

with a similar interpretation to that for MSSS/ in Eq. [3.15], but in terms of LESS

instead of MSE in this case.

3.2.3. Assessment of the statistical significance

The statistical significance of the results obtained for the metrics presented above

has been generally assessed by following the same approach described in Goddard

et al. (2013). This approach consists of a non-parametric block bootstrapping with

replacement (Wilks, 2006, in Section 5.3.4), applied to generate 5000 random samples.

For each metric, these samples are used to create a PDF and, then, calculate its

associated confidence intervals. The steps to follow are:

1) A set of #d random start dates are selected with replacement by considering

blocks of 5-year consecutive start dates to account for autocorrelation.

2) A random ensemble of #ens members is selected with replacement for each

start date composing this set.

3) The metrics used to evaluate the accuracy and reliability are calculated from this

randomly generated collection of experiments and their pairs in the verification

dataset.

4) The steps 1) to 3) are repeated by 5000 times to generate a PDF per metric.

5) The confidence intervals for the 90 % confidence level are calculated for each

metric from its respective PDF. The result obtained for a given metric will be

significantly different from � at the 90 % confidence level if the confidence
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interval does not contain �. In a hypothesis testing-based formulation (Wilks,

2006, in Section 5.1.4), the result will be statistically significant if, for a metric ",

p-value < 0.1 is satisfied in a two-tailed hypothesis test with null (alternative)

hypothesis �0: " = � (�A: " ≠ �).

This bootstrapping has been applied in most part of Chapters 4 and 5 to assess

the statistical significance of the different metrics. Specifically, this approach has

been used for MSSS/ , ACC, ΔACC/ , CB, ΔCB/ , RPC, CRPSS, ΔCRPSS/ , LESS and

LESSS/ . In general, the results are statistically significant at the 90 % confidence level

if p-value < 0.1 is satisfied for � = 0. The only exception is the RPC metric, for which

� = 1.

The statistical significance of trends has been assessed with a modified version of

the Mann-Kendall test proposed by Hamed and Rao (1998), which takes into account

the autocorrelation in time series. On the other hand, the statistical significance of

the difference between trends has been calculated over the trend of the difference

between time series. This approach, as opposed to check whether confidence intervals

separately calculated for each trend overlap, facilitates the identification of real trend

differences between variables by reducing the common variability noise in both time

series (Santer et al., 2000). A trend is statistically significant at the 90 % confidence

level if p-value < 0.1 is satisfied for � = 0. As for trend calculation, the statistical

significance has been evaluated by using the Python package provided by Hussain

and Mahmud (2019).

3.3. Drift correction and subensemble selection for CESM-DPLE

3.3.1. Description of the mean drift correction

In the contribution of the DCPP to CMIP6, Boer et al. (2016) suggested removing the

lead time-dependent drift in DCPs prior to carrying out any analysis. The mean drift

correction method (MDC; Boer et al., 2016; CLIVAR, 2011), which accounts for the

mean or climatological drift (i.e., the unconditional bias), has been used here. This

method has been applied to the CESM-DPLE experiments which provide the input

information in DD simulations. Since RCMs inherit the biases in GCMs through the

LBCs, their correction helps to reduce the biases in RCM outputs and to achieve a

better representation of the regional climate (Bruyère et al., 2014). The MDC has

been applied to all variables listed in Table 3.1. A multivariate correction, as opposed

to correct only a subset of variables, is expected to minimize the artificial drift in DD

input data while maintaining the physical coherence between the fields involved. The
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calculation of the model drift has been done for each grid point and pressure/soil

level5 with monthly full fields, since the drift emerges at this time scale (Paeth et al.,

2019). It has been calculated along the period spanning from 1979-11 to 2018-10 with

ERA-Interim as reference (see Section 2.2). The ERA-Interim reanalysis has been

used here because it provides all needed variables at all soil and height levels with

the appropriate time aggregation.

At lead time �, the mean drift is given by

3MDC
� = {.′}� − -′

� , [3.37]

where {.′}� is the ensemble mean calculated from Eq. [3.1] with members : =

1, ..., #ens and -′
� is given by Eq. [3.2].

Since WRF is provided with 6-hourly full fields, the monthly drift has been linearly

interpolated along time to get 6-hourly time series. Additionally, for the fields listed

in Table 3.1 which are not supplied with a 6-hourly aggregation, 6-hourly time series

have also been constructed by assigning to each time step the daily or monthly mean

value of the original field. Finally, the corrected prediction for the ensemble member

: and initial date 9 at lead time � has been calculated by removing the 6-hourly series

of drift from .′
: 9�:

.′MDC
: 9� = .′

: 9� − 3MDC
� [3.38]

This correction has been applied in a cross-validated manner (CLIVAR, 2011). In

other words, the information used to reduce the drift in an experiment starting at a

certain date does not include the information of that specific experiment in order to

avoid an artificial enhancement of the predictive skill.

3.3.2. CESM-DPLE subensemble selection

After applying the drift correction, the 4-member CESM-DPLE subensemble used to

produce the WRF-DPLE experiments has been selected. Since the ocean is the primary

source of climate memory, this selection has been focused on the results obtained for

SST in terms of the spatially averaged ACC (i.e., 〈ACC〉) over the EURO-CORDEX

5 The lead time-dependent drift has been calculated for the pressure levels of 1000, 975, 950, 925, 900,
850, 800, 750, 700, 650, 600, 550, 500, 450, 400, 350, 300, 250, 200, 150, 100, 70, 50, 30, 20 and 10 hPa. For soil
variables, it has been calculated for the ERA-Interim soil levels, whose depths are 0–7, 17–28, 28–100 and
100–289 cm.
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domain in Figure 3.1 for lead years 2–9. It has been calculated with ERSST5 as the

verification dataset along the same drift-correction period. The result for this metric

has been chosen as a decision factor because it is not influenced by the magnitude

of the variable, so it is not affected by neither unconditional or conditional biases

(Murphy, 1988) nor a low signal-to-noise ratio (Scaife and Smith, 2018), becoming a

measure of the potential skill which can be achieved after addressing those issues

(see Eq. [3.24]). It has been evaluated in lead years 2–9 because this lead time

window removes the seasonal-to-interannual variability to fully focus on the decadal

scale. The CESM-DPLE subensemble has been constructed with the two members

showing the best performance in reproducing the observed SST variability (the “best”

members), the member showing the worst performance (the “worst” member) and a

member with an “intermediate” behaviour. Quotation marks are used here to stress

the relative nature of these denotations, since these members may not reproduce

the same performances for other fields or metrics. Moreover, since each member,

generated by randomly perturbing the initial atmospheric conditions at the round-

off level, constitutes a sample realization of the climate variability, the differences

between individual performances are expected to be small (Rosa-Cánovas et al., 2023).

Paeth et al. (2017) and Rosa-Cánovas et al. (2023) followed a similar approach to

build a 3-member ensemble for their respective studies also in the context of the

DCP. With this strategy, a representative subensemble of the whole CESM-DPLE

available to be downscaled has been constructed here. Since these members with

heterogeneous skill levels cover the whole range of possible individual performances

in the CESM-DPLE 10-member subensemble available for DD, this selection may help

to retain part of the spread of this 10-member subensemble, needed to quantify the

uncertainty of the DCPs.

The results of this evaluation have been depicted in Figure 3.3. In addition to

〈ACC〉, the outcomes obtained for the spatially averaged RMSE and CRPSS (〈RMSE〉
and 〈CRPSS〉, respectively) have also been included, both calculated with full fields.

In the three panels, the results are shown in order of decreasing average accuracy or

reliability (represented by crosses) from left to right. The CESM-DPLE 4-member

subensemble has been built with the members 10, 2, 1 and 8 as the two “best”, the

“intermediate” and the “worst” members, respectively (Figure 3.3a). As announced

above, the differences between individual members are very small. For example, the

gap between 〈ACC〉 results obtained by members 10 and 8 is only about 0.05. For

the same metric, the performance of the 4-member ensemble (ENS4) is slightly less

skilful than that of the non-corrected and corrected 10-member ensembles (ENS10Raw
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Figure 3.3 : a) Spatially averaged ACC (i.e., 〈ACC〉) in the EURO-CORDEX domain. b) As a) but for
〈RMSE〉. c) As a) but for 〈CRPSS〉. The metrics have been calculated for individual members and several
ensemble means ENS-, where - is the ensemble size. The label Raw in ENS10Raw indicates that the
predictions have not been drift corrected, whereas the symbol “*” in ENS4* indicates that the members of
ENS4 have been randomly chosen, as opposed to ENS4, whose members have been manually selected
depending on their 〈ACC〉. Crosses denote the spatially averaged metric for a given member or ensemble
mean. On the other hand, boxplots represent the results obtained for the non-parametric bootstrapping.
Horizontal lines, boxes and whiskers identify the median values, 50 % and 90 % confidence intervals,
respectively. The bootstrapping of CRPSS has been done without allowing member replacement. The
results obtained for a given metric are ordered in terms of decreasing accuracy or reliability (crosses) from
left to right.

and ENS10, respectively), as expected, although the differences are below 0.025. Since

MDC only reduces the lead time-dependent mean drift, it hardly affects the results

in terms of 〈ACC〉. The slight differences observed between ENS10 and ENS10Raw in

Figure 3.3a are only due to the cross-validation approach considered in drift correction.

They are mainly perceived in the width of the confidence intervals, which are narrower

for ENS10. By contrast, the effects of drift correction are easily observed in Figure 3.3b,

where ENS10Raw obtains the highest 〈RMSE〉 value by far. The differences between

the result for ENS10Raw and the rest of ensemble and members are above 0.4 K. As for

〈ACC〉, the 〈RMSE〉 improves by increasing the ensemble size, although the difference

between ENS10 and ENS4 is below 0.025 K. The results for 〈CRPSS〉 (Figure 3.3c)

are also shown to examine how ENS4 performs relative to the 10-member ensembles

and a randomly chosen 4-member subensemble (ENS4*). While ENS10Raw performs

clearly worse than the other ensembles also in terms of reliability, the differences

among the corrected experiments are very small. There is still a slight improvement

of the reliability for the median spatial average of ENS4 over the median of ENS4*,

showing than ENS4 performs better than at least the 50 % of the randomly chosen

4-member ensembles in terms of 〈CRPSS〉. However, the predictions of SST are not
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reliable on average in any of these cases, since 〈CRPSS〉 is significantly different from

zero. Although Goddard et al. (2013) suggest correcting the CB together with the

mean drift to properly estimate this metric because of the negative influence these

biases have on the reliability, the CB has not been removed here because the purpose

of this evaluation was to make the subensemble selection and to test the performance

of the MDC method, which do not consider the correction of the CB.

3.4. Bias correction and subensemble selection for CESM-LE

3.4.1. Description of the mean bias correction

The uninitialized CESM-LE experiments have also been corrected before using them

to generate the LBCs and ICs for the WRF-LE simulations. The procedure followed

in this case is different from that applied to CESM-DPLE. It is based on the mean

bias correction method followed by Bruyère et al. (2014) and Holland et al. (2010) to

reduce the biases in the model mean annual cycle. As for MDC in Section 3.3, it has

been applied over all variables listed in Table 3.1 at monthly scale for each grid point

and pressure/soil level. The ERA-Interim dataset has been used as reference and the

correction has been conducted along the period spanning from 1979-01 to 2005-12.

According to Bruyère et al. (2014) and Holland et al. (2010), the full field * ′,

output from an uninitialized experiment, can be decomposed into

* ′
= *′

AC +*P , [3.39]

where * ′
AC is the average annual cycle and *P is a perturbation term. In the same

line, the decomposition is written as follows for the verification dataset -′ used as

reference:

-′
= -′

AC + -P [3.40]

After generating the 6-hourly time series following the same procedure described

in Section 3.3, the bias-corrected full field * ′
BC has been obtained by substituting

* ′
AC for -′

AC in Eq. [3.39]:

* ′
BC = -′

AC +*P , [3.41]

3.4.2. CESM-LE subensemble selection

The 4-member CESM-LE subensemble used to drive WRF has been selected after

applying the mean bias correction. A similar selection procedure to that described
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in Section 3.3 has been followed here, but with some differences. Firstly, the SST

has been evaluated for 〈RMSE〉 instead of 〈ACC〉. Since the CESM-LE experiments

are not initialized, they are not expected to reproduce the actual climate variability,

as opposed to CESM-DPLE. Therefore, the accuracy in determining the magnitude

of the verification full field has been evaluated in this case instead of the ability to

capture the climate variability. Secondly, the evaluation has been focused on monthly

full fields instead of the multiyear averages for lead years 2–9. Additionally, two

evaluation periods have been considered here, the same used for the bias correction

(from 1979-01 to 2005-12) and another, shorter, which spans only the period used in

the evaluation of the experiments (from 1990-11 to 2005-10; see Section 3.2). The two

“best”, the “intermediate” and the “worst” members have been selected depending

on the individual performances observed along both periods.

The results have been depicted in Figure 3.4 only for the selected members and

several ensemble means. The results for CRPSS are not shown here because the

uninitialized experiments are not of probabilistic nature, as DCP are. The members

which fit the performance requirements in both periods are the members 5 and 9
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Figure 3.4 : a) Spatially averaged RMSE (i.e., 〈RMSE〉) over the EURO-CORDEX domain in the period
from 1979-01 to 2005-12. b) As a) but for the period from 1990-11 to 2005-10. The metrics have been
calculated for individual members and several ensemble means ENS-, where - is the ensemble size. Only
the results for the selected members of the 40-member CESM-LE subensemble are shown. The label Raw
in ENS10*Raw indicates that the predictions have not been bias corrected, whereas the symbol “*” indicates
that the members of ENS10 have been randomly chosen among the 40 available members. Crosses denote
the spatially averaged metric for a given member or ensemble mean. On the other hand, boxplots represent
the results obtained for the non-parametric bootstrapping. Horizontal lines, boxes and whiskers identify
the median values, 50 % and 90 % confidence intervals, respectively. The results are ordered in terms of
decreasing accuracy from left to right.
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(the two “best” members), 32 (the “intermediate” member) and 1 (the “worst”).

The “best” and “worst” members here are not those which strictly give the lowest

and the highest 〈RMSE〉, respectively, in both periods since they do not coincide.

The selection has been done by considering the members which generally adjust

to these categories in both periods. In any case, the differences among the results

obtained for individual members are not very pronounced, as occurred in Section 3.3.

While there is a gap around 0.1 K between the values obtained for the “best” and

“worst” members in both periods, with the “best” showing 〈RMSE〉 outcomes about

0.8 K. The results improve as the ensemble size increases, with values near 0.7 K

for ENS4 and median values around 0.63 K for ENS10* (the 10-member randomly

selected among the 42 available members). The highest errors have been found for

the uncorrected ENS10*Raw ensemble mean, for which values up to 1.2 K have been

found.

3.5. Recalibration of the WRF-DPLE experiments

The approach followed to reduce the mean drift in the ICs and LBCs provided by

CESM-DPLE for WRF simulations has been detailed in Section 3.3. However, al-

though the MDC technique contributes to removing the unconditional bias, there are

other types of bias which still hinder the predictive skill of the WRF-DPLE experi-

ments, such as the existence of potential conditional biases and a misrepresentation

of the dispersion of the ensemble members. These additional error sources in CESM-

DPLE, together with the biases introduced by the RCM itself, have a negative impact

on the predictive skill of the downscaled product.

Post-processing tunning is a common practice when it comes to reducing the

biases in dynamically downscaled uninitialized experiments and improving the

representation of the simulated climate fields (e.g., Gómez-Navarro et al., 2018;

Teutschbein and Seibert, 2012). In the case of DCPs, the Decadal Climate Forecast

Recalibration Strategy (DeFoReSt; Pasternack et al., 2018, 2021) was designed with

the aim of reducing the unconditional, conditional and dispersion-related biases in

dynamically downscaled DCPs. It has been used over decadal experiments produced

in the framework of the MiKlip project, showing the ability to improve the predictive

skill compared to the uncorrected product (Feldmann et al., 2019; Pasternack et

al., 2018). Thus, the DeFoReSt approach has also been used here to correct the

outputs from the WRF-DPLE simulations before conducting the analyses presented

in Chapters 4, 5 and 7. The training dataset comprises the 4-member ensemble of

downscaled experiments yearly initialized from 1970 to 1999 (the whole hindcast
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period). The AEMET dataset, after being linearly interpolated to the WRF-DPLE

grid, has been used as reference in the recalibration process.

The fundamental principle of DeFoReSt is based on the fact that predictive skill

can be improved by minimizing

|CRPS| =

�

�

�

�

�

�

1

#t

#t
∑

9=1

CRPS9(.′, -′)

�

�

�

�

�

�

, [3.42]

where CRPS9(.′, -′) can be decomposed as in Eq. [3.31] and #t is the sample size

of the training dataset. This metric has been chosen because its unique minimum

|CRPS| = 0 denotes a perfect prediction in terms of probability, which is attained

when the real climate is represented for the same probability distribution as the

prediction.

The PDF of the recalibrated field 5 Cal(.′, 9 , �) is assumed to be Gaussian with

mean and variance being functions of the ensemble mean {.′} 9� and the ensemble

variance �2
.′, 9� (note that full fields are used here), as well as the start date 9 and lead

year �:

5 Cal(.′; 9 , �) ∼ N
(

�(9 , �) + �(9 , �){.′} 9�, ((9 , �)2�2
.′, 9�

)

, [3.43]

with

{.′} 9� =
1

#ens

#ens
∑

:=1

.′
: 9� [3.44]

and

�2
.′, 9� =

1

#ens − 1

#ens
∑

:=1

({.′} 9� − .′
: 9�)2 [3.45]

In Eq. [3.43], the terms �(9 , �), �(9 , �) and ((9 , �) account for the unconditional

bias, the conditional bias and the ensemble spread inflation, respectively. They are

expressed as third- and second-order polynomials in terms of � with the aim of

addressing a potential non-linear dependence on the lead year �. In addition, a linear

dependence on 9 is included to also account for linear trends. These terms are written

as follows:
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�(9 , �) =
3

∑

;=0

(12; + 1(2;+1) 9)�; ,

�(9 , �) =
3

∑

;=0

(22; + 2(2;+1) 9)�; ,

((9 , �) = exp

(

2
∑

;=0

(B2; + B(2;+1) 9)�;
)

,

[3.46]

where the ensemble spread inflation ((9 , �) is constrained to be positive by using a

exponential function.

From Eqs. [3.42], [3.43] and [3.46], the minimization function for the start date 9

and lead year � can be written as

Γ

[

N
(

�(9 , �) + �(9 , �){.′}�, ((9 , �)2�2
.′,�

)

, -�

]

= |CRPS| =
�

�

�

�

�

�

1

#t

#t
∑

@=1

√

((9 , �)2�2
.′,@�

[

1√
�

− 2!(Ω@�) −Ω@�[2)(Ω@�) − 1]
]

�

�

�

�

�

�

, [3.47]

with

Ω@� =
-@� −

(

�(9 , �) + �(9 , �){.′}@�
)

√

((9 , �)2�2
.′,@�

[3.48]

as the standardized prediction error for the @th start date in the training dataset.

The training dataset has been composed with a cross-validation approach, so the

information used to correct the experiment initialized in the start date 9 excludes this

specific start date to prevent an artificial enhancement of the predictive skill. Since

the analysis of the downscaled DCPs is focused at both annual and seasonal scales,

the recalibration is applied at annual scale as well as over each single season.

The minimization has been conducted with the Scipy implementation of the

Nelder-Mead’s algorithm (Nelder and Mead, 1965; Virtanen et al., 2020). The ini-

tial guesses of the D; and 2; coefficients in Eq. [3.46], needed by the minimization

algorithm, have been obtained from a linear regression between -′
@� and {.′}@�, with

@ = 1, ..., #t, for a given start date 9 and lead year �:

-′
@� ∼ �(9 , �) + �(9�){.′}@� , [3.49]
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whereas the initial B; coefficients have been set to zero to start the algorithm from a

unity inflation, i.e., ((9 , �) = 1.

The recalibrated prediction for the member :, start date 9 and lead year � is

expressed as

.′ Cal
: 9� = �(9 , �) + �(9 , �){.′} 9� + ((9 , �)(.′

: 9� − {.′} 9�) [3.50]

The use of cross-validation in the adjustment of the conditional bias with a rel-

atively small number of start dates may lead to high sampling errors, producing

recalibrated predictions with lower skill than the original (raw) experiments (God-

dard et al., 2013). A preliminary analysis of the recalibrated WRF-DPLE predictions

confirmed that they were affected by this issue. Thus, an heuristic approach has been

applied to filter the experiments for which recalibration does not deteriorate their

raw predictive skill. For a given lead year �, the collection of predictions initialized in

the start dates 9 = 1, ..., #d is recalibrated if one the following conditions are satisfied:

1) MSSSC, Cal > MSSSC, Raw and ΔACCRaw = ACCCal − ACCRaw > 0;

2) MSSSC, Cal > MSSSC, Raw and ΔACCRaw < 0, but

ΔCBRaw = |CBRaw| − |CBCal| > −ΔACCRaw.

Firstly, the predictions for the lead year � are recalibrated as long as the adjust-

ment provides an improvement in terms of MSSSC and ACC (condition 1). The

improvement of ACC is also considered because a gain in terms of MSSSC may also

be accompanied by a high loss in terms of ACC (note that the former depends on

the quadratic form of the latter in Eq. [3.24]). However, there may also be a slight

deterioration of ACC together with a high improvement in terms of CB and MSSSC.

In those cases, the recalibration is applied only if the gain for CB is higher than the

loss for ACC (condition 2).

3.6. Regionalization of precipitation and temperature in the Iberian Peninsula

The main advantage of the high-resolution predictions generated in the context of

this Thesis is their ability to reproduce fine-scale climate features which cannot be

resolved by a GCM due to its coarser spatial resolution. The outputs of a RCM can

be examined and depicted with a very high spatial detail, representing the effects

that complex terrain, land cover distribution or dynamical processes occurring at low

scale have on local climate. However, when it comes to graphically representing the

temporal evolution of the RCM outputs, a reduction of the spatial dimensionality
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might be convenient as an alternative to work with the huge amount of grid points

which compose the domain.

A multistep regionalization approach has been used to divide the IP into several

homogeneous regions where the downscaled DCPs have been evaluated. For a given

climate field, these regions group together those grid points depicting a similar climate

variability. Therefore, the spatially averaged field over the points contained by each

region can be interpreted as an overall representation of the evolution of that field in

that specific region. The procedure followed here is based on the approach described

by Argüeso et al. (2011). The regionalization has been done by concatenating three

different techniques: the principal component analysis (PCA; Preisendorfer, 1988), a

hierarchical or agglomerative cluster analysis and a non-hierarchical cluster analysis

(Wilks, 2006, in Chapter 14).

The PCA has been used to extract the main spatio-temporal variability modes

of a field. Let �(C , G) be a field of anomalies or standardized anomalies over a set of

locations G = 1, ..., ? at times C = 1, ..., =. The PCA decompose �(C , G) to represent it

in the form

�(C , G) =
?

∑

<=1

A<(C)4 9(G) , [3.51]

where A<(C) are the projections of �(C , G) onto the vector basis defined by ®4< =

[4 9(1), ..., 4 9(?)] for the variability modes < = 1, ..., ?. The time series constituted

by A<(C) are the principal components (PCs) of �(C , G), whereas the vectors ®4< are

its empirical orthogonal functions (EOFs). The EOFs, which are uncorrelated over

space, are computed by maximizing the variance explained by the PCs, which are

uncorrelated over time. If �(C , G) is a field of anomalies, the EOFs are the eigenvectors

of the covariance matrix of �(C , G), but if �(C , G) is standardized, the correlation matrix

is used instead. In this Thesis, the covariance matrix has been used to conduct the

PCA. The significant variability modes have been selected by using the North’s rule

of thumb (North et al., 1982). Then, the significant EOFs have been rotated with a

varimax approach to facilitate their physical interpretation (Preisendorfer, 1988). The

rotated EOFs have been obtained from this rotation and the projection of the field

�(C , G) onto them has given the rotated PCs.

Although the rotated EOFs provide useful information about the locations with

similar climate variability, it is difficult to determine the regional boundaries from

them. Thus, the cluster analysis techniques have been used with this purpose, taking

the rotated EOFs as input information. Firstly, the agglomerative cluster analysis
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has been used to merge the points in rotated EOFs based on the squared Euclidean

distance with the Ward’s method (Wilks, 2006, in Section 14.2). The ideal result of

the agglomerative clustering is to obtain a distribution of clusters which maximizes

the similarity between points in the same cluster and the differences between clusters.

A drawback of this technique is that it does not allow the exchange of points between

clusters once they has been merged, leading to not optimal results if points are

misplaced at first (Argüeso et al., 2011). However, in combination with the pseudo-F

test (Calinski and Harabasz, 1974), it allows to compute the most optimal number

of clusters. This information, along with the centroids calculated by averaging the

rotated EOFs over those optimal clusters, has been used as input for a non-hierarchical

k-means algorithm (Wilks, 2006, in Section 14.3.1), which relocates the points and

obtains the most optimal distribution of clusters (Argüeso et al., 2011).

The multistep regionalization has been applied to the seasonal time series of the

AEMET PR and NSAT variables (see Section 2.3) from 1970-12 to 2009-11 (the hind-

cast control period at seasonal scale). Previously, the time series have been detrended

to prevent the climate change signal in the NSAT variables from accumulating most

part of the explained variance in the main variability mode obtained from the PCA.

For comparative reasons, the approach has been applied to )max, )min and )mean to-

gether so that the same distribution of regions is shared by the three variables. A

total of 8 regions has been obtained for PR (Figure 3.5a). These are the northwest

(NW), central north (CN), northeast (NE), east (EA), eastern interior (EI), western

interior (WI), southwest (SW) and central south (CS) regions. For NSAT, also 8

regions have been obtained (Figure 3.5b). They has been denoted as the north (NO),

high mountain (MT), western interior (WI), northeast (NE), central interior (CI),

east (EA), southwest (SW) and central south (CS). Note that some regions in PR and

NSAT distributions share the same nomenclature only for descriptive reasons, but

they do not necessarily cover the same area.

3.7. Spin-up time and soil initialization

The spin-up time is an important concept in the framework of DD, related to the ability

of the RCM to represent the physical processes at the beginning of a simulation. It is

defined as the time needed by the RCM to generate a dynamical equilibrium between

its internal physics and the LBCs provided by the GCM. During this time, the RCM

outputs are affected by biases which undermine the model ability to appropriately

reproduce the physical processes involved in the evolution of climate (Giorgi, 2019;

Giorgi and Mearns, 1999). While the atmospheric fields may often need lengths
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Figure 3.5 : a) Regionalization of the Iberian Peninsula for the AEMET seasonal PR. b) As a) but for )max,
)min and )mean together. Labels indicate the nomenclature used to identify each region. The meaning of
each label is detailed in the main text.

spanning few days to weeks (Gómez and Miguez-Macho, 2017; Jerez et al., 2020),

the larger response of the soil variables may lead to much longer spin-up periods,

spanning even several years (Khodayar et al., 2015).

Both WRF-DPLE and WRF-LE experiments are potentially affected by the spin-up

issue. Since the lengths of individual simulations are very short (10 years for WRF-

DPLE and 15 years for WRF-LE), the simulation period available for analysis would

be severely reduced if the first simulated years were simply discarded in order to get

a fully equilibrated RCM. In this line, Khodayar et al. (2015) estimate that a spin-up
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time of 80 months (∼ 6.7 years) may be required in the IP for soil moisture on average

(this topic is comprehensively addressed in Chapter 6). Therefore, no spin-up time

has been considered in WRF-DPLE experiments. This may affect the predictive skill of

fields at the early lead times of the simulation for each decadal experiment. Since the

WRF-LE experiments are constituted by a single run per member, if no spin-up time

were considered in WRF-LE either, the WRF-DPLE experiments would be compared

with WRF-LE experiments without a constant level of skill during the first WRF-LE

simulated years, leading to an uneven evaluation of the WRF-DPLE predictive skill

compared to WRF-LE. For example, while the lead year 1 in a WRF-DPLE experiment

started in 1999 suffers from the spin-up issue, its pair in the WRF-LE ensemble (which

was started in 1990) does not.

To prevent this situation, the WRF-LE experiments started from an already dy-

namically equilibrated soil state, provided by a control simulation. Proceeding in this

way, since the initial soil fields are already consistent with the RCM soil physics at the

beginning of the simulation, the spin-up time is expected to be reduced. This strategy

constitutes the default initialization method for DD experiments in the framework

of MiKlip (Kothe et al., 2016). Although this conservative approach may favour

WRF-LE over WRF-DPLE at the early lead times, it has been considered as a better

alternative to the uneven evaluation derived from not taking any spin-up time.

The WRF-LE initial soil state in 1990-11 has been taken from the outputs of a

WRF control simulation driven by ERA-Interim. This simulation has been started in

1982-01, so that the initial soil state is in dynamical equilibrium with the RCM physics

after a 8-year and 10 months spin-up period in 1990-01. Additionally, the results

obtained in Chapter 6 from the analysis of the spin-up time needed by WRF in the

IP have led to also consider a dynamically equilibrated soil state in the simulations

of the DCPs for the decade 2015–2025, presented in Chapter 7, which are initialized

in 2015-11. The soil state is defined by the following fields in wrfinput_d0x files

(see Section 3.1.3): soil temperature profile, soil temperature at lower boundary,

skin temperature, soil moisture profile, unfrozen soil moisture profile, relative soil

moisture, snow water equivalent, physical snow depth, snow coverage and canopy

water content.

3.8. Description of the collection of the dynamically downscaled experiments

Part of the simulations conducted in the context of this Thesis has been carried out in

the Tirant and Picasso high-performance computing nodes of the Spanish Supercom-
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puting Network. The other part has been run in Alhambra, the supercomputer of the

University of Granada. All simulations have been highly parallelized by using 112

cores. The collection of DD WRF experiments encompasses the following simulations:

• Control simulation with WRF driven by ERA-Interim.

This simulation has been produced for reference purposes in the analysis and

production of other experiments. It encompasses the period from 1982-01 to

2019-08. A total of 38.67 years has been simulated for this experiment.

• Dynamically downscaled hindcasts produced with WRF driven by CESM-

DPLE (WRF-DPLE) in the control period.

The drift-corrected CESM-DPLE 4-member subensemble, selected in Section 3.3,

was dynamically downscaled. This set of experiments encompasses the hind-

casts initialized every year from 1970 to 1999 (30 start dates). Each drift-

corrected hindcast is composed of 121 months. The outputs of these simulations

have been recalibrated by appliying the DeFoReSt approach with an additional

filter, as described in Section 3.5. A total of 1210 years was simulated to generate

these experiments. The results are analyzed in Chapters 4 and 5.

• Dynamically downscaled uninitialized experiments produced with WRF

driven by CESM-LE (WRF-LE) in the control period.

The bias-corrected CESM-LE 4-member subensemble, selected in Section 3.4,

was dynamically downscaled. In this case, the available data only cover the

period 1990–2005 (15 years). The DD simulations began in 1990-11 and ended

in 2005-12, so each experiment spans 182 months. A total of 60.67 years has

been simulated to generate the WRF-LE ensemble. The initial soil state was in

dynamical equilibrium with the RCM soil physics. It was taken from the control

simulation conducted with WRF and ERA-Interim, as detailed in Section 3.7.

The results have been used to evaluate the added value to predictive skill of

WRF-DPLE over WRF-LE in Chapters 4 and 5.

• Experiments to test the sensitivity of WRF simulations to extreme initial

conditions of soil moisture.

This set of experiments has been fully described in Chapter 6. It comprises a

series of WRF simulations driven with ERA-Interim, initialized with different

soil types in terms of soil moisture (wet, dry and very dry) for two initialization

dates (January and July). Each of these 6 simulations spans 10 years along

the period 1990–2000. A total of 60 years was simulated to generate this set of

experiments.
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• Dynamically downscaled DCPs produced with WRF driven by CESM-DPLE

(WRF-DPLE) for the decade 2015–2025.

The full drift-corrected CESM-DPLE 10-member subensemble was dynamically

downscaled. This set of experiments encompasses the DCPs initialized in 2015,

spanning the last of the decades available from CESM-DPLE. As for WRF-LE,

the initial soil state was in dynamical equilibrium with the RCM soil physics. It

was taken from the control simulation conducted with WRF and ERA-Interim

(see Section 3.7). Each drift-corrected prediction is composed of 121 months.

The outputs from these simulations have been recalibrated by appliying the

DeFoReSt approach with an additional filter, as described in Section 3.5. A total

of 100.83 years has been simulated to generate these experiments. The results

are analyzed in Chapter 7.

A total of 1470 years, approximately, was simulated to conduct the DD simulations

analyzed in this Thesis. In terms or computing time, 4.94 million CPU hours were

needed to produce these experiments.

3.9. A note on the software used in this Thesis

The software tools used to conduct the DD experiments, work with climate infor-

mation and write this Thesis are provided under different types of free software

licenses. Sometimes, these products are developed and maintained by a small and

independent group of people or even by a single person. In other cases, they are

developed at universities or research institutes and/or endorsed by governmental

institutions or private entities. A common characteristic shared by these tools is

the non-profit work and support provided by communities and individuals who

contribute to the projects in multiple forms, such as code development and revision,

bug fixing, snippet and solution sharing on online forums, funding, etc. This Section

is devoted to acknowledge the crucial role, often unrecognized, that free software

plays in the scientific development.

As mentioned in Section 3.1, the DD simulations have been conducted with WRF

(version 3.9.1.1; Skamarock et al., 2008; Wang et al., 2008). Part of the data pre-

processing prior to conducting the simulations has been done with WPS (version

3.9.1; Wang et al., 2008). Multiple packages are needed to compile and run the RCM,

with NetCDF (Rew and Davis, 1990), zlib (Gailly and Adler, 1995), libpng (Schalnat

et al., 1995), HDF5 (The Board of Trustees of the University of Illinois and The HDF

Group, 1998), JasPer (University of British Columbia et al., 1999) and Open MPI (The
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Open MPI Team, 2004) among the most important ones. The RCM has been run in

high-performance computing environments which use Slurm (Yoo et al., 2003) as

the job scheduler.

The calculations required for the analysis and statistical treatment of the exper-

iments have been done by directly or indirectly using different versions of Numpy

(Harris et al., 2020), Scipy (Virtanen et al., 2020), Scikit-learn (Pedregosa et al., 2011)

and Xarray (Hoyer and Hamman, 2017), a group of scientific computing-oriented

Python packages. Climate Data Operators (CDO; Schulzweida, 2023), a set of tools

for climate research developed at the Max-Plank-Institute for Meteorology, and the

NetCDF Operators (NCO; Zender, 2008) have also been very useful for this purpose.

Additionally, the scripts provided by Monaghan et al. (2014) have helped to write

the WRF input data in the WRF intermediate format.

Most part of the graphical representations have been done by using Matplotlib

(Hunter, 2007) and Cartopy (Met Office, 2010), two Python packages for data vi-

sualization and cartography, respectively. Moreover, Inkscape (The Inkscape Team,

2003) has been used for vector graphics design and manipulation. The colour palettes

considered in graphical representations have been carefully chosen, to the extent

possible, to be colorblind-friendly. They have been retrieved from Crameri (2023),

Gomis et al. (2018) and “Qualitative colour schemes” (n.d.).

Finally, this document has been written in LATEX(Mittelbach and Schöpf, 1989),

making use of a wide variety of packages available in the CTAN repository (https:

//ctan.org/).
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4
Retrospective decadal climate predictions

for precipitation

This Chapter is devoted to analyze the WRF-DPLE predictive skill for PR. On the

course of the following lines, several aspects related to the accuracy and reliability of

the retrospective predictions or hindcasts are going to be addressed by means of the

methodology described in Chapter 3. Firstly, the predictive skill has been examined

by just comparing the results of the hindcasts with the observational datasets of

AEMET. Secondly, this performance has been compared to that achieved by the

global counterpart product, the CESM-DPLE. Afterwards, a similar approach has

been followed to compare with the WRF-LE uninitialized simulations. Finally, the

predictive skill of the regionally averaged hindcasts has been explored.

4.1. Predictive skill of the WRF-DPLE ensemble

The following results have been obtained from the analysis of the WRF-DPLE ensem-

ble after being recalibrated by applying the DeFoReSt approach (Pasternack et al.,

2018, 2021) with an additional filtering to adjust the inherent biases present in DCPs.

A detailed description of the technique is available in Section 3.5.

❦ Accuracy analysis

The spatial distributions of RMSER (Eq. [3.11]) and ACC (Eq. [3.13]) for the multi-

annual mean anomalies of PR have been depicted in Figure 4.1. The highest values

of RMSER are shown in lead year 1. This situation will be also observed when the

analysis is focused on the seasonal scale, regardless the variable. It is expected that

the RMSER decreases as the length of the averaging window increases. In this line,

these averages can be interpreted as smoothing filters which remove the intraannual
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Figure 4.1 : Spatial distributions of RMSER (left column) and ACC (right column) for the WRF-DPLE
multiannual mean anomalies of PR in lead years 1, 2–5, 6–9 and 2–9 (rows) at annual scale. In ACC maps,
the absence (presence) of black dots indicates (not) statistically significant results different from zero at
the 90 % confidence level.
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climate variability while leaving it untainted at the interannual or decadal scales.

In lead year 1, the largest RMSER values, which are above 45 %, have been found

along the regions close to the Mediterranean coast and some southern locations over

Sierra Morena. High RMSER values above 30 % are generally present in the southern

half of the IP, the northwestern sector of the Northern Subplateau, the Ebro Valley

and the Balearic Islands. On the other hand, the lowest errors have been found in the

northwest and the eastern regions of the Northern Subplateau, where the minimum

values are between 10 % and 15 %. Qualitatively similar spatial patterns have been

obtained in lead years 2–5 and 6–9, having slightly higher errors at the latter, but with

an important decrease of the errors in the southern half of the IP compared to the

first year of the decade. In these cases, the largest RMSER values, around 35 % and

45 % are observed in the southeastern regions for lead years 2–5 and 6–9, respectively.

Again, the lowest errors, with values below 10 % in some regions, have been found in

the north. As mentioned above, the lowest RMSER values are shown in lead years

2–9, which do not surpass the maximum 25 % found in the southeast. On the other

hand, the northern half of the IP shows values mainly below 7.5 %.

The most optimistic results in terms of ACC have been found in lead year 1, the

period which gathers the most part of the statistically significant positive results

(Figure 4.1, right column). In this case, they are found in the northwesternmost

regions, the Northern Subplateau (excluding the central part) and some areas in the

southern half of the domain. The largest ACC values are between 0.6 and 0.7 over the

northwest of the domain. Positive but not significant values have been found over

a very large fraction of the domain, excluding the negative ACC results observed

mainly along the Mediterranean coast and Balearic Islands, although they are not

statistically significant either. The eastern coast of the IP is not well represented in

terms of ACC in any of the lead time periods considered. In lead years 2–5, the only

statistically significant positive results have been found in the north, very close to

the Strait of Gibraltar and in a small region in the northwest of the IP, with values

around 0.5. The amount of locations with positive results has decreased compared to

lead year 1, but only very small areas in the Mediterranean coast show a significant

negative ACC with values around -0.3. The situation is slightly different in lead

years 6–9. In this case, the significant, positive results are mainly concentrated in

the north of the domain, with the maximum values between 0.6 and 0.7. Again,

there are some significant and negative values about -0.5 over small regions in the

east of the domain. In general, negative values are mainly confined to the eastern

part of the domain, while positive (but not significant) values cover more than the
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half of the territory. A similar situation is observed in lead years 2–9, where the

northern cluster of statistically significant correlations is maintained. In this case,

the significant negative ACC values appear in the northeastern regions. Spurious

significant positive results can be also found in very small areas across the IP.

At seasonal scale, the magnitude of the RMSER values strongly depends on the

season (Figure 4.2). Note that the colormap used in these maps is in a binary logarith-

mic (log2) scale to account for the very extreme errors found in some cases without

saturating too much the visual representations. The largest and lowest errors are

observed always in lead years 1 and 2–9, respectively, because of the same smoothing

effect of the multiannual averaging mentioned above. The differences between results

in lead years 2–5 and 6–9 are hardly appreciable, although slightly smaller or higher

errors may be observed in some regions depending on the lead time. For example,

compare the central eastern regions in boreal winter (DJF) at both lead times or the

southern regions in spring (MAM). In any case, there is not a robust influence of

lead time on RMSER. From an interseasonal point of view, the highest RMSER values

have been found in summer (JJA), followed by DJF, autumn (SON) and MAM, in

decreasing order. RMSER values above 512 % cover large portions of the southern

part of the IP in JJA for lead year 1. There is a cluster of very high errors which is

maintained in the south across lead time, with maximum errors also above 512 % in

lead years 2–5 and 6–9, while they do not surpass this value in lead years 2–9. The

lowest errors are commonly observed in the northern part of the IP. Very high errors

above 512 % have been also found in southern and northeastern locations in SON

and over the south in MAM and SON for lead year 1. In contrast to JJA, these errors

are largely reduced at the other lead times.

The results in terms of ACC at seasonal scale also vary depending on the season

(Figure 4.3). Again, the ACC spatial distribution maps show not statistically sig-

nificant results in general. The most promising results have been found in JJA, the

season which accumulates more significant positive ACC values. The best model

performance mainly occurs in JJA for lead years 1 and 2–5, although relatively similar

outcomes are also observed at certain lead times in DJF and MAM. In JJA, strong

correlations have been found in some regions mainly situated in the southern part of

the IP for lead year 1, with maximum values around 0.6. Optimistic outcomes can be

also observed in both the northernmost and southernmost areas of the domain in

lead years 2–5. The worst results have been found in SON. Large areas of the domain

are covered by negative ACC scores at all time scales, but mostly with not statistically

significant values. The strongest negative correlations are shown for lead years 2–9 in
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Figure 4.2 : Spatial distributions of RMSER for the WRF-DPLE multiannual mean anomalies of PR for
lead years 1, 2–5, 6–9 and 2–9 (rows) in DJF, MAM, JJA and SON (columns). Note that the colormap used
in these maps follows a binary logarithmic (log2) scale.

the central inner regions and northeast of the IP, with values down to -0.6.

Note that the very high errors obtained for the RMSER do not necessarily imply a

bad performance of the downscaled hindcasts. Since the anomaly error is divided by

the observed full-field value (i.e., the observed value prior to subtracting the mean

to compute the anomaly) in the calculation of the RMSER, the highest outcomes

shown in Figures 4.1 and 4.2 may be caused by very low PR values occurring along

the lead time series. Because of the smoothing effect of the lead time averages, the

occurrence of very low full-field PR values is more probable in lead year 1 and in

the seasonal analysis, consequently leading to higher errors. The examination of the

averaged AEMET PR distributions along the period 1970-2009, depicted in Figure 4.4,
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Figure 4.3 : As Figure 4.2, but for ACC. The absence (presence) of black dots indicates (not) statistically
significant results different from zero at the 90 % confidence level.

can shed some light on this situation. For instance, there is a direct link between the

low full-field PR in the southern regions in JJA, with values below 10 mm/month,

and the exacerbated errors observed there in that season. A more comprehensive

view of the skill of WRF-DPLE to reproduce the magnitude of the PR anomaly will

be provided later in the analysis of the MSSSC.

On the other hand, the low ACC values could be partially explained by the small

signal-to-noise ratio habitually present in DCPs, which is often revealed over the

North Atlantic latitudes through the signal-to-noise paradox (see Section 3.2; Scaife

and Smith, 2018; Smith et al., 2019, 2020). This paradox describes the counterintuitive

phenomenon in which the model is better at predicting the real climate variability

than at predicting its own modelled variability. It occurs when the ratio of predictable
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Figure 4.4 : Spatial distributions of the time averages of the AEMET full-field PR at annual and seasonal
scales for the period 1970-2009. While the annual series covers the period from 1970-11 to 2009-10, seasonal
series span the period from 1970-12 to 2009-11.

variance in observations is higher than for the model, showing the existence of a

small model signal-to-noise ratio and stressing the need of taking ensemble means

of a large number of members to properly extract the climate signal. The PR is

strongly affected by this phenomenon, as revealed by Smith et al. (2019) at global

scale for a multimodel ensemble, as well as by Figure 4.5 for WRF-DPLE and CESM-

DPLE in the IP. Figure 4.5 depicts the spatial distributions of the ratio of predictable

components (RPC; see Eq. [3.27]) for PR in lead years 2–9, which shows that the

ratio of predictable variance in observations can be up to 4 times higher than its

value in model forecasts over large areas of the domain in both downscaled and

global hindcasts. Despite the RPC of the global hindcasts shows a smoother spatial

distribution, caused by its coarser resolution, it shows certain similarities with the

pattern observed for the downscaled hindcasts. There are still some differences, such

as a reduction of the RPC in the downscaled hindcasts along the Mediterranean coast

or an increase over the Northern Subplateau. The presence of dispersed locations

with statistically significant values below 1 is also more frequent in the downscaled

hindcasts. These results are mainly caused by close-to-zero correlations between the

ensemble mean and observations. Note that the RPC shown in Figure 4.5 is really

an underestimation of the true value. An infinite ensemble size would be needed to

totally suppressing the model background noise, properly extract the model signal

and calculate the actual ACC({.} , -) in Eq. [3.27], which is expected to be higher as

the ensemble size increase (Scaife and Smith, 2018).
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Figure 4.5 : Signal-to-noise paradox in the hindcasts for PR over the IP. a) Spatial distribution of RPC for
the multiannual mean anomalies of the CESM-DPLE PR in lead years 2–9 at annual scale. b) As a) but for
WRF-DPLE. The absence (presence) of black dots indicates (not) statistically significant results different
from 1 at the 90 % confidence level.

Reyers et al. (2019) addressed the impact of the ensemble size on the predictive

skill for PR in their dynamically downscaled ensemble. They found that correlations

could be improved in magnitudes within the range from approximately 0.1 to 0.3

when incrementing the ensemble size from 4 to 10 members for lead time series

averaged over the IP. Depending on the initialization scheme of the GCM used to

run the RCM, the ACC could range from 0.12 to 0.41 for a fixed ensemble size of

10 members. However, these results should be taken with caution because of the

differences between their experimental design and that considered in this Thesis.

Reyers et al. (2019) use different global and regional models and the resolution of

their RCM is coarser than the one defined for WRF here. Also, they use 5 start dates

with gaps of 10 years between consecutive dates to conduct their simulations, against

the 30-year-consecutive start dates used in this Thesis. As Boer et al. (2016) suggest

and Reyers et al. (2019) also support, the addition of more start dates would increase

the robustness of their findings. Nevertheless, the results obtained by Reyers et al.

(2019) can be used to qualitatively explain the low correlations observed in Figures 4.1

and 4.3. In addition, results in Figure 4.5 also suggest that there is a potential to

improve the predictive skill in terms of ACC if a larger ensemble is used to remove

the unpredictable background noise in the forecasts.

In the comparison with climatology, the accuracy provided by the WRF-DPLE

hindcasts is certainly poor (Figure 4.6). The MSSSC scores are mostly negative, with

many regions showing statistically significant values across all time scales. There are
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Figure 4.6 : Spatial distributions of MSSSC (left column), with climatology as reference, CB (center
column) and the same MSSSC calculated for lead time series with an adjusted CB, i.e., equal to zero
(MSSSCBA; right column), for the WRF-DPLE multiannual mean anomalies of PR in lead years 1, 2–5, 6–9
and 2–9 (rows) at annual scale. In MSSSC and CB maps, the absence (presence) of black dots indicates
(not) statistically significant results different from zero at the 90 % confidence level.

some areas where MSSSC is positive, matching closely the regions which showed

significant positive results for ACC in Figure 4.1. This fact is not surprising because

of the close relation between this two metrics (see Eq. [3.24]). However, the positive

MSSSC values are not significant in this case. The worst represented regions are in
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the northeast of the IP, which shows strong negative results at all lead times, with

values even below -0.8 in some locations. These low scores are the consequence of

two concurring factors: the low correlations observed in Figure 4.1, discussed above,

and the large CB (in absolute value) depicted in Figure 4.6. The CB depends on ACC,

as stated by Eq. [3.17], but also on the ratio B{.}/B- between the standard deviation

of hindcast and observed lead time series. In locations where ACC is negative, CB is

always negative. If ACC is positive, the ratio between standard deviations must be

larger than ACC to get a negative CB, which is what generally happens. CB values

are almost completely significantly different from zero, excepting over some locations

which showed high-enough ACC values in Figure 4.1. These are mainly found in

lead year 1.

MSSSCBA represents the previous MSSSC calculated for the lead time series after

the conditional bias adjustment (CBA), that is, after removing it. This is equivalent

to take CB = 0 in Eq. [3.24]. MSSSCBA can be interpreted as the maximum MSSSC

which can be potentially achieved given the value of ACC. The MSSSCBA is very low

for almost the whole IP regardless of the lead time. The results are always statistically

significant and positive because this metric only can be positive or zero. Only if ACC

values in a given location are exactly equal to zero for all bootstrapping iterations,

which is something almost impossible, MSSSCBA would be not significant. The regions

with the highest MSSSCBA values match the regions with the highest ACC results in

absolute value, which mostly correspond to significant positive correlations. In lead

year 1, the highest scores around 0.3 are located in the northwest of the domain. For

the rest of lead times, they are mainly placed in the northern regions with similar

values. Even after completely removing the CB, the predictive skill would be very

limited with climatology as the reference basis.

The results for the seasonal multiannual means lead to similar interpretations, with

minor differences depending on the season being examined. They can be consulted

in Figures B.1 to B.3 in Appendix B.1.

❦ Reliability analysis

In addition to the deterministic scores discussed above, which give a measure of

the accuracy of the hindcasts, an analysis of the decadal predictive skill must also

include an assessment of their reliability, which is examined by means of probabilistic

metrics. The aim of this assessment is to address whether the WRF-DPLE average

ensemble spread is adequate to represent the prediction uncertainty, and the CRPSS
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(Eq. [3.29]) is the score selected to carry out this task. The spatial distributions of the

CRPSS are depicted in Figure 4.7. As detailed in Section 3.2, the desired value for

CRPSS is zero, which would mean that the path followed by observations could be

considered as a possible path to be followed by a single member of the ensemble. In

that case, the average ensemble spread �2
.

(Eq. [3.32]) could be used to determine

the true range of possibilities for the predicted future climate.

The results shown in Figure 4.7 are certainly promising in this respect, since

CRPSS values not significantly different from zero are widespread at all lead times,

with the exception of lead year 1, when the southern half of the IP is almost completely

covered by significant results. There are CRPSS values very close to zero in many

locations mainly situated in the northern half of the IP, which extend southward in

lead years 2–5 and 6–9, whereas almost cover the whole domain in lead years 2–9.

These outcomes are strongly related to the results for LESS (Eq. [3.34]) depicted in

the same Figure 4.7. Statistically significant results in LESS, both positive or negative,

indicate robust discrepancies between the WRF-DPLE average ensemble variance

�2
.

and the squared standard error �2
-

given by Eqs. [3.32] and [3.33], respectively.

There is a clear case of underdispersive predictions over almost the whole domain in

lead year 1, where �2
.
< �2

-
, with the lowest values observed in the southern regions.

This underdispersion is attenuated in lead years 2–5 and 6–9, when even positive but

not significant LESS values appear over some northern regions. The positive LESS

results are predominant in lead years 2–9, but they are mostly not significant with

the exception of a very small area in the Northern Subplateau. In these locations,

the LESS is around 1.5, which means that �2
.
> �2

-
by a factor of almost 4.5. The

patterns shown by LESS at all lead times are very similar to those corresponding

to CRPSS, as the regions with small absolute LESS values are the same that those

showing small absolute CRPSS values. Not significant outcomes for LESS often lead

to not significant CRPSS results, indicating that �2
.

is appropriate to quantify the

uncertainty of the forecasts.

The same discussion can be extrapolated to reliability analysis with multiannual

means at seasonal scale (Figures B.4 and B.5 in Appendix B.1). In this case, the

most promising results have been obtained in MAM. All lead times show a domain

mostly covered for not significant CRPSS values. They are a consequence of the not

significant LESS also found in MAM. The LESS distributions show that the predictions

are overdispersive in some regions, especially in lead years 2–9, but these results lack

of statistical significance. The least optimistic outcomes have been found in DJF and

SON, when the locations with hindcast reliability are scarcer than in MAM and JJA,
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Figure 4.7 : Spatial distributions of CRPSS (left column) and LESS (right column) for the WRF-DPLE
multiannual mean anomalies of PR in lead years 1, 2–5, 6–9 and 2–9 (rows) at annual scale. The absence
(presence) of black dots indicates (not) statistically significant results different from zero at the 90 %
confidence level.
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mainly because of the presence of robust underdispersion.

4.2. Comparison with the CESM-DPLE subensemble

After examining the predictive skill of the WRF-DPLE PR hindcasts, the comparison

of the downscaling experiments with the CESM-DPLE subensemble, the global coun-

terpart, is needed to quantify the value gained or lost by the downscaled ensemble.

It is worth remarking that, as the downscaled hindcasts, the global hindcasts have

been subjected to a recalibration process to remove their inherent biases. In this case,

only the climate drift (unconditional bias) has been corrected, as done for the ICs

and LBCs prior to conducting the DD simulations (see Section 3.3).

❦ Accuracy analysis

The results for the analysis of the WRF-DPLE multiannual mean anomalies of PR

in terms of MSSSG (Eq. [3.16]), ΔACCG (Eq. [3.25]) and ΔCBG (Eq. [3.26]), with

CESM-DPLE as reference are depicted in Figure 4.8. The statistically significant

added value of the WRF-DPLE ensemble is restricted to very small regions regardless

of the lead time. In lead year 1, some improvement over the global product is found

along the Mediterranean coast and some inner and northern locations. However,

there is almost no statistical significance in these outcomes, and the significant MSSSG

values are always below 0.3. Negative scores cover a large portion of the domain, with

the lowest significant values mainly over inner and northeastern locations, getting

minimum values between -0.6 and -0.5. In lead years 2–5, the general situation is

slightly better than for lead year 1, in the sense that broader regions with positive and

significant outcomes has been found. The largest cluster of significant positive results

can be observed in the northwest of the domain, with values between 0.3 and 0.4

(Figure 4.8d). The significant negative values are mainly distributed in the northern

half of the domain, with an important presence in the northeastern regions and

minimum scores below -0.6. Although regions which show a negative performance

of the downscaled hindcasts continue being present in lead years 6–9, the results in

terms of MSSSG improve compared to the previous lead times. In this case, a small

area of MSSSG values between 0.2 and 0.5 is found over some eastern locations. The

spatial distribution of MSSSG in lead years 2–9, with some significant and positive

results in the north and northwest, continues being dominated by the negative scores.

Because of the relation shown in Eq. [3.16], the results for MSSSG can be explained

by the combination of the spatial distributions of both ΔACCG and ΔCBG, depicted
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Figure 4.8 : Spatial distributions of MSSSG (left column), ΔACCG (center column) and ΔCBG (right
column), with CESM-DPLE as reference, for the WRF-DPLE multiannual mean anomalies of PR in lead
years 1, 2–5, 6–9 and 2–9 (rows) at annual scale. The absence (presence) of black dots indicates (not)
statistically significant results different from zero at the 90 % confidence level.

in Figure 4.8. The patch of significant negative results for MSSSG in lead year 1

is the product of the confluence of a large loss in terms of CB for the downscaled

experiments added to a slight decrease in correlation compared to the CESM-DPLE

subensemble. In lead years 2–5, the results for ΔACCG show a modest improvement
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in favour of the WRF-DPLE ensemble compared to the first year of the decade, but

with a consistent majority of not significant scores for both positive an negative

results. In the northwest of the domain, the ΔACCG values above 0.5, along with the

important positive results for ΔCBG, are responsible of the aforementioned significant

positive MSSSG cluster spanning those regions. The same occurs with the negative

performance observed for both metrics in the northeastern regions. Large areas of

added value to ACC have been found in lead years 6–9, with almost the whole domain

covered by positive but not significant differences. The best results in terms of both

ΔACCG and ΔCBG, with values above 0.6, are depicted in the same area over the

central east of the IP. The worst results for ΔCBG are shown in lead years 2–9, with a

large fraction of the domain covered by negative differences and patches of significant

negative results scattered over the whole IP. The differences in correlation show the

best results mainly concentrated in the northern and northwestern regions, with

values between 0.2 and 0.6.

For their 10-member ensemble of downscaled hindcasts, Reyers et al. (2019) found

moderate but positive added value to the predictive skill, in terms of MSSSG, in the

eastern regions of the IP (Figure 4 in Reyers et al., 2019). Added value in MSSSG,

ΔACCG and ΔCBG was also found when the lead time series spatially averaged over

the IP are analyzed (Table 2 in Reyers et al., 2019). However, they also noticed the

dependence the predictive skill has on the initialization scheme of the global model,

which plays an important role in how well the PR is represented. As the authors

showed, depending on the initialization scheme applied to the global model, this

added value to the predictive skill over the global model for this region could turn

into the opposite. Note that, as mentioned previously in Section 4.1, Reyers et al.

(2019) only considers five start dates with gaps of 10 years between consecutive

dates in their ensemble of hindcasts, also with different spatial resolution and climate

models from those used in this Thesis, so these results should be taken with caution.

As the authors suggest and Boer et al. (2016) affirm, the addition of more start dates

would contribute to increasing the robustness of their results.

Some moderately positive outcomes can be extracted from the analysis at seasonal

scale. The spatial distributions of seasonal MSSSG are shown in Figure 4.9. The best

performance of the WRF-DPLE ensemble with the global product as reference can be

observed in JJA. Excepting lead year 1, large areas of the domain are covered with

results which show the added value of the downscaled hindcasts (although they are

not always statistically significant), especially in lead years 2–9. At this lead time, a

large area with significant positive MSSSG values is present in the central regions of
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Figure 4.9 : Spatial distributions of MSSSG for the WRF-DPLE multiannual mean anomalies of PR, with
CESM-DPLE as reference, for lead years 1, 2–5, 6–9 and 2–9 (rows) in DJF, MAM, JJA and SON (columns).
The absence (presence) of black dots indicates (not) statistically significant results different from zero at
the 90 % confidence level.

the IP. These scores approximately range from 0.1 to 0.5 and are the consequence of

the joint action of positive results in ΔACCG (Figure B.6, Appendix B.1), with values

above 0.6 in some locations, and the significant positive results in ΔCBG (Figure B.7,

Appendix B.1) spanning a wider area, with maximum values above 0.6. Very good

results have also been found for MSSSG over a region located in the northeastern

quarter of the IP, where some values surpass 0.6. Again, although ΔACCG shows

moderately high (but not significant) positive results, the promising MSSSG outcomes

are mainly motivated by the large improvement in terms of CB. Similar performances

have been found, for example, for lead year 1 in DJF and MAM over some regions in

the southeast or over the northeast in SON. Notwithstanding, there are still important
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losses in predictive skill (see, e.g., DJF in lead years 2–9 or SON in lead years 6–9).

❦ Reliability analysis

The comparison between the WRF-DPLE and CESM-DPLE hindcasts in terms of

their reliability can be addressed by examining the Figure 4.10, which collects the

results obtained for ΔCRPSSG and LESSSG (see Eqs. [3.35] and [3.36], respectively).

At first glance, a notable absence of statistically significant results predominates in

the ΔCRPSSG spatial distributions. Improvements for this score (but not significant)

are generally observed at all lead times, excepting lead years 2–9. In lead years 1, 2–5

and 6–9, the highest positive ΔCRPSSG values are frequently observed over mountain

regions, such as the Central System, Sierra Morena, the Baetic System or the Pyrenees.

On the contrary, the smallest scores are mainly found in the Northern and Southern

Subplateaus, the Ebro and Guadiana valleys, and some locations in the northwest

and southeast. These regions are characterized by their flatness and/or low altitude

(see Figure 1.4a). In lead years 2–9, the area covered by negative results is wider,

with the lowest (but not significant) values situated over the Northern Subplateau.

As happened with CRPSS and LESS in Figure 4.7, the results in ΔCRPSSG are

highly influenced by those obtained for LESSSG. In this case, LESSSG shows the

improvement or deterioration in the representation of �2
.

compared to �2
-

. Those

regions where WRF-DPLE outperforms CESM-DPLE in terms of LESS (significant

positive LESSSG), which are very common at all lead times with the exception of lead

years 2–9, also show an added value in terms of CRPSS (although not significant).

The presence of very extreme values in LESSSG maps (i.e., positive or negative values

with large magnitude) may be noteworthy, but it is linked to the definition of the

metric (see Eq. [3.36]). Since LESSSG depends on the quadratic form of the WRF-

DPLE and CESM-DPLE LESS, differences between these metrics may lead to large

values for LESSSG, especially when small numbers are involved in the calculation.

The results for the seasonal multiannual time series can be consulted in Figures B.8

and B.9 (Appendix B.1). Although results vary depending on the season, the interpre-

tation carried out at annual scale can be extrapolated to the seasonal scale. Curiously,

the best improvements in terms of CRPSS are observed in DJF and SON, the seasons

which generally depicted the worst CRPSS values in Figure B.4. This is caused by

a large improvement in terms of LESS by the downscaled hindcasts over the GCM

which is fundamentally observed in those seasons.
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Figure 4.10 : Spatial distributions of ΔCRPSSG (left column) and LESSSG (right column) for the WRF-
DPLE multiannual mean PR anomalies, with CESM-DPLE as reference, in lead years 1, 2–5, 6–9 and 2–9
(rows) at annual scale. The absence (presence) of black dots indicates (not) statistically significant results
different from zero at the 90 % confidence level.
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4.3. Comparison with the WRF-LE ensemble

The comparison between the performances of the WRF-DPLE and WRF-LE ensembles

has been constrained to the analysis of the deterministic metrics because the uninitial-

ized experiments are not characterized by having a probabilistic nature, in contrast to

the DCPs (see Section 1.1.2). Note that these results are affected by a large sampling

bias because the analysis period in this case is very much shorter than that used when

examining the predictive skill of the WRF-DPLE and its performance compared to

CESM-DPLE. As said in Section 2.1.2, the CESM-LE data available for DD only covers

the period 1990-2005. Therefore, WRF-DPLE hindcasts initialized every year from

1990 to 1999 (10 start dates) have been used to address this comparison only for lead

years 1 and 2–5.

❦ Accuracy analysis

The best results in terms of the MSSSU, calculated with WRF-LE as reference, are

observed in lead year 1 (Figure 4.11). Positive outcomes widely cover the northwest

close the Cantabrian coast, west and south of the IP, but the statistically significant

results are limited to smaller areas. The highest significant values has been found

in the northwestern regions, with scores ranging from 0.3 to 0.8. On the other hand,

WRF-LE clearly outperforms WRF-DPLE over the northeastern quarter of the domain,

where a large area of significant negative values below -0.8 has been found, indicating

that there is not a positive effect of initialization on predictive skill. The performance

of WRF-DPLE, relative to that of WRF-LE, generally worsen in lead years 2–5 in terms

of MSSSU. Some regions in the north and south maintain positive results, again with

the most optimistic results placed close the Cantabrian coast around 0.7. However,

part of the not significant positive results observed in the southern half of the domain

for lead year 1 has turned into negative. In this case, the significant negative values

also cover the northeastern regions, the Northern Subplateau and the Mediterranean

coast.

As happened for the results depicted in Figure 4.8, the outcomes of MSSSU can

be explained by the improvement or deterioration of the predictive skill in terms of

ACC and CB. The positive results of MSSSU in lead year 1 are mainly a consequence

of the added value to predictive skill of WRF-DPLE observed in ΔACCU. Significant

results from 0.2 to 0.8 can be observed mainly in the northwest and some smaller

southern locations. The confluence of statistically significant outcomes for ΔACCU

and ΔCBU can also lead to significant and negative results in MSSSU. The lost value
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Figure 4.11 : Spatial distributions of MSSSU (left column), ΔACCU (center column) and ΔCBU (right
column) for the WRF-DPLE multiannual mean anomalies of PR, with WRF-LE as reference, in lead years
1, 2–5, 6–9 and 2–9 (rows) at annual scale. The absence (presence) of black dots indicates (not) statistically
significant results different from zero at the 90 % confidence level.

in terms of ACC, which cannot be compensate by the gain in terms of CB, is the main

responsible of the low MSSSU scores observed in lead year 2–5. The results found

by Reyers et al. (2019) on the added value of their downscaled hindcasts over their

global uninitialized simulations6 show more or less positive scores in terms of MSSS

depending on the initialization scheme of the global model used to conduct the DD,

highlighting the importance of that process in the representation of PR, as previously

said in Sections 4.1 and 4.2. With an ensemble of global uninitialized experiments

composed of 10 members as reference, the added value of their downscaled hindcasts

is observed for an ensemble size of 7 or more members in terms of both MSSS and

ACC. If another initialization scheme is used, the added value may be only shown in

terms of ACC for an ensemble size of 10 member.

At seasonal scale, the results for MSSSU (Figure 4.12) are more optimistic in JJA

and SON, when an added value of WRF-DPLE is observed over large areas in the

domain, especially in lead year 1, although the statistically significant results are

shown only in small regions. These spatial distributions are consequence of the

6Note that downscaled, and not global, uninitialized simulations are used in this Thesis.
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Figure 4.12 : Spatial distributions of MSSSU for the WRF-DPLE multiannual mean anomalies of PR, with
WRF-LE as reference, for lead years 1, 2–5, 6–9 and 2–9 (rows) in DJF, MAM, JJA and SON (columns).
The absence (presence) of black dots indicates (not) statistically significant results different from zero at
the 90 % confidence level.

important positive changes in ACC and CB (Figures B.10 and B.11 in Appendix B.1,

respectively) observed during these seasons. In DJF and MAM, the presence of areas

where there is a deterioration of the predictive skill is more frequent. Even so, there

are some locations which show significant, positive results in ΔACCU and ΔCBU

which lead to significant MSSSU outcomes from 0.3 to over 0.8, such as the regions

along the Cantabrian coast.

4.4. Predictive skill for regional averages

The regions found after applying the regionalization scheme described in Section 3.6

to the AEMET seasonal PR means (Figure 3.5a) have been used to calculate regional

averages of the lead time series. Since the regionalization groups together those

locations which have similar PR regimes, these averages can be interpreted as a overall

representation of the variable evolution in their respective regions. The spatially

averaged lead time series have been subjected to a similar analysis to that done at

grid-point scale in order to evaluate the predictive skill, whose results are summarized

in Table 4.1.

The performance of the downscaled hindcasts within each region reflects what

has already been discussed along the previous sections. In general, there is a poor

representation of the PR across all lead times in terms of accuracy. However, there are
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Table 4.1 : Skill scores for the spatially averaged WRF-DPLE multiannual mean anomalies of PR in lead
years 1, 2–5, 6–9 and 2–9 at annual scale. The subscripts �, � and * denote the reference data used to
calculate the skill score: AEMET climatology, CESM-DPLE global hindcasts and WRF-LE uninitialized
experiments, respectively. The bold formatting indicates results different from zero at the 90 % confidence
level. Dashes denote data unavailability at that lead time.

Region
Lead
years

MSSSC ACC CB
CRPSS
(×100)

MSSSG(U) �ACCG(U) �CBG(U)

EI

1 -0.11 0.19 -0.39 -0.56 -0.13 (-0.70) -0.11 (-0.46) -0.11 (0.05)

2-5 -0.17 0.00 -0.42 -0.01 0.01 (-1.39) -0.05 (-0.48) 0.02 (0.32)

6-9 -0.20 0.00 -0.44 -0.11 0.06 (–) 0.09 (–) 0.08 (–)

2-9 0.05 0.27 -0.14 -4.91 0.02 (–) 0.01 (–) 0.05 (–)

WI

1 -0.02 0.24 -0.27 -2.75 -0.15 (0.19) -0.13 (0.26) -0.15 (0.09)

2-5 -0.13 -0.02 -0.37 -0.02 0.00 (-0.57) -0.02 (-0.60) 0.00 (0.17)

6-9 0.04 0.28 -0.20 0.01 0.08 (–) 0.21 (–) 0.02 (–)

2-9 -0.12 0.15 -0.37 -7.01 0.02 (–) 0.09 (–) 0.01 (–)

NE

1 -0.14 0.03 -0.37 -0.51 0.06 (-0.30) 0.02 (-0.38) 0.09 (-0.21)

2-5 -0.78 -0.02 -0.88 0.08 -0.36 (-0.07) -0.11 (-0.13) -0.32 (-0.05)

6-9 -0.52 -0.10 -0.73 -0.36 -0.21 (–) 0.05 (–) -0.20 (–)

2-9 -0.74 -0.20 -0.89 0.02 -0.36 (–) -0.09 (–) -0.34 (–)

CS

1 0.01 0.24 -0.22 -5.58 -0.09 (0.10) -0.06 (0.11) -0.17 (-0.06)

2-5 -0.11 0.03 -0.34 0.06 -0.04 (-0.45) -0.04 (-0.54) -0.06 (0.56)

6-9 -0.06 0.14 -0.29 -0.93 -0.02 (–) 0.08 (–) -0.08 (–)

2-9 -0.02 0.20 -0.25 -1.12 -0.11 (–) -0.09 (–) -0.19 (–)

NW

1 0.28 0.53 -0.08 0.07 -0.06 (0.32) -0.03 (0.39) -0.07 (0.08)

2-5 -0.09 -0.06 -0.30 -0.37 0.14 (-0.05) 0.14 (-0.40) 0.24 (-0.08)

6-9 0.07 0.28 -0.09 -1.44 0.13 (–) 0.20 (–) 0.17 (–)

2-9 0.02 0.23 -0.17 -1.13 0.24 (–) 0.36 (–) 0.37 (–)

EA

1 -0.09 -0.59 -0.66 -0.96 0.13 (-0.06) -0.41 (-0.27) -0.13 (0.06)

2-5 -0.26 -0.19 -0.54 -4.16 -0.05 (-5.32) 0.04 (-1.09) -0.04 (-1.10)

6-9 -0.32 -0.27 -0.63 -4.92 -0.07 (–) -0.03 (–) -0.09 (–)

2-9 -0.16 -0.08 -0.41 -3.69 -0.04 (–) 0.06 (–) -0.04 (–)

SW

1 -0.11 0.04 -0.33 -7.94 -0.10 (0.15) -0.10 (0.34) -0.18 (0.10)

2-5 0.07 0.28 -0.06 -0.80 0.09 (0.13) 0.18 (0.04) 0.10 (0.12)

6-9 -0.09 0.10 -0.31 -1.12 -0.04 (–) 0.10 (–) -0.10 (–)

2-9 -0.13 0.11 -0.37 -0.48 -0.16 (–) -0.08 (–) -0.28 (–)

CN

1 -0.02 0.23 -0.28 -0.62 -0.03 (-0.11) 0.06 (-0.27) -0.11 (-0.10)

2-5 0.06 0.31 -0.21 4E-03 0.10 (0.54) 0.21 (0.21) 0.04 (0.73)

6-9 0.15 0.42 -0.14 -4E-03 0.10 (–) 0.16 (–) -0.03 (–)

2-9 0.23 0.48 -0.01 -0.26 0.21 (–) 0.28 (–) 0.08 (–)
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4.4. Predictive skill for regional averages

many regions where the hindcasts perform well in terms of reliability, particularly in

lead years 2–9, showing that the average ensemble spread is suitable to quantify the

forecast uncertainty because the CRPSS results are not significantly different from

zero. The best results have been achieved in the northwestern region (NW) for lead

year 1, as could be expected from the maps shown in Section 4.1. NW is the only

region which has a significant positive ACC, with a value of 0.53 in lead year 1, and

shows a significant added value over the uninitialized simulations also in terms of

ACC in lead year 1 (ΔACCU = 0.39). In addition, for this region, CB is not significantly

different from zero at this lead time and the CRPSS results indicate that the hindcasts

are reliable in lead years 2–5 and 2–9. Another region which occasionally showed

optimistic results in the previous sections was the central north (CN). The regional

averages show positive correlations for all lead times and positive MSSSC values

almost always, with the exception of lead year 1. However, the values are not high

enough to get statistical significance. Some of the worst results have been obtained

for the northeast (NE) region, as expected from the analysis at grid-point scale done

in the previous sections. In this region, MSSSC and CB show significant negative

results. A significant loss of predictive skill is also observed when comparing with

the global hindcasts in lead years 2–5 and 2–9.

The spatially averaged lead time series of the WRF-DPLE ensemble mean and

AEMET for the NW region have been depicted in Figure 4.13. These representations

also include the 90 % confidence interval associated to the probability of finding

a single-member hindcast of the WRF-DPLE ensemble within it. This interval has

been calculated by considering that the members of the ensemble follow a Gaussian

distribution with a mean given by the WRF-DPLE ensemble mean (Eq. [3.5]) and a

variance equal to the average ensemble spread (Eq. [3.32]), as well as was assumed

to calculate the CRPSS. Note that this confidence interval cannot be interpreted as a

measure of the uncertainty of the predictions for lead years 2–5 because CRPSS has

a value significantly different from zero at this lead time, as opposed to lead years

1, 6–9 and 2–9. Additionally, the ensemble envelope is also represented to show the

maximum deviation of the ensemble members from the mean. The largest model

and observational variability have been found in lead year 1 (Figure 4.13a), when

the smoothing effect of the lead time average is not as much accentuated as for the

4-year and 8-year lead time averages. The hindcasts are able to reproduce to some

extent the AEMET variability at this lead time, as expected from the ACC = 0.53

result showed in Table 4.1, exhibiting skill to replicate some of the peaks observed

in the AEMET time series, such as, for example, those corresponding to the start
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Figure 4.13 : Time series of the spatially averaged multiannual mean anomalies of PR in the NW region for
lead years 1, 2–5, 6–9 and 2–9 at annual scale. Solid green lines identify the WRF-DPLE ensemble mean,
whereas dashed black lines correspond to AEMET. Shaded green surfaces indicate the 90 % confidence
interval for a WRF-DPLE single member, calculated from the average ensemble spread (Eq. [3.32]). Shaded
yellow surfaces show the ensemble envelope which encloses the trajectories followed by the members
composing the WRF-DPLE ensemble.

years 1976, 1995, 1996 or 1997. In general, the WRF-DPLE time series stays close to

the observational one in lead year 1, with the exception of some important peaks

occurring for AEMET in start years 1978 and 1988, or another only traced by the

hindcasts in 1993, explaining the not significant but positive MSSS� = 0.28 showed

in Table 4.1. The situation is different at the other lead times, when the low MSSSC

values already show the poor ability of the WRF-DPLE lead time series to replicate

the magnitude of the variability observed for AEMET in Figures 4.13b to 4.13d, and

the small correlations lead to significant negative CB values. All panels are good

illustrative examples of the low signal-to-noise ratio found in the hindcasts for PR, as

the width of the confidence intervals is generally much larger than the magnitude of

the ensemble mean signal.

The spatially averaged time series for the CN region have been depicted in Fig-

ure 4.14. The general comments which describe the limited predictive skill of the
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4.5. Analysis of the spatio-temporal variability of sea level pressure in CESM-DPLE

hindcasts for PR in the region NW can also be extrapolated to this region at all lead

times. In this case, the highest correlation has been obtained in lead years 2–9, with a

not significant ACC = 0.48. An increase of the ensemble size would help to improve

this correlation and even get a significant result. Nevertheless, the signal-to-noise

ratio would still remain being not large enough to replicate some of the most accentu-

ated maximum and minimums observed in the AEMET time series at this lead time,

such as those observed for the start dates 1975, 1982 or 1987 (Figure 4.14d).
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Figure 4.14 : As Figure 4.13 but for the CN region.

4.5. Analysis of the spatio-temporal variability of sea level pressure in CESM-

DPLE

The last part of this Chapter is devoted to briefly explore the skill of the CESM-

DPLE subensemble to predict the main sea level pressure (SLP) spatio-temporal

variability patterns in the Northern Hemisphere. The ability of DPSs to reproduce

the mechanisms which control the atmospheric circulation has already been subject

of analysis in previous studies (e.g., Dunstone et al., 2016; Smith et al., 2019, 2020).

The interest to have skilful predictions of the atmospheric circulation relies on its

influence on the evolution of fields such as PR or temperature at local scale. In DD
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simulations, the information about the atmospheric circulation represented by the

GCM fields is transferred to the RCM through the ICs and LBCs, so the skill of

CESM-DPLE to predict these variability modes influences on the predictive skill

achieved by the WRF-DPLE output fields. So far, the research available in literature

has mainly focused on the analysis of the skill to predict the North Atlantic Oscillation

(NAO), the circulation pattern which most influences on weather and climate during

winter in the Northern Hemisphere. The NAO is characterized by changes in SLP or

geopotential height over the action centres located at the Azores and Iceland (Hurrell

et al., 2003; Smith et al., 2019). It explains about a third of the SLP variance in the

Northern Hemisphere during this season (Hurrell et al., 2003) and drives part of the

PR and temperature variability in the southwestern regions in Europe (e.g., Queralt

et al., 2009; Ríos-Cornejo et al., 2015b; Trigo et al., 2004). However, there are other

circulation patterns (Wallace and Gutzler, 1981) which have not been received as

much attention in the context of DCPs, but that also exerts some influence on PR and

temperature in the particular case of the IP (Ríos-Cornejo et al., 2015a, 2015b).

This Section presents an analysis of the results obtained from a PCA (Preisendor-

fer, 1988) which has been applied to the CESM-DPLE and ERA5 SLP, being the latter

used as the reference dataset. ERA5 provides SLP with a higher spatial resolution

than CESM-DPLE, allowing to work on the native CESM-DPLE resolution (∼ 1◦)

after interpolating ERA5 SLP onto the model grid. The PCA has been applied to the

ensemble mean of the same 4-member subensemble used in DD simulations (ENS4),

as well as to the ensemble mean of the 10-member CESM-DPLE subensemble (ENS10,

the largest ensemble attainable for DD simulations) to evaluate the dependence of the

results on the ensemble size. The PCA extracts the main spatio-temporal variability

modes which determine the evolution of SLP, accounting not only for the NAO but

also for other important circulation patterns in the Northern Hemisphere. The PCA

has been applied to the lead time series of SLP along the control period (the decades

initialized every year from 1970 to 1999) in lead years 2–9, so that the interannual

variability is removed and the analysis fully focus on the decadal scale. The PCA have

been computed for the covariance matrix in S-mode. The significant EOFs, selected

by the North’s rule (North et al., 1982), have been rotated by following a varimax

approach (Preisendorfer, 1988), just as it was done in Section 3.6 as part of the process

of regionalization of the IP.

The results obtained for the rotated loadings have been depicted in Figure 4.15.

These rotated loadings represent the correlations between the standardized SLP

anomaly series and the rotated PC (PCR) associated to a given variability mode
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at each grid point. The ERA5 SLP spatio-temporal variability is represented by 5

significant modes, which explain about 92.01 % of the total SLP variance. The spatial

distribution of the rotated loadings in the first ERA5 variability mode, which represent

35.75 % of the variance, shows two main action centers. One negative action center

is placed over Greenland and also spans over part of the northern and northeastern

Eurasia, whereas the other, positive in this case, covers the whole North Atlantic

and spans part of the western Eurasia regions. Some positive correlations have been

obtained also over the Pacific Ocean. This variability mode represents the PCA version

of NAO in lead years 2–9. The correlation between its associated PCR and a NAO index

calculated with ERA5 by following the same approach described in Smith et al. (2019)

for lead years 2–9 is 0.91 (p-value < 0.1, see Section 3.2.37). In the second mode,

which explains about 19.19 % of the variance, the strongest correlations of the negative

action center are observed in the northwestern regions of America. On the other hand,

positive correlations cover part of the western North Atlantic and the North American

continent, reaching the highest values in the North Pacific. The rotated loadings of

the third mode share some similarities with the pattern of the first mode, although

only 13.60 % of the variance is explained in this case. Indeed, the correlation between

the associated PCR and the NAO index is 0.87 (p-value < 0.1, see Section 3.2.3). The

main differences between the first and third modes, besides the explained variance,

are mainly observed in the decrease of the absolute value in the correlations of the

negative action center, and in the concentration of the highest North Atlantic positive

correlations over the eastern North Atlantic sector, the southwestern Europe and the

northern Africa. In addition, the cluster of positive correlations observed in the North

Pacific Ocean has slightly shifted westward compared to the first mode. The fourth

variability mode explains 12.91 % of the SLP variability. Its spatial pattern displays a

strong action center over the North Pacific, to the northwest of America, and lower

positive correlations along part of North America, the North Atlantic, Europe and

the north of Africa. On the other hand, weaker negative correlations are observed to

the south of Greenland, the north of America and in part of eastern Eurasia. The last

significant variability mode presents two well-distinguishable negative action centers,

one spanning North America, with the strongest correlations to the northwest of the

continent, and another which covers eastern Europe and some southern and eastern

Asian regions. The highest positive correlations, weaker than the negative ones, are

observed mainly to the northwest of the British Isles, to the west of North America

7In the evaluation of the statistical significance done in this Section, the non-parametric bootstrapping
over the PCRs calculated with the ensemble mean has been applied only for start dates.
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Figure 4.15 : Rotated loadings of the ERA5 (left column), the 4-member CESM-DPLE ensemble mean
(ENS4, center column) and the 10-member CESM-DPLE ensemble mean (ENS10, right column) SLP for
each significant spatio-temporal variability mode (rows). They have been computed for lead years 2–9 in
DJF. The variance ratio explained by each mode is shown in map headings.
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over the North Pacific and over the Arctic Ocean.

The extent to which the CESM-DPLE hindcasts are able to reproduce the main

atmospheric circulation patterns which influence on weather and climate over the

North Atlantic sector is established by the skill to replicate the rotated loadings

described above, alongside their associated PCRs. The rotated loadings obtained for

the ENS4 and ENS10 ensemble means are also displayed in Figure 4.15, whereas the

correlations between ERA5 and CESM-DPLE PCRs are shown in Table 4.2. ENS4

has 4 significant spatio-temporal variability modes, which explain around 63.92 %

of the total SLP variance. This explained variance is more evenly distributed among

the modes than in the case of ERA5. On the other hand, ENS10 presents only 2

significant variability modes, explaining together about 48 % of the total variance.

The distribution of the explained variance among these modes is more similar to that

observed for ERA5 than it was for ENS4. It may be related to the better ability to

capture the climate signal and distinguish between variability modes compared to

the 4-member subensemble because of its larger ensemble size. The first variability

modes explain 25.16 % and 32.05 % of the variance for ENS4 and ENS10, respectively.

They have rotated loadings which show some similar spatial features. Both are

characterized by two positive action centers at both sides of North America over

the Pacific and Atlantic Oceans. There are also negative correlations located over

Greenland and part of Eurasia, which cover a larger area of the continent in the case

of ENS10. These patterns have certain similarities with the second ERA5 variability

mode, especially in the case of ENS10, as revealed not only by the common aspects

regarding the rotated loadings but also by the significant positive correlation between

the PCRs (ACC = 0.68). This correlation is also significant but much lower for ENS4

(ACC = 0.33). The PCR 1 of ENS10 also shows a significant correlation of 0.39

with the PCR 3 of ERA5. The second variability modes of ENS4 and ENS10, which

explain 14–16 % of the variance, are characterized by a spatial pattern which shows

positive correlations along North America, the meridional latitudes of the North

Atlantic Ocean and part of Eurasia. The highest positive correlations are shown in

the northwestern Europe, with a slight shift to the northwest in ENS10 compared to

ENS4. The most intense negative correlations are observed along the Arctic and North

Pacific Oceans, as well as in part of the northeast and southeast of Eurasia. In the case

of ENS4, the area covered by these negative correlations over the north of Eurasia is

larger. Both second modes show some features which are shared to some degree with

the first three ERA5 modes and even with the fourth one in the case of ENS10, as the

correlations in Table 4.2 indicate. While the correlations for the CESM-DPLE PCR 2
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Table 4.2 : ACC calculated with the ERA5 and CESM-DPLE rotated principal components (PCRs) for lead
years 2–9 in DJF. The CESM-DPLE PCRs have been computed for the 4-member and 10-member ensemble
means (ENS4 and ENS10, respectively). The variance ratio explained by each significant spatio-temporal
variability mode is shown in brackets below the PCRs. The bold formatting indicates results different
from zero at the 90 % confidence level. In the evaluation of the statistical significance, the non-parametric
bootstrapping conducted with the PCRs has been applied only for start dates (see Section 3.2.3).

ERA5

ENS4 ENS10

PCR 1
(25.16 %)

PCR 2
(14.00 %)

PCR 3
(13.02 %)

PCR 4
(11.74 %)

PCR 1
(32.05 %)

PCR 2
(15.95 %)

PCR 1
(35.75 %) 0.08 -0.28 -0.07 -0.13 0.18 -0.28

PCR 2
(19.19 %) 0.33 -0.39 -0.36 0.10 0.68 -0.41

PCR 3
(13.60 %) 0.21 -0.34 -0.03 0.02 0.39 -0.39

PCR 4
(12.91 %) 0.07 -0.01 0.15 -0.26 0.16 0.29

PCR 5
(10.58 %) 0.05 -0.14 -0.31 0.28 0.30 -0.09

are only significant with the ERA5 PCRs 2 and 3 in the case of ENS10 (ACC = −0.41
and ACC = −0.39, respectively), they are significant with ERA5 PCRs 1 and 3 in the

case of ENS4 (ACC = −0.28 and ACC = −0.34, respectively). However, the ENS4 and

ENS10 rotated loadings for the second mode do not consistently capture the location

of the main action centers of any ERA5 mode. The third and fourth variability modes

of ENS4 (13.02 % and 11.74 % of explained variance, respectively) are not able to fully

reproduce any ERA5 mode either. The strongest correlation with the ERA5 PCRs is

observed between ERA5 PCR 2 and ENS4 PCR 3, with a statistically significant result

of -0.36. Some common spatial features between their respective rotated loadings

have been found but, as occurred before, the location of the main action centers is not

accurate.

The results described above show some skill in the CESM-DPLE hindcasts to par-

tially reproduce the SLP variability, although they are not able to clearly capture most

part of the main spatio-temporal variability modes extracted from the PCA computed

with ERA5 SLP. Despite the second ERA5 mode is in a certain way replicated by the

ENS10 ensemble mean (the maximum attainable ensemble size for DD), it is not the

case for ENS4. None of the CESM-DPLE ensembles have been able to consistently
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capture the NAO variability mode either, the mode which dominates the atmospheric

circulation in the North Hemisphere during the boreal winter months, which was

found in the ERA5 SLP. Smith et al. (2019) stressed the need to consider very large

ensemble sizes to properly capture the NAO signal, which is strongly affected by the

signal-to-noise paradox. For a 4-member multimodel ensemble mean and 46 start

dates (initialized from 1960 to 2005), the authors showed that the skill to reproduce

the station-based NAO index in terms of ACC is below 0.2 and not significant at the

90 % confidence level. For a multimodel ensemble size of 10-members, however, the

ACC may increase up to 0.25 and show statistical significance. The limited skill to

reproduce this variability pattern by ENS4, which provides the ICs and LBCs for the

DD decadal simulations conducted in this Thesis, might be negatively affecting the

predictive skill for PR in the IP in the results discussed in the previous sections, as

NAO has a notable influence on the PR variability in this region, especially in DJF

(Queralt et al., 2009; Ríos-Cornejo et al., 2015a; Trigo et al., 2004). Indeed, since NAO

also drives part of the temperature variability in Spain (Ríos-Cornejo et al., 2015b),

improvements in the skill to capture the NAO signal (and the other variability modes

in general) may also contribute to enhancing the predictive skill of the hindcasts

analyzed in the following Chapter 5. In this line, Smith et al. (2020) revealed that

a multimodel ensemble composed of 169 members subjected to a post-processing

adjustment could increase the ACC with NAO index up to 0.79, introducing improve-

ments in the representation of PR, temperature and SLP. However, this attractive

approach has some obstacles to overcome in the framework of DD. The first one is

the aforementioned computing cost of performing DCPs at a very high resolution by

means of DD simulations. The second one, also very important, is the availability

of GCM data to conduct the simulations. The huge storage requirements needed

to save the data generated by GCMs in DCPs leads the research groups to select a

subset of the output product to be saved. This subset usually encompasses a wide

variety of fields from frequencies ranging from daily to annual, but commonly lacks

of most part of the 6-hourly mandatory fields to provide the ICs and LBCs of a RCM.

As mentioned in Section 2.1.1, CESM-DPLE is the only DPS which publicly provides

all the required fields to address this task. Nevertheless, there is still a potential to

continue improving the predictive skill of the presented in this Chapter with the

available data, adding new members up to an ensemble size of 10 and also increasing

the number of start dates of the downscaled ensemble back to 1956 (15 additional

start dates).
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4.6. Concluding remarks

This Chapter has been devoted to the analysis of the WRF-DPLE downscaled hind-

casts for PR. Several metrics and skill scores have been used to evaluate the per-

formance of these experiments in terms of their accuracy, their reliability and their

added value to the predictive skill over the global CESM-DPLE hindcasts and the

WRF-LE uninitialized experiments. The ability of CESM-DPLE to reproduce the

spatio-temporal variability of the SLP has also been explored. Before conducting the

evaluation, the WRF-DPLE experiments have been recalibrated by applying the De-

FoReSt method to reduce the unconditional and conditional biases as well as improve

the representation of the ensemble spread (see Section 3.5). The main findings are

summarized in the following:

• The signal-to-noise paradox is strong in the WRF-DPLE hindcasts for PR.

The signal-to-noise paradox leads to the counterintuitive situation in which the

model is better at predicting the real climate evolution than it is at predicting

itself. This paradox is a consequence of a low signal-to-noise ratio in model

predictions. It is present not only in the WRF-DPLE hindcasts but also in the

4-member CESM-DPLE subensemble, as revealed by the results obtained for the

spatial distributions of the RPC in Figure 4.5. These results, which are consistent

with previous studies available in literature, indicate that the predictive skill

for PR would benefit from increasing the ensemble size.

• At annual scale, the spatial distributions of ACC show positive results over

most part of the domain at all lead times. On the other hand, negative results

are commonly found in the eastern flank of the IP. The results generally lack of

statistical significance, with the exception of some regions with positive ACC

values. The most promising outcomes have been found in the northwestern

regions for lead year 1, where significant positive scores up to values around 0.7

have been obtained. The spatial distributions of RMSER show the lowest errors

in the northern regions of the domain at all lead times because the highest PR

rates are commonly observed there.

• Some of the best results obtained at seasonal scale in terms of ACC have been

found in JJA, especially in lead years 1 and 2–5. These spatial distributions

show generalized positive results in the IP, although the statistical significance

is limited to specific regions. For example, the results are significant in part of

the southern half of the IP for lead year 1 and in some northern and southern

locations for lead years 2–5. Positive ACC values are also common in DJF and
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MAM. The lowest RMSER values have been found in MAM, whereas the highest

scores are shown mainly across the southern regions in JJA. These high relative

errors are mainly motivated by the lower PR rates observed in this part of the

domain during this season.

• The WRF-DPLE predictive skill for PR at annual scale, with climatology as

reference, is limited. Generalized negative results have been found for MSSSC

at almost all lead times. Some positive scores are also observed in small regions,

especially in lead year 1, but with absence of statistical significance. These

results are consequence of the joint action of the low ACC and the high absolute

CB values. Even if the CB were completely removed, the predictive skill would

continue being low because of the results obtained for ACC, as indicated by the

spatial distribution of MSSSCBA (MSSSC for CB = 0). Similar results have been

obtained at seasonal scale.

• The WRF-DPLE hindcasts for PR are generally reliable over wide areas of the

IP. This means that the average ensemble spread can be used to quantify the

uncertainty of the predictions in those regions. Almost the whole domain shows

reliable hindcasts in lead years 2–9 at annual scale. Nevertheless, the areas with

not significant CRPSS outcomes are smaller at the other lead times. The regions

in the northern half of the domain are generally among those showing hindcast

reliability at all lead times. This reliability is caused by the results obtained

for LESS, which are commonly not significant, indicating that there are not

significant differences between the average ensemble spread and the squared

standard errors in those locations. At seasonal scale, the hindcast reliability

has been found over almost the whole domain for all lead times in MAM. Very

good results have also been obtained in JJA and, to a lesser extent, in SON.

• The highest predictive skill of WRF-DPLE for PR at annual scale with CESM-

DPLE as reference has been found in lead years 6–9. The generalized positive

ΔACCG results obtained at this lead time, along with the improvement also

observed in terms of ΔCBG, lead to these positive MSSSG values over large areas.

However, the statistical significance is constrained to very small regions in the

central eastern part of the domain. The lack of statistical significance has also

been observed at the other lead times. In those cases, the areas with positive

scores are smaller. The northern, northwestern and central eastern areas of the

IP have generally obtained the best results in lead years 2–5, 6–9 and 2–9. In

lead year 1, they are fundamentally found along the Mediterranean coast and
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part of the Northern Subplateau.

• The best results obtained for the WRF-DPLE predictive skill at seasonal scale,

with CESM-DPLE as reference, have been found in JJA. In this season, the pos-

itive MSSSG results are predominant in lead years 2–5, 6–9 and, especially, 2–9.

Nevertheless, as at annual scale, the regions not showing statistical significance

are widespread. These outcomes are a consequence of two concurring factors:

the generalized positive results obtained for ΔACCG and ΔCBG at these lead

times. Both metrics show positive results spanning most part of the domain in

lead years 2–5 and 2–9, with smaller areas in lead years 6–9.

• The PR hindcast reliability is higher for WRF-DPLE than for CESM-DPLE.

Although these results lack of statistical significance, the positive ΔCRPSSG

values are clearly predominant for the lead years 1, 2–5 and 6–9 at annual scale,

being also found in the coastal and some inner regions in lead years 2–9. There

is a large improvement in the representation of the ensemble spread in the

WRF-DPLE hindcasts, as revealed by the positive results obtained for LESSSG,

which are the cause of the results observed for ΔCRPSSG. At seasonal scale, the

highest improvements in the hindcast reliability have been found in DJF and

SON for the same reasons.

• The highest predictive skill of WRF-DPLE, with the WRF-LE uninitalized

experiments as reference, has been mainly found for lead year 1 in the western

part of the domain. Large areas with positive MSSSU results are observed over

those regions at this lead time. These results are caused by the positive scores

found for ΔACCU and ΔCBU. On the other hand, the added value obtained in

terms of MSSSU is fundamentally constrained to some northern and southern

regions in lead years 2–5. The most promising outcomes obtained for this

metric at seasonal scale are shown in JJA and SON, when the added value of

WRF-DPLE is observed over large areas of the domain, especially in lead year

1, but with a general lack of statistical significance. This evaluation has been

constrained to the decade 1990-2005 because of the unavailability of CESM-LE

data outside this period, so a large sampling error affect these results. Therefore,

they should be taken with caution.

• The performance of the WRF-DPLE hindcasts for PR, from a regional per-

spective, reflects what has been obtained at grid-point scale. There is a general

poor representation of PR at all lead times in terms of accuracy. Nevertheless, in

regard to reliability, the performance is promising in many regions, especially
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for lead years 2–9. The NW and CN regions show some of the best results in

general. There, the hindcasts are able to reproduce part of the relative mini-

mums and maximums present in the observational time series. In general, the

magnitude of the ensemble mean signal is lower than that of the observational

time series and the amplitude of the confidence intervals, as a consequence of

the signal-to-noise paradox.

• The limited ability of the 4-member CESM-DPLE subensemble to represent

the spatio-temporal variability of SLP may be partially responsible of the

results obtained for the WRF-DPLE PR. The 4-member CESM-DPLE subensem-

ble can reproduce part of the SLP variability, but it cannot capture most part

of the spatio-temporal variability modes extracted from the PCA of the ERA5

SLP. Indeed, neither the 4-member nor the 10-member subensembles are able

to consistently simulate the NAO. Further improvements carried out in this line

could contribute to enhancing the predictive skill of the downscaled product.
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for near-surface air temperature

This Chapter is dedicated to the analysis of the WRF-DPLE predictive skill for NSAT.

The structure is very similar to that followed in Chapter 4 for the analysis of PR, but

this Chapter includes results for three NSAT variables: )max, )min and )mean.

In the section devoted to each variable, at first, the predictive skill of the ensemble

of WRF-DPLE hindcasts is evaluated against the AEMET observational datasets

to examine the accuracy and reliability. Secondly, the performance of WRF-DPLE

ensemble is compared to that of CESM-DPLE subensemble, the source which provides

ICs and LBCs to conduct the DD experiments with WRF. Afterwards, the performance

of WRF-DPLE is compared to that of WRF-LE instead, the dynamically downscaled

uninitialized experiments. Finally, the WRF-DPLE predictive skill of the regional

averages of the variables is also evaluated.

5.1. Daily maximum near-surface air temperature

5.1.1. Predictive skill of the WRF-DPLE ensemble

The following results have been achieved from the analysis of the WRF-DPLE )max

ensemble after being recalibrated by applying the DeFoReSt approach (Pasternack

et al., 2018, 2021) with an additional filtering to adjust the inherent biases in DCPs.

See Section 3.5 for more information.

❦ Accuracy analysis

The spatial distributions of the RMSE and ACC calculated for the multiannual mean

anomalies of )max have been depicted in Figure 5.1. A pattern in RMSE maps similar

to that observed in Figure 4.1 for PR has also been found here, as expected, in the sense
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that the highest RMSE values are found for lead year 1 and decrease by increasing the

length of the lead time window. In lead year 1, the maximum values are above 0.9 K,

mainly in some mountain regions located in the southern half of the domain. This is

the case of those located to the south of the Northern Subplateau, in Sierra Morena,

in regions close to the Strait of Gibraltar and belonging to the Baetic System. The

regions with the lowest errors, around 0.45 K, are commonly those with lower terrain

height, such as the Ebro, Guadalquivir or Tagus valleys, or the locations situated

along the Mediterranean coast (a terrain elevation map is available in Figure 1.4a).

The differences between RMSE values in lead years 2–5 and 6–9 are more noticeable

for )max than for PR. In this case, the errors slightly decrease with lead time, generally

getting differences about 0.1 K between these lead time windows. The highest RMSE

values are primarily observed in some of the highest mountain locations of the IP, with

the Baetic System depicting the worst results. The errors over the Baetic System are

around 0.75 K and 0.65 K in lead years 2–5 and 6–9, respectively. A qualitatively similar

spatial distribution is observed in lead years 2–9, but being the maximum RMSE,

found over the Baetic System again, around 0.55 K. In these high mountain regions,

the complexity of the topography directly affects the installation and maintenance of

observational stations, complicating the monitoring of variables such as temperature

and, consequently, negatively impacting on the availability of quality spatio-temporal

observational information (Esteban-Parra et al., 2022). This might explain, at least to

some extent, the high errors observed in these regions. On the other hand, the rest of

the domain generally exhibits a consistent decrease for the RMSE compared to the

other lead times, with a large fraction of the domain showing results below 0.2 K.

The results obtained for ACC in the analysis of )max are certainly more promising

than those found in Section 4.1 for PR. In this case, the results show positive ACC

values spanning almost the whole domain regardless of the lead time. As opposed

to PR, the signal is dominated by upwards climate trends in temperature-based

variables, positively contributing to the ACC when the models are able to reproduce

them reasonably well (Goddard et al., 2013). In lead year 1, statistically significant

positive results have been found in some northwestern regions, a stripe of northeastern

locations over the southern Pyrenees and surrounding regions, the Balearic Islands

and an area covering part of the Baetic System in the south. These values are in the

range from 0.4 to 0.8. The rest of the domain, including those regions with negative

outcomes, does not show statistical significance. As for RMSE, the lead time has some

influence on the ACC results, which are better in lead years 6–9 compared to lead

years 2–5, fundamentally in regard to the statistical significance. While the outcomes
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Figure 5.1 : Spatial distributions of RMSE (left column) and ACC (right column) for the WRF-DPLE
multiannual mean anomalies of )max in lead years 1, 2–5, 6–9 and 2–9 (rows) at annual scale. In ACC
maps, the absence (presence) of black dots indicates (not) statistically significant results different from
zero at the 90 % confidence level.
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in lead years 2-5 show slightly more robustness that at the first year of the decade,

the performance in lead years 6–9 is even better, getting wider areas of the domain

with significant positive results. These regions are mainly situated in the eastern and

southern halves of the domain, and show correlations between 0.4 and 0.9. In this

case, the northeastern regions show the most promising results. The best outcomes

have been obtained in lead years 2–9, when the statistical significance for positive

correlations is widely spread along the domain. The significant positive ACC values

are above 0.5, reaching results even above 0.9 in some small areas situated in the

northeast and south.

At seasonal scale, the results for RMSE (Figure B.12 in Appendix B.2.1) vary

depending on the season, although the analysis follows the same fundamental line

observed at annual scale. The RMSE spatial distributions mostly show similar patterns

to that for the standard deviation of the AEMET )max (Figure B.13 in Appendix B.2.1),

in the sense that locations with higher RMSE values also are those which show the

higher variability. This does not occur in lead year 1 at annual scale for some of

the aforementioned regions which have the largest errors. Only those in the Baetic

System have a high variability, the rest does not show errors which can be attributed

to this, only to a bad representation of the magnitude of the variable by the hindcasts.

The results depicted later in Figure 5.4 suggest that this misrepresentation might be

due to a very negative CB, caused by the imbalance between the low correlations and

the ratio of the hindcast and observational standard deviations.

The contrast among the seasons is more noticeable in the results for the seasonal

ACC (Figure 5.2). The best results have been found for MAM, followed by JJA. In

general, there are almost not statistically significant results in lead year 1, even less

than at annual scale. In MAM, the situation drastically changes in lead years 2–5

because the whole domain is covered by significant positive results, excepting some

regions scattered along the IP, mainly located in the southeast and the northwest.

The largest correlation coefficients can be observed in the northeastern regions, with

values ranging from 0.6 to 0.9. The amount of significant results decreases in lead

years 6-9, but are maintained along the east and part of the southern regions of the

IP. The most promising results are depicted in lead years 2–9, when the scores are

essentially significant and positive and the highest correlations are located along

the Mediterranean coast with values from 0.8 to 0.9. On the other hand, the worst

represented season is clearly SON. Not significant negative results are generally

predominant at all lead times with the exception of lead years 2–9. At this lead time,

significant negative ACC values cover large portions of the western part of the domain,
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Figure 5.2 : Spatial distributions of ACC for the WRF-DPLE multiannual mean anomalies of )max for lead
years 1, 2-5, 6-9 and 2-9 (rows) in DJF, MAM, JJA and SON (columns). The absence (presence) of black
dots indicates (not) statistically significant results different from zero at the 90 % confidence level.

especially across the northwestern sector. The good results obtained in MAM and

JJA, relative to the other seasons, are in part due to the fact that )max trends are more

pronounced. Tables A.3 to A.6, available in Appendix A.2, can be consulted to examine

the seasonal trends corresponding to each region resulting from the regionalization

done in Section 3.6.

Although the signal-to-noise ratio is generally higher in temperature hindcasts

than for other variables such as PR or SLP (Smith et al., 2019), the global and dy-

namically downscaled decadal experiments analyzed in this Thesis also show the

existence of the signal-to-noise paradox in )max forecasts (Figure 5.3). In this case,

the RPC spatial distributions show lower values than those found for PR (Figure 4.5),
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but they are still significantly larger than 1 (the ideal value; see Section 3.2). The

paradox is stronger in the downscaled hindcasts than in their global counterparts.

RPC values above 2 has been found mainly in the regions of the southwestern quarter

of the IP for the WRF-DPLE )max. The prevalence of the unpredictable background

noise in the downscaled forecasts might explain the absence of robustness in part of

the ACC results showed above. Note that a high RPC does not necessarily implies

a total lack of statistical significance for correlations with observations. Indeed, a

high ACC with observations would really contribute to increasing the RPC value if

the model signal-to-noise ratio is small (see Eq. [3.27]). For example, regions over

the Guadalquivir Valley and the southwestern IP exhibit a high RPC (Figure 5.3b)

along with significant and positive ACC values (Figure 5.1h). The presence of the

signal-to-noise paradox indicates that the ensemble size needed to remove the model

background noise is larger than it would be if the model signal-to-noise ratio were

higher (Smith et al., 2019). The addition of more members to the WRF-DPLE ensem-

ble may help to improve these results by reducing the noise, as shown by Reyers et al.

(2019) or Sienz et al. (2016) for other temperature-related variables. However, the

benefits of increasing the number of members would be lower in NSAT than in PR

(Reyers et al., 2019), as could be expected because the signal-to-noise paradox for PR

is more pronounced than for NSAT. Therefore, more members than in the case of

PR would be needed to get an equivalent improvement in NSAT ACC values, which

would imply the use of notably larger amounts of computing resources.

a) b)

1.0 1.2 1.4 1.6 1.8 2.0 2.2
RPC

Figure 5.3 : Signal-to-noise paradox in the hindcasts for )max over the IP. a) Spatial distribution of RPC
for the multiannual mean anomalies of the CESM-DPLE )max in lead years 2–9 at annual scale. b) As a)
but for WRF-DPLE. The absence (presence) of black dots indicates (not) statistically significant results
different from 1 at the 90 % confidence level.
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The spatial distributions of MSSSC (see Eq. [3.24]), i.e., the MSSS calculated for

WRF-DPLE with climatology as reference, are depicted in Figure 5.4. Generally,

better results have been obtained for )max than for PR (Figure 4.6). The influence

of the climate change trends on temperature-based variables is also visible here.

The results in lead year 1 show an IP mainly covered by positive but not significant

results. The significant results found to the south of the Northern Subplateau, in

Sierra Morena and some regions close to the Strait of Gibraltar, however, depict strong

negative MSSSC scores, with values even below -0.8. Note that these three regions

also showed very high RMSE values in Figure 5.1 which cannot be attributed to a high

)max variability. MSSSC results are slightly better in lead years 2–5. These clusters of

very negative scores are more moderated and the magnitude of the positive values

generally increases. Nevertheless, the regions with statistically significant positive

results are very small. They are placed in the southern Mediterranean coast with

values from 0.3 to 0.6. The worst results have been found in lead years 6–9, when the

negative results continue dominating among the statistically significant scores, but in

this case they cover larger portions of the IP than in lead years 1 and 2–5. On the other

hand, the best results are shown in lead years 2–9. Positive MSSSC values span most

part of the domain, although those with statistical significance are reduced to small

areas in the northwest, northeast, southwest and some regions in the Baetic System.

The highest scores are observed in the northern regions, with values starting from

0.6 and surpassing 0.8. With regard to the significant negative results, in addition to

the aforementioned three regions, which show scores below -0.8, there is another one

close to the Cantabrian coast with similar outcomes.

According to Eq. [3.24], the results obtained for MSSSC can be explained by those

achieved for ACC and CB, depicted in Figure 5.1 and Figure 5.4, respectively. The

spatial distribution of CB in lead year 1 shows important significant negative values

in the same regions which show the worst results in terms of MSSSC. These results

for CB are a consequence of the imbalance between ACC and the ratio of the hindcast

and observations standard deviations (see Eq. [3.17]), which is caused by the low

correlations observed in Figure 5.1 over these regions and the hindcasts variance being

slightly larger than for observations. A similar situation is observed for the other lead

times. In general, positive MSSSC values are found in regions which also have a small

CB. The largest areas covered by not significant CB values are mostly observed in the

eastern half of the domain for lead years 2–9, followed by lead years 2–5. At all lead

times, the locations having significant results in MSSSC are often the same which

show high ACC and not significant CB values. See, for instance, the regions in the
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Figure 5.4 : Spatial distributions of MSSSC (left column), with climatology as reference, CB (center
column) and the same MSSSC calculated for lead time series with an adjusted CB, i.e., equal to zero
(MSSSCBA; right column), for the WRF-DPLE multiannual mean anomalies of )max in lead years 1, 2–5,
6–9 and 2–9 (rows) at annual scale. In MSSSC and CB maps, the absence (presence) of black dots indicates
(not) statistically significant results different from zero at the 90 % confidence level.

northwest or northeast in lead years 2–9. If the CB were completely removed from

the lead time series (CB = 0 in Eq. [3.24]), the MSSSC spatial distributions would

look like the MSSSCBA maps for the conditional bias-adjusted MSSS in Figure 5.4.

Since the strongest negative CB values which cause the significant negative results for
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MSSSC are associated to very low ACC scores, no skill would be gained from the CB

removal over those regions. Even though, there is a potential to continue improving

the accuracy of the forecasts in regions which show low or moderate CB values if an

effective conditional bias adjustment is carried out. Some of these regions are the

Northern Subplateau, the Baetic System or the northeastern regions, for example.

At seasonal scale, the results achieved for MSSSC, CB and MSSSCBA vary depend-

ing on the season (Figures B.14 to B.16, respectively, in Appendix B.2.1), but a similar

analysis to that done at annual scale can be carried out. In this case, the MSSSC

results are also very influenced by the seasonal ACC scores (Figure 5.2), so the most

promising results have been obtained for MAM, followed by JJA. Notwithstanding,

seasonal MSSSC is mainly not significant in these seasons, excepting the east side of

the IP for lead years 2–9 in MAM.

❦ Reliability analysis

As part of the assessment of the predictive skill for )max, the accuracy analysis must

be complemented with the reliability analysis, which tests if the WRF-DPLE average

ensemble spread �2
.

(Eq. [3.32]) is adequate to represent the uncertainty of the

forecasts. A probabilistic metric, the CRPSS (Eq. [3.29]), has been used to address

this task.

The spatial distributions of the CRPSS, calculated with the multiannual mean

anomalies of )max for each lead time, are depicted in Figure 5.5. As occurred for PR in

Figure 4.7, very promising results have been obtained. Large portions of the domain

are covered by not significant CRPSS values at all lead times, which is the ideal result

for this metric (see Section 3.2). In lead year 1, the not significant results mainly span

the northern half of the IP and some areas in the south over the Guadalquivir and

Guadiana Valleys. Significant negative scores have been found in the same regions

which showed very pessimistic RMSE and MSSSC outcomes, with values below -0.05.

The general picture is improved in lead years 2–5 with the increase of the amount of

not significant results across the domain, but some significant negative clusters appear

in the northeast and southeast of the IP. The absolute value of these negative results

decreases in lead years 6–9, tuning into not significant values in some northeastern

and southeastern locations. The best results are observed in lead years 2–9, when

not significant CRPSS outcomes are found across a large part of the domain. The

reliability of the hindcasts is closely related to the similitude between �2
.

and the

squared standard error �2
-

(Eq. [3.33]). The LESS (Eq. [3.34]) reflects how they
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Figure 5.5 : Spatial distributions of CRPSS (left column) and LESS (right column) for the WRF-DPLE
multiannual mean anomalies of )max in lead years 1, 2–5, 6–9 and 2–9 (rows) at annual scale. The absence
(presence) of black dots indicates (not) statistically significant results different from zero at the 90 %
confidence level.
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are related and explains the results obtained for CRPSS. The influence of the LESS

on the CRPSS distributions is evident because of the similarities between the lead

time pairs of maps: the locations showing a not significant LESS also often has a

not significant CRPSS. In general, there is a predominance of negative LESS at all

lead times, with the exception of lead years 2–9, which shows that the hindcasts are

usually underdispersive. The largest amount of regions showing overdispersion has

been found in lead years 2–9, although it is also considerable in lead years 2–5 and

6–9, being typically not significant at all lead times. A few locations show a significant

overdispersion in lead years 2–9 in the west and north of the IP, which is translated

into significant results in CRPSS maps.

The results at seasonal scale for CRPSS and LESS can be consulted in Figures B.17

and B.18 in Appendix B.2.1. The best performance has been obtained in DJF and JJA,

when the domain is mostly covered by not significant CRPSS results. However, if

there is not predictive skill in terms of accuracy, as shown in Figure B.14 in DJF, the

benefits provided by a not significant CRPSS are very limited. On the other hand, the

season which exhibits the highest hindcast accuracy, MAM, only shows generalized

not significant CRPSS outcomes in lead years 2–5. A lead year 1, there are also very

promising results in the northern part of the domain, although they are restricted to

smaller areas scattered along the IP in lead years 6–9 and 2–9.

5.1.2. Comparison with the CESM-DPLE subensemble

The results presented in the following have been obtained by comparing the perfor-

mance of the WRF-DPLE ensemble, recalibrated with the DeFoReSt approach, to that

of the CESM-DPLE, recalibrated with the same drift correction methodology applied

on the ICs and LBCs used in DD simulations.

❦ Accuracy analysis

The spatial distributions of MSSSG calculated for the multiannual mean anomalies

of )max, with the CESM-DPLE as reference, are depicted in Figure 5.6. At first sight,

the added value provided by these downscaled hindcasts is clearly higher than in

the case of PR (Section 4.2). The )max is not only better represented than PR by

the downscaled hindcasts with regard to skill to predict the observed climate, it

is also when it is compared to the global hindcasts. In lead year 1, there are wide

areas of significant positive MSSSG scores along in the east of the IP, especially in the

northeastern sector, with maximum values from 0.4 to 0.5. However, there are also
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Figure 5.6 : Spatial distributions of MSSSG (left column), ΔACCG (center column) and ΔCBG (right
column), with CESM-DPLE as reference, for the WRF-DPLE multiannual mean anomalies of )max in lead
years 1, 2–5, 6–9 and 2–9 (rows) at annual scale. The absence (presence) of black dots indicates (not)
statistically significant results different from zero at the 90 % confidence level.

three clusters of significant negative scores below -0.6, the same which showed very

high errors in Section 5.1.1. The maximum significant positive MSSSG results in lead

years 2–5 are concentrated in a central western area, with values ranging from 0.2 to

0.6. In this case, the significant negative outcomes spread across regions mostly close
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to the Mediterranean and the Cantabrian coasts. These values are mainly between

-0.3 and -0.1, although there is a very small region in the northeast showing scores

below -0.6. Very robust and positive results have been obtained in lead years 6–9.

Excluding some regions close to the coast and some inner locations, MSSSG shows a

generalized added value of the downscaled hindcasts over the global experiments.

These results are statistically significant and are mainly between 0.2 and 0.5. In lead

years 2–9, the improvement provided by the downscaled hindcasts is generally more

moderate than in lead years 6–9, since part of the significant positive results have

turned into not significant and even negative in some areas. Nevertheless, the added

value in terms of MSSSG continues being predominant over large portions of the

domain. There are some locations which show higher scores than in lead years 6–9,

such as those situated over the central west of the IP, with values above 0.6.

These MSSSG outcomes can be explained by the dependence they have on the ACC

and CB calculated for the WRF-DPLE and CESM-DPLE hindcasts, which is described

by Eq. [3.16]. The ΔCBG is generally positive at all lead times, which means that the

CB magnitude for the downscaled hindcasts is lower than that for the GCM. There are

important improvements of the CB in the northeastern regions for lead year 1, in the

central west for lead years 2–5 and covering very large areas of the domain for lead

years 6–9 and 2–9. The results obtained for ΔCBG are the main factor leading to the

positive MSSSG scores because the ΔACCG maps mostly show not significant results,

excepting for lead year 1. In this first year, the WRF-DPLE hindcasts experience a

degradation of the predictive skill in terms of ACC compared to the CESM-DPLE.

Additionally, in the same regions where this occurs, the ΔCBG maps do not show

significant values, thus the MSSSG maps do not show any significant outcomes either.

Very promising results have also been obtained in the seasonal analysis of MSSSG

(Figure 5.7). Most part of the statistically significant results show an added value of

the WRF-DPLE ensemble. This added value reaches the highest level in SON (despite

being the season with the worst results in terms of MSSSC and ACC), especially in

lead years 6–9 and 2–9, when almost the whole domain is covered by significant values

starting from 0.1 and surpassing 0.6 in certain locations. In general, the statistically

significant results are predominantly positive. However, there are some regions that

still show an important degradation of the predictive skill, such as, for example, those

located over the Central System, the Iberian System and the Cantabrian Range in

DJF for lead years 2–5, with MSSSG values below -0.5. Likewise at annual scale, the

positive MSSSG scores are mainly caused by the positive outcomes achieved for the

seasonal ΔCBG, with the contribution of the seasonal ΔACCG in some cases, although
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Figure 5.7 : Spatial distributions of MSSSG for the WRF-DPLE multiannual mean anomalies of )max, with
CESM-DPLE as reference, for lead years 1, 2–5, 6–9 and 2–9 (rows) in DJF, MAM, JJA and SON (columns).
The absence (presence) of black dots indicates (not) statistically significant results different from zero at
the 90 % confidence level.

the not significant changes in correlations are very frequent also at seasonal scale.

The results for the seasonal ΔACCG and ΔCBG are depicted in Figures B.19 and B.20

in Appendix B.2.1, respectively.

❦ Reliability analysis

The extent to which the downscaled hindcasts improve or degrade the reliability

of the CESM-DPLE subensemble is assessed by comparing the CRPSS obtained

by both ensembles through the calculation of ΔCRPSS (Eq. [3.35]). The spatial

distributions of ΔCRPSS for each lead time are depicted in Figure 5.8. As occurred
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Figure 5.8 : Spatial distributions of ΔCRPSSG (left column), and LESSSG (right column) for the WRF-
DPLE multiannual mean anomalies of )max, with CESM-DPLE as reference, in lead years 1, 2–5, 6–9 and
2–9 (rows) at annual scale. The absence (presence) of black dots indicates (not) statistically significant
results different from zero at the 90 % confidence level.
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for PR (Figure 4.10), the differences in terms of CRPSS are not large enough to get

statistically significant results at any lead time window. The strongest negative scores

are observed in lead year 1, with values below -0.05 over the same regions where

the )max hindcasts showed the worst accuracy results in the previous sections. Over

the rest of the domain, the differences are very small in general. The highest scores

have been found in lead years 2–9, when some locations situated in the northwest

and southwest show maximum values above 0.09. The results of ΔCRPSSG can be

explained by the degree to which the WRF-DPLE ensemble improves or degrades

the average ensemble spread present in the CESM-DPLE hindcasts. How well the

downscaled hindcasts perform in this respect is quantified by LESSSG (Eq. [3.36]).

In this line, very similar patterns can be observed between the ΔCRPSSG and LESSSG

pairs of maps at all lead times, showing that a better representation of the spread leads

to a better representation of the forecast uncertainty by the ensemble. The LESSSG

results highly depend on the lead time, although there are some regions which always

show an added value of the downscaled hindcasts, such as some locations in the

Northern Subplateau or in the northeast. As found for PR in Figure 4.10, there is a

strong presence of very extreme positive and negative results, which can be related to

the sensitivity of the metric to small changes in the LESS. In this case, the statistically

significant results are mainly negative and are mostly found in lead year 1.

The results obtained in the seasonal analysis are depicted in Figures B.21 and B.22

in Appendix B.2.1. Although the results for both ΔCRPSSG and LESSSG vary depend-

ing on the season and the lead time, the relationship between both scores is the same

described above. The best results in terms of ΔCRPSSG have been obtained in JJA

(lead years 2–5, 6–9 and 2–9) and SON (lead years 1, 6–9 and 2–9), when the positive

results predominate over the negative scores. However, the statistical significance is

again almost nonexistent.

5.1.3. Comparison with the WRF-LE ensemble

When comparing the performances between the WRF-DPLE and WRF-LE ensembles,

only the accuracy analysis is conducted since the uninitialized simulations are not

probabilistic in essence, as the DCPs are (see Section 1.1.2). In addition, note that the

period simulated to generate the WRF-LE ensemble only spans the interval 1990–2005

because the data needed to provide the RCM with ICs and LBCs are only available

for these years. As in the analysis done for PR in Section 4.3, the sample of start dates

analyzed in this section is only composed of those initialized every year from 1990

to 1999 (10 start dates), and only the lead years 1 and 2–5 have been examined. The
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large reduction of start dates compared to the analyses shown above leads to take

these results with caution, since they may be affected by a large sampling bias.

❦ Accuracy analysis

The spatial distributions of the MSSSU calculated for the WRF-DPLE multiannual

mean anomalies of )max, with WRF-LE as reference, are available in the Figure 5.9.

There are large differences between the added value provided by the downscaled

initialized experiments over the uninitialized counterpart in lead years 1 and 2–5.

While the results are mostly positive (but not significant) in the first year of the decade,

a very wide fraction of the IP is covered by significant negative results with values

below -0.8 in lead years 2–5. The regions showing significant positive results in lead

year 1 are smaller and are located in the southern part of the IP. The MSSSU values in

these locations range from 0.4 to 0.7. There are also significant positive results in lead

years 2–5, but they are much scarcer than the negative values. These are observed

over the Baetic System in the south, with values around 0.5. The added value of

the hindcasts to the results in terms of CB is the main responsible factor leading to
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Figure 5.9 : Spatial distributions of MSSSU (left column), ΔACCU (center column) and ΔCBU (right
column) for the WRF-DPLE multiannual mean anomalies of )max, with WRF-LE as reference, in lead years
1, 2–5, 6–9 and 2–9 (rows) at annual scale. The absence (presence) of black dots indicates (not) statistically
significant results different from zero at the 90 % confidence level.
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the positive results observed in MSSSU map for lead year 1, which counteracts the

degradation in ACC observed mainly in eastern and also southern regions. At the

same lead time, there is a confluence of statistically significant positive ΔACCU and

high ΔCBU values which cause the aforementioned significant results observed for

MSSSU. The same influence of ΔCBU on MSSSU is observed in lead year 2–5, but

causing negative results in this case. Although the added value observed in terms of

ACC over the southern regions positively contributes to obtaining significant results

for MSSSU, the high values of ΔACCU achieved in the northeast, mostly above 0.7,

are not enough to produce significant positive MSSSU scores in that sector.

At seasonal scale, the best results for MSSSU have been obtained in MAM (Fig-

ure 5.10). Significant positive outcomes span the northern part of the IP, with high

values above 0.7 in the northeast. The rest of the domain is also covered by positive re-

sults, although they are not significant. A very similar spatial distribution is observed

in lead years 2–5, but generally with lower scores. Part of the statistically significant

results in the northwest has disappeared, but the values over the regions along the

Mediterranean coast have become statistically significant. On the other hand, the

most pessimistic outcomes have been found in DJF. In lead year 1, the domain is

almost fully covered by negative scores, with values below -0.8 in some locations.

The situation is slightly better for some western regions in lead years 2–5, where
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Figure 5.10 : Spatial distributions of MSSSU for the WRF-DPLE multiannual mean anomalies of )max,
with WRF-LE as reference, for lead years 1, 2–5, 6–9 and 2–9 (rows) in DJF, MAM, JJA and SON. The
absence (presence) of black dots indicates (not) statistically significant results different from zero at the
90 % confidence level.
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some positive results have been achieved, but mostly without statistical significance.

The results in terms of seasonal ΔACCU and ΔCBU, which MSSSU depends on, are

available in Figures B.23 and B.24 in Appendix B.2.1.

5.1.4. Predictive skill for regional averages

The multiannual mean anomalies of )max have been spatially averaged in every region

resulting from the regionalization procedure applied over NSAT variables in Sec-

tion 3.6 (see Figure 3.5b). Afterwards, a similar analysis to that done in the previous

sections has been carried out to examine the predictive skill. Since the regionalization

of the domain groups together those locations which share similar NSAT variability

patterns, the skill scores calculated with these spatially averaged lead time series

represent the general predictive skill achieved over a given region. The results of the

analysis are summarized in Table 5.1.

As could be expected from the analysis done at a grid-point scale, the results

obtained for the spatially averaged )max are much more promising than for PR. The

regional averages of )max show a better ability to reproduce the observed variability,

as indicated by the positive and often significant ACC scores. This improvement can

be partially attributed to the typical positive trend observed in the lead time series of

temperature-related variables (see Table A.2 in Appendix A.2). Moreover, there is a

majority of regions which have achieved a CRPSS not significantly different from zero

at least at three lead time windows, meaning that the hindcasts can be used to quantify

the forecast uncertainty in these cases. Some of the best accuracy results have been

found in the central south (CS) region, where significant positive ACC values have

been obtained for all lead times. Futhermore, the CB almost always shows values not

significantly different from zero in this region. A significant negative CB = −0.17 has

been found only in lead year 1, where the ratio B{.}/B- , whose value is below 1, cannot

be counterbalanced by a lower ACC value, equal to 0.51 (seeEq. [3.17]). The CS region

is also the only one which has a significant positive MSSSC, observed in lead years 2–9

with a value of 0.63. However, there is not any significant added value neither over

the global hindcasts nor the uninitialized simulations, although some improvements

can be observed especially in the latter case, mainly for correlations. In this region,

the average ensemble spread �2
.

is able to represent the forecast uncertainty only in

lead years 6–9 because the CRPSS values are significantly different from zero at other

lead times. Another region that shows high accuracy scores is the high mountain

(MT) region, which agglomerates some of the areas with the highest terrain elevation

in the IP, especially in lead years 2–9. At this lead time, it has obtained the largest
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Table 5.1 : Skill scores for the spatially averaged WRF-DPLE multiannual mean anomalies of )max in lead
years 1, 2–5, 6–9 and 2–9 at annual scale. The subscripts �, � and * denote the reference data used to
calculate the skill score: AEMET climatology, CESM-DPLE global hindcasts and WRF-LE uninitialized
experiments, respectively. The bold formatting indicates results different from zero at the 90 % confidence
level. Dashes denote data unavailability at that lead time.

Region
Lead
years

MSSSC ACC CB
CRPSS
(×100)

MSSSG(U) �ACCG(U) �CBG(U)

SW

1 0.04 0.28 -0.21 -0.08 0.06 (0.43) -0.13 (0.43) 0.23 (0.61)

2-5 0.25 0.53 -0.19 -1.25 0.23 (-0.24) -0.09 (-0.11) 0.41 (-0.32)

6-9 0.13 0.49 -0.32 -0.79 0.50 (–) -0.05 (–) 0.69 (–)

2-9 0.61 0.79 -0.10 -9.43 0.59 (–) -0.02 (–) 0.67 (–)

NO

1 0.12 0.35 -0.06 0.10 -0.10 (0.35) -0.13 (0.23) 0.11 (0.55)

2-5 0.15 0.47 -0.27 -0.97 -0.17 (-0.10) -0.08 (-0.13) -0.08 (-0.14)

6-9 0.11 0.45 -0.31 -1.10 0.06 (–) -0.05 (–) 0.14 (–)

2-9 0.52 0.73 -0.12 -0.37 -0.12 (–) -0.04 (–) 0.01 (–)

CI

1 0.03 0.23 -0.14 -0.05 0.04 (0.22) -0.20 (0.07) 0.30 (0.44)

2-5 0.13 0.47 -0.29 -0.13 0.06 (-1.00) -0.08 (-0.28) 0.18 (-0.98)

6-9 -0.16 0.41 -0.57 0.01 0.45 (–) 0.01 (–) 0.56 (–)

2-9 0.36 0.65 -0.26 0.01 0.35 (–) 0.01 (–) 0.37 (–)

NE

1 0.14 0.37 -0.04 0.03 0.15 (0.26) -0.05 (0.11) 0.41 (0.54)

2-5 0.41 0.64 -0.02 -0.86 -0.15 (-0.33) -0.06 (0.23) 0.06 (-0.29)

6-9 0.48 0.71 -0.14 -0.01 0.30 (–) 0.04 (–) 0.28 (–)

2-9 0.69 0.84 0.11 -0.06 -0.01 (–) 0.00 (–) -0.05 (–)

CS

1 0.23 0.51 -0.17 -0.92 0.09 (0.35) 0.07 (0.40) 0.05 (0.17)

2-5 0.44 0.68 0.15 -4.46 -0.22 (0.12) -0.08 (0.57) 0.02 (-0.18)

6-9 0.51 0.72 -0.01 0.30 0.14 (–) 0.04 (–) 0.12 (–)

2-9 0.63 0.83 0.25 -2.68 -0.13 (–) -0.01 (–) -0.04 (–)

EA

1 0.06 0.28 -0.14 -0.02 0.18 (0.05) -0.08 (-0.11) 0.38 (0.25)

2-5 0.34 0.60 -0.14 -1.90 -0.21 (-0.79) -0.08 (0.56) -0.03 (-0.53)

6-9 0.37 0.65 -0.22 0.03 0.40 (–) 0.02 (–) 0.44 (–)

2-9 0.62 0.79 -0.04 -0.24 0.10 (–) -0.00 (–) 0.19 (–)

MT

1 0.15 0.40 -0.10 0.01 0.02 (0.38) -0.09 (0.33) 0.23 (0.68)

2-5 0.28 0.56 -0.19 0.10 -0.04 (-0.21) -0.06 (-0.07) 0.10 (-0.25)

6-9 0.45 0.68 -0.13 -3E-03 0.17 (–) 0.00 (–) 0.23 (–)

2-9 0.75 0.87 0.06 -1.99 -0.10 (–) -0.02 (–) 0.02 (–)

WI

1 0.07 0.28 -0.10 -0.07 -0.00 (0.38) -0.21 (0.35) 0.31 (0.76)

2-5 0.08 0.45 -0.34 0.05 0.15 (-0.20) -0.05 (-0.22) 0.23 (-0.27)

6-9 -0.15 0.32 -0.51 -0.08 0.43 (–) -0.05 (–) 0.56 (–)

2-9 0.37 0.68 -0.32 -0.89 0.42 (–) 0.00 (–) 0.43 (–)
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scores for MSSSC and ACC (0.75 and 0.87, respectively), although the former without

statistical significance. Additionally, the WRF-DPLE hindcasts also perform very well

in terms of reliability at all lead times. Nevertheless, this region does not show any

significant added value of WRF-DPLE neither over CESM-DPLE nor WRF-LE. The

highest added value over the CESM-DPLE subensemble is observed in the south

west (SW) region, particularly in lead years 6–9 and 2–9. Very robust results have

been obtained for MSSSG at these lead times, with significant values of 0.50 and 0.59,

respectively, which have been caused by the large improvement observed in the CB.

High ACC scores are also shown at these lead times and a CRPSS not significantly

different from zero is found at almost all lead times, excepting in the first year of

the decade. There are other regions such as the central interior (CI) or the western

interior (WI), for example, that also show significant improvements in CB, which in

some cases lead to an added value in terms of MSSSG. There are not regions showing

an added value of WRF-DPLE over the uninitialized WRF-LE ensemble in spite of

high scores sometimes observed (e.g., in SW and lead year 1), which may be due to

the small sample size composed of only 10 start dates.

The lead time series of the WRF-DPLE ensemble mean and AEMET in the CS

region have been depicted in Figure 5.11. These representations include the 90 %

confidence intervals associated to a single model member, which can be interpreted

as a measure of the forecast uncertainty at those lead times when the downscaled

hindcasts are reliable (for all excepting at lead year 1 in this region). As usual,

the highest variance in the time series is observed for lead year 1, experiencing a

progressive decrease as the length of the lead time window increases. The significant

positive ACC results show the skill of the hindcasts to reproduce the observational

variability. For example, the lead years 6–9 series of WRF-DPLE is able to replicate

some of the relative minimums and maximums described by the AEMET series during

the whole period. There is also relative skill to capture these peaks in lead years

2–5, although their magnitudes are commonly misrepresented. The same situation

occurs to some degree in lead year 1 during the second half of the control period.

The high correlations observed at all lead times are favoured by the positive trends

obtained in both WRF-DPLE and AEMET series. However, despite these trends

share the same sign, the AEMET )max trends are underestimated by WRF-DPLE in

most part of the regions at several lead times, as can be seen in Table A.2, available

in Appendix A.2 (see Section 3.2 to consult the methodology applied to compute

the trends). Although the differences between trends are typically not statistically

significant, they may partially explain the overestimation of the observational )max
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Figure 5.11 : Time series of the spatially averaged multiannual mean anomalies of )max in the CS region
for lead years 1, 2–5, 6–9 and 2–9 at annual scale. Solid green lines identify the WRF-DPLE ensemble mean,
whereas dashed black lines correspond to AEMET. Shaded green surfaces indicate the 90 % confidence
interval for a WRF-DPLE single member, calculated from the average ensemble spread (Eq. [3.32]). Shaded
yellow surfaces show the ensemble envelope which encloses the trajectories followed by the members
composing the WRF-DPLE ensemble.

at the first start dates, shown for almost all regions, which generally decreases over

the course of the control period. For instance, see Figure 5.11 for the CS region

and Figures B.25 and B.26 in Appendix B.2.1 for a few additional examples. In the

particular case of the CS region, this overestimation is more accentuated in lead years

2–5 and 2–9, when it is prolonged up to start years 1978 and 1976, respectively. Indeed,

there are statistically significant differences between the trends of the WRF-DPLE

and AEMET series in lead years 2–5, although they are not in lead years 2–9. The

trends of the difference series are about -0.33 and -0.21 K/decade, respectively, with

the negative sign indicating the underestimation of the AEMET trend by WRF-DPLE.

The lead time series of the CI region have been represented in Figure B.27 (Ap-

pendix B.2.1) with the purpose of showing the only case of significant positive dif-

ferences between the WRF-DPLE and AEMET trends, found in lead years 6–9 with

a value about 0.19 K/decade for the trend of the difference series, pointing to an
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overestimation of the observational trend. Although this region shows high added

value in terms of accuracy over the global hindcasts at this lead time, as mentioned

above, its performance is actually limited for MSSSC due to its significant negative

CB result. The CI region is also characterized by showing an overestimation of the

AEMET )max anomaly along the last start dates of the control period, mainly observed

in lead years 6–9 (although it is also present, to a lesser extent, in lead years 2–5 and

2–9), which positively contributes to that overestimation of the observed trend.

In general, the width of the confidence intervals, relative to the magnitude of the

signal, in these lead time series is smaller for )max than for PR in all regions, especially

in lead years 2–9. This finding is consistent with the results depicted in Figures 4.5

and 5.3 for the RPCs of PR and )max, respectively, in lead years 2–9, which showed

that the presence of the signal-to-noise paradox in PR hindcasts is stronger than in

)max.

5.2. Daily minimum near-surface air temperature

5.2.1. Predictive skill of the WRF-DPLE ensemble

❦ Accuracy analysis

The results obtained for the RMSE (Eq. [3.10]) calculated with the WRF-DPLE multi-

annual mean anomalies of )min have been depicted in Figure 5.12. The highest RMSE

values are generally found for lead year 1 in the west of the Northern Subplateau, with

values above 0.6 K. Similar errors are observed in the Iberian System, but they are

constrained to a smaller area. The lowest errors are shown along the Mediterranean

coast, with values between 0.35 K and 0.4 K in the northeasternmost regions of the IP

and between 0.4 K and 0.45 K in the southeast. Also in the southeast, there is a few

locations over the Baetic System with RMSE outcomes above 0.7 K. These locations

belong to the highest areas of Sierra Nevada, the place with the highest terrain eleva-

tion in the IP (see Figure 1.4a). As in the case of )max, the concentration of the highest

errors in these high mountain regions may be related to the challenges associated

to the production of quality observational data in the zone (see Section 5.1.1). The

RMSE generally decreases in lead years 2–5, and the structure of the spatial distribu-

tion is slightly different, in a qualitative sense, from that observed in lead year 1. The

largest values are located again in the Baetic System, but the cluster in the west of the

Northern Subplateau, which gathered high errors in lead year 1, has disappeared.

The lowest values are observed in this case along the Ebro Valley, with errors around

0.25 K. This structure is essentially maintained in lead years 6–9 and 2–9, but with
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Figure 5.12 : Spatial distributions of RMSE (left column) and ACC (right column) for the WRF-DPLE
multiannual mean anomalies of )min in lead years 1, 2–5, 6–9 and 2–9 (rows) at annual scale. In ACC
maps, the absence (presence) of black dots indicates (not) statistically significant results different from
zero at the 90 % confidence level.
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lower RMSE results.

In the same line of the results shown for )max in Figure 5.1, the trend component

which drives the evolution of the temperature-based variables is the main responsible

of the high ACC (Eq. [3.13]) values observed for )min and the differences between

them and those for PR. In this case, the correlations are positive along almost the

whole domain across all lead times, with the statistically significant results being

predominant. A lead year 1, the highest values, which are above 0.7, are mainly

present in southern, western and northeastern areas. There are some not significant

results in the central east, in some northern regions and in the southwesternmost

locations of the IP. The correlation coefficients are even larger in lead years 2–5. In

this case, significant positive values above 0.7 span a large fraction of the domain.

However, the area covered by not significant results is higher than that observed

in lead year 1, and it is situated mainly in the northern part of the IP and in some

smaller regions further south. Very high ACC values above 0.8 are located along the

Mediterranean coast. Although the ACC values slightly decrease for lead years 6–9 in

general compared to the previous lead time window, the not significant positive results

are constrained to small regions close the Mediterranean coast and the northwest

of the IP. The highest values are observed in lead years 2–9, when the climate trend

component is better captured after filtering the interannual variability with the 8-

year lead time averages. The spatial distribution shows a domain mostly covered by

correlations above 0.8, with values even above 0.9 in the regions close to the Strait

of Gibraltar, in the east and some northern locations. Not significant results are also

observed in the same places as for lead years 6–9, but covering narrower areas in this

case.

The seasonal RMSE results are depicted in Figure B.28, available in Appendix B.2.2.

While the highest errors have been found in DJF, with values above 1.6 K in the

Northern Subplateau, the lowest are obtained in MAM, which are generally below

0.8 K. As at annual scale, the RMSE decreases at the other lead times. The spatial

distributions of RMSE generally resemble to that of the standard deviation of AEMET

)min available in Figure B.29, so the magnitude of the errors is strongly related to the

magnitude of the observational signal.

With respect to the seasonal ACC (Figure 5.13), the best representation of the )min

variability has been found in MAM and JJA. In both seasons, the worst results can

be observed in lead year 1, when the domain is generally covered by not significant

outcomes. These results are negative in the northern part of the IP in JJA. The situation
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Figure 5.13 : Spatial distributions of RMSE for the WRF-DPLE multiannual mean anomalies of )min for
lead years 1, 2-5, 6-9 and 2-9 (rows) in DJF, MAM, JJA and SON (columns). The absence (presence) of
black dots indicates (not) statistically significant results different from zero at the 90 % confidence level.

changes at the other lead times. The spatial distributions mainly show significant

positive results, which are frequently above 0.4. In lead years 2–5 and 6–9, there are

not significant results mostly along the Northern Subplateau and some eastern regions

close to the Mediterranean coast. The best results have been obtained in lead years

2–9 again, when the correlations are predominantly above 0.7 and the areas showing

not significant results are constrained to very small locations in the northwestern

flank (for MAM and JJA) and to the east (for JJA). In DJF and SON, the domain is

largely covered by not significant results. However, it is worth remarking that, despite

this lack of statistical significance, the correlations in SON are predominantly positive

at all lead times, with the exception of some western and northeastern regions mainly
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in lead years 6–9. As occurred in Section 5.1.1, the results observed in MAM and

JJA, better than in other seasons, are favoured by the stronger )min trends found in

MAM and JJA (see Tables A.3 to A.6 in Appendix A.2). The RPC (Eq. [3.27]) in lead

years 2–9 is depicted in Figure 5.14. Although the values are still significantly higher

than 1 over the whole domain for both WRF-DPLE and CESM-DPLE, the presence

of the signal-to-noise paradox is not as strong here as in the PR (Figure 4.5) or )max

(Figure 5.3) downscaled hindcasts. In this case, the RPC spatial distribution generally

shows lower values for WRF-DPLE than for CESM-DPLE. The signal-to-noise ratio

is still low and the addition of new members to the ensemble would contribute to

reducing the background noise and enhance the predictive skill, especially in terms

of ACC, but this improvement achieved for the ACC scores, compared to the previous

variables, may be partially due to this more discrete role of the signal-to-noise paradox.

The spatial distributions of the MSSSC (Eq. [3.24]) for )min, the MSSS calculated

with the climatology as reference, are shown in Figure 5.15. As happened for PR

(Figure 4.6) and)max (Figure 5.4), there are large areas with not statistically significant

results, covering almost the whole domain in lead years 1 and 2–5. Nevertheless, the

results for )min are essentially positive across all lead times. In lead year 1, there are

small regions showing significant results with values ranging from 0.4 to 0.7 along

the periphery of the domain in the northeast, south and west. In lead years 2–5, the

significant values are slightly lower and are situated along the Mediterranean coast.

The area covered by significant positive values is wider in lead years 6–9. In this case,

a) b)

1.0 1.2 1.4 1.6 1.8 2.0
RPC

Figure 5.14 : Signal-to-noise paradox in the hindcasts for )min over the IP. a) Spatial distribution of RPC
for the multiannual mean anomalies of the CESM-DPLE )min in lead years 2–9 at annual scale. b) As a)
but for WRF-DPLE. The absence (presence) of black dots indicates (not) statistically significant results
different from 1 at the 90 % confidence level.
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Figure 5.15 : Spatial distributions of MSSSC (left column), with climatology as reference, CB (center
column) and the same MSSSC calculated for lead time series with an adjusted CB, i.e., equal to zero
(MSSSCBA; right column), for the WRF-DPLE multiannual mean anomalies of )min in lead years 1, 2–5,
6–9 and 2–9 (rows) at annual scale. In MSSSC and CB maps, the absence (presence) of black dots indicates
(not) statistically significant results different from zero at the 90 % confidence level.

there is a large region in the southern half of the domain with values ranging from

0.3 to 0.7. The positive scores bordering the Mediterranean Sea are higher than in

lead year 2-5, with maximum values between 0.7 and 0.8. Another cluster of positive

significant results is shown along the Cantabrian coast. There are also some locations
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which show significant negative results in the northwest, with values between -0.7

and -0.1. The best results have been found in lead years 2–9, when the IP is mostly

covered by statistically significant positive results. These scores are mainly in the

range 0.5–0.8, with the maximum values above 0.8 situated in small areas along the

Mediterranean coast and the Ebro Valley.

The results obtained for MSSSC are a consequence of those shown for ACC and

CB (Eq. [3.17]), as determined by Eq. [3.24]. The confluence of high ACC and

close-to-zero CB values positively contributes to the increase of MSSSC. The opposite

occurs when a certain location presents low correlations and a large absolute CB. The

significant CB values observed in Figure 5.15 are mainly negative, excepting in some

northern and southern regions in lead years 2–9. This means that, in general, there is

a significant imbalance between the correlation and the ratio between the hindcast

and observational standard deviations in which the former is dominated by the latter,

especially in those regions showing low correlations. The negative MSSSC values

observed in lead years 6–9 are caused by the significant negative CB results and the

low ACC scores found in the same region (Figure 5.12f). In the same vein, the low

correlations, although positive and significant, along with the significant negative CB

values in lead year 1, produce the not significant MSSSC results in Figure 5.15a. On

the other hand, Figure 5.15j depicts very promising results for MSSSC because of the

generally not significant CB shown in Figure 5.15k and the high correlations observed

in Figure 5.12h. The MSSSCBA spatial distributions show the extent to which the

predictive skill in terms of MSSSC could be enhanced by totally eliminating the CB.

Some of the regions where the predictive skill could be improved the most are located

in the south of the IP for lead years 2–9, where the MSSSC has values around 0.6 and

the MSSSCBA shows results above 0.8. Others, such as the regions in the east of the IP

in lead year 1, have absolute ACC values too small to experience any improvement

with the correction of the CB.

The results obtained for MSSSC at seasonal scale have been depicted in Figure B.30

(Appendix B.2.2). As occurred for the seasonal ACC, the best results have been

obtained in MAM and JJA, with the exception of lead year 1, because of the confluence

of significant positive correlations and not significant CB values (Figure B.31). On the

other hand, the negative seasonal values observed for MSSSC in DJF are ultimately

motivated by the not significant correlations shown in Figure 5.12, which in turn cause

the very negative seasonal CB values. The seasonal MSSSCBA (Figure B.32) spatial

distributions show that the potential predictive skill which would be gained after

adjusting the CB is practically nonexistent in DJF because of the same not significant
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correlations. Since the CB outcomes are mainly not significant in MAM and JJA, the

contribution of such adjustment to improving the predictive skill is not huge, but it

exists. In the Sourthern Subplateau, for example, there are regions where the values

in the interval 0.6–0.7 increase up to 0.7–0.8 for lead years 2–9 in JJA. Some regions

over the Central System also show values changing from 0.5–0.6 to 0.7–0.8 at the same

lead time and season.

❦ Reliability analysis

The spatial distributions of the CRPSS calculated for the multiannual mean anomalies

of )min, needed to assess the reliability of the hindcasts, are depicted in Figure 5.16

(left column). The results obtained for this variable are not as promising as those

for PR and )max (Figures 4.7 and 5.5, respectively). The largest areas covered by not

statistically significant results different from zero, which indicate that �2
.

is appro-

priate to quantify the forecast uncertainty, have been found in lead year 1 mainly in

the northern part of the IP, in some southern regions and in the Balearic Islands. In

general, the smallest CRPSS absolute values have been found at this lead time. In

lead years 2–5 and 6–9, the amount of not significant outcomes decreases and the

scores are generally higher in absolute value, especially in lead years 2–5. While

the hindcasts are reliable in part of the southwestern sector of the IP in lead years

2–5, the regions with reliable hindcasts are mainly concentrated along a stripe of not

significant CRPSS results spanning the Ebro Valley in lead years 6–9. In lead years

2–9, there are clusters of very negative results in the northeast, the inner and western

central regions and over the Baetic System. On the other hand, the largest areas

showing not significant outcomes are found in the east of the Northern Subplateau,

the southwestern sector of the IP and some regions in the Mediterranean coast. The

Ebro Valley and a few locations in the northwest also show not significant CRPSS

outcomes.

As for the other variables, the reliability of the hindcasts is strongly influenced

by the relation between �2
.

and �2
-

, which is quantified by the LESS, depicted in the

same Figure 5.16 (right column). The downscaled ensemble generally shows a robust

underdispersion over almost the whole domain. The lowest values are observed in

lead years 2–5 and 2–9. At the latter lead time, the minimum values are below -2 in

some regions in the south and northeast, meaning that �2
-

is larger than �2
.

by more

than a factor of 7. The regions with the closest-to-zero LESS values, sometimes still

significant, are commonly those which show not significant CRPSS values at each

lead time. Those regions generally having the most negative values of LESS, also
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Figure 5.16 : Spatial distributions of CRPSS (left column) and LESS (right column) for the WRF-DPLE
multiannual mean anomalies of )min in lead years 1, 2–5, 6–9 and 2–9 (rows) at annual scale. The absence
(presence) of black dots indicates (not) statistically significant results different from zero at the 90 %
confidence level.
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have statistically significant CRPSS results different from zero.

Slightly better results have been found at seasonal scale in the analysis of the

CRPSS (Figure B.33 in Appendix B.2.1). For example, not significant CRPSS cover

large portions of the domain in JJA at all lead times. The LESS spatial distributions

also show the most promising results in this season. The hindcasts continue being

predominantly underdispersive also at seasonal scale, regardless of the season. In

MAM and DJF for lead years 1 and 2–9, respectively, there are regions showing

hindcast overdispersion, indicated by the positive LESS. The same is observed in

some places in JJA for lead years 2–5 and 2–9. However, these results lack of statistical

significance.

5.2.2. Comparison with the CESM-DPLE subensemble

❦ Accuracy analysis

After examining the predictive skill of the WRF-DPLE downscaled hindcasts, their

performance has been compared with that of the CESM-DPLE subensemble. The

results obtained for the accuracy scores have been depicted in Figure 5.17. In general,

the spatial distributions of MSSSG (Eq. [3.16]) at all lead times show the added value

of the downscaled hindcasts to the predictive skill, although its magnitude depends on

the lead time. Very high MSSSG values are present in a large fraction of the IP for lead

year 1. The significant positive values range from 0.3 to above 0.6, with the maximum

scores situated in the central and northeastern parts of the IP. The northeastern cluster

of high MSSSG is maintained in lead years 2–5, but the amount of significant positive

values drastically decreases. Some regions with not significant negative outcomes

have been found in the north, west and southeast of the domain. The significant

negative results are almost nonexistent, constrained to a few grid points in the north

and south, with values below -0.2. As the lead time increases, the added value

of the WRF-DPLE is higher. The regions having negative results in lead years 2–5

show higher scores in lead years 6–9, even turning into significant positive outcomes

over the Northern Subplateau. The northeastern regions with significant positive

outcomes are also present at this lead time and, along the northwest, experience the

largest improvement compared to the CESM-DPLE hindcasts, with values above 0.5.

The spatial distribution of MSSSG in lead years 2–9 is similar to that observed in lead

years 2–5, but with higher scores in absolute value. The northeastern regions, the east

of the Northern Subplateau and the northwestern regions gather the highest results,

with values above 0.6. The negative scores are mainly found in the southern half of
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Figure 5.17 : Spatial distributions of MSSSG (left column), ΔACCG (center column) and ΔCBG (right
column), with CESM-DPLE as reference, for the WRF-DPLE multiannual mean anomalies of )min in lead
years 1, 2–5, 6–9 and 2–9 (rows) at annual scale. The absence (presence) of black dots indicates (not)
statistically significant results different from zero at the 90 % confidence level.

the IP, along with some northern and northwestern regions, some with values below

-0.6 in the Baetic System, but practically without statistical significance.

The relation described in Eq. [3.16] indicates that MSSSG is determined by the

results obtained in the analysis of the added value of the downscaled hindcasts to both
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ACC and CB with the global experiments as reference. There is a robust enhancement

of the correlation in lead year 1, as shown in Figure 5.17b. Significant positive results

are observed in the central regions of the IP and in the northeast, with values mainly

above 0.3. The maximum added value to correlation is between 0.5 and 0.6, observed

mostly to the south of the Central System. The results at the other lead times hardly

show any significant improvement, only for lead years 2–5 and 2–9 in the northeast of

the IP. The largest improvement in terms of CB, with values above 0.6 widely spread

across the IP, is observed in lead year 1. These results, alongside those obtained

for ΔACCG, are the responsible of the large added value to the predictive skill in

terms of the MSSSG observed in the first year of the decade. In the same line of the

that observed for PR and )max, the differences in the level of accuracy between the

downscaled and global hindcasts are mainly determined by the differences between

their spatial distributions of CB, especially as of lead years 2–5 onwards. This can be

verified by comparing the MSSSG and ΔCBG maps at each lead time, which closely

match each other. For example, very good results for CB have been also found in lead

years 6–9, when significant positive results cover a very large fraction of the domain

(Figure 5.17i).

The spatial distributions of MSSSG calculated with the multiannual mean anoma-

lies of )min at seasonal scale have been depicted in Figure 5.18. Important improve-

ments are mainly observed in DJF, when the domain is almost entirely covered by

positive scores at all lead times. In this season, the largest areas with significant

results have been found in lead years 1 and 2–5, whereas the maximum values above

0.6 are mainly shown in the northeast for lead years 2–9. In MAM, there is a very

strong contribution of the downscaled hindcasts to the predictive skill, in comparison

with the global experiments, in lead year 1. There is still some degradation of the

predictive skill, although mainly not significant, at the other lead times. The positive

MSSSG scores are predominant in SON, although not always with significant results.

The most promising outcomes have been found for lead years 6–9 and 2–9 in this

season. The northern half of the IP is mostly covered by significant positive values in

both lead times, with other regions also showing significant and positive results in the

southwestern IP for lead years 2–9. On the other hand, the extension of the areas with

negative results is larger in JJA, although they are generally not significant. Almost

all statistically significant scores observed in JJA are positive, and the best results

have been found in lead years 6–9. Note that the performance of the WRF-DPLE in

terms of MSSSC in DJF was certainly poor, whereas better results was found in MAM

and JJA (Figure B.30). When the performance of the global hindcasts is suboptimal,
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Figure 5.18 : Spatial distributions of MSSSG for the WRF-DPLE multiannual mean anomalies of )min, with
CESM-DPLE as reference, for lead years 1, 2–5, 6–9 and 2–9 (rows) in DJF, MAM, JJA and SON (columns).
The absence (presence) of black dots indicates (not) statistically significant results different from zero at
the 90 % confidence level.

the downscaled hindcasts tend to be relatively more able to improve the predictive

skill, both at annual and seasonal scale. Likewise at annual scale, the added value

observed in MSSSG at seasonal scale is mainly motivated by the improvement in

terms of CB (Figure B.35), since the results obtained for ΔACCG (Figure B.36) are

mostly not significant.

❦ Reliability analysis

The spatial distributions of ΔCRPSSG are available in Figure 5.19 (left column). As

usual, the differences between WRF-DPLE and CESM-DPLE in terms of CRPSS
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Figure 5.19 : Spatial distributions of ΔCRPSSG (left column), and LESSSG (right column) for the WRF-
DPLE multiannual mean anomalies of )min, with CESM-DPLE as reference, in lead years 1, 2–5, 6–9 and
2–9 (rows). The absence (presence) of black dots indicates (not) statistically significant results different
from zero at the 90 % confidence level.
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are not large enough to observe statistically significant results different from zero.

Positive results, indicating a better performance of the WRF-DPLE ensemble in this

respect, are shown in lead year 1, mostly covering the whole IP, with the maximum

values mainly in the central western part. At the other lead times, the negative

results are predominant, especially in lead years 2–5, when they span over almost

the whole domain. In lead years 6–9 and 2–9, there are some regions showing

positive results. The highest added value of WRF-DPLE is observed in lead year

6–9 in the northwesternmost regions, with values above 0.08. A deterioration of the

predictive skill, relative to CESM-DPLE, has been found in lead years 2–9 mainly

in the northeast, with outcomes below -0.16. The distributions of LESSSG, which

indicate the extent to which the over- or underdispersion of the ensemble is corrected

or enhanced in the downscaled experiments compared to the global hindcasts, explain

the results obtained for the ΔCRPSSG. In lead year 1, there is a large improvement in

the representation of the average ensemble variance, with significant positive values in

the central and eastern part of the IP. These promising results lead to the generalized

positive results observed in the ΔCRPSSG maps, and the highest ΔCRPSSG values

are mainly shown in those regions where LESSSG is significantly positive. There is

a considerable deterioration in the representation of the ensemble spread in lead

years 2–5, with scores mostly below -1 in the whole domain, explaining the negative

ΔCRPSSG results already mentioned. In the same line, the regions showing positive

LESSSG outcomes in lead years 6–9 and 2–9, are the same depicting an added value

in terms of ΔCRPSSG. The opposed situation is shown for the negative values.

The results obtained for the ΔCRPSSG and LESSS (Figures B.37 and B.38, respec-

tively, in Appendix B.2.2) calculated with the multiannual mean anomalies of seasonal

)min slightly vary depending on the season, but the findings are in line with those

discussed at annual scale. The differences between the downscaled and global CRPSS

are not significant and their spatial distributions are driven by those obtained for the

LESSSG.

5.2.3. Comparison with the WRF-LE ensemble

The assessment of the predictive skill of the WRF-DPLE ensemble has been com-

pleted with the comparison between its performance and the performance of the

uninitialized WRF-LE experiments. As mentioned in the analyses of PR and )max,

this assessment only includes the evaluation of the accuracy because the uninitialized

experiments are not probabilistic, as the decadal predictions are.
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❦ Accuracy analysis

The results for the MSSSU calculated with the WRF-DPLE multiannual mean anoma-

lies of )min, considering WRF-LE as reference, are depicted in Figure 5.20. The added

value provided by the downscaled hindcasts is mostly present in lead year 1. Sig-

nificant positive results have been found in the southern part of the IP and over the

Cantabrian Range and the Pyrenees, with values starting from 0.3. The maximum

scores are observed in the southern regions along the Mediterranean coast, with

values above 0.6. However, most part of the domain is covered by not significant

results, with negative values mainly spanning the IP from the northwest to the east-

ern flank and spreading along the Mediterranean coast. In lead years 2–5, there

is a generalized degradation of the predictive skill in the downscaled experiments.

Significant negative results have been found in the northern half of the IP, in the

Balearic Islands and in the southeasternmost regions, with values fundamentally

lower than -0.6. There is an area with significant positive scores in the Pyrenees, with

values above 0.6, but its area is very small.

The results obtained for MSSSU are explained by the spatial distributions of
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Figure 5.20 : Spatial distributions of MSSSU (left column), ΔACCU and ΔCBU (right column) for the
WRF-DPLE multiannual mean anomalies of )min, with WRF-LE as reference, in lead years 1, 2–5, 6–9 and
2–9 (rows) at annual scale. The absence (presence) of black dots indicates (not) statistically significant
results different from zero at the 90 % confidence level.
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ΔACCU and ΔCBU also depicted in Figure 5.20, because of the relationship between

these magnitudes determined by Eq. [3.16]. In lead year 1, there are positive values

which indicate an added value of the hindcasts to ACC in the same regions which

experience an added value in MSSSU. Significant positive ΔACCU are shown in the

Cantabrian Range and in the southern regions, with values mostly 0.6. The map

of ΔCBU shows a very similar spatial distribution. Given the similarities between

the ΔACCU and ΔCBU maps, the improvement in terms of CB, which depends on

correlation and the ratio between the hindcast and observational standard deviations,

is ultimately caused by the improvement found in ACC in most part of the domain.

Therefore, the added value to predictive skill is in this case mainly driven by this

added value to ACC.

The results obtained in the analysis at seasonal scale for MSSSU are shown in

Figure 5.21. The most promising findings are observed in MAM, when the whole

domain is covered by positive results, always above 0.4, in lead years 1 and 2–5. While

large fraction of these results are not significant in lead year 1, they are fundamentally

significant in lead years 2–5. The spatial distributions of the ΔACCU and ΔCBU in

MAM (Figures B.39 and B.40, respectively, in Appendix B.2.2) show similar results,

although the absence of statistical significance predominates for both at all lead times.

In this case, not only the improvement in terms of ΔACCG, but also the ratio between
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Figure 5.21 : Spatial distributions of MSSSU for the WRF-DPLE multiannual mean anomalies of )min,
with WRF-LE as reference, for lead years 1, 2–5, 6–9 and 2–9 (rows) in DJF, MAM, JJA and SON. The
absence (presence) of black dots indicates (not) statistically significant results different from zero at the
90 % confidence level.
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standard deviations contribute to improving the predictive skill via CB. For example,

there are regions in the west showing CB improvements above 1.6 along with ACC

improvements around 0.8. There are also regions showing significant negative results

in MSSSU, being the most pronounced degradation of the predictive skill observed

over the western sector in JJA for lead years 2–5, with values below -0.8.

5.2.4. Predictive skill for regional averages

The analysis of the predictive skill has been carried out also for the regions resulting

from the regionalization process applied over NSAT in Section 3.6 (see Figure 3.5b).

The lead time series have been spatially averaged in each region to afterwards calculate

some of the skill scores used in the previous sections. The results are summarized in

Table 5.2.

Excepting a few cases, the ACC generally shows significant positive results in

all regions at all lead times, as could be expected from the outcomes depicted in

Figure 5.12. These results imply an improvement compared to those observed for

)max and, especially, for PR (Tables 4.1 and 5.1, respectively). There are also positive

MSSSC values at all lead times for all regions. These scores are generally significant

in lead years 2–9, with the exception of the WI region. Very good results have been

also found in terms of CB, in which the not significant outcomes predominate over

the significant ones. As opposed to that obtained for PR and )max, there is a relative

abundance of positive CB results in the case of )min. This is a consequence of the high

ACC scores obtained for this variable, which dominate the expression in Eq. [3.17]

against the ratio B{.}/B- . The analysis of the CRPSS reveals that the average ensemble

spread �2
.

is generally not adequate to quantify the uncertainty of the forecasts,

since most part of the regions show values significantly different from zero. The not

significant results for CRPSS are mainly found in lead year 1, with the north (NO)

region as the only one which shows not significant results also in lead years 6–9. The

outcomes shown for the added value of WRF-DPLE over the global hindcasts and

uninitialized experiments are in the line of those observed for PR and )max, since

there is a strong presence of not significant results. The northeast (NE) is the region

which shows the best results in this respect, where positive values have been found

for MSSSG and ΔACCG at all lead times, although they are only significant in lead

years 1 and 2–5 for MSSSG.

One of the regions showing the best overall performance is the CS region, whose

lead time series for the WRF-DPLE ensemble mean and AEMET have been repre-
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Table 5.2 : Skill scores for the spatially averaged WRF-DPLE multiannual mean anomalies of )min in lead
years 1, 2–5, 6–9 and 2–9 at annual scale. The subscripts �, � and * denote the reference data used to
calculate the skill score: AEMET climatology, CESM-DPLE global hindcasts and WRF-LE uninitialized
experiments, respectively. The bold formatting indicates results different from zero at the 90 % confidence
level. Dashes denote data unavailability at that lead time.

Region
Lead
years

MSSSC ACC CB
CRPSS
(×100)

MSSSG(U) �ACCG(U) �CBG(U)

SW

1 0.38 0.62 -0.09 -0.22 0.33 (0.24) 0.19 (0.42) 0.25 (0.44)

2-5 0.40 0.67 0.21 -5.24 -0.10 (-0.26) -0.01 (-0.31) -0.19 (-0.28)

6-9 0.47 0.68 0.03 -3.50 0.08 (–) -0.01 (–) 0.22 (–)

2-9 0.69 0.88 0.29 -5.27 -0.36 (–) 0.00 (–) -0.24 (–)

NO

1 0.31 0.56 -0.04 0.14 0.14 (0.07) 0.09 (0.07) 0.08 (0.10)

2-5 0.43 0.68 0.17 -5.99 -0.15 (-0.62) -0.04 (-0.27) -0.06 (-0.49)

6-9 0.49 0.71 -0.09 -0.60 0.31 (–) 0.00 (–) 0.39 (–)

2-9 0.70 0.86 0.21 -3.05 -0.06 (–) 0.02 (–) -0.16 (–)

CI

1 0.32 0.59 -0.18 -0.90 0.52 (0.01) 0.33 (-0.01) 0.52 (0.02)

2-5 0.39 0.68 0.26 -5.87 0.02 (-0.44) 0.06 (-0.35) -0.22 (-0.41)

6-9 0.49 0.70 -0.03 -2.51 0.21 (–) -0.01 (–) 0.36 (–)

2-9 0.66 0.87 0.31 -7.03 -0.16 (–) 0.03 (–) -0.29 (–)

NE

1 0.36 0.60 -0.08 -0.03 0.50 (-0.09) 0.30 (-0.15) 0.54 (-0.07)

2-5 0.49 0.77 0.33 -6.72 0.18 (-0.44) 0.16 (-0.14) -0.26 (-0.32)

6-9 0.56 0.75 -0.01 -2.92 0.29 (–) 0.02 (–) 0.37 (–)

2-9 0.68 0.87 0.28 -9.00 0.06 (–) 0.06 (–) -0.26 (–)

CS

1 0.58 0.77 -0.07 0.02 0.23 (0.53) 0.09 (0.49) -0.06 (0.28)

2-5 0.51 0.80 0.37 -10.74 -0.15 (-0.27) -0.02 (-0.06) -0.04 (-0.28)

6-9 0.58 0.80 0.24 -5.89 -0.11 (–) 0.00 (–) -0.14 (–)

2-9 0.63 0.90 0.43 -13.63 -0.24 (–) 0.00 (–) -0.10 (–)

EA

1 0.22 0.48 -0.11 -0.02 0.23 (-0.26) 0.10 (-0.30) 0.29 (-0.15)

2-5 0.50 0.73 0.19 -4.32 0.12 (-0.51) 0.07 (-0.21) -0.13 (-0.39)

6-9 0.46 0.71 -0.20 -1.06 0.21 (–) -0.04 (–) 0.30 (–)

2-9 0.74 0.87 0.11 -1.82 0.19 (–) 0.03 (–) 0.06 (–)

MT

1 0.33 0.58 -0.08 0.04 0.23 (0.31) 0.14 (0.29) 0.17 (0.44)

2-5 0.42 0.67 0.15 -3.04 -0.11 (-0.13) -0.03 (0.01) -0.07 (-0.12)

6-9 0.50 0.71 -0.06 -0.80 0.09 (–) -0.02 (–) 0.24 (–)

2-9 0.68 0.86 0.24 -3.13 -0.08 (–) 0.02 (–) -0.19 (–)

WI

1 0.22 0.48 -0.11 -0.18 0.35 (-0.06) 0.23 (-0.13) 0.41 (-0.08)

2-5 0.33 0.58 0.10 -5.03 -0.04 (-0.54) -0.02 (-0.45) 0.00 (-0.46)

6-9 0.19 0.54 -0.32 -1.41 0.29 (–) -0.01 (–) 0.34 (–)

2-9 0.65 0.82 0.12 -3.38 0.13 (–) 0.02 (–) 0.07 (–)
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sented in Figure 5.22. The high ACC scores reflect the ability of the WRF-DPLE

ensemble mean to reproduce the observed variability at all lead times. Although

the marked positive trends contribute to enhancing these results, the downscaled

hindcasts are also able to partially replicate some of the relative maximums and

minimums described by the AEMET series. In lead year 1, for example, this ability is

mainly found in the last third of the control period, but also at other start years such

as 1973, 1975, 1979 or 1981. The magnitude of these peaks, however, is not always

well represented. The lack of reliability in lead years 2–5, 6–9 and 2–9, highlighted by

the results shown for CRPSS in Table 5.2, can be now observed here. There are clear

differences between WRF-DPLE and AEMET trends which lead to an overestimation

(underestimation) of the AEMET anomalies at the beginning (end) of the control pe-

riod, especially in lead years 2–5 and 2–9. With the exception of lead year 1, the trends

of the difference between WRF-DPLE and AEMET series are statistically significant
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Figure 5.22 : Time series of the spatially averaged multiannual mean anomalies of )min in the CS region
for lead years 1, 2–5, 6–9 and 2–9 at annual scale. Solid green lines identify the WRF-DPLE ensemble mean,
whereas dashed black lines correspond to AEMET. Shaded green surfaces indicate the 90 % confidence
interval for a WRF-DPLE single member, calculated from the average ensemble spread (Eq. [3.32]). Shaded
yellow surfaces show the ensemble envelope which encloses the trajectories followed by the members
composing the WRF-DPLE ensemble.
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and have values of -0.42, -0.25 and -0.34 K/decade for lead years 2–5, 6–9 and 2–9,

respectively (see Table A.2 in Appendix A.2 to consult the results and Section 3.2 for

further information about the methodology applied to compute the trends). These

results lead to values of the AEMET series clearly outside the confidence intervals of

the hindcasts at the beginning and end of the control period (excepting for some start

dates) in lead years 2–5 and 2–9. The impact that these discrepancies have on the

predictive skill directly affects the results for CRPSS in the CS region, which shows

the worst results among all regions at each lead time for this probabilistic score, with

the exception of lead year 1.

The trends of the difference series are not so pronounced in other regions, although

the general overestimation of the anomalies at the beginning of the control period,

observed in the case of )max in Section 5.1.4, is commonly observed also for )min. For

instance, see the lead time series for the NO region in Figure 5.23 and some additional

examples in Figures B.41 and B.42 (Appendix B.2.2). In the NO region, the WRF-

DPLE lead time series are closer to the AEMET series at the end of the control period

than they were in the CS region. In this line, there is a reduction of the differences

between trends, although they are still significant in lead years 2–5 (Table A.2). This
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Figure 5.23 : As Figure 5.22 but for the NO region.
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improvement in the representation of the trends in the NO region, compared to the

CS region, is transferred to the predictive skill in general, in terms of both accuracy

and reliability. In the NO region, the CRPSS results are not significant for lead years 1

and 6–9, meaning that the hindcasts can be used to quantify the forecast uncertainty

at these lead times. Note that the width of the confidence intervals in the )min series,

relative to the magnitude of the signal, is narrower than it was mainly in PR, but

also in )max to a lesser degree, especially in lead years 2–9. This could be anticipated

by the RPC results displayed in Figures 4.5, 5.3 and 5.14, which showed a weaker

signal-to-noise paradox in the WRF-DPLE hindcasts of )min than in those of PR or

)max.

5.3. Daily mean near-surface air temperature

This Section is devoted to assess the WRF-DPLE predictive skill for )mean. While

the )mean provided by WRF and CESM is calculated as the daily average of the

instantaneous temperature at every model time step, the observational )mean has been

calculated by computing the arithmetic mean with the AEMET daily )max and )min,

as stated in Section 2.3.

5.3.1. Predictive skill of the WRF-DPLE ensemble

The multiannual mean anomalies of )mean have been used to calculate the spatial

distributions of RMSE (Eq. [3.10]), which have been depicted in Figure 5.24 (left

column). These distributions are, along side those for )max and )min, more homo-

geneous than those for PR. The highest errors, as usual, are observed in lead year

1 and decrease with the increase of length of the lead time window. For this lead

year 1, the highest values have been observed in the mountain regions belonging

to the Central, Iberian and Baetic Systems, with the maximum values above 0.7 K

in the last two. The lowest errors have been found mainly along the Mediterranean

coast and the southwestern regions, showing the latter the minimum values between

0.4 K and 0.45 K. The same spatial structure is maintained to some extent at the other

lead times but with lower errors. Some dependence on lead time is observed when

comparing the results in lead years 2–5 and 6–9, as the latter shows slightly lower

errors, with differences generally about 0.1 K between them. The largest errors are

shown over the Baetic System, with values around 0.65 K and 0.55 K in lead years 2–5

and 6–9, respectively. In lead years 2–9, there is a general decrease of RMSE around

0.1 K compared to lead years 6–9, although the maximum values about 0.55 K are

still observed in the Baetic System.
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Figure 5.24 : Spatial distributions of RMSE (left column) and ACC (right column) for the WRF-DPLE
multiannual mean anomalies of )mean in lead years 1, 2–5, 6–9 and 2–9 (rows). In ACC maps, the absence
(presence) of black dots indicates (not) statistically significant results different from zero at the 90 %
confidence level.
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The results obtained for ACC (Eq. [3.13]; Figure 5.24, right column) are in line

with those achieved for )min and, to a lesser extent, for )max, in the sense that the

generalized positive correlations are motivated by the positive climate trend present

in temperature-based variables. The lowest correlations are observed in lead year 1,

with significant positive values ranging from 0.4 to 0.8. The strongest correlations have

been found over the Baetic System. On the other hand, there are large areas covered

by not significant results across the IP from north to south. Although the significant

correlations are higher in lead years 2–5, the surface covered by not significant results

is also wider. Some southern regions, the Mediterranean coast, some locations to the

northwest of the Northern Subplateau, the northeastern IP and the Balearic Islands

are the areas which show statistical significant results, with values between 0.6 and

0.8. In lead years 6–9, the not significant results are observed only over the Northern

Subplateau, the Iberian and Central Systems, some regions in the northwest and

some smaller areas in the south. The significant positive ACC values are slightly

higher than in lead years 2–5, with scores above 0.8 situated in regions close to the

Mediterranean coast. The highest correlations are displayed in lead years 2–9, when

the climate trend is better captured after eliminating the interannual and higher-

frequency variability. The domain is almost fully covered by significant positive

results, with values fundamentally above 0.7 and even 0.9 in some locations scattered

throughout the IP. It is worth remarking that there are several regions with significant

and positive results at all lead times. They are the southern and southwestern regions,

an area in the northwest and another in the northeast of the IP.

The results achieved for the seasonal RMSE are available in Figure B.43 (Ap-

pendix B.2.3). As at annual scale, the errors are higher in lead year 1 and decrease

with the increase of the length of the lead time window. The spatial distributions of

RMSE vary depending on the season. For example, in DJF for lead year 1, the highest

(lowest) values have been found in the north (south). The Baetic System shows the

largest errors in MAM, but they are also situated over the Iberian System in JJA. In

SON, the highest values are located in some of the main mountain regions, such as

the previously mentioned Iberian and Baetic Systems, alongside the Central System

and Sierra Morena. The spatial distributions are to some extent maintained across

lead time and show similarities with those of the AEMET )min standard deviation

(Figure B.44 in Appendix B.2.3). As seen in the analyses of )max and )min, the highest

errors are commonly observed in those regions which show the highest variability.

The results obtained for the seasonal ACC (Figure 5.25) follow the same path

observed in the analyses of)max and)min, with the best results found in MAM and JJA.
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Figure 5.25 : Spatial distributions of RMSE for the WRF-DPLE multiannual mean anomalies of )mean for
lead years 1, 2-5, 6-9 and 2-9 (rows) in DJF, MAM, JJA and SON (columns). The absence (presence) of
black dots indicates (not) statistically significant results different from zero at the 90 % confidence level.

The domain is almost fully covered by not significant results for lead year 1 in these

seasons, but the results clearly improve at other lead times. The highest correlations

are observed in lead years 2–9, when the values are mainly above 0.6 in both MAM

and JJA, especially in the former. In DJF and SON, the results are generally not

significant. The regions having significant results in DJF mostly show positive values

(e.g., Figure 5.25m), whereas they are negative in SON (e.g., Figure 5.25p). Even

though, in SON, there are positive (but not significant) correlations at all lead times in

some regions mainly situated in the eastern flank and in the north of the domain. The

signal-to-noise paradox is also present in )mean, as shown by the spatial distribution

of the RPC for lead years 2–9 in Figure 5.26, because the RPC values are significantly

higher than 1 over the whole domain. In the same vein as the other variables, although
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Figure 5.26 : Signal-to-noise paradox in the hindcasts for )mean over the IP. a) Spatial distribution of RPC
for the multiannual mean anomalies of the CESM-DPLE )mean in lead years 2–9 at annual scale. b) As a)
but for WRF-DPLE. The absence (presence) of black dots indicates (not) statistically significant results
different from 1 at the 90 % confidence level.

the ensemble size of 4 members is enough to achieve some predictive skill, especially

in temperature-based variables, there is a potential to improve the performance by

removing the unpredictable background noise with the addition of new members.

However, although the RPC for )mean is higher than 1, it is generally lower than that

for PR, even sometimes by a factor of 2 (compare Figure 5.26 with Figure 4.5 for lead

years 2–9). This means that, as mentioned in Section 5.1.1, the addition of a fixed

number of members would not contribute to improving the ACC for )mean as much

as it would do for PR. This can be seen in Reyers et al. (2019, Figures 5d and 5e), who

showed that, in their experimental framework, the increase of the ensemble size from

4 to 10 members enhances the ACC for )mean by about 0.04 in the IP, in contrast to

the increase around 0.4 for PR. A larger ensemble size may also help to reduce the

RMSE in Figures 5.24 and B.43 through the increase of MSSS, as shown in Reyers

et al. (2019, Figure 5a) by comparing the downscaled decadal predictions with an

uninitialized fixed-size ensemble of global experiments.

The spatial distributions of MSSSC (Eq. [3.24]) for each lead time are depicted in

Figure 5.27 (left column). The outcomes are generally positive, although they are

predominantly not significant at all lead times. In lead year 1, with not significant

positive values across the whole domain, the highest MSSSC values, above 0.4, have

been found over the Baetic System. The general view is similar in lead years 2–5,

but with slightly higher positive scores over the whole IP. At this lead time, there

are a few locations to the south of the Baetic System, along the Mediterranean coast,
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depicting statistically significant results ranging from 0.3 to 0.7. There is an area

showing negative scores over the Northern Subplateau and its sourthern vicinities

in lead years 6–9, although they are mainly not significant. The significant negative

results are below -0.7. The regions which show significant positive results have a

larger extension than at the other lead times. These locations are situated along the

Mediterranean coast, with MSSSC values between 0.4 and 0.7. The highest scores have

been found in lead years 2–9, the lead time window which has the largest amount of

significant positive results, although the area showing not significant results continues

being large. The highest MSSSC values, above 0.7, are observed in the northeast, the

northwest and some inner and coastal regions in the southern part of the IP.

The spatial distributions of MSSSC are determined by those of ACC and CB

(Eq. [3.17]), as indicated by Eq. [3.24]. In general, the results obtained in terms of

CB (Figure 5.27, central column), which are significantly negative mostly in lead

years 1 and 6–9, indicate an imbalance between ACC and the ratio B{.}/B- in which

the former is dominated by the latter, commonly due to low ACC values and not

to the existence of locations with B{.} being higher than B- . The worst CB results

are observed in lead years 6–9, when values mainly between -0.8 and -0.4 have been

found over the Northern Subplateau and its surroundings to the southwest. There

are a few locations in the west with values lower than -0.8. On the other hand, the

ACC values over these regions are in the range between 0.1 and 0.4. The confluence of

these results lead to the negative MSSSC outcomes found in Figure 5.27g. Contrarily,

the regions with high ACC and not significant low CB generally depict a high MSSSC.

See, for example, the Guadalquivir Valley for lead years 2–9 in Figures 5.24h, 5.27j

and 5.27k. The spatial distributions of MSSSCBA (Figure 5.27, right column) show the

maximum MSSSC which could be achieved if CB were completely removed (CB = 0 in

Eq. [3.24]). The regions which would benefit the most are those showing positive CB

values, significant or not, which are commonly the same that have the highest ACC

outcomes. The Baetic System in lead years 2–9 is a good example to illustrate this. The

ACC values over there are around 0.8 (Figure 5.24h), whereas the CB is positive and

significant with values from 0.4 to 0.6 (Figure 5.27k). Thus, the difference between

MSSSCBA and MSSS� is around 0.2. There are another regions, fundamentally in lead

years 2–5 and 2–9, which would also experience a relatively large improvement in

terms of MSSSC after ajusting CB. Contrarily, there are also regions which would not

benefit very much from the CB adjustment because of their low correlations, such

as those places along the Mediterranean coast in lead year 1, with MSSSCBA values

below 0.1. In Reyers et al. (2019, Figures 2a and 2b), significant positive MSSSC values
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Figure 5.27 : Spatial distributions of MSSSC (left column), with climatology as reference, CB (center
column) and the same MSSSC calculated for lead time series with an adjusted CB, i.e., equal to zero
(MSSSCBA; right column), for the WRF-DPLE multiannual mean anomalies of )mean in lead years 1, 2–5,
6–9 and 2–9 (rows) at annual scale. In MSSSC and CB maps, the absence (presence) of black dots indicates
(not) statistically significant results different from zero at the 90 % confidence level.

were found across the IP from the southwest to the northwest for an ensemble size of

10 members. In this Thesis, the aforementioned reduction of the RMSE because of

the increase of the ensemble size would contribute to improving the MSSSC results.
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The spatial distributions of the MSSSC calculated for the multiannual mean anoma-

lies of )mean at seasonal scale are available in Figure B.45 (Appendix B.2.3). As ob-

served for the seasonal ACC (Figure 5.25), the best results have been found in MAM

and JJA. In these seasons, the MSSSC outcomes are mostly positive, with the exception

of lead year 1 in JJA, but the statistical significance is constrained to a few regions

whose location vary depending on the season and the lead time. In JJA, the Baetic

System shows significant positive results in lead years 2–5 and 2–9. The northeast

and the Balearic Islands have significant results in MAM for lead years 2–5, whereas

the most promising outcomes are widespread over the eastern and southern sectors

of the domain in lead years 2–9. Again, these positive results are a consequence of the

confluence of high ACC and close-to-zero CB values (Figure B.46) in those regions.

These small absolute values of the seasonal CB (for example, for lead years 2–5 and

2–9 in MAM) are, in turn, also caused by high ACC scores which counteract the

magnitude of the seasonal ratio B{.}/B- . When this ratio is larger than ACC, the CB

becomes very low and negatively impacts on MSSSC (see DJF and SON in Figures B.45

and B.46) The seasonal MSSSCBA is depicted in Figure B.47 (Appendix B.2.3) and its

interpretation is similar to that provided at annual scale.

❦ Reliability analysis

The analysis of the predictive skill in terms of accuracy has been complemented by the

assessment of the hindcasts reliability. The spatial distributions of CRPSS (Eq. [3.29];

Figure 5.28, left column) show that the average ensemble spread �2
.

(Eq. [3.32])

is adequate to quantify the forecast uncertainty at all lead times in large areas, as

determined by the not statistically significant CRPSS values. In lead year 1, the not

significant CRPSS results are mainly concentrated in the northwestern sector of the IP,

with the addition of some regions in the central west, the northeast and close to the

Strait of Gibraltar. In lead years 2–5, the not significant results mainly cover the inner

regions of the IP, whereas the significant values spread along the Mediterranean

and Cantabrian coasts, the northeast and some mountain inner regions such as the

Iberian and the Central Systems. The lowest CRPSS values have been found in the

Baetic System and the northeast. The absolute value of the scores is generally lower

in lead years 6–9. The spatial distribution of the not significant results is very similar

to that observed in lead years 2–5, although there are still some differences, such as

new not significant values in the eastern part of the domain or the loss of reliability

in the southwest. The Baetic System continues showing the lowest scores also at this

lead time. The spatial distribution in lead years 2–9 is very similar to that in lead
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Figure 5.28 : Spatial distributions of CRPSS (left column) and LESS (right column) for the WRF-DPLE
multiannual mean anomalies of )mean in lead years 1, 2–5, 6–9 and 2–9 (rows) at annual scale. The absence
(presence) of black dots indicates (not) statistically significant results different from zero at the 90 %
confidence level.
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years 2–5, but with a greater abundance of not significant results. These outcomes

are determined by the extent to which the hindcasts are over- or underdispersive,

i.e., �2
.
> �2

-
or �2

.
< �2

-
, respectively. The relation between �2

.
and �2

-
is addressed

by the LESS (Eq. [3.34]; Figure 5.28, right column). The generalized presence of

significant negative LESS values shows that the hindcasts are underdispersive at all

lead times. There are significant positive LESS values very close to zero in lead year 1,

but those observed in lead years 6–9 and 2–9 are not significant. In lead years 1 and

2–5, almost the whole domain is covered by significant values, with higher negative

results at the latter lead time. In lead years 6–9 and 2–9, the not significant results are

more frequent. The regions with the closest-to-zero LESS values, although they may

be significant, are those which show the not significant CRPSS results. Indeed, the

structure of the spatial distributions of both metrics matches almost perfectly.

The best results in the seasonal analysis of CRPSS have been obtained in JJA

(Figure B.48 in Appendix B.2.3), when the not significant results are predominant at

all lead times, excepting in lead year 1. These scores are a consequence of the not

significant values also observed in the LESS spatial distributions (Figure B.49). In

general, the LESS indicates that the hindcasts are mainly underdispersive also at sea-

sonal scale, since the presence of significant positive LESS values is very uncommon.

The worst results have been found in SON, when a strong underdispersion leads to

significant CRPSS outcomes which cover the whole domain at all lead times.

5.3.2. Comparison with the CESM-DPLE subensemble

❦ Accuracy analysis

The spatial distributions of MSSSG at annual scale, calculated for the WRF-DPLE

multiannual mean anomalies of )mean with CESM-DPLE as reference, are depicted

in Figure 5.29 (left column). These results are characterized by a notable absence

of statistically significant results at all lead times. In lead year 1, there is a band of

positive scores from east to west, with the results reaching maximum values around

0.4 in the central regions, the north of the IP and the Baetic System. However, in spite

of the magnitude of these scores, they are not significant. Negative but not significant

results are observed mainly in the south of the domain and in some regions in the

northwest. The scores decrease in lead years 2–5, so the area covered by positive

results is lower than in lead year 1. The largest fraction of significant positive MSSSG

outcomes is observed in lead years 6–9. Scores between 0.3 and 0.6 are situated in

central regions and locations in the southern part of the IP. A few locations over the
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Figure 5.29 : Spatial distributions of MSSSG (left column), ΔACCG (center column) and ΔCBG (right
column), with CESM-DPLE as reference, for the WRF-DPLE multiannual mean anomalies of )mean in
lead years 1, 2–5, 6–9 and 2–9 (rows). The absence (presence) of black dots indicates (not) statistically
significant results different from zero at the 90 % confidence level.

Ebro Valley also show very high significant scores up to 0.6. At this lead time, the

negative results are mainly restricted to small areas over mountain regions, such as

those to the south of the Pyrenees, the Baetic System and the Cantabrian Range. The

latter contain the lowest significant negative results, with values starting from -0.2 and
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even surpassing -0.6. The scores are less promising in lead years 2–9, when both the

value and the area covered by significant results decrease compared to lead years 6–9.

These results are directly determined by those obtained for the ΔACCG and ΔCBG

spatial distributions displayed in Figure 5.29 (central and right columns, respectively).

The differences between the performance of the downscaled and global hindcasts

in terms of ACC are not statistically significant, likewise for the other variables. In

this case, the contribution of the downscaled hindcasts to the predictive skill for

)mean is made through the correction of the imbalance between ACC and B{.}/B- ,

reflected by the improvement achieved in terms of CB. The largest added value to

the CB is observed in lead years 6–9, when a large portion of the IP shows significant

positive results, reaching values above 0.6 mostly over the Central System and some

southern regions. Very high improvements have been also found in lead year 1,

but the significant results are constrained to small regions over the Central System

and Ebro Valley. This influence of the ΔCBG on MSSSG can be visually verified by

comparing the structure of the spatial distributions at each lead time.

At seasonal scale, the most promising results for MSSSG (Figure 5.30) have been

found in SON. In lead years 6–9, the eastern and western regions show significant

positive results mostly between 0.2 and 0.5, although most part of the domain does not

show any statistical significance. In lead years 2–9, almost the whole domain depicts

a robust improvement compared to the global experiments, with the exception of

the southeast and some northern regions. Wide areas covered by significant positive

results have also been found in JJA for lead years 6–9 and 2–9. Most part of the

significant results are positive, whereas the largest region which shows significant

negative results is seen over the Baetic System in lead years 2–9 in DJF. The differences

in terms of ACC (Figure B.50) are generally not significant. Only in DJF for lead years

2–9, significant and negative results are depicted over the Northern Subplateau with

minimum values up to -0.4. At at annual scale, the ΔCBG (Figure B.51) results are the

main factor leading to the positive outcomes observed in Figure 5.30, as the regions

which show the best results for ΔCBG are generally the same with the best results for

MSSSG.

The results obtained by Reyers et al. (2019, Figures 4a, b and Table 1) hardly show

any added value of their downscaled hindcasts to the )mean predictive skill neither

in terms of MSSSG nor for ΔACCG. Depending on the initialization method of the

GCM which provides the ICs and LBCs, a few locations with significant positive or

negative MSSSG values are found over the IP in lead years 1–5 (at annual scale). They

found some added value in regions with low to medium predictive skill in the global
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Figure 5.30 : Spatial distributions of MSSSG for the WRF-DPLE multiannual mean anomalies of )mean,
with CESM-DPLE as reference, in lead years 1, 2–5, 6–9 and 2–9 (rows) in DJF, MAM, JJA and SON
(columns). The absence (presence) of black dots indicates (not) statistically significant results different
from zero at the 90 % confidence level.

hindcasts (e.g., in Scandinavia), but the improvement is more limited or directly

missing in regions where the GCM already showed relatively high skill, such as the IP.

Given the results depicted in Figures 5.27 and 5.28, which show a high skill in terms

of accuracy, similar conclusions might be drawn here. Indeed, the highest added

value observed in Figure 5.30 is found in SON, one of the seasons which showed the

worst results in Figure B.45.
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❦ Reliability analysis

The difference between the WRF-DPLE and CESM-DPLE performances in terms of

reliability is measured by the ΔCRPSSG, whose spatial distributions are depicted

in Figure 5.31 (left column). There are not significant differences between both

CRPSS, so there is not neither a significant added value nor a degradation of the

hindcasts reliability in the downscaled hindcasts compared to the global experiments

at any lead time. However, in lead year 1, the domain is almost fully covered by

positive results, with the maximum values observed in the northwestern regions. The

presence of negative results dominates in lead years 2–5, when the positive outcomes

are mainly found in the northern regions along the Cantabrian coast and to the south

of the Pyrenees. These northern positive results are maintained in lead years 6–9

and another locations showing an improvement by the downscaled hindcasts mainly

spread across the central and eastern parts of the domain. The largest added values,

although not significant, have been found in lead years 2–9, situated to the south

of the Central System. The Guadalquivir and Guadiana Valleys, the northwest and

other northern regions also show an added value in terms of CRPSS.

The results shown for ΔCRPSSG are determined by those achieved for LESSSG

(Figure 5.31, right column), that indicate the extent to which the ensemble underdis-

persion or overdispersion is attenuated in the downscaled hindcasts compared to the

global experiments. The regions which show an improvement in the representation of

the average ensemble spread (positive LESSSG values) are the same which experience

an improvement of the hindcast reliability in the ΔCRPSSG spatial distributions. As

seen for the other variables analyzed in the previous sections, the absolute values

of LESSSG are very large because of the definition of the score (Eq. [3.36]). The

dependence on the squared forms of the downscaled and global LESS makes LESSSG

very sensitive to changes in both, especially when the absolute LESS is small.

The results for the seasonal ΔCRPSSG and LESSSG have been depicted in Fig-

ures B.52 and B.53 (Appendix B.2.3). The general picture is similar to that at annual

scale, since there is not a robust added (or lost) value in the hindcasts reliability of

the WRF-DPLE compared to the CESM-DPLE subensemble. The best results have

been obtained in SON, when positive ΔCRPSSG (but not significant) have been found

over the whole domain in lead years 6–9 and 2–9, as consequence of the generalized

attenuation of the ensemble underdispersion or overdispersion at those lead times.
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Figure 5.31 : Spatial distributions of ΔCRPSSG (left column), and LESSSG (right column) for the WRF-
DPLE multiannual mean anomalies of )mean, with CESM-DPLE as reference, at lead years 1, 2–5, 6–9 and
2–9 (rows). The absence (presence) of black dots indicates (not) statistically significant results different
from zero at the 90 % confidence level.
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5.3.3. Comparison with the WRF-LE ensemble

In this Section, the performance of the WRF-DPLE ensemble has been compared

with that of the unitilialized experiments which compose the WRF-LE ensemble. This

assessment, as done for PR and the other NSAT variables, has been carried out by only

using accuracy metrics, because the uninitialized experiments are not interpreted

in a probabilistic manner as the initialized experiments are. In addition, since the

uninitialized experiments cover only the period 1990-2005, the analysis is focused on

lead years 1 and 2–5, and consider only the hindcasts initialized every year from 1990

to 1999 (10 start dates).

❦ Accuracy analysis

The spatial distributions of MSSSU, calculated with multiannual mean anomalies

of )mean by considering the WRF-LE as reference, are displayed in Figure 5.32 (left

column). The best results are observed in lead year 1, when positive scores span the

whole IP, with the exception of the eastern regions close to the Mediterranean coast.

Notwithstanding, the outcomes mostly lack of statistical significance. There are some

southern regions over the Baetic System and areas close to the Strait of Gibraltar which

show significant positive results with values above 0.3. The maximum scores, between

0.6 and 0.7, are situated in the Baetic System. In lead years 2–5, the uninitialized

experiments clearly outperform the hindcasts predictive skill. The domain is filled

with negative scores, with some expections in the Baetic System, the northeast and

the Cantabrian range. The negative outcomes are significant over wide areas of

the domain from north to south, mainly in the eastern part, with minimum scores

below -0.8. These results are derived from those obtained in terms of ΔACCU and

ΔCBU(Figure 5.32, center and right columns, respectively), as stated by Eq. [3.16].

In lead year 1, the added value of WRF-DPLE to both ACC and CB contributes to

producing the significant added value in terms of MSSSU in the southern regions. In

both cases, not significant positive differences have been found along the Cantabrian

coast, the Ebro Valley and central western regions. The generalized positive ΔCBU

values counteract the loss in ACC found in some central regions, but they are not high

enough to do it in the easternmost locations of the domain. In the southeast, the joint

action of the negative ΔACCU and ΔCBU values leads to the lowest scores observed

in the MSSSU map over this region. Although some positive differences in ACC have

been found along the Mediterranean coast in lead years 2–5, the lost value in terms of

CB is too large to produce positive MSSSU. The lowest MSSSU values scores observed
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Figure 5.32 : Spatial distributions of MSSSU (left column), ΔACCU (center column) and ΔCBU (right
column) for the WRF-DPLE multiannual mean anomalies of)mean, with WRF-LE as reference, in lead years
1, 2–5, 6–9 and 2–9 (rows). The absence (presence) of black dots indicates (not) statistically significant
results different from zero at the 90 % confidence level.

in Figure 5.32d are caused by the negative results obtained for ΔACCG and ΔCBG.

Reyers et al. (2019) did not find a consistent added value over the IP when compar-

ing the performance of their downscaled hindcasts with the global (not downscaled)

uninitialized experiments in terms of MSSS in lead years 1–5. Indeed, depending

on the ICs and LBCs, the scores can be either generally negative or a mix of positive

and negative (Figures 3a,b in Reyers et al., 2019). In both cases, significant negative

results were obtained in the northeast. Their results highlight the influence of the

initialization scheme of the GCM in the predictive skill of the downscaled product

for )mean, as happened also for PR. In the analysis of the dependence of MSSS and

ΔACC on the ensemble size, they found that improvements about 0.08 and 0.02 are

achieved, respectively, by increasing the number of members from 4 to 10 in their

experimental framework (Figures 5a,d in Reyers et al., 2019). The added value of

incrementing the number of members in this case is drastically lower than that found

for PR.

At seasonal scale, the best results achieved for MSSSU have been found in MAM

(Figure 5.33), with positive scores covering the whole domain and being significant in
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Figure 5.33 : Spatial distributions of MSSSU for the WRF-DPLE multiannual mean anomalies of )mean,
with WRF-LE as reference, in lead years 1, 2–5, 6–9 and 2–9 (rows) in DJF, MAM, JJA and SON. The
absence (presence) of black dots indicates (not) statistically significant results different from zero at the
90 % confidence level.

the northern part a lead year 1 and, additionally, also along the Mediterranean coast

in lead years 2–5. At both lead times, the maximum values, between 0.8 and 0.9, are

observed in the northeast. Significant positive results have also been found in SON

for lead year 1 across the domain, with maximum outcomes around 0.6 in the Baetic

System. These promising results are caused by the largely positive differences found

in terms of ΔACCU (Figure B.54) and ΔCBU (Figure B.55). The opposite situation

is depicted in DJF, the season which shows the largest lost value compared to the

uninitialized simulations. In lead years 1 and 2–5, the very low MSSSU values are

caused by the large degradation in terms of ACC and CB.

5.3.4. Predictive skill for regional averages

Finally, the assessment of the WRF-DPLE predictive skill for)mean has been completed

with the analysis of the performance of WRF-DPLE in the regions obtained from the

regionalization done in Section 3.6. The same skill scores of the previous sections

have been calculated with the spatially averaged lead time series over each region.

The results are summarized in Table 5.3.

The downscaled hindcasts are generally able to reproduce the observational )mean

variability in all regions, as shown the positive and predominantly significant results

obtained for ACC. The most robust correlations are observed in lead years 2–9, when
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Table 5.3 : Skill scores for the spatially averaged WRF-DPLE multiannual mean anomalies of )mean in lead
years 1, 2–5, 6–9 and 2–9 at annual scale. The subscripts �, � and * denote the reference data used to
calculate the skill score: AEMET climatology, CESM-DPLE global hindcasts and WRF-LE uninitialized
experiments, respectively. The bold formatting indicates results different from zero at the 90 % confidence
level. Dashes denote data unavailability at that lead time.

Region
Lead
years

MSSSC ACC CB
CRPSS
(×100)

MSSSG(U) �ACCG(U) �CBG(U)

SW

1 0.24 0.49 -0.03 -0.03 -0.07 (0.34) -0.09 (0.32) 0.19 (0.66)

2-5 0.44 0.66 -0.01 0.52 -0.10 (-0.59) -0.05 (-0.23) 0.11 (-0.51)

6-9 0.47 0.69 -0.06 -0.01 0.26 (–) -0.02 (–) 0.40 (–)

2-9 0.76 0.88 0.14 -0.44 -0.06 (–) -0.01 (–) -0.00 (–)

NO

1 0.22 0.47 -0.04 0.11 -0.01 (0.20) -0.01 (0.17) -0.03 (0.33)

2-5 0.34 0.59 -0.04 -3.95 -0.10 (-0.36) -0.05 (-0.20) -0.01 (-0.37)

6-9 0.33 0.60 -0.18 -1.22 0.07 (–) -0.03 (–) 0.15 (–)

2-9 0.65 0.81 0.07 -2.32 -0.03 (–) -0.00 (–) -0.04 (–)

CI

1 0.17 0.42 -0.05 -0.05 0.09 (0.12) -0.05 (-0.06) 0.31 (0.30)

2-5 0.38 0.62 0.01 -1.09 -0.03 (-0.91) -0.02 (-0.32) 0.09 (-0.78)

6-9 0.34 0.65 -0.27 -2E-03 0.35 (–) 0.02 (–) 0.37 (–)

2-9 0.66 0.81 0.07 -0.51 0.11 (–) 0.02 (–) 0.08 (–)

NE

1 0.25 0.50 -0.04 9E-04 0.15 (0.14) 0.06 (-0.01) 0.23 (0.25)

2-5 0.50 0.73 0.17 -3.80 -0.00 (-0.51) 0.01 (0.03) -0.09 (-0.42)

6-9 0.56 0.75 -0.10 -0.41 0.10 (–) -0.00 (–) 0.16 (–)

2-9 0.72 0.87 0.19 -2.79 -0.06 (–) 0.01 (–) -0.11 (–)

CS

1 0.42 0.65 -0.06 -0.12 -0.02 (0.42) -0.01 (0.42) -0.00 (0.15)

2-5 0.48 0.75 0.29 -8.85 -0.19 (-0.04) -0.06 (0.25) 0.02 (-0.24)

6-9 0.60 0.78 0.14 -1.02 -0.05 (–) -0.00 (–) -0.08 (–)

2-9 0.64 0.88 0.37 -7.41 -0.22 (–) -0.02 (–) -0.05 (–)

EA

1 0.17 0.41 -0.07 -0.03 -0.02 (-0.09) -0.08 (-0.19) 0.17 (0.11)

2-5 0.49 0.70 0.06 -2.94 -0.03 (-0.72) -0.01 (0.10) -0.04 (-0.57)

6-9 0.50 0.74 -0.22 6E-04 0.26 (–) -0.02 (–) 0.28 (–)

2-9 0.73 0.85 0.04 -0.24 0.00 (–) -0.01 (–) 0.09 (–)

MT

1 0.24 0.49 -0.05 -0.03 -0.05 (0.31) -0.04 (0.22) 0.02 (0.49)

2-5 0.41 0.64 0.05 -0.83 -0.12 (-0.20) -0.05 (-0.02) -0.01 (-0.20)

6-9 0.52 0.72 -0.03 -0.11 -0.07 (–) -0.04 (–) 0.12 (–)

2-9 0.71 0.87 0.21 -0.54 -0.15 (–) -0.00 (–) -0.12 (–)

WI

1 0.14 0.38 -0.06 -0.14 0.01 (0.21) -0.05 (0.06) 0.17 (0.34)

2-5 0.29 0.55 -0.13 -0.51 -0.02 (-0.47) -0.03 (-0.33) 0.06 (-0.48)

6-9 0.03 0.45 -0.41 -0.15 0.22 (–) -0.04 (–) 0.28 (–)

2-9 0.60 0.78 -0.07 -0.22 0.18 (–) 0.01 (–) 0.21 (–)
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the scores show the highest values in each region and they are also statistically

significant over the whole domain. The best results in terms of ACC have been

obtained in the SW, NE and CS regions, where significant positive correlations have

been found at all lead times. Although the absolute value of CB is typically lower in

)mean hindcasts than in the cases of PR (Table 4.1) or )max (Table 5.1), it is higher than

that commonly found for )min (Table 5.2). The results obtained for CB in the analysis

of )mean still show significant values at some lead times in all regions, hindering

the achievement of significant positive outcomes for MSSSC. Although the MSSSC

values are positive at all lead times in all regions, they are only significant for lead

years 2–9 in the NE region (MSSSC=0.72) and for lead years 6–9 and 2–9 in the CS

region (MSSSC=0.60 and MSSSC=0.64, respectively). Likewise for the skill scores

analyzed in the previous sections, the addition of more members to the ensemble

would positively contribute to enhancing the predictive skill and, therefore, it could

help to increase the robustness of MSSSC, among other skill scores. As observed for

the previous variables, the comparison with the global hindcasts and the uninitialized

experiments does not generally highlight any significant improvement or degradation

of the predictive skill. From the point of view of reliability, all regions show that the

average ensemble spread �2
.

is suitable to quantify the forecast uncertainty at least

at one lead time window because of the not significant CRPSS results, excepting for

the NE region, where CRPSS is significant at all lead times. In this sense, the best

performance has been obtained in the WI region, where the WRF-DPLE hindcasts are

reliable at all lead times. Other regions such as the MT, CI and SW regions also show

good results in these terms, with most lead times showing not significant CRPSS

results.

The lead time series for the WRF-DPLE ensemble mean and AEMET in the CS

region have been depicted in Figure 5.34. As the significant positive results obtained

for ACC indicate, WRF-DPLE shows skill to reproduce to some extent the observa-

tional variability at all lead times. Although the ACC results benefit from the positive

trends of )mean in WRF-DPLE and AEMET, there is also relative skill to reproduce

the maximums and minimums observed in the AEMET time series. In lead years

6–9, for example, the WRF-DPLE is able to partially replicate in a general sense the

increases and decreases described by the AEMET )mean in this region. Although the

ensemble mean is not fully accurate in capturing the magnitude of the signal, it is

enough to get a statistically significant MSSSC in lead years 6–9 and 2–9, as mentioned

above. There is an overestimation of the AEMET)mean anomaly at the first years of the

control period, mainly in lead years 2–5, 6–9 and 2–9, as also happened in the cases
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Figure 5.34 : Time series of the spatially averaged multiannual mean anomalies of )mean in the CS region
for lead years 1, 2–5, 6–9 and 2–9 at annual scale. Solid green lines identify the WRF-DPLE ensemble mean,
whereas dashed black lines correspond to AEMET. Shaded green surfaces indicate the 90 % confidence
interval for a WRF-DPLE single member, calculated from the average ensemble spread (Eq. [3.32]). Shaded
yellow surfaces show the ensemble envelope which encloses the trajectories followed by the members
composing the WRF-DPLE ensemble.

of )max (Section 5.1.4) and )min (Section 5.2.4). In addition, the underestimation

of the )min anomaly in this region during the last start years of the control period

(Figure 5.22) is also observed here for )mean in lead years 2–5 and 2–9, although it is

slightly less accentuated. In the same line as for )min, this limited ability to represent

the anomalies at the beginning and end of the control period is related to the existence

of statistically significant differences between the WRF-DPLE and AEMET trends (see

Table A.2 in Appendix A.2 to consult the results and Section 3.2 for the methodology

applied to compute the trends). In this case, the trends of the difference between the

WRF-DPLE and AEMET time series are about -0.41 and -0.28 K/decade in lead years

2–5 and 2–9, respectively, indicating that the actual anomaly trend is underestimated

by the WRF-DPLE ensemble mean. These differences have a negative impact on the

predictive skill in general. In particular, how they affect the reliability of the hindcasts

can be examined by observing Figure 5.34. The AEMET anomalies often fall outside

the confidence intervals mainly at the beginning, but also at end of the control period
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at these lead times. For this reason, the CRPSS results have high absolute values just

at these lead times in the CS region. While the overestimation during the early start

dates is frequent in all regions, the underestimation at the end is mainly present in the

CS region. Some additional examples have been depicted in Figures B.56 and B.57,

available in Appendix B.2.3. Likewise for )max and )min, the confidence intervals of

the )mean lead time series, relative to the magnitude of the signal, are narrower than

those generally observed for PR because the signal-to-noise paradox is weaker for

temperature variables, as concluded from Figures 4.5, 5.3, 5.14 and 5.26.

5.4. Analysis of near-surface air temperature trends in CESM-DPLE

In the same line of the analysis done in Section 4.5 for PR, this Section is devoted

to explore the ability of CESM-DPLE to reproduce some characteristics of special

interest observed in real climate fields. In this case, an assessment of the skill of

CESM-DPLE to reproduce the trends of )mean in lead years 2–9 has been conducted.

This lead time has been considered in order to remove the interannual variability and

fully focus on the decadal scale. Since CESM-DPLE provides the ICs and LBCs for

)mean, among other variables, to generate the downscaled WRF-DPLE hindcasts, the

ability to predict the evolution of )mean influences on the predictive skill achieved by

the WRF outputs. In particular, the skill to reproduce the )mean trends is essential

in the generation of accurate and reliable downscaled DCPs, as these trends have a

large contribution to the predictive skill through ACC. The methodology applied to

compute the trends and assess their statistical significance is described in Section 3.2.

As in Section 4.5, ERA5 has been used as the reference dataset. ERA5 not only

provides )mean information over the sea, commonly absent in observational products,

but also it does with a higher spatial resolution than CESM-DPLE, allowing to work

on the native model resolution by linearly interpolating the ERA5 )mean onto the

CESM-DPLE grid. The trends have been calculated for the 4-member and the 10-

member CESM-DPLE ensemble means (ENS4 and ENS10, respectively) to evaluate

the impact of the ensemble size in the results.

The results obtained at annual scale have been depicted in Figure 5.35. The

ERA5 multiannual lead time series of )mean show a positive trend over the whole

EURO-CORDEX domain, generally showing statistical significance. The highest

values have been found over the Arctic Ocean and Iceland, with significant outcomes

above 0.8 K/decade. The IP shows slightly lower but still significant positive results

between 0.6 and 0.7 K/decade, similarly to the northern Africa, the Middle East,

the coastal regions of Scandinavia and the Alps. The lowest trends can be generally
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a) ERA5

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
X (K/decade)
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Figure 5.35 : Spatial distributions of a) the trend of the ERA5 multiannual lead time series of )mean, b)
the trend of the difference between the 4-member CESM-DPLE ensemble mean (ENS4) and ERA5 lead
time series of )mean, and c) as b) but for the 10-member CESM-DPLE ensemble mean (ENS10). The lead
time series have been calculated for the lead years 2–9 in the control period at annual scale. The ERA5
trend is represented by �- , whereas �.−- denotes the trend in the difference of CESM-DPLE and ERA5
time series. The absence (presence) of black dots indicates (not) statistically significant results different
from zero at the 90 % confidence level.

observed over the sea. Indeed, not significant results have been found mainly in the

North Atlantic, the easternmost part of the Mediterranean Sea and the Black Sea

and surrounding regions. Some areas on the northern Eurasia and Greenland also

show not statistically significant results. The spatial distributions of the trend of

the difference between the model and reanalysis time series are almost identical for

both CESM-DPLE subensembles. This not only occurs at annual scale, but also in

the seasonal results (Figure 5.36). This finding is consistent with what has already

been discussed in Sections 5.1.1, 5.2.1 and 5.3.1, and it is also supported by the

results found by Reyers et al. (2019). For temperature variables, the contribution

of increasing the ensemble size to the predictive skill is expected to be positive but

more modest than for other variables being affected by a stronger signal-to-noise

paradox. Significant negative differences have been found mostly over land, especially

over Greenland, Iceland and regions close to the Mediterranean basin, with values

below -0.3 K/decade. On the other hand, the highest significant positive results have

been found over the North Atlantic, the Arctic Ocean and the northern Eurasia. The

hindcasts have shown to be very skilful in reproducing the ERA5 trends mainly over

part of the central, eastern and northern Europe, as well as over large sea areas in

the North Atlantic, the Mediterranean Sea and part of the Arctic Ocean. Differences
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between ensemble sizes are hardly identifiable, but they still exist. The trend of the

difference series is slightly smaller for ENS10 over the cluster of significant positive

result in the North Atlantic Ocean, and some additional not significant results have

been found to the east of Iceland and spurious locations over land compared to ENS4.

On the other hand, the area showing statistically significant results to the north of

Scandinavia is larger for ENS10 than for ENS4.

In the particular case of the IP, the statistically significant underestimation of the

actual trend observed in most part of the region supports the results discussed in

Sections 5.1.4, 5.2.4 and 5.3.4 and summarized in Table A.2 (Appendix A.2), which

showed that the observed NSAT trends are underestimated by the downscaled hind-

casts over most part of domain at several lead times, including lead years 2–9, al-

though not always with statistical significance. This underestimation seems to have

been partially transferred by CESM-DPLE to WRF-DPLE hindcasts during the DD

simulations.

The results obtained for the trend analysis at seasonal scale have been depicted

in Figure 5.36. The positive trend observed in ERA5 )mean is still present for most

part of the EURO-CORDEX domain, although its magnitude varies depending on

the season. While the highest significant positive results are shown for Scandinavia

and the Arctic Ocean in DJF, they are generally observed over regions close to the

Mediterranean basin in MAM and JJA. In SON, however, they are observed again in

the north of the EURO-CORDEX domain and in the northern regions of Africa. The

trend is positive and significant for most part of the IP in MAM and JJA, with values

commonly between 0.6 and 1.2 K/decade. It is lower but mostly still significant in

DJF, when the results mainly range from 0.2 to 0.6 K/decade. Only the northeastern

regions of the IP show not significant results in this season. The situation is different in

SON, when only the regions in the eastern half of the IP show statistically significant

results, with values between 0.2 and 0.4 K/decade. As happened at annual scale, the

spatial distributions of the results obtained for the trend of the difference between

CESM-DPLE and ERA5 series are almost identical for both ensemble sizes. Large

trend differences are commonly observed in the aforementioned regions which show

the most accentuated trends for ERA5 )mean. However, there are also significant

overestimations of the trend in regions which do not show a significant trend, or

in regions exhibiting a significant but more moderate trend. These regions are the

North Atlantic (in all seasons), the Black Sea (mainly in DJF and MAM) and in the

northeast of the domain (in DJF and MAM). The differences between ensemble sizes

are generally very small and tend to benefit ENS10 over ENS4. See, for example, the
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Figure 5.36 : As Figure 5.35 but for DJF, MAM, JJA and SON (rows).
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slight reduction of the trend of the difference series in the positive cluster over the

North Atlantic for the four seasons or over the northeastern Europe in MAM and JJA.

However, there are a few cases where the error in ENS10 slightly increases compared

to ENS4, such as in Russia during MAM.

In the IP, the largest differences between ERA5 and CESM-DPLE have been found

in MAM and JJA, with the DCPs showing a strong underestimation of the reanalysis

trends. Again, this underestimation has been partially transferred to the WRF-DPLE

hindcasts, as the results obtained for the WRF-DPLE spatially averaged lead time

series reveal in Tables A.4 and A.5 (Appendix B.2.1) for MAM and JJA, respectively.

For these downscaled lead time series, the trends are underestimated particularly

in MAM, when significant trends of the difference series have been found for all

NSAT fields at almost all lead times for the whole domain. Nevertheless, the best

seasonal results for the WRF-DPLE hindcasts in terms of MSSSC and ACC were

precisely found in MAM and JJA for the three NSAT fields (see, e.g., Figures 5.2, 5.13

and 5.25 for ACC in )max, )min and )mean, respectively). Despite the large trends of

the difference series, the WRF-DPLE NSAT trends in these two seasons (Tables A.4

and A.5 in Appendix B.2.1) are still commonly larger than in DJF and SON (Tables A.3

and A.6, respectively, in Appendix B.2.1), contributing to enhancing the ACC results

of the downscaled hindcasts and, as consequence, those obtained for MSSSC in these

seasons.

In conclusion, the analysis done in this Section has revealed the existence of errors

in the representation of the )mean trends by CESM-DPLE, especially at annual scale, in

MAM and JJA over the IP. These errors have been partially propagated to the down-

scaled WRF-DPLE hindcasts during the DD simulations, hindering the achievement

of better results for the skill scores analyzed in previous sections. Given the role

that the temperature trend plays in predictive skill through the ACC, especially at

decadal scale, all improvements which can be made in the representation of these

trends in CESM-DPLE would help to improve their representation also in the down-

scaled product and, consequently, would increase the predictive skill of WRF-DPLE

hindcasts for temperature. A possible approach to address this issue could be the use

of a drift correction method which accounts for trends in the adjustment of the drift

of the global DCPs. Chapter 8 has been devoted to study in more detail this topic.
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5.5. Concluding remarks

This Chapter has been dedicated to the analysis of the WRF-DPLE predictive skill

for )max, )min and )mean. Several accuracy and reliability metrics have been calculated

to assess not only the quality of the downscaled hindcasts, but also their added value

over the CESM-DPLE subensemble, which provides WRF with the ICs and LBCs for

the DD simulations, and over WRF-LE, the uninitialized downscaled experiments.

The spatial distributions of these metrics for several lead times have been examined,

as well as those calculated for the lead time series averaged over the regions obtained

from the regionalization described in Section 3.6. The main findings are summarized

in the following:

• The signal-to-noise paradox is present in the WRF-DPLE hindcasts of NSAT,

although it is weaker than for PR. The addition of new members to the donws-

caled ensemble would contribute to improving the predictive skill, especially

in terms of ACC, by removing the unpredictable background noise to better

capture the climate signal. However, the benefits of increasing the ensemble

size may not be as pronounced as for PR, as suggested the results obtained for

the RPC and shown in previous studies.

• At annual scale, all NSAT variables show predominant positive correlations

over the whole domain, although the statistical significance depends on the

lead time. The WRF-DPLE hindcasts for )max show the lowest ACC and the

highest RMSE values among the three NSAT variables at annual scale. Never-

theless, the ACC results are predominantly positive, with statistical significance

mainly in lead years 6–9 and, especially, 2–9. On the other hand, )min is the best

represented variable. It always shows positive results for ACC along all lead

times with a generalized statistical significance, obtaining the highest correla-

tions also in lead years 2–9. The results achieved for )mean represent a midpoint

between those for )max and )min. The regions showing the best results are often

placed in the northeast and in the southern half of the IP.

• At seasonal scale, the highest statistically significant correlations are observed

in MAM and JJA. In both seasons, the significant positive results cover large

areas of the domain in lead years 2–5, 6–9 and 2–9 for )min and )mean. Similar

outcomes have been found for )max, but generally with smaller areas showing

statistical significance. In DJF, not significant negative correlations are predom-

inant in )min, while they are generally positive for )max (with the exception
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of lead year 1), for which significant results are found in lead years 2–5 and

2–9 mainly in the southern half of the IP, the northeast and the northwest. In

SON, the situation is the opposite, because positive correlations (but mainly

not significant) have been found for )min and fundamentally negative values

are observed for )max. The results achieved for )mean in DJF and SON show pos-

itive outcomes for lead years 2–5 and 2–9 mainly in southern and northeastern

regions, with some lead times showing also promising results for other regions

in the north and the eastern half of the IP.

• The results obtained for MSSSC at annual scale are generally positive for

Zmin (which shows the most promising outcomes), Zmean and, to a lesser

degree, for Zmax. The regions with high correlations typically show positive

MSSSC values too, as expected from the relationship between both metrics. For

)min and )mean, there is a lack of statistical significance at lead years 1 and 2–5.

Results are more robust in lead years 6–9 and, especially, 2–9 for these variables,

when the best represented regions are commonly those in the southeast, the

northeast and some in the northwest. The situation for )max is slightly different.

Although the areas covered by positive results are larger than those covered by

negative ones, there are some regions to the south of the Northern Subplateau,

in Sierra Morena and close to the Strait of Gibraltar with significant negative

MSSSC values. These results are caused by very strong negative CB results

and low correlations in these regions. The CB outcomes are generally negative

for )max, favored by the low correlations. For )min and )mean, the absolute CB

values are smaller than for )max.

• The best results for MSSSC at seasonal scale have been found in MAM and

JJA. The spatial distributions obtained for the three NSAT variables resemble

to those obtained for ACC at seasonal scale. The CB is commonly negative and

significant for almost all seasons for )max, with the exception of MAM. For )min,

the same situation is presented in DJF, but not significant results are dominant

in MAM and JJA at all lead times, with the exception of lead year 1. The best

CB results have been also found in MAM and JJA for )mean, whereas they are

typically negative and significant in DJF and SON.

• The downscaled hindcasts for Zmax and Tmean are generally reliable in the

IP over almost the whole domain at annual scale, especially in lead years

2–5, 6–9 and 2–9, whereas they are reliable mainly for Zmin in lead year 1
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in the northern regions of the IP. The reliability is determined by the not

significant results obtained for CRPSS. The CRPSS results are highly influenced

by those obtained for LESS. At annual scale, the significant LESS results show

an underdispersion in the hindcasts for the three NSAT variables. Although

this underdispersion is generally significant for )min, there are not significant

LESS results in several regions mainly for lead years 6–9 and 2–9 in the case

of )mean and, especially, for )max. The hindcasts are generally less reliable in

the Baetic System, in the northwestern regions and also in the northeast. The

season with the largest areas showing hindcast reliability is JJA, particularly for

)max and )mean in lead years 2–5, 6–9 and 2–9. The worst results in these terms

have been obtained for the three NSAT variables in SON.

• The largest areas showing added value of WRF-DPLE to the predictive skill

over CESM-DPLE at annual scale are observed in lead years 6–9 for Zmax and

Zmean, but in lead year 1 for Zmin. In lead years 6–9, the MSSSG positive values

cover most part of the domain for )max, )mean and, to a lesser degree, for )min.

These results are statistically significant for most part of the IP in the case of

)max, in some inner regions close to the Central System and to the south for

)mean, and mostly over the northern half of the domain for )min. Very robust

results indicating added value in terms of MSSSG have also been obtained in

lead year 1 for )min and in lead years 6–9 for )max. In both cases, the statistically

significant positive results generally cover large areas of the domain. A more

limited added value can be still found at other lead times over specific regions

for the three variables, particularly along the Ebro Valley or in the southwestern

sector of the IP. The added value in terms of MSSSG is mainly motivated by the

results obtained for ΔCBG in all cases, since the positive contribution of ΔACCG

is fundamentally constrained to lead year 1 over large areas of the domain and

lead years 2–5 and 2–9 in the Ebro Valley for )min.

• At seasonal scale, the added value of WRF-DPLE to predictive skill over

CESM-DPLE tends to increase when the performance of the global hindcasts

is poor. For example, the highest MSSSG results for )max are observed in lead

years 6–9 and 2–9 in SON, when significant positive values are widespread

along the IP. A similar situation is presented for )mean. For )min, positive MSSSG

outcomes are predominant at all lead times in DJF, although not always showing

statistical significance. There are also positive and significant results in MAM

and JJA, especially for )min and )max, although the regions involved depend
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on the variable and the lead time. The surroundings of the Ebro Valley are

commonly among them. In the case of )mean, the significant added value is

constrained to lead years 6–9 and 2–9 in JJA for central inner regions and the

Ebro Valley.

• There are not significant differences between the reliability of the WRF-DPLE

and CESM-DPLE hindcasts. The absolute values of ΔCRPSSG are not large

enough to show statistical significance. This situation occurs at both annual

and seasonal scales. The sign and magnitude of ΔCRPSSG is determined by the

results achieved for LESSSG, which quantify the extent to which the ensemble

underdispersion or overdispersion is corrected or deteriorated in WRF-DPLE

compared to CESM-DPLE. The spatial distributions of LESSSG present some

structure which depends on the variable, lead time and time scale. Positive

results have been obtained in these terms in lead year 1 for )min and )mean at

annual scale over almost the whole domain. In the case of )mean, these results

are maintained along all lead times in the northern regions. Also at annual

scale, the surroundings of the Ebro Valley are among the regions showing the

best results at all lead times.

• Scores showing the added value of WRF-DPLE to the predictive skill over

WRF-LE at annual scale are mainly observed in lead year 1 for the three

NSAT variables. Nevertheless, these results do not generally present statistical

significance. For )max, positive MSSSU values are observed over the whole

domain, with some locations showing statistical significance over Sierra Morena

and the Baetic System. These results are caused by positive (but generally not

significant) ΔACCU outcomes in the eastern, southern and northern sectors

of the IP, and generalized positive outcomes for CB over the whole domain.

A similar situation is observed for )mean. The positive results for these three

metrics, in the case of )min for lead year 1, are observed in the southwestern

sector of the IP and in some regions in the north. In lead years 2–5, the results are

predominantly negative for the three NSAT variables (with some exceptions for

)max and )mean) because of the confluence of a deterioration of the performance

in terms of ACC and CB in large areas of the domain. Note that these results

should be taken with caution since only 10 start dates (from 1990 to 1999) have

been considered in this evaluation, so they are affected by a large sampling bias.

• At seasonal scale, the largest added value of WRF-DPLE to the predictive
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skill over WRF-LE is observed in MAM. Significant positive results for MSSSU

have been found in the northern and eastern regions, in lead years 1 and 2-5, for

)max and )mean. In the case of )min, the area covered by the significant results is

larger, even spanning almost the whole the domain in lead years 2–5. General

positive and significant MSSSU results have also been obtained in lead year 1 for

)min and, to a lesser degree, for )mean in SON, although they are only present

in some northern, northeastern and southern locations for )max. Promising

results have been found also in the eastern sector for lead years 2–5 in JJA. The

worst results have been obtained in DJF. As at annual scale, these results are

determined by those achieved for ΔACCU and ΔCBU.

• A generalized overestimation of the anomaly at the beginning of the control

period has been found in the analysis of the regional lead time series. This

overestimation is mainly observed at lead years 2–5, 6–9 and 2–9 in several

regions for the three NSAT variables. It contributes to enhancing the differences

between the trends of the WRF-DPLE and AEMET lead time series, frequently

observed for all NSAT variables along the regions, although they are often not

statistically significant. These errors in the representation of the trends have

been partially transferred to WRF-DPLE by the CESM-DPLE hindcasts during

the DD process, as they are also present in the global product. With respect to

the analysis of the skill scores for the spatially averaged lead time series, the

results are consistent with those obtained from the grid-scale analysis for the

three NSAT variables, as expected.
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6
Analysis of sensitivity to extreme initial

conditions of soil moisture in WRF

simulations

This Chapter is dedicated to the analysis of the sensitivity of WRF simulations to

extreme ICs of soil moisture. This analysis has allowed a measurement of the spin-up

time for soil moisture and an evaluation of the impact of these ICs on PR and NSAT

variables. The results obtained in this Chapter have led to consider the initialization

of soil in the DD simulations of the DCPs for the decade 2015–2025, presented in

Chapter 7.

6.1. Spin-up time and soil initialization in dynamical downscaling simulations

The concept of spin-up time and its implications in the representation of climate fields

by a RCM were briefly summarized in Section 3.7. In a DD simulation, the model

climatology depends on the interaction between two main factors: the LBCs provided

by a GCM (or reanalysis) and the internal RCM physics and dynamics (Giorgi and

Mearns, 1999). LBCs and RCM constantly interact to generate fine-scale features from

coarser-resolution fields, but this generation is not instantaneous. The information

provided by the LBCs starts to spread across the RCM domain from the moment

of the initialization. During a certain interval of time, the bias of the RCM tends to

change and eventually oscillate around an asymptotic value (Figure 6.1). The time

when this asymptotic stage is reached establishes the spin-up time needed by the

RCM to generate a dynamical equilibrium between the LBCs and itself. With this

dynamical equilibrium, the RCM is able to represent the physical processes generated

by the joint action between both LBCs and internal RCM physics with a relatively

constant level of skill, while the RCM bias is constrained to a stationary value (Giorgi,
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Figure 6.1 : Schematic example of the spin-up stage for soil moisture. The RCM has been initialized
starting from very dry ICs of soil moisture. The RMSE for soil moisture (solid lines) in a superficial layer A
(blue) and a deep layer B (orange) changes until reaching an asymptotic state, whose beginning constitutes
the end of the spin-up period (blue and yellow dashed lines).

2019; Giorgi and Mearns, 1999). Therefore, the output fields produced during this

spin-up period should not be considered in the analysis (Laprise, 2008).

Jerez et al. (2020) provide a comprehensive list of the multiple factors which

determine the length of the spin-up period. Firstly, the output field to be examined

highly influences on the time required by the RCM to reach the dynamical equilibrium.

The variability time scales of the components of the climate system can be very

different from each other, so the length of the spin up time periods also is. While the

atmospheric fields may often need lengths spanning from a few days to weeks (Gómez

and Miguez-Macho, 2017; Jerez et al., 2020) the longer response of the soil variables

may lead to much longer spin-up periods, spanning several years (Khodayar et al.,

2015). Secondly, the configuration of a RCM influences on its internally generated

variability, so the spin-up time may vary depending not only on the RCM itself, but

also on the selection of the parametrization scheme (Hu et al., 2023). A third factor is

the domain size, because the distance to the lateral boundary also influences on the

ability of the RCM to generate fine-scale features, which ultimately depends on the

GCM resolution, regardless of the RCM resolution (Matte et al., 2017). This aspect

is also known as the spin-up distance (Laprise, 2008; Matte et al., 2017). Jerez et al.

(2020) mention the discrepancies between the RCM and GCM physics (e.g., Turco
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et al., 2013) as another factor which may impact on the length of the spin-up period

through the ICs supplied to the RCM (Jacob and Podzun, 1997). The meteorological

situation or the presence of extreme conditions, such as very wet or dry soil ICs, can

also affect the spin-up requirements (Seck et al., 2015; Yang et al., 2011).

The importance of feedbacks and general interaction between atmosphere and

land surface in determining how climate evolves (Jaeger and Seneviratne, 2011;

Seneviratne et al., 2010) highlights the relevance of the spin-up time for studies in

which these coupling processes are present. The land surface-atmosphere coupling is

highly influenced by the role of soil moisture in the water cycle and in the partition of

the incoming radiative energy into sensible and latent heat fluxes. The impacts of soil

moisture on climate processes are particularly meaningful in regions characterized

by a limitation in soil moisture content (Seneviratne et al., 2010), such as the IP

(García-Valdecasas et al., 2020b). Extreme soil moisture conditions may influence

on the trends and occurrence of climate extremes of temperature and, to a lesser

extent, precipitation in Europe. Jaeger and Seneviratne (2011) showed that wetter

soil conditions would generally lead to lower )max in arid areas, whereas drier soils

would lead to higher values in humid regions. The same study also found a positive

feedback between precipitation and soil moisture in terms of the frequency of wet

days. The climate persistence (or memory) induced by soil moisture, which is a

reservoir of water and energy, acts also as a driver of the land surface-atmosphere

interactions (Seneviratne et al., 2010) and gives this field a potentially important role

in applications which require accurate initial states to make actual predictions of the

climate evolution, such as DCPs (Bellucci et al., 2015). In this line, the initialization of

RCMs by using soil ICs internally consistent with the RCM has shown to provide some

added value in the representation of variables such as temperature or precipitation

(Kothe et al., 2016), and may be particularly useful in the context of DD in a soil

moisture-limited region such as the IP.

6.2. Noah Land Surface Model and soil properties

Among the all options available in WRF to represent the physical processes occurring

in land surface and their interactions with the atmosphere, the WRF configuration

used in this Thesis considers the Noah Land Surface Model (Noah LSM; Chen and

Dudhia, 2001; Ek et al., 2003; Wang et al., 2010). In the WRF framework, LSMs take

information from atmospheric variables, radiative forcing, internal land fields and

land surface properties to generate heat and moisture fluxes at a grid cell level over

land and sea ice. Although the LSMs do not provide trends, they update the land
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state defined by variables such as soil temperature and moisture, skin temperature,

snow cover or vegetation properties at each model time step. The exchange of in-

formation between adjacent grid cells is done along the vertical column, without

any communication over the horizontal level (Skamarock et al., 2008). Noah LSM

uses four soil layers with depths 0–10 cm, 10–40 cm, 40–100 cm and 100–200 cm, and

only a canopy layer. The root zone spans the three layers above the 100 cm depth

level, whereas the deepest fourth layer works like a reservoir with drains water at the

bottom by the action of gravity. The prognostic variables are the soil moisture and

temperature profiles, canopy moisture and snow storage (Chen and Dudhia, 2001).

Noah LSM also includes a evapotranspiration scheme, runoff and accounts for soil

textures, land cover and vegetation properties (Skamarock et al., 2008).

The physical properties of the soil in each grid cell are established by the land

cover and soil textures. These properties determine aspects such as how much water

can be stored in soil, how fast the thermal energy is transferred through soil layers

or the portion of solar energy which is reflected or absorbed by the surface. Thus,

land cover and soil textures are decisive for the LSM in the calculation of the heat

and moisture fluxes at the surface (Wang et al., 2010). The WRF set up for this Thesis

includes the modified IGBP MODIS 20-category vegetation classification as the land

cover dataset (Figure 6.2; Friedl and Land Team/EMC/NCEP, 2008; Friedl et al.,

2010) and the hybrid STATSGO/FAO 16-classes categories (FAO/UNESCO, 1978;

FAO/USDA, 2002; Miller and White, 1998) as soil textures. While the land cover

classes determine vegetation/surface-related properties, such as the green vegetation

fraction, albedo or emissivity, the soil textures are more involved in characteristics

related to soil moisture, such as the field capacity, wilting point or the soil thermal

conductivity/diffusivity (see “Vegetation parameters” and “Soil parameters” sections

in “Unified Noah LSM”, n.d.).

The soil textures have been used to define the soil moisture ICs used to conduct

the sensitivity experiments analyzed in this Chapter. The hybrid STATSGO/FAO

soil textures are determined by the percentage of clay, silt and sand (Figure 6.3a;

Soil Survey Division Staff, 1993) in the composition of the soil categories defined

by FAO/UNESCO (1978) over the whole world excepting the conterminous United

States, where the soil categories defined by Miller and White (1998) are used instead.

Clay, silt and sand are particles of mineral material which can be categorized in terms

of their sizes. The sand type comprises particles with sizes from 0.05 mm to 2 mm,

the size of silt particles ranges from 0.002 mm to 0.05 mm and clay particles have sizes

smaller than 0.002 mm (Soil Survey Division Staff, 1993). The hybrid STATSGO/FAO
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evergreen needleleaf forest
deciduous broadleaf forest
mixed forests
cropland/natural vegetation mosaic
croplands
permanent wetlands
grasslands
woody savannas
savannas
barren or sparsely vegetated
open shrublands
urban and built-up

Figure 6.2 : Dominant land cover classes used by Noah LSM in WRF simulations. Data retrieved from the
modified IGBP MODIS 20-category vegetation classification (Friedl and Land Team/EMC/NCEP, 2008;
Friedl et al., 2010).

dataset provides the spatial distribution of the dominant soil textures on a top and

a bottom layers. However, only the top texture layer is considered by Noah LSM

(Figure 6.3b), which is globally applied to the four soil layers. The domain is mainly

covered by loamy soil materials (loam, sandy loam, sandy clay loam and clay loam;

Soil Survey Division Staff, 1993), with loam spanning most part. There are a few

regions with the clay texture, mainly placed in the south, and other, narrower, with

sand as the dominant texture.

6.3. Experimental design

The experiments conducted in this Chapter aim at analysing the sensitivity of WRF

simulations to extreme ICs conditions of soil moisture. The experimental framework

can be divided into three phases:

a) calculation of the soil moisture ICs;

b) initialization of DD simulations with the soil moisture ICs previously calculated;

c) analysis of the sensitivity of the simulations to these ICs in terms of the spin-up

time required by soil moisture, PR and NSAT.

These simulations were conducted by using the same WRF configuration described

in Section 3.1, but with ERA-Interim reanalysis data providing the RCM with the

information for the ICs and LBCs of all variables with the exception of soil moisture.
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Figure 6.3 : Dominant soil textures used by Noah LSM in WRF simulations. a) Chart which shows the
composition of the texture classes. Composition information retrieved from Soil Survey Division Staff
(1993). b) Soil texture distribution in the IP and Balearic Islands. Data retrieved from FAO/USDA (2002).
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The ICs of soil moisture were set to represent three different soil conditions in terms

of the moisture content: a wet soil, a dry soil and a very dry soil. With wet and very

dry ICs, the response of the WRF simulations to the initialization from extreme soil

moisture conditions can be evaluated, and the influence of the level of dryness can

be addressed by incorporating the dry ICs. Since this analysis is oriented to provide

insights on the impact of soil initialization on the prediction skill of dynamically

downscaled DCPs, the period under study encompass 10 years. In addition, the

simulations have been initialized in two different dates to also test the impact of the

moment of the initialization on the simulated climate: January (boreal winter) and

July (boreal summer). Therefore, there are two different periods considered here, one

ranging from 1990-01-01 to 1999-12-31 and another ranging from 1990-07-01 to 2000-

06-30. A control simulation in which ERA-Interim supplied all initial and boundary

information was also conducted, starting in 1982-01-01 to account for a 8-year spin-up

period. The length of the spin-up period was chosen considering the results obtained

by Khodayar et al. (2015), who showed that soil moisture may need a maximum of

7.5 years for the deepest soil layers of their RCM, down to a depth of 15 m, in DD

simulations over Europe. Although this spin-up period length is required only in the

Scandinavian Peninsula and the authors show that a length around 80 months (∼6.6

years) may be enough in the IP, their experimental framework is different from that

considered in this Thesis: their analysis is done for the IP on average, whereas in this

Thesis it has been done at grid-point level, different RCMs are used, with also different

LSMs, parametrization schemes, ICs, etc. Therefore, the spin-up requirements may

also differ. For this reason, a spin-up period of 8 years was considered in the control

simulation to guarantee a fully equilibrated soil at the beginning of the experimental

periods.

The soil moisture ICs were calculated by combining part of the physical properties

which characterize the dominant soil texture classes in the domain, summarized in

Table 6.1, with the soil moisture index (SMI; Betts, 2004; Seneviratne et al., 2010)

given by

SMI =
� − �WP

�FC − �WP
, [6.1]

where � is the soil moisture, �FC identifies the field capacity and �WP denotes the

wilting point. The field capacity �FC is commonly defined as the amount of water

held in soil after the excess water has drained away by action of the gravity. On the

other hand, the wilting point �WP represents the minimum moisture content below

which the plant activity abruptly decreases (Hillel, 1998). The SMI is a measure of
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Table 6.1 : Soil moisture values for the wilting point (�WP) and field capacity (�FC) which correspond to
each soil texture class in the IP.

Texture class )WP (m3/m3) )FC (m3/m3)

Sand 0.010 0.192

Sandy loam 0.028 0.283

Loam 0.066 0.329

Sandy clay loam 0.069 0.315

Clay loam 0.103 0.382

Clay 0.138 0.412

Water 0.0 0.0

the moisture content available in the soil and generally ranges from 0 (� = �WP)

to 1 (� = �FC). In riverbank areas or after extreme precipitation episodes, the soil

saturation (� > �FC) may lead to SMI values higher than 1 (Seneviratne et al., 2010).

To obtain the soil moisture ICs for the wet soil, �W, the SMI was set to 1 and,

consequently, the soil mositure ICs came from �W = �FC. On the contrary, the very

dry ICs, �VD, were obtained from the soil moisture values corresponding to SMI = 0,

i.e., �VD = �WP. Since SMI = 0.5 constitutes the midpoint between full wetness and

dryness, the ICs for the dry soil, �D, have been obtained from setting SMI = 0.25, so

�D = (�FC+3�WP)/4. The spatial distributions of the soil moisture ICs are available in

Figure 6.4. The spin-up times analyzed in Section 6.4 for soil moisture, PR and NSAT

variables have been obtained by following a similar approach to that described in

a)

0.00 0.08 0.16 0.24 0.32 0.40

W (m3/m3)

b)

0.00 0.04 0.08 0.12 0.16 0.20

D (m3/m3)

c)

0.00 0.02 0.04 0.06 0.08 0.10 0.12

VD (m3/m3)

Figure 6.4 : ICs of soil moisture (�) in the sensitivity experiments for the a) wet, b) dry and c) very dry
soils. These ICs have been obtained by combining the SMI in Eq. [6.1] with the physical properties of each
soil texture in Table 6.1.
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Khodayar et al. (2015), which can be split into three parts. Firstly, the absolute error

between the monthly time series of the experimental and control simulations has been

calculated at each grid point and time step, for each variable and soil layer (in the

case of soil moisture). Secondly, the median value of this absolute error during the

last 5 years of the experimental period has been calculated. Finally, the spin-up time

for each grid cell, soil layer and variable, needed to reach the dynamical equilibrium,

has been defined as the time required by the absolute error time series to cross below

the median value for the first time.

6.4. Results and discussion

6.4.1. Analysis of the spin-up time of soil moisture

This Section is devoted to assess the spin-up time of soil moisture from the sensitivity

experiments conducted with WRF. The results obtained from the experiments initial-

ized on 1990-01-01 and 1990-07-01 are depicted in Figures 6.5 and 6.6, respectively.

The spatial distributions show the time required to get a dynamical equilibrium state

in terms of soil moisture, depending on the soil layer, the soil moisture ICs and the

initialization date. The results have been only shown for the IP, excluding the Balearic

Islands because a mistake in setting the land mask for the DD simulations attributed

initial values equal to 0 for soil moisture in all sensitivity experiments, leading to

inconsistent results in this region.

The spin-up time required by soil moisture to guarantee the dynamical equilibrium

in all layers after starting from extreme ICs in the IP is 8 years, determined by the

maximum value observed in both Figures 6.5 and 6.6. This value is larger than that

obtained by Khodayar et al. (2015). As mentioned Section 6.3, the difference between

both results can be attributed to the differences between the experimental frameworks.

Depending on the specific scopus of the study, shorter spin-up periods may be

considered, since the impact of a not equilibrated soil in atmospheric variables, such

as PR or NSAT, is not as determinant as it would be for the analysis of hydrological

fields. For NSAT and PR, a spin-up time around 1 week may be enough in some cases,

as showed by Jerez et al. (2020). The spin-up requirements for these fields, PR and

NSAT, in our experimental framework are analyzed in Section 6.4.2.

The impact of the soil layer depth on the length of the spin-up period is clear

in Figures 6.5 and 6.6, especially when comparing the first three layers with the

fourth one. The soil moisture in the most superficial layers is subjected to a higher

variability because the influence of the interaction between the atmosphere and
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Figure 6.5 : Spin-up time for soil moisture depending on the soil layer (rows) and the soil moisture ICs
(columns) for the sensitivity experiments initialized on 1990-01-01.

them on determining the evolution of the soil variables is more immediate than

in deeper layers (Jerez et al., 2020). The water coming from precipitation needs

more time to reach the deepest soil layers, making the soil state set by the ICs more

persistent and consequently increasing the spin-up time (Khodayar et al., 2015). For

example, the differences among soil layers in results depicted over the Southern
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Figure 6.6 : As Figure 6.5 but for the sensitivity experiments initialized on 1990-07-01.

Subplateau are high enough to exhibit appreciable changes in the spin-up times in

the dry experiments initialized in January (Figures 6.5b, 6.5e, 6.5h and 6.5k). While

the longest spin-up period is around 5 years in the first layer, the maximum length

increases to approximately 7 years in the second layer, to about 7.5 years is the third

one and up to 8 years in the deepest layer.

181



6. Analysis of sensitivity to extreme initial conditions of soil moisture in WRF simulations

Another aspect which influences on the spin-up time is the soil moisture content

defined by the ICs. The soil memory generally increases with the decrease of the

amount of water stored by the soil, showing longer spin-up periods the regions

in experiments with drier initial values of soil moisture. The soil capacity to hold

water is higher in drier conditions (Seneviratne et al., 2010), so it is expected that

the absence of soil water slows down the transport of the water from precipitation

through the soil layers (Khodayar et al., 2015). Therefore, the dynamical equilibrium

state is normally reached later in the experiments with very dry ICs compared to

those with wet ICs. The experiments with dry ICs are in a midpoint between the

wettest and the driest ones.

The effects of the ICs on the spin-up time exhibit some seasonality, as the impact

of the initial moisture content on the evolution of soil moisture is modulated by the

experiment start dates. The wet experiments initialized in January show shorter

spin-up times than those initialized in July. For instance, looking at the first soil

layer in the western part of the IP in Figures 6.5a and 6.6a, the spin-up time slightly

increases from 0–0.5 years to 0.5–1 years, respectively. This behaviour is observed

in most part of the domain through all soil layers. On the other hand, the dry

and very dry experiments initialized in July typically need shorter spin-up periods

than the experiments initialized in January. As an illustrative example, look at the

Guadalquivir Valley in Figures 6.5l and 6.6l, where the spin-up time generally turns

from 6.5–7 years to 7–7.5 years, respectively. This seasonality may be related to

the magnitude of the perturbation of soil moisture ICs with respect to the values

which correspond to the equilibrated soil state at the same moment. Figures 6.7

and 6.8 show the differences between the ICs of the experimental soil moisture, �EXP,

with EXP = {W, D, VD}, and the control soil moisture, �CTL, on 1990-01-01 and

1990-07-01, respectively. In wet experiments, the differences �EXP − �CTL are more

pronounced for the simulations initialized in July. Therefore, the shock produced

by initializing with wet conditions at this date leads to a longer time to reach an

equilibrated state. Indeed, while �EXP−�CTL are undoubtedly positive for experiments

initialized in July (excepting in a few locations with water as soil texture), negative

differences appear in January-initialized experiments, mostly in the deepest layer,

indicating that the perturbed ICs are slightly drier than the control soil. The opposite

situation occurs when examining the dry and very dry experiments. In these cases,

the deviations from the control states at the initialization dates are higher in the

experiments initialized in January, explaining the generally longer spin-up periods

needed compared to the July counterparts. The differences between January and
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Figure 6.7 : Differences between the ICs of soil moisture for the sensitivity experiments (columns) and the
control simulation in each soil layer (rows). The sensitivity experiments were initialized on 1990-01-01.

July control soil moisture are partly caused by the differences in the meteorological

conditions of the preceding months (Figures 6.9a to 6.9d). In the IP, as a soil moisture-

limited region, the occurrence of precipitation events and low temperatures in winter

positively influences on moisture content in soil, whereas summer low precipitation
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Figure 6.8 : As Figure 6.7 but for the sensitivity experiments initialized on 1990-07-01.

rates and high temperatures strongly contribute to decreasing soil moisture through

evapotranspiration (Seneviratne et al., 2010).

The length of the spin-up period also shows some spatial variability, which might

be attributed to some extent to the spatial distributions of PR, )mean and soil textures.

The longest spin-up periods are mainly observed over the Guadalquivir and Ebro
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Figure 6.9 : Spatial distributions of monthly control )mean (left column) and PR (right column). Top
and middle rows correspond to the monthly fields in the previous months to the initialization dates of
the sensitivity experiments. Panels in the bottom row show the average of the monthly fields over the
control period, which starts in 1990-01-01 (start date of the experiments initialized in January) and ends in
2000-06-30 (end date of the experiments initialized in July).

Valleys for all sensitivity experiments, where clay and clay loam are among the

dominant soil textures (Figure 6.3a). Clay soils are characterized by having a low

hydraulic conductivity (Chen and Dudhia, 2001), a magnitude proportional to the

amount of water which is transported through them along time (Soil Survey Division
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Staff, 1993). Thus, soils with high composition of clay, such as clay and clay loam

textures (Figure 6.3b), are expected to have a higher climate persistence because more

time than for other soil types might be required to observe changes in soil moisture

content. This phenomenon could be amplified if these soils are additionally placed

in regions characterized by atmospheric conditions which lead to limitations in soil

moisture content (relatively low precipitation rates and high temperatures), just as it

happens in the cases of Ebro and Guadalquivir Valleys on average over the whole

control period (see Figures 6.9e and 6.9f). The same combination of atmospheric

conditions and soil textures may also explain the long spin-up periods observed in

dry and very dry experiments in the fourth layer over mostly the southern half of

the IP. Nevertheless, since hydraulic conductivity is proportional to soil moisture

content (Chen and Dudhia, 2001), different precipitation/temperature regimes may

lead to different spin-up times in soils sharing the same texture class. For this reason,

looking at Figures 6.5j to 6.5l, for example, a spin-up period around 7 years is needed

in Ebro Valley, but only 1 year or less may be required in part of the northwestern

area, characterized by higher precipitation rates and lower temperatures (Figures 6.9e

and 6.9f), although the soil texture is the same in both regions (Figure 6.3a).

There is also a curious phenomenon which occurs over the Guadalquivir and Ebro

Valleys, alongside some locations in the Northern Subplateau or in the southwest of

the IP. In dry and very dry experiments, these regions are among those which show

the longest spin-up periods for the deepest layer, but they do not for the upper three

layers (Figures 6.5 and 6.6). On the contrary, in these layers, the spin-up times are

shorter than for the surrounding regions. This marked contrast between the upper

three and the fourth layers is observed regardless the initialization date, but it is not

present in wet experiments. The land cover may be partly responsible of these results;

indeed, the shape of the land cover structure in Figure 6.2 somewhat resembles the

patterns observed in Figures 6.5 and 6.6 for dry and very dry experiments in the

first three layers, especially in the Guadalquivir Valley. The areas which show this

behaviour are covered by croplands. This land class is characterized by a root zone

spanning the upper three soil layers (excluding the deepest layer) and a very low

value of the minimum stomatal resistance, among other features (see the “Vegetation

parameters” section in “Unified Noah LSM”, n.d.). According to Seneviratne et al.

(2010), the stomatal resistance plays a crucial role in the evapotranspiration process

represented by LSMs. The stomatal resistance is a measure of the resistance to

water transport offered by stomata, which are pores on the vegetation epidermis

that regulate the exchange of water and CO2 with atmosphere. A low (high) value
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of stomatal resistance positively (negatively) affects the magnitude of the water

evapotranspirated from vegetation and, consequently, has an impact on the soil

moisture content (Chen and Dudhia, 2001). In regions habituated to exhibit minor

resistance to this type of evapotranspiration (e.g., regions covered by croplands),

thus, the soil state in dry and very dry scenarios generally tends to be closer to the

control state than in the case of regions where the stomatal resistance is higher. In

consequence, the former would need less time than the latter to reach the dynamical

equilibrium. This phenomenon is observed only in the upper three layers because the

root zone of croplands is constrained to them. In the fourth layer, where there is no

water to be taken by vegetation, the low hydraulic conductivity of clay soils produce

the long spin-up periods observed in Figures 6.5k, 6.5l, 6.6k and 6.6l.

6.4.2. Analysis of the spin-up time of precipitation and near-surface air temperature

The effect of the soil moisture ICs on the spin-up of PR, )max, )min and )mean is dis-

played in Figures 6.10 and 6.11 for simulations started in January and July, respectively.

The variable which shows the shorter spin-up periods is PR. For experiments

initialized in January (Figures 6.10a to 6.10c), PR generally needs a period below

2 months to reach the dynamical equilibrium. There are a few locations which

require a longer spin-up time, mostly situated in the northwestern sector of the IP,

but they conform a sparse minority and their spin-up times are commonly below 1

year. Although these regions are slightly more present in the very dry experiment,

there are not big differences between the three scenarios, suggesting that the role

of the model internal variability prevails over the imposed ICs of soil moisture in

determining the evolution of PR. For this variable, the impact of the soil moisture

conditions is more evident in experiments initialized in July (Figures 6.11a to 6.11c),

when the wet experiment seems to be the most affected. The spin-up time is usually

longer for the wet scenario than in the dry and very dry experiments, as occurred for

soil moisture in Figures 6.6a to 6.6c, because the deviation from the control state for

wet ICs is larger in July than in January. Large areas of the domain, mainly placed in

the northern half of the IP, show spin-up periods from 3 to 10 months for wet ICs

(Figure 6.11a). The area showing similar results is narrower for dry and very dry ICs

(Figure 6.11b, respectively). In all cases, the lowest values of the spin-up time have

been found in the southern regions.

The most affected variable by the shock associated to the soil moisture ICs is )max,

since it shows the longest spin-up times among the analyzed fields. For experiments
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Figure 6.10 : Spin-up time for PR, )max, )min and )mean (rows) depending on the soil moisture initial
conditions (columns) for the sensitivity experiments initialized on 1990-01-01.

initialized in January (Figures 6.10d to 6.10f), the longest periods have been found

for the dry and very dry experiments, with spin-up times mainly above 10 months

over the whole domain. Higher values can be observed in these scenarios over

eastern regions, some along the Mediterranean coast, those locations between the

Guadalquivir Valley and the Central System and some northern areas. In these zones,
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Figure 6.11 : As Figure 6.10 but for the sensitivity experiments initialized on 1990-07-01.

the length of the period is typically between 20 and 30 months, although some sparse

locations can reach values even above 36 months up to a maximum of 45 months in the

most extreme case. The very dry experiment generally shows periods longer than the

dry simulation. The spatial distributions of spin-up time show a different structure

when the experiments are initialized in July (Figures 6.11d to 6.11f). In dry and very
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dry scenarios, the spin-up time decreases compared to the other initialization date. In

contrast, it generally increases in the wet experiment, when differences even above 10

months can be found between both initialization dates. The similarities between the

spin-up time spatial distributions for )max in Figures 6.10 and 6.11 and soil moisture

in Figures 6.5 and 6.6 in the upper three layers reflect the strong relationship existing

between both variables in the IP, showing the existence of land surface-atmosphere

coupling processes involving these two variables, as already documented in previous

studies (see, e.g., García-Valdecasas et al., 2020b; Jaeger and Seneviratne, 2011; Lorenz

et al., 2012; Seneviratne et al., 2010).

The results obtained for )mean and, especially, )min show that these variables are

not as influenced by the extreme soil moisture ICs as )max. This finding is consistent

with the study made by Vidale et al. (2007), who showed that drier soil conditions

lead to a broadening of the diurnal temperature cycle as consequence of the increase

of )max, with a lower contribution of )min. The spatial distributions of )min show noisy

patterns regardless of the ICs and the initialization date, and the spin-up times are

much shorter than for )max. In January, as usual, the longest spin-up periods are

observed in the dry and very dry scenarios. Although some scattered locations might

present spin-up times around 18 months and above in both experiments, the results

are commonly below 12 months, approximately. The regions showing these values

are mainly situated over the Northern Subplateau in both experiments. On the other

hand, periods with lengths typically below 7 months are found in the wet experiment,

with a considerable portion of the domain needing less than 2 months of spin-up

time. The experiments initialized in July show similar characteristics: noisy patterns

and spin-up times normally below 12 months. In this case, dry experiments show

slightly longer spin-up times than those initialized in January, whereas it depends

on the region for the very dry simulations. On the other hand, the wet experiments

clearly exhibits longer spin-up times for the initialization in July. After PR, )min

is the variable least affected by soil moisture ICs. Some spatial noise is observed

also in )mean panels for initialization in January (Figures 6.10j to 6.10l), but with

longer spin-up times compared to )min. In dry and very dry scenarios, values above

9 months are generalized over the whole domain, with maximum lengths starting

from 24 up to 32 months in a few locations. In the wet experiment, there is a clear

difference between the eastern and the western sectors of the IP, with the former

showing spin-up times between 5 and 10 months and the latter with values generally

below 2 months. For the initialization in July, the longest spin-up times are commonly

found once again in the wet experiment, with maximum values which usually do not
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surpass 17 months mainly situated in the Southern Subplateau and some locations in

the Northern Subplateau, the northeast and some southern locations.

6.5. Concluding remarks

The simulations analyzed in thisChapter have contributed to stressing the importance

of land surface-atmosphere interactions in the evolving climate. The simulations

initialized with extreme soil moisture conditions have shown the effects that the

soil water content can have on determining the evolution of atmospheric fields such

as PR or NSAT. These findings have some important implications in the context

of dynamically downscaled DCPs. The moisture content in soil at the moment of

initialization clearly influences on the time needed by soil moisture to reach a dy-

namical equilibrium and, consequently, the time needed by those atmospheric fields

which directly interact with soil. While PR might reach this equilibrium relatively

quickly (in less than 10 months in most part of the IP), NSAT fields usually need

longer spin-up times over the whole domain under extreme soil moisture conditions,

especially in the case of )max. During this period, the RCM is not able to represent the

evolution of these variables with a constant level of skill, since the bias fluctuates until

it reachs the stationary state which determines the end of the spin-up period. This

affects directly the simulations analyzed in Chapters 4 and 5, since no spin-up time

was considered because it would have implied losing the first years of the hindcasts,

making impossible assessing the predictive skill in these early years of the decade. In

consequence, the predictive skill of the variables analyzed in those Chapters might

be deteriorated to some extent by the presence of spin-up-related biases, at least

during the first years of the simulations. Although PR may not experience significant

improvements by starting the simulations from an already dynamically equilibrated

soil state, it may potentially benefit the predictive skill for NSAT, especially in the

cases of )mean and )max, for lead years 1, 2–5 and even 2-9, presumably. Given this

situation, a dynamically equilibrated soil state, taken from a WRF simulation with

ICs and LBCs provided by ERA-Interim, was been used to initialize the dynamically

downscaled DCPs for the decade 2015–2025, presented in the following Chapter 7, in

order to maximize as much as possible the predictive skill of the analyzed variables.
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Decadal climate predictions for the period

2015–2025

This Chapter is devoted to examine the results obtained by the WRF-DPLE DCPs

for PR, )max, )min and )mean in the decade 2015–2025. As stated in Section 3.8, the

whole 10-member CESM-DPLE subensemble available for DD simulations has been

downscaled in this case, so the dependence of the results on the ensemble size has

also been evaluated. Given the results obtained in Chapter 6, the initialization from

a dynamically equilibrated soil state has been considered in the DD simulations for

the decade 2015-2025 with the aim of enhancing as much as possible their predictive

skill. More details about the soil initialization are available in Section 3.7.

To distinguish between the 4-member and 10-member WRF-DPLE ensembles,

they will be referred to as WRF-DPLE4 and WRF-DPLE10, respectively, in the course

of this Chapter. WRF-DPLE10 has been recalibrated by following the same procedure

previously applied for WRF-DPLE4, which was described in Section 3.5.

7.1. Precipitation

7.1.1. Analysis of the WRF-DPLE4 predictions

The spatial distributions of the multiannual mean anomalies of PR, half of the width

of the confidence intervals at the 90 % level associated to a single WRF-DPLE4 mem-

ber (±ΔPR90) and the relative anomaly error (�R; Eq. [3.12]) at annual scale for

WRF-DPLE4 have been depicted in Figure 7.1. The anomalies have been computed

by subtracting to the full fields the same lead time-dependent climatology calculated

for the control period with the hindcasts analyzed in the previous chapters (see

Eqs. [3.3] and [3.4]). The confidence intervals have been calculated also with those

hindcasts by considering that the single members follow a Gaussian distribution
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Figure 7.1 : Spatial distributions of the WRF-DPLE4 multiannual mean anomalies of PR (left column),
half the width of the 90 % confidence intervals for a single WRF-DPLE4 member (±ΔPR90, center column)
and the relative anomaly errors (�R, right column), with AEMET as the observational dataset, at annual
scale for several lead times (rows). The absence (presence) of black dots denote the locations where the
forecast uncertainty is (not) represented by the confidence intervals. In PR and �R maps, pink triangles
identify the locations where the predictions are reliable but the confidence intervals do not contain the
AEMET anomalies.

of mean equal to the ensemble mean and variance equal to the average ensemble

variance �2
.

(Eq. [3.32]). The same considerations were assumed in the previous
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analyses of the reliability of the hindcasts. The spatial distributions of �R have not

been shown in lead years 6–9 and 2–9 because there are not available observations in

the AEMET dataset from 2023 onwards.

As shown in Figure 4.7, the predictions are reliable mainly in the northern sector

of the IP and part of the Mediterranean coast for lead year 1. At this lead time, the

anomalies depicted in Figure 7.1a are commonly positive over regions in the northern

sector, where values above 6 mm/month have been found in the central north and the

northwest, with the latter showing maximum values above 12 mm/month in some

locations. Some negative anomalies are shown in the northwestern coast, over the

Central System, the Mediterranean coast, the northeast sector and some regions in

the south of the IP. The strongest negative values are observed in the eastern flank,

with anomalies below -6 mm/month, and in the southernmost regions close to the

Strait of Gibraltar, with anomalies even below -12 mm/month. In general, higher

positive anomalies than in northern areas have been found in the southern half of the

IP, but the predictions are commonly not reliable in this part of the domain. There are

also a few locations in the northwest and south whose AEMET anomalies fall outside

the confidence intervals. At this lead time, the lowest relative errors in absolute

value, which are below 20 %, have been found over the Northern Subplateau and

surrounding regions (Figure 7.1c). Higher errors can be found in other locations

with reliable predictions, such as the northeast of the IP, with values generally higher

than 20 %, or the southernmost regions, where the �R outcomes surpass 80 %. As the

positive �R values indicate, the anomalies are generally overestimated in lead year 1.

In lead years 2–5, the positive anomalies show smaller values than in lead year 1,

in some cases turning into negative results, and the negative anomalies are slightly

more intense (Figure 7.1d). In this case, the predictions are reliable over vast areas

of the domain, excluding some regions in the eastern flank, in the southwestern

sector and along the Atlantic and Cantabrian coasts. The highest reliable positive

anomalies are still observed in the northwestern regions, with values commonly

above 6 mm/month, whereas the most robust negative results are found in the

Central System and northern regions, with minimum values mainly between -8 and

-6 mm/month. At this lead time, more locations than in lead year 1 exhibit AEMET

anomalies which fall outside the confidence intervals. These locations are generally

placed in the north and northeast of the IP, although other, scattered in the eastern

and southern sectors, are also observed. The results obtained for �R generally show

the same sign of their associated anomaly, indicating that the absolute value of the

actual anomaly is commonly overestimated. In those regions where predictions are
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reliable, the lowest errors are usually found in central southern locations and in

the north part of the domain. The northwest and part of the Central System show

negative errors, whereas positive errors are frequently found elsewhere. The highest

positive errors have been found in the southern part of the Northern Subplateau,

with values up to 40 %.

The anomalies generally turn into negative values at the end of the decade. In

lead years 6–9, most part of the regions where predictions are reliable show negative

results, excepting some areas in the surrounding regions of the Iberian System and

in the northeastern coast (Figure 7.1g). The most intense negative results are below

-12 mm/month in the Central System, the northwest of the IP and to the south of

the Pyrenees. On the other hand, the positive anomalies are between 4 mm/month

and 12 mm/month close to the Iberian System, whereas they reach minimum values

below 0.2 mm/month in the northeastern regions. A similar situation is observed in

lead years 2–9, but with more moderate anomalies (Figure 7.1i). In this case, most

part of the domain exhibits reliable results, with positive outcomes mainly covering

the Iberian System and, on the contrary, negative values almost spanning the rest

of the domain. The strongest reliable negative anomalies are again observed in the

Central System, in locations close to the Pyrenees and in the northwestern regions,

with values even below -12 mm/month for the latter. At all lead times, the confidence

intervals defined by ±ΔPR90 are much larger than the magnitude of the anomaly and,

therefore, they usually encompass anomaly values with opposite signs. This fact is a

consequence of the impact that the signal-to-noise paradox has on the DCPs for PR,

which was previously discussed in Section 4.1.

The results for the WRF-DPLE4 multiannual mean anomalies of PR at seasonal

scale are depicted in Figure 7.2. The most intense anomalies for each region have

generally been found in lead year 1. The highest absolute values are mainly observed

in DJF at this lead time, although many regions lack of reliable predictions. The

maximum values at this time are above 30 mm/month in the northern regions where

the predictions are reliable. More moderate positive results are observed in the

northeastern sector, whereas negative anomalies have been found in the southeast of

the domain. The anomalies in DJF are predominantly positive in the first half of the

decade, although they turn into negative for large areas of the domain in lead years

6–9 (Figure 7.2i). However, the area of negative anomalies found in the southern half

of the IP at this lead time is mainly placed over regions where the predictions are not

reliable. Reliable anomalies below -20 mm/month can be found in locations close

to the Guadalquivir Valley and, with a more moderate magnitude, in the Northern
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Figure 7.2 : Spatial distributions of the WRF-DPLE4 multiannual mean anomalies of PR for lead years 1,
2–5, 6–9 and 2–9 (rows) in DJF, MAM, JJA and SON (columns). The absence (presence) of black dots
denote the locations where the forecast uncertainty is (not) represented by the confidence intervals. Pink
triangles identify the locations where the predictions are reliable but the confidence intervals do not
contain the AEMET anomalies.

Subplateau. On the other hand, they are mainly positive in the eastern part of the

IP. For lead years 2–9 in DJF (Figure 7.2m), the anomalies are generally positive and

below 10 mm/month in regions with reliable predictions. The season which shows

the largest areas with reliable predictions is MAM. It shows positive anomalies which

almost completely cover the domain in lead year 1 (Figure 7.2b). The positive results

continue dominating the northern and southern halves of the domain in lead years

2–5 and 6–9, respectively. In lead years 2–9, the strongest anomalies are negative and

below -15 mm/month in the northern regions (Figure 7.2n). On the other hand, the

highest positive anomalies are slightly less intense and have been found along the
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7. Decadal climate predictions for the period 2015–2025

Mediterranean coast and some locations to the south of the Northern Subplateau,

with values between 5 and 10 mm/month. For the other seasons, JJA and SON, the

results obtained for the anomalies depend on the lead time. In locations with reliable

predictions, the positive anomalies are more frequent in SON for lead year 1 and in

JJA for lead years 2–5. At the decadal scale, the areas covered by reliable negative

anomalies are larger than those covered by positive results in both seasons, but with

more intense anomalies in SON.

The results obtained in MAM exhibit AEMET anomalies outside the confidence

intervals over multiple regions at both lead years 1 and 2–5, as well as in DJF and

JJA to a lesser degree. Although there is a probability of 10 % associated to the

occurrence of these episodes, this high frequency suggests that there are certain

aspects to consider about the calculation of these intervals. There are two factors

which may be favouring these results. Firstly, note that soil was initialized in the DD

simulations which generated the downscaled predictions for the decade 2015–2025.

By contrast, the confidence intervals were calculated with downscaled hindcasts

which did not consider this soil initialization. This fact may affect to some extent

the computation of these intervals, especially in lead year 1, because of the biases

related to the spin-up. However, note also that the spin-up period needed after the

initialization with very extreme soil moisture conditions is generally lower than 10

months for PR (Figures 6.10 and 6.11). Under more normal initial conditions of soil

moisture, the spin-up time needed by the dynamically downscaled PR is expected

to be even shorter. Therefore, this factor might not totally explain these results by

itself in lead year 1, and even less in lead years 2–5. The second factor which may

potentially be causing these outcomes is the time gap between the end of the control

period and the decade 2015–2025, along with the number of start dates in the former.

This gap spans 15 years, being equivalent to half the number of start dates included

in the control period. So, in order to consider the confidence intervals calculated in

the control period to quantify the uncertainty of the predictions during the decade

2015–2025 in regions with reliable predictions, two requisites must be assumed. The

first requisite is that the relationship between the average ensemble spread and the

squared standard error (Eqs. [3.32] and [3.33], respectively) in this decade continues

being the same as in the control period. The second requisite is that the recalibration

coefficients used to correct the WRF-DPLE experiments, calculated in the control

period, are also valid for this decade. The sampling biases could lead to a situation

where these requisites may not be satisfied if the gap between the control period and

the decade 2015-2025 is too large, or if the length of the control period relative to this
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gap is not long enough. Therefore, these confidence intervals might not be adequate

to quantify the uncertainty for this decade, at least in this season and in the regions

showing these results.

The spatial distributions of ±ΔPR90 and �R at seasonal scale can be consulted

in Figures B.58 and B.59, respectively, both available in Appendix B.3.1. Since the

variability at seasonal scale is higher than at annual scale, the results obtained for

±ΔPR90 lead to wider confidence intervals. The results obtained for �R depend on the

season and lead time. The lowest errors are usually found in MAM and SON for lead

years 2–5, as well as in DJF for some northwestern and southeastern regions in lead

year 1 or along the Mediterranean coast in lead years 2–5. The regions in the northern

half of the IP in lead years 2–5 and JJA also show errors with similar magnitudes. By

contrast, the highest �R values have been found in JJA over the whole domain for

lead year 1 and mainly in the southern part for lead years 2–5, caused by the low PR

rates which are commonly observed in this season (e.g., see Figure 4.4).

7.1.2. Comparison with the WRF-DPLE10 ensemble

The results for the multiannual mean anomalies of PR from the WRF-DPLE10 en-

semble mean have been depicted in Figure 7.3. There is not any indication about

the locations which have reliable predictions because it was only assessed for the

WRF-DPLE4 hindcasts. The spatial distributions are qualitatively similar to those

obtained for WRF-DPLE4 in Figure 7.1. In lead year 1, negative anomalies have been

found in the eastern regions of the domain, whereas most part of the rest of the IP

is covered by positive anomalies. While the maximum values above 12 mm/month

have been found to the west of the Central System and in the northwestern regions,

the minimum outcomes, below -12 mm/month, have been found to the south of the

Pyrenees. At this lead time, WRF-DPLE10 shows more moderate positive anomalies

than WRF-DPLE4 in the southern regions (Figure 7.1a). The area covered by neg-

ative anomalies is larger in lead years 2–5 (Figure 7.3b), when the positive results

are found mainly to the north of the Ebro Valley, in the Northern Subplateau and,

especially, in the northwest. In this case, the positive anomalies over the Northern

Subplateau and Ebro Valley are slightly higher than those found for WRF-DPLE4

(Figure 7.1d), turning from negative into positive for the latter. In lead years 6–9

(Figure 7.3c), the negative anomalies are much more frequent than those positive,

which are constrained to regions surrounding the Iberian System and close to the

Mediterranean coast. The strongest negative results, found in the northwest of the IP,

with values generally below -6 mm/month and even -12 mm/month in some cases,
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Figure 7.3 : Spatial distributions of the WRF-DPLE10 multiannual mean anomalies of PR in lead years 1,
2–5, 6–9 and 2–9 at annual scale.

are less accentuated than for WRF-DPLE4 (Figure 7.1g). In lead years 2–9, the domain

is almost fully covered with negative anomalies. The minimum anomalies have been

found in the Cantabrian Range, with values generally below -6 mm/month. As in

previous lead times, the most extreme values tend to be slightly more moderate than

in the case of WRF-DPLE4. See, for example, the northwestern regions, the Pyrenees

or the Central System in Figures 7.1i and 7.3d. The results obtained at seasonal scale

are available at Figure B.60 in Appendix B.3.1. These spatial distributions are also

qualitatively similar to those obtained from WRF-DPLE4 in Figure 7.2. However,

there are still some differences. For example, the southeastern Mediterranean coast

exhibits slightly more intense negative anomalies from WRF-DPLE10 in lead year 1

in DJF, and higher positive anomalies to the north of the Iberian System have been

found at the same time (Figure B.60a). Differences of similar magnitude can be found

across seasons and lead times, although the most important differences are observed

for lead year 1 in MAM, when the strong positive anomalies above 30 mm/month for
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WRF-DPLE4 (Figure 7.2b) are drastically reduced and even turn into negative for

WRF-DPLE10 (Figure B.60b).

The spatial distributions of the results obtained from the WRF-DPLE10 ensem-

ble mean in terms of �R and MSSS4 (MSSS for WRF-DPLE10 with WRF-DPLE4 as

reference dataset; Eq. [3.16]) at annual scale for the decade starting in 2015 are

shown in Figure 7.4. The spatial distributions of �R for WRF-DPLE10 and WRF-

DPLE4 (Figure 7.1) commonly share the same sign, although differences between

their magnitudes lead to the differences observed in the results obtained for MSSS4.

WRF-DPLE10 generally shows a better ability than WRF-DPLE4 to predict the AEMET

anomalies, especially in lead year 1. This improvement in predictive skill is observed

mainly in regions over the southern half of the IP, as well as for some in the northwest,

northeast and to the southwest of the Pyrenees. On the other hand, a higher skill for

WRF-DPLE4 is observed in locations close to the Central System and in some other

regions scattered along the northern part of the IP. Similar performances between

both ensembles have been obtained mainly along the Mediterranean coast and the

Northern Subplateau. The MSSS4 values are exactly 0 in the latter regions in particular
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Figure 7.4 : Spatial distributions of relative anomaly errors (�R, left column) for the WRF-DPLE10

multiannual mean anomalies of PR, with AEMET as the observational dataset, and MSSS calculated with
WRF-DPLE4 as reference (MSSS4, right column) in lead years 1 and 2–5 (rows) at annual scale.
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because of the recalibration which have been applied to the downscaled DCPs and

the filter which selects the locations that are or not subjected to such recalibration

(see Section 3.5). Since the recalibration coefficients were calculated with the WRF-

DPLE4 hindcasts, the results obtained for WRF-DPLE10 are equal to those obtained

by WRF-DPLE4 in those regions where the predictions have been recalibrated. In

lead years 2–5, the area where WRF-DPLE10 outperforms WRF-DPLE4 is still large,

but its extension decreases compared to lead year 1. In this case, the negative MSSS4

scores showing better skill for WRF-DPLE4 have been found mainly over the Northern

Subplateau and regions to the east, the Central System, some locations over the Baetic

System and other smaller regions scattered along the domain. On the other hand,

WRF-DPLE10 provides better estimations of the anomalies along the Cantabrian and

Mediterranean coasts, the northeast of the IP and most part of the southern half of the

domain. Note that MSSS4 has been calculated from RMSE scores computed only for

one start date. Therefore, these results should not be used to compare WRF-DPLE4

and WRF-DPLE10 performances in the evaluation of the impact of the ensemble size

on the predictive skill for the DPS as a whole, since these results are influenced by

a very large sampling bias. A more comprehensive set of experiments would be

needed to address that task. Instead, they are only valid to compare WRF-DPLE4

and WRF-DPLE10 for this specific decade starting in 2015. Regardless of the results

obtained here, the increase of the ensemble size is expected to provide more robust

estimations of the actual climate and enhance the predictive skill of the DPS by reduc-

ing the unpredictable background noise and contributing to adequately capturing

the climate signal, as discussed in previous chapters.

The results obtained for MSSS4 at seasonal scale have been depicted in Figure 7.5.

The spatial structure of this score depends on the season and the lead time. The

areas covered by positive results are commonly larger than those which have negative

scores, with the clear exceptions of MAM and JJA in lead year 1. In these cases, larger

�R values observed in Figures B.61b and B.61c for WRF-DPLE10 than for WRF-DPLE4

in Figures B.59b and B.59c (see Appendix B.3.1) lead to the generalized negative

MSSS4 scores observed in these seasons. At this lead time, WRF-DPLE10 dominates in

the southern half of the IP in DJF (with some exceptions mainly in the eastern flank),

whereas WRF-DPLE4 often obtains better results in the northern regions (Figure 7.5a).

In SON, on the other hand, similar performances between both have been found over

the eastern part of the domain (Figure 7.5d). By contrast, WRF-DPLE10 is still better in

northern and southern regions in this season, although WRF-DPLE4 performs better

mainly over some inner central areas. In lead years 2–5, WRF-DPLE10 outperforms
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Figure 7.5 : Spatial distributions of the MSSS for the WRF-DPLE10 multiannual mean anomalies of PR,
with WRF-DPLE4 as reference (MSSS4), for lead years 1 and 2–5 (rows) in DJF, MAM, JJA and SON
(columns).

WRF-DPLE4 over much large areas of the domain, not only in MAM and JJA but also

in DJF and, to a lesser extent, in SON.

7.1.3. Predictions for regional averages

As done in previous chapters for the analysis of the hindcasts, the anomalies of the

downscaled DCPs for the decade starting in 2015 have been spatially averaged over the

regions obtained from the regionalization of AEMET PR described in Section 3.6 ( see

Figure 3.5a). This regionalization groups together those locations which have similar

PR regimes, so these averages can be interpreted as a general representation of the

anomaly of PR in each region. From this regional perpective, the results obtained at

annual scale for the same metrics computed in sections above have been summarized

in Table 7.1.

As happened in the analysis at grid-point scale, the second half of the decade

shows generalized negative PR anomalies from WRF-DPLE4 in all regions. In the

first 5 years of the decade, however, some regions, such as the NW or WI regions,

exhibit positive results, especially in lead year 1. Negative results for the WRF-DPLE4

PR anomalies have also been found in lead years 2–9, even in that regions presenting

positive anomalies in lead years 2–5. In lead years 2–9, the confidence intervals

defined by ±ΔPR90 for WRF-DPLE4 can be used to quantify the forecast uncertainty
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Table 7.1 : Skill scores for the spatially averaged WRF-DPLE multiannual mean anomalies of PR in lead
years 1, 2-5, 6-9 and 2-9 for the decade starting in 2015 at annual scale. PR is the anomaly for the WRF-
DPLEN (the N-member WRF-DPLE ensemble) ensemble mean, ±ΔPR90 represents half the width of the 90
% conficence interval for a single WRF-DPLE member, �R is the relative anomaly error, with AEMET as the
observational dataset, and MSSS4 denotes the added value of WRF-DPLE10 over WRF-DPLE4. Only for the
WRF-DPLE4 PR, the bold formatting denotes that WRF-DPLE4 is able to represent the forecast uncertainty
and that the 90 % confidence interval encloses the AEMET anomaly; the symbol “(∗)”, if any, means that
the former is satisfied but the latter is not; finally, the plain formatting is used when WRF-DPLE4 cannot
represent the forecast uncertainty. Dashes denote data unavailability at that lead time.

Region Lead
years

WRF-DPLE4 WRF-DPLE10

PR
(mm/month)

±�PR90

(mm/month)
KR

(%)
PR

(mm/month)
KR

(%)
MSSS4

EI

1 0.68 11.63 11.48 -0.72 7.95 0.52
2-5 -1.56 7.34 -5.84 -1.53 -5.77 0.02
6-9 -1.97 7.22 – -1.48 – –
2-9 -1.76 5.15 – -1.50 – –

WI

1 4.97 16.27 8.61 4.24 7.24 0.29
2-5 0.06 11.60 12.60 0.37 13.24 -0.10
6-9 -6.66 11.03 – -3.97 – –
2-9 -3.30 8.01 – -1.80 – –

NE

1 -0.57 19.39 19.47 -3.47 14.04 0.48
2-5 -5.39 9.03 -15.37 -4.26 -13.72 0.20
6-9 -2.71 10.59 – -2.68 – –
2-9 -4.05 6.34 – -3.47 – –

CS

1 5.03 12.87 36.03 1.11 25.20 0.51
2-5 -0.95 9.27 8.05 -1.37 7.01 0.24
6-9 -4.38 8.89 – -3.46 – –
2-9 -2.67 6.12 – -2.41 – –

NW

1 3.26 27.94 -7.03 5.82 -5.04 0.49
2-5 2.35 18.81 9.08 2.03 8.79 0.06
6-9 -16.34 16.80 – -9.66 – –
2-9 -7.00 13.10 – -3.82 – –

EA

1 -4.02 15.63 53.09 -5.85 44.90 0.28
2-5 -6.77 7.55 -28.43 -5.04 -24.36 0.27
6-9 -0.32 7.13 – -0.88 – –
2-9 -3.55 4.90 – -2.96 – –

SW

1 8.01 17.61 32.15 2.82 21.31 0.56
2-5 -2.23 11.77 7.32 -2.27 7.24 0.02
6-9 -7.37 12.81 – -5.78 – –
2-9 -4.80 8.32 – -4.03 – –

CN

1 3.72 22.11 2.39 1.61 0.51 0.95
2-5 -5.04 (∗) 13.24 -11.85 -4.13 -11.09 0.13
6-9 -5.66 12.08 – -6.42 – –
2-9 -5.35 8.73 – -5.27 – –
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and generally contain the AEMET anomaly in lead years 2–9, with the exception of the

EA region. There, the predictions do not show reliability at all. Likewise in Figure 7.1,

the width of the confidence intervals is much larger than the anomalies. It means

that, although the observed value can be found in them, the sign of the predicted

anomaly may not be the same as for the AEMET value. The lowest �R value has been

found for lead year 1 in the CN region, although there are not reliable predictions in

this case. Promising reliable results in terms of �R have also been found, for example,

for lead years 1 and 2–5 in the NW region, with absolute values below 10 % for both

ensemble sizes. By contrast, the highest errors can be observed in the EA region. The

results obtained in terms of the WRF-DPLE10 PR anomalies in lead years 6–9 and

2–9 are generally more moderate than those obtained from WRF-DPLE4, in the sense

that the absolute values of the anomalies are usually lower for WRF-DPLE10, with

the exception of the CN and EA regions in lead years 6–9. In lead years 1 and 2–5,

however, there is not such a clear pattern. In the case of WRF-DPLE10, the results also

indicate a progressive decrease of the anomalies into negative values along the decade.

The lower magnitude of the WRF-DPLE10 �R outcomes compared to WRF-DPLE4

are responsible of the general positive scores obtained for MSSS4, indicating that

WRF-DPLE10 often outperforms WRF-DPLE4 in estimating the AEMET anomaly at

annual scale. The highest scores have been found in lead year 1 for all regions, with

remarkable results especially for the CN region (MSSS4 = 0.95). In lead years 2–5,

the results are still positive for almost the whole domain (excepting the WI region),

but the gain of increasing the ensemble size is normally much lower.

7.2. Daily maximum near-surface air temperature

7.2.1. Analysis of the WRF-DPLE4 predictions

The spatial distributions of the WRF-DPLE4 multiannual mean anomalies of )max,

half of the width of the confidence intervals at the 90 % level for a single member

(±Δ)max,90) and the anomaly error in the decade starting in 2015 (E; see Eq. [3.9]) at

annual scale have been depicted in Figure 7.6.

As opposed to the results obtained for PR in Section 7.1.1, the )max anomalies are

unanimously positive at all lead times for the whole domain. Such a result is consistent

with the analysis of the NSAT trends done in the previous Chapter 5, which showed

the existence of generalized significant positive trends for the )max hindcasts in the IP

at all lead times. In lead year 1, the regions where the predictions are reliable (see

Figure 5.5 in Section 5.1.1) show anomalies ranging from 0.25 K to 0.75 K (Figure 7.6a).
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Figure 7.6 : Spatial distributions of the WRF-DPLE4 multiannual mean anomalies of )max (left column),
half the width of the 90 % confidence intervals for a single WRF-DPLE4 member (±Δ)max,90, center column)
and the anomaly errors (E, right column), with AEMET as the observational dataset, at annual scale for
several lead times (rows). The absence (presence) of black dots denote the locations where the forecast
uncertainty is (not) represented by the confidence intervals. In )max and � maps, yellow triangles identify
the locations where the predictions are reliable but the confidence intervals do not contain the AEMET
anomalies.

These regions are mainly in the northern part of the IP, to the south of the Central

System, over the Guadalquivir Valley and along part of the Mediterranean coast.
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7.2. Daily maximum near-surface air temperature

This lead time exhibits the widest confidence intervals found for a single member in

terms of )max (Figure 7.6b). They are sufficiently large to enclose AEMET anomalies

with opposite signs over vast areas. The AEMET anomalies are underestimated over

almost all regions where the predictions are reliable (Figure 7.6c). The negative �

values are even below -0.75 K in regions over the eastern half of the IP and some

other in the northwest. Some locations with reliable predictions have shown AEMET

anomalies which fall outside the confidence intervals. They are found to the south

of the Pyrenees, along part of the Mediterranean coast and in some small southern

regions.

The highest positive anomalies have been found in lead years 2–5 (Figure 7.6d).

In this case, the reliable predictions can be found over most part of the domain (ex-

cepting the eastern flank, some central inner areas and northern regions), with values

commonly between 0.75 K and 1.5 K. The maximum values at this lead time have

been found to the south of the Ebro Valley, with anomalies up to 2 K. The confidence

intervals defined by ±Δ)max,90 are narrower than in lead year 1 (Figure 7.6e). Since

±Δ)max,90 is below 0.7 K over the whole domain at this lead time, with minimum

values between 0.4 K and 0.5 K in southern regions, a better precision than in lead year

1 is provided for the predictions of )max. The spatial distribution of � (Figure 7.6f)

depicts errors with lower magnitudes than in lead year 1, showing values commonly

between -0.5 K and 0.5 K in regions with reliable outcomes. Most part of these results

ranges from -0.25 K to 0.25 K. At this lead time, some AEMET anomalies fall outside

the confidence intervals in places where there are reliable predictions. They can

be mainly observed in northern and eastern regions, as well as in some locations

scattered over the southern part of the IP.

More moderate anomalies are shown in lead years 6–9, when the minimum values

are between 0.25 K and 0.5 K in regions with reliable predictions over the southwestern

sector of the domain, as well as in some locations in the northwest (Figure 7.6g). The

highest reliable anomalies, with values between 1.25 K and 1.5 K, are observed in

central western and northwestern regions, as well as in a small area to the south of

the Pyrenees. The results obtained for ±Δ)max,90 show values below 0.6 K over almost

the whole domain, providing slightly more precision than those in lead years 2–5

(Figure 7.6h). Finally, the anomalies in lead years 2–9 (Figure 7.6i) are in general

higher than at the previous lead time, but slightly lower compared to lead years 2–5.

The maximum reliable anomalies have been found in the northeastern regions, in the

Central System, in the northwest and in some locations over the Southern Subplateau,

with values between 1.25 K and 1.5 K. Large areas in the eastern half of the IP have
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values between 1 K and 1.25 K. The lowest ±Δ)max,90 outcomes have been obtained at

this lead time, with vast areas showing results even below 0.4 K (Figure 7.6j). The

width of the confidence intervals relative to the magnitude of the anomalies is lower

than for PR, because the signal-to-noise paradox is stronger in PR than in )max (see

Figures 4.5 and 5.3 for an evaluation of both RPCs in lead years 2–9).

The spatial distributions of the WRF-DPLE4 multiannual mean anomalies of )max

at seasonal scale have been depicted in Figure 7.7. As at annual scale, the results found

for the regions with reliable predictions are generally positive, as could be expected

from the generalized positive)max trends observed inTablesA.3 to A.6 (AppendixA.2).

Some exceptions have been found mainly in lead year 1 for DJF and SON (Figures 7.7a

and 7.7d, respectively), when negative anomalies can be observed across large areas

of the domain, as well as in JJA in the Ebro Valley (Figure 7.7c). More negative

anomalies have also been found in SON over some central and southwestern areas

in lead years 6–9 (Figure 7.7l) and western regions in lead years 2–9 (Figure 7.7p),

but these results are shown in locations without reliable predictions. The highest

anomalies have been found in JJA, with values generally above 1.5 K at all lead times,

excepting some regions close to the Mediterranean coast in the southeast for lead year

1. These regions show positive anomalies below 1 K in locations with reliable results.

In MAM, high anomalies which increase eastwards from 1 K to 2 K are also observed

in lead years 2–5 (Figure 7.7f), whereas they are commonly lower than 1 K in locations

with reliable predictions at other lead times. The season which shows the largest

areas of the domain with reliable results is DJF, when there is prediction reliability

over most part of the domain at all lead times, excluding some regions mainly placed

in the northern part and others also found over the Baetic System or in some inner

and coastal locations. In this season, a similar situation to that depicted in Figure 7.2

for MAM and JJA is observed, in the sense that there are many locations with reliable

predictions where the AEMET anomaly is outside the confidence intervals delimited

by ±Δ)max,90. Although this also happens in other seasons for )max and there is

a probability of 10 % associated to these occurrences, the results obtained in DJF,

especially in lead year 1, suggest that the factors mentioned above in Section 7.1.1 may

also be affecting these outcomes. In this case, the role of the spin-up biases may be

more important than in the case of PR, since the spin-up period needed by )max after

the initialization with extreme soil moisture conditions can be longer than 3 years

under the most unfavourable circumstances (see Figures 6.10 and 6.11), although it

is expected to be shorter whether simulations are initialized with more normal soil

moisture conditions.
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Figure 7.7 : Spatial distributions of the WRF-DPLE4 multiannual mean anomalies of )max for lead years 1,
2–5, 6–9 and 2–9 (rows) in DJF, MAM, JJA and SON (columns). The absence (presence) of black dots
denote the locations where the forecast uncertainty is (not) represented by the confidence intervals. Yellow
triangles identify the locations where the predictions are reliable but the confidence intervals do not
contain the AEMET anomalies.

The results obtained from the analysis at seasonal scale for ±Δ)max,90 and � can be

consulted in Figures B.62 and B.63 (Appendix B.3.2), respectively. As occurred for PR,

the seasonal variability is higher than at annual scale, leading to wider confidence

intervals. Although JJA is the season showing the highest positive anomalies, it is not

the season with the highest magnitudes for the � results. In JJA, the lowest errors

have been found mainly in the eastern part of the IP for lead years 2–5, with values

between -0.25 K and 0.25 K over many regions. Errors of similar magnitudes can

also be found in lead year 1 for the same season, although they are constrained to

smaller areas. Relatively moderate errors are also observed in lead years 2–5 for
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7. Decadal climate predictions for the period 2015–2025

MAM. The seasons which show the highest magnitudes of � are DJF and SON in

lead year 1. The latter depicts values below -1.25 K over most part of the domain,

where the predictions are generally reliable.

7.2.2. Comparison with the WRF-DPLE10 ensemble

The multiannual mean anomalies of )max obtained by WRF-DPLE10 in the decade

starting in 2015, available in Figure 7.8, are very similar to those obtained by WRF-

DPLE4 (Figure 7.6). In this case, the information about the prediction reliability is

not provided because the CRPSS analyzed in Section 5.1.1 was calculated only for

the 4-member ensemble. The results are also unanimously positive over the whole

domain. The highest anomalies are observed for lead year 1 in the Baetic System and

for lead years 2–5 in some locations in the northeast and southeast of the domain,

showing values between 1.5 K and 1.75 K. Similar anomalies have been found between

lead years 6–9 and 2–9, but with slightly higher results for the latter by nearly 0.25 K

in general. Although the spatial patterns of the anomalies depicted for WRF-DPLE10

and WRF-DPLE4 show similar features, there are still some differences. For example,

WRF-DPLE10 shows lower anomalies in regions to the south of the Ebro Valley and

along the Mediterranean coast for lead years 2–5. The anomalies for WRF-DPLE10 are

also slightly lower in lead years 6–9 in regions such as the southwestern part of the

Northern Subplateau or in the northwest of the IP. The same occurs in the northwest

for lead years 2–9 and also in some locations over the Central System.

The anomalies obtained for WRF-DPLE10 at seasonal scale are available in Fig-

ure B.64 (Appendix B.3.2). In this case, the differences between WRF-DPLE10 and

WRF-DPLE4 are more noticeable than at annual scale. Compare, for example, Fig-

ure B.64a and Figure 7.7a for DJF in lead year 1. While strong negative anomalies

are observed for WRF-DPLE4 to the north of the Southern Subplateau at this time,

the same regions show positive anomalies for WRF-DPLE10. Also in lead year 1

but for MAM, WRF-DPLE4 (Figure 7.7b) shows generalized lower anomalies than

WRF-DPLE10 (Figure B.64b) over the whole domain. This situation is inverted in JJA

at the same lead time (Figures 7.7c and B.64c). Differences continue at other lead

times depending on the season. Some of the most accentuated differences can be

observed in MAM and JJA in lead years 2–5 and 6–9, respectively, when the anomalies

are generally higher for WRF-DPLE4 (Figures 7.7f and 7.7k) than for WRF-DPLE10

(Figures B.64f and B.64k).

The spatial distributions of � and MSSS4 for WRF-DPLE10 in lead years 1 and
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Figure 7.8 : Spatial distributions of the WRF-DPLE10 multiannual mean anomalies of )max in lead years 1,
2–5, 6–9 and 2–9 at annual scale.

2–5 at annual scale have been represented in Figure 7.9. The results obtained for �

generally show similar spatial patterns to those observed in Figures 7.6c and 7.6f

for WRF-DPLE4, but there are some differences which lead to the MSSS4 results. In

lead year 1, the performances of both ensembles are identical in regions where the

recalibration has been applied, as explained in Section 7.1.2. On the other hand,

there are regions to the south of the Northern Subplateau and Sierra Morena where

WRF-DPLE4 commonly gets better results, and other southern locations such as the

Baetic System where WRF-DPLE10 shows both higher and lower errors than WRF-

DPLE4. In lead years 2–5, there are more discrepancies between the performances of

the ensembles. The eastern flank and the southern half of the domain mostly show

a better performance of WRF-DPLE10, whereas better results for WRF-DPLE4 are

observed in part of the northwest of the domain and the Northern Subplateau, the

south of the Pyrenees, some central inner regions and other locations in the south. As

mentioned above in the case of PR, it is worth remarking that these results obtained
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Figure 7.9 : Spatial distributions of anomaly errors (E, left column) for the WRF-DPLE10 multiannual
mean anomalies of )max, with AEMET as the observational dataset, and MSSS calculated with WRF-DPLE4

as reference (MSSS4, right column) in lead years 1 and 2–5 (rows) at annual scale.

for MSSS4 should not be used as a measure of the added value to the predictive skill

of increasing the ensemble size of WRF-DPLE in general. These results only show

the differences between the predictions obtained by both downscaled ensembles for

the decade starting in 2015. As discussed in Chapter 5, the increase of the ensemble

size of a DPS provides more robust estimations of the predictive skill because of the

need of computing large ensemble averages to remove the unpredictable background

noise in DCPs.

At seasonal scale, the highest MSSS4 values have been found in DJF for both lead

years 1 and 2–5 (Figure 7.10). In this season, positive MSSS4 outcomes have been

obtained for most part of the domain, excluding the Ebro Valley, the southeast, some

of the southernmost locations and the Cantabrian coast in lead years 2–5. On the other

hand, WRF-DPLE4 has obtained better results for lead year 1 in MAM. In lead years

2–5, by contrast, the regions with better results for WRF-DPLE4 are fundamentally

constrained to the northern half of the domain, excluding the northeastern sector.

Some of the best results for WRF-DPLE4 in comparison with WRF-DPLE10 have

been obtained in JJA, with large areas of the domain indicating that WRF-DPLE4

212



7.2. Daily maximum near-surface air temperature

a)
Le

ad
 ye

ar
 1

DJF

0.9 0.6 0.3 0.0 0.3 0.6 0.9
MSSS4

e)

Le
ad

 ye
ar

s 2
-5

b)
MAM

f)

c)
JJA

g)

d)
SON

h)

Figure 7.10 : Spatial distributions of MSSS for the WRF-DPLE10 multiannual mean anomalies of )max, with
WRF-DPLE4 as reference (MSSS4), for lead years 1 and 2–5 (rows) in DJF, MAM, JJA and SON (columns).

better captures the magnitude of the AEMET anomaly. Finally, similar performances

between ensembles have been found for lead year 1 in SON over almost the whole

domain, whereas WRF-DPLE10 generally improves the results obtained by WRF-

DPLE4 in most part of the eastern half in lead years 2–5.

7.2.3. Predictions for regional averages

The multiannual mean anomalies of)max have been spatially averaged over the regions

resulting from the regionalization applied to the AEMET NSAT, which was described

in Section 3.6 (Figure 3.5b). The results obtained at annual scale for the same metrics

computed in the previous sections have been summarized in Table 7.2.

The results obtained for the WRF-DPLE4 )max are in the line of those observed at

grid-point scale (Figure 7.6), in the sense that the anomalies are completely positive

at all lead times for all regions. The highest averaged anomalies for each region have

been found in lead years 2–5 and 2–9, surpassing 1 K at both lead times in almost

all regions, with the exception of the SW and NO regions. The AEMET anomalies

are contained in the confidence intervals defined by ±Δ)max,90 for WRF-DPLE4 in all

regions and lead times where the predictions are reliable. In contrast to PR (Table 7.2),

the confidence intervals for )max are narrow enough not to contain values of different

signs at almost all lead times, with the exception of lead year 1. The dependence of

±Δ)max,90 on the length of the averaging lead time window is clear, as it decreases
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Table 7.2 : Skill scores for the spatially averaged WRF-DPLE multiannual mean anomalies of )max in
lead years 1, 2-5, 6-9 and 2-9 for the decade starting in 2015 at annual scale. )max is the anomaly for the
WRF-DPLEN (the N-member WRF-DPLE ensemble) ensemble mean, ±Δ)max,90 represents half the width
of the 90 % conficence interval for a single WRF-DPLE member, � is the anomaly error, with AEMET as
the observational dataset, and MSSS4 denotes the added value of WRF-DPLE10 over WRF-DPLE4. Only
for the WRF-DPLE4 )max, the bold formatting denotes that WRF-DPLE4 is able to represent the forecast
uncertainty and that the 90 % confidence interval encloses the AEMET anomaly; the symbol “(∗)”, if
any, means that the former is satisfied but the latter is not; finally, the plain formatting is used when
WRF-DPLE4 cannot represent the forecast uncertainty. Dashes denote data unavailability at that lead time.

Region
Lead
years

WRF-DPLE4 WRF-DPLE10

Zmax (K) ±�Zmax,90 (K) K (K) Zmax (K) K (K) MSSS4

SW

1 0.63 0.95 -0.46 0.66 -0.42 0.16
2-5 0.90 0.54 0.03 0.85 -0.02 0.70
6-9 0.62 0.48 – 0.63 – –
2-9 0.76 0.36 – 0.74 – –

NO

1 0.45 1.07 -0.56 0.45 -0.56 0.00
2-5 1.07 0.52 0.13 0.98 0.04 0.89
6-9 0.76 0.46 – 0.72 – –
2-9 0.91 0.34 – 0.85 – –

CI

1 0.67 1.17 -0.73 0.69 -0.71 0.06
2-5 1.30 0.59 0.15 1.26 0.10 0.52
6-9 0.89 0.54 – 0.91 – –
2-9 1.10 0.39 – 1.08 – –

NE

1 0.65 1.07 -0.60 0.66 -0.60 0.00
2-5 1.38 0.51 0.21 1.31 0.14 0.57
6-9 0.91 0.51 – 0.94 – –
2-9 1.15 0.35 – 1.12 – –

CS

1 1.04 1.03 -0.51 1.23 -0.31 0.62
2-5 1.43 0.51 0.44 1.36 0.37 0.29
6-9 1.03 0.51 – 1.15 – –
2-9 1.23 0.34 – 1.26 – –

EA

1 0.70 1.00 -0.77 0.71 -0.76 0.02
2-5 1.48 0.43 0.46 1.39 0.37 0.34
6-9 0.80 0.45 – 0.85 – –
2-9 1.14 0.30 – 1.12 – –

MT

1 0.66 1.10 -0.68 0.68 -0.66 0.07
2-5 1.24 0.57 -0.10 1.19 -0.15 -1.36
6-9 1.05 0.52 – 0.99 – –
2-9 1.15 0.38 – 1.09 – –

WI

1 0.56 1.05 -0.39 0.57 -0.39 0.02
2-5 1.14 0.59 0.01 1.11 -0.03 -16.20
6-9 0.87 0.51 – 0.78 – –
2-9 1.00 0.38 – 0.94 – –
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from lead year 1 down to reach the minimum values in lead years 2–9. In lead year

1, all WRF-DPLE4 � values show an underestimation of the )max anomalies by the

downscaled predictions, whereas the errors in lead years 2–5 are usually related to an

overestimation of the AEMET anomaly, excepting in the MT region. The lowest errors

for WRF-DPLE4 are shown always for lead years 2–5 in all regions. The best results

obtained in these terms have been found in the WI region, which shows the lowest

magnitudes of � in both lead years 1 and 2–5. As mentioned in previous sections,

the results obtained for WRF-DPLE10 are close to those for WRF-DPLE4. However,

there are still some differences, as the results obtained for � and MSSS4 reveal. With

respect to the former, it is worth remarking that WRF-DPLE10 generally gets equal

or smaller absolute errors than WRF-DPLE4 at almost all lead times in all regions.

The only exceptions, with small differences, are the WI and MT regions in lead years

2–5. These improvements over WRF-DPLE4 in predicting the AEMET anomaly are

reflected in the results obtained for MSSS4, with the only negative results shown

in the aforementioned cases. The highest scores are observed in lead years 2–5 in

the SW and NO regions, with values of 0.70 and 0.89, respectively. However, in the

case of the SW region, the differences between the WRF-DPLE4 and WRF-DPLE10

leading to this result are very small, since � values about 0.03 K and -0.02 K have

been respectively obtained for each ensemble. In the same line, the most negative

MSSS4 result, MSSS4 = −16.20 in the MT region for lead years 2–5, is also caused by

differences of the order of 10−2 K in the � results obtained by both ensembles.

7.3. Daily minimum near-surface air temperature

7.3.1. Analysis of the WRF-DPLE4 predictions

The WRF-DPLE4 multiannual mean anomalies of )min at annual scale for the decade

starting in 2015, depicted in Figure 7.11, only show positive values over the whole

domain at all lead times, as in the case of )max (Figure 7.6). These predictions are not

reliable over large parts of the domain because of the results obtained in Figure 5.16,

which were discussed in Section 5.2.1.

The reliability is present in lead year 1 mainly in the northern part of the IP and

in the Balearic Islands, as well as along part of the Mediterranean coast and some

southern and southwestern regions. In these places, the )min anomalies are usually

between 0.4 K and 0.8 K (Figure 7.11a). The highest values can be observed in the

northeast and west of the IP, where the outcomes are above 0.6 K. The confidence

intervals for a single member defined by ±Δ)min,90 (Figure 7.11b) show narrower
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Figure 7.11 : Spatial distributions of the WRF-DPLE4 multiannual mean anomalies of )min (left column),
half the width of the 90 % confidence interval for a single WRF-DPLE4 member (±Δ)min,90, center column)
and the anomaly errors (E, right column), with AEMET as the observational dataset, at annual scale for
several lead times (rows). The absence (presence) of black dots denote the locations where the forecast
uncertainty is (not) represented by the confidence intervals. In )min and � maps, yellow triangles identify
the locations where the predictions are reliable but the confidence intervals do not contain the AEMET
anomalies.

widths than those defined by ±Δ)max,90 in Figure 7.6b, but they are still enclosing

anomalies of different signs. The highest ±Δ)min,90 results are observed over the
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Northern Subplateau, with values generally above 1 K. On the other hand, the lowest

±Δ)min,90 values are observed along the northeastern and southeastern regions close

to the Mediterranean coast, with values between 0.5 K and 0.7 K. As happened for

)max in Figure 7.6c, the AEMET anomalies are underestimated over almost the whole

domain at this lead time (Figure 7.11c), with the exception of the Balearic Islands

and some southwestern locations (but mostly without reliable results in the latter).

The smallest absolute errors are observed in the northeast and southwest of the IP

(the regions showing the highest anomalies) and over the Balearic Islands and part

or the Northern Subplateau, with absolute � values commonly below 0.4 K. There are

some regions where the AEMET anomalies are not inside the confidence intervals

defined by ±Δ)min,90 in places where there are reliable predictions. These results have

been found in the northwest, the northeast, a small area along the Mediterranean

coast and other southern regions. In all cases, the AEMET anomaly is higher than the

upper boundary of the confidence intervals. Although there is a probability of 10 %

associated to these occurrences, the same factors mentioned in previous sections (i.e.,

the soil spin-up and the length of the control period alongside the gap between the

end of this period and the decade 2015–2025) may be contributing to this situation. In

this case, since the length of the spin-up period after the initialization with extreme

soil moisture conditions is commonly below 1 year (Figures 6.10 and 6.11), the impact

of this factor on these results would be lower than in the case of )max.

Likewise for )max, the highest anomalies of )min have been found in lead years

2–5 (Figure 7.11d). The regions with reliable predictions are mainly located in the

southern half of the IP, as well as over some other regions such as the Ebro Valley,

the Central System or the northernmost part of the Iberian System. The anomalies

in those regions are between 1 and 1.2 K. The results obtained for ±Δ)min,90 at this

lead time (Figure 7.11e) are much lower than in lead year 1. With the exception of

the Central and Iberian Systems, where values around 0.7 K can be found, results

below 0.4 K are generalized in regions with reliable predictions. In the same regions,

the results obtained for the spatial distribution of � (Figure 7.11f) are commonly

positive, showing a general overestimation of the AEMET anomalies. Some regions

with negative � values can also be observed in the central part of the IP and in some

northern locations. At this lead time, the AEMET anomalies which fall outside the

confidence intervals in regions with reliable predictions are commonly smaller than

the lower boundaries of the confidence intervals, with the exception of some locations

in the Pyrenees.

In lead years 6–9, the )min anomalies, depicted in Figure 7.11g, are lower than
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those observed in lead years 2–5. They are mainly between 0.4 K and 0.8 K in regions

with reliable predictions, with the highest values above 0.6 K found in the eastern

part of the domain. The confidence intervals defined by ±Δ)min,90 in Figure 7.11h

show very similar results to those obtained in lead years 2–5.

The )min anomalies generally increase at decadal scale compared to lead years 6–9,

since values above 0.8 K have been found over most part of regions showing reliable

results (Figure 7.11i). The lowest outcomes can be observed in the northwestern

regions, with values between 0.2 K and 0.6 K. The narrowest confidence intervals

are obtained in lead years 2–9 (Figure 7.11j), when values between 0.2 K and 0.3 K

are found in most part of the domain, with some regions in the north having values

between 0.3 K and 0.4 K.

With a few exceptions, the WRF-DPLE4 )min anomalies resulting from the analysis

at seasonal scale are predominantly positive in regions with reliable predictions

(Figure 7.12). The highest anomalies are commonly observed in JJA (Figure 7.12, third

column), but generally with lower values than those obtained for )max in Figure 7.7.

This season has some of the largest areas where predictions are reliable at all lead

times. The most accentuated positive anomalies are shown in the eastern part of the

IP, where they reach maximum values above 1.5 K in lead years 6–9. The largest area

with reliable negative anomalies has been found for lead year 1 in JJA, with values

down to -0.5 K. More moderate but still high positive anomalies are also observed

in SON, especially in lead years 6–9 and 2–9. At these lead times, predictions are

reliable mainly in the western half of the IP, being these areas generally constrained

to the northwestern sector in lead years 6–9. These anomalies are higher in lead years

2–9, with values predominantly between and 1 K and 1.5 K. The most accentuated

anomalies in MAM have been found for lead years 2–5 over the eastern flank of the IP,

where the results show values between 1 K and 1.25 K. In the same season, anomalies

between 0.75 K and 1 K are observed in the southwestern and eastern sectors in lead

years 1 and 2–9 for regions with reliable predictions. The highest anomalies in DJF

have been found in lead years 1 and 6–9, with maximum values normally ranging

from 1 K to 1.5 K.

The amount of cases with reliable predictions but also with AEMET anomalies

outside the confidence intervals (Figure B.66 in Appendix B.3.3) is lower than for

)max. For )min, these cases are mainly observed in JJA, and they are predominantly

associated to underestimations of the AEMET anomalies, not only in JJA but in

all seasons, as the spatial distributions of the seasonal � indicate (Figure B.67 in
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Figure 7.12 : Spatial distributions of the WRF-DPLE4 multiannual mean anomalies of )min for lead years
1, 2–5, 6–9 and 2–9 (rows) in DJF, MAM, JJA and SON (columns). The absence (presence) of black dots
denote the locations where the forecast uncertainty is (not) represented by the confidence intervals. Yellow
triangles identify the locations where the predictions are reliable but the confidence intervals do not
contain the AEMET anomalies.

Appendix B.3.3). There is a few exceptions in JJA in lead years 2–5 for some regions

in the west of the domain, where these results are due to an overestimation of the

AEMET anomalies. The results obtained for � show the highest errors for lead year

1 in DJF, when values below -1.6 K are found over most part of the domain. On

the other hand, the largest areas with the lowest absolute errors are observed in JJA

for lead years 2–5, showing values between -0.2 K and 0.2 K over the eastern and

northern sectors of the IP. In general, the results obtained for ±Δ)min,90 relative to the

magnitude of the anomalies, at both annual and seasonal scales, are sligthly lower

than those obtained for ±Δ)max,90. The weaker signal-to-noise paradox observed in
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)min compared to )max in lead years 2–9 contributes to producing these outcomes (see

Figures 5.3 and 5.14).

7.3.2. Comparison with the WRF-DPLE10 ensemble

The )min anomalies obtained from WRF-DPLE10 at annual scale are also positive for

the whole domain (Figure 7.13), as for the 4-member ensemble. In the same vein as

in the analysis of the WRF-DPLE10 results for the other variables, there is not any

indication related to the confidence intervals since they were calculated only with

the WRF-DPLE4 hindcasts. In lead year 1, the highest anomalies have been found

in central inner regions and over the Baetic System, with values ranging from 1 K

to 1.4 K. In lead years 2–5, most part of the domain depicts outcomes above 0.8 K,

with results between 1 K and 1.2 K covering large areas of the domain, and maximum

values which surpass 1.6 K to the south of the Baetic System. The anomalies are

a)
Lead year 1

1.6 1.2 0.8 0.4 0.0 0.4 0.8 1.2 1.6
Tmin (K)

b)
Lead years 2-5

c)
Lead years 6-9

d)
Lead years 2-9

Figure 7.13 : Spatial distributions of the WRF-DPLE10 multiannual mean anomalies of )min in lead years
1, 2–5, 6–9 and 2–9 at annual scale.
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slightly lower in lead years 6–9 compared to the previous lead time, and most part

of the regions with values above 1 K have disappeared, although some of them are

still present along the Mediterranean coast and the Pyrenees. The results obtained in

lead years 2–9 represent a midpoint between those for lead years 2–5 and 6–9, when

the maximum values in the Baetic System emerge again along with some regions

showing anomalies above 1 K, mainly found in the eastern part of the domain. The

main differences with the results obtained for WRF-DPLE4, showed in Figure 7.11,

are observed in lead years 2–5, with anomalies generally lower for WRF-DPLE10, and

in lead year 1, when they are higher over the central inner part and southern regions

of the IP. At seasonal scale, the anomalies have been represented in Figure B.68

(Appendix B.3.3). Most part of these results show very similar spatial distributions

to those obtained for WRF-DPLE4 (Figure 7.12), but there are differences whose

magnitude depends on the lead time and season. Some of the more remarkable

differences are those observed in DJF for lead years 1 and 6–9, when the negative

anomalies observed for WRF-DPLE4 turn into positive for WRF-DPLE10. Moreover,

the anomalies for WRF-DPLE10 are generally slightly lower in lead years 1, 6–9 and

2–9 in JJA, as well as in lead years 2–9 in SON.

The spatial distributions of � and MSSS4 for WRF-DPLE10 in lead years 1 and

2–5 at annual scale have been depicted in Figure 7.14. In lead year 1, WRF-DPLE10

gets more moderate negative � results in some locations in the northeast, part of the

Northern Subplateau and other central inner and southern regions, indicating that

the underestimation of the AEMET anomaly in these areas is less pronounced than for

WRF-DPLE4 (Figure 7.11c). These results lead to the positive MSSS4 values observed

in those regions (Figure 7.14b). However, the performance of WRF-DPLE4 is better

in part of the western regions and some locations in the northeastern Mediterranean

coast. In the rest of the domain, both ensembles perform similarly. A different

situation is observed in lead years 2–5, when the WRF-DPLE10 underestimation of the

anomaly is more accentuated in the northwest, the northeast, the central part of the IP

and regions over the Baetic System and surrounding the Guadalquivir Valley, leading

to negative MSSS4 values. WRF-DPLE10 reduces the overestimation observed for

WRF-DPLE4 in the rest of the domain (Figure 7.11f), getting positive MSSS4 values

in those places.

At seasonal scale, the results obtained for the comparison between WRF-DPLE10

and WRF-DPLE4 highly depend on the season and lead time (Figure 7.15). For exam-

ple, the best results in favour of WRF-DPLE10 have been obtained for lead years 1 and

2–5 in DJF and SON, respectively, as the domain is almost entirely dominated by the
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Figure 7.14 : Spatial distributions of anomaly errors (E, left column) for the WRF-DPLE10 multiannual
mean anomalies of )min, with AEMET as the observational dataset, and MSSS calculated with WRF-DPLE4

as reference (MSSS4, right column) in lead years 1 and 2–5 (rows) at annual scale.
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Figure 7.15 : Spatial distributions of the MSSS for the WRF-DPLE10 multiannual mean anomalies of )min,
with WRF-DPLE4 as reference (MSSS4), for lead years 1 and 2–5 (rows) in DJF, MAM, JJA and SON
(columns).
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positive results. On the other hand, the best results for WRF-DPLE4 in comparison

with WRF-DPLE10 are observed in MAM at both lead times, when the MSSS4 out-

comes are fundamentally negative for most part of the domain. In JJA, WRF-DPLE10

has obtained much better estimations of the anomalies in some southeastern regions,

part of the Northern Subplateau and other northern locations in lead year 1, as the

high MSSS4 outcomes indicate. The placement of the positive MSSS4 values in this

season slightly changes in lead years 2–5, with the Northern Subplateau maintaining

some of the highest scores. The spatial distributions of Figure 7.15 are explained by

the comparison between the higher or lower absolute errors obtained by WRF-DPLE10

(Figure B.69 in Appendix B.3.3) relative to WRF-DPLE4 (Figure B.67).

7.3.3. Predictions for regional averages

The analysis of the downscaled future DCPs for )min has been completed with the

evaluation of the results for the multiannual mean anomalies of the field after being

spatially averaged over the regions resulting from the regionalization described in

Section 3.6 (Figure 3.5b). The results have been summarized in Table 7.3.

The outcomes found for the WRF-DPLE4 )min reflect what has already been

mentioned in the analysis at grid-point scale. The anomalies are unanimously positive

over the whole domain, a result consistent with the marked positive trend of )min

mentioned in Section 5.2.1 (see also Table A.2 in Appendix A.2). For each region,

the highest WRF-DPLE4 anomalies are observed always in lead years 2–5, with the

most accentuated outcome found in the CS region ()min = 1.27 K). However, there

is a general lack of reliable predictions in almost all regions at all lead times also in

this case. The only regions where the predictions are reliable are the NE, WI and NO

regions in lead year 1, as well as the latter in lead years 6–9. As happened for PR

(Table 7.1) or )max (Table 7.2), the confidence intervals defined by ±Δ)min,90 exhibit

widths which decrease as the length of the averaging window increases. Moreover,

note that the confidence intervals are even narrower than those for )max, partially due

to the weaker presence of the signal-to-noise paradox in this variable compared to

the other (see Figures 5.3 and 5.14). As also happened for )max, the WRF-DPLE4 �

outcomes are lower (in absolute value) in lead years 2–5 compared to lead year 1,

despite the anomalies are higher precisely in lead years 2–5. The lowest magnitudes

of � have been found in the CI, NO and CS regions in lead years 2–5 with values of

0.08 K, 0.06 K and 0.03 K, respectively. The errors made by WRF-DPLE10 are generally

less pronounced than those for WRF-DPLE4 at both lead times. For this reason, the

results obtained for MSSS4 are fundamentally positive. The only exception is the MT
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Table 7.3 : Skill scores for the spatially averaged WRF-DPLE multiannual mean anomalies of )min in
lead years 1, 2-5, 6-9 and 2-9 for the decade starting in 2015 at annual scale. )min is the anomaly for the
WRF-DPLEN (the N-member WRF-DPLE ensemble) ensemble mean, ±Δ)min,90 represents half the width
of the 90 % conficence interval for a single WRF-DPLE member, � is the anomaly error, with AEMET as
the observational dataset, and MSSS4 denotes the added value of WRF-DPLE10 over WRF-DPLE4. Only
for the WRF-DPLE4 )min, the bold formatting denotes that WRF-DPLE4 is able to represent the forecast
uncertainty and that the 90 % confidence interval encloses the AEMET anomaly; the symbol “(∗)”, if
any, means that the former is satisfied but the latter is not; finally, the plain formatting is used when
WRF-DPLE4 cannot represent the forecast uncertainty. Dashes denote data unavailability at that lead time.

Region
Lead
years

WRF-DPLE4 WRF-DPLE10

Zmin (K) ±�Zmin,90 (K) K (K) Zmin (K) K (K) MSSS4

SW

1 0.84 0.80 -0.43 0.91 -0.36 0.32
2-5 1.05 0.34 0.28 0.96 0.18 0.57
6-9 0.78 0.34 – 0.84 – –
2-9 0.92 0.23 – 0.90 – –

NO

1 0.52 0.77 -0.73 0.54 -0.72 0.03
2-5 0.97 0.32 0.06 0.88 -0.03 0.82
6-9 0.67 0.33 – 0.73 – –
2-9 0.82 0.23 – 0.81 – –

CI

1 0.89 0.81 -0.51 0.98 -0.42 0.31
2-5 1.10 0.32 0.08 1.01 0.00 1.00
6-9 0.83 0.35 – 0.89 – –
2-9 0.96 0.22 – 0.95 – –

NE

1 0.64 0.75 -0.45 0.68 -0.41 0.15
2-5 1.05 0.32 0.15 1.00 0.10 0.53
6-9 0.89 0.33 – 0.95 – –
2-9 0.97 0.22 – 0.97 – –

CS

1 0.94 (∗) 0.74 -0.89 1.02 -0.82 0.16
2-5 1.27 0.37 0.03 1.22 -0.02 0.45
6-9 0.91 0.36 – 1.00 – –
2-9 1.09 0.24 – 1.11 – –

EA

1 0.60 0.80 -0.56 0.61 -0.56 0.01
2-5 1.07 0.30 0.34 1.01 0.29 0.30
6-9 0.89 0.31 – 0.98 – –
2-9 0.98 0.20 – 0.99 – –

MT

1 0.63 (∗) 0.84 -0.93 0.69 -0.88 0.12
2-5 1.11 0.44 -0.16 1.05 -0.22 -0.93
6-9 0.88 0.39 – 0.90 – –
2-9 0.99 0.28 – 0.98 – –

WI

1 0.64 0.88 -0.47 0.68 -0.42 0.18
2-5 1.07 0.33 0.35 0.97 0.24 0.51
6-9 0.78 0.36 – 0.80 – –
2-9 0.92 0.24 – 0.88 – –
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region in lead years 2–5, where the � values are -0.16 K and -0.22 K for WRF-DPLE4

and WRF-DPLE10, respectively. In the same line as )max, the highest MSSS4 results

are observed in lead years 2–5, found in the NO and CI regions with values of 0.82

and 1, respectively.

7.4. Daily mean near-surface air temperature

7.4.1. Analysis of the WRF-DPLE4 predictions

This Section is devoted to present the downscaled future DCPs for )mean in the

decade starting in 2015. As in previous sections, the anomalies at all lead times and

annual scale for WRF-DPLE4 are positive over the whole domain (Figure 7.16). These

results are reliable over most part of the domain at all lead times, with the exception

of lead year 1, when the reliability is mainly shown in the northern half of the IP,

as indicated by the results obtained for CRPSS in Figure 5.28. In lead year 1, the

anomalies have values ranging from 0.4 K to 0.8 K over the northern regions with

reliable predictions, with the maximum values between 0.8 K and 1 K found in the

southwestern sector of the domain. The confidence intervals defined by ±Δ)mean,90

are again too wide compared to the anomalies at this lead time, up to the point of

enclosing results with different signs (Figure 7.16b). In the same regions which

show the aforementioned highest anomalies, ±Δ)mean,90 values are between 0.9 K

and 1 K. They are even larger in some locations with reliable predictions over the

central IP, where ±Δ)mean,90 is even above 1 K. The results obtained for � indicate

that the AEMET anomaly is underestimated over most part of the domain at this

lead time, excepting for a few locations in the Baetic System (Figure 7.16c). This

underestimation presents minimum values around -1 K over some locations with

prediction reliability to the north of the Iberian System, along the Cantabrian Range

and in the Pyrenees. On the other hand, part of the lowest error magnitudes have been

found in the same southwestern regions which also show the highest anomalies, with

� values down to -0.2 K. There are some regions where, despite they show reliable

predictions, the AEMET anomalies are not inside the confidence intervals defined by

±Δ)mean,90. In most part of the cases, with the exception of that found in the Baetic

System, the AEMET anomalies are higher than the upper boundary of the confidence

intervals. Although there is a probability of 10 % associated to these occurrences, the

same factors previously mentioned for the other variables (i.e., the spin-up biases,

the sample size of the control period and the gap between the end of this period and

the decade 2015–2025) may also affect these results (see Section 7.1.1).
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Figure 7.16 : Spatial distributions of the WRF-DPLE4 multiannual mean anomalies of )mean (left column),
half the width of the 90 % confidence interval for a single WRF-DPLE4 member (±Δ)mean,90, center column)
and the anomaly errors (E, right column), with AEMET as the observational dataset, at annual scale for
several lead times (rows). The absence (presence) of black dots denote the locations where the forecast
uncertainty is (not) represented by the confidence intervals. In )min and � maps, yellow triangles identify
the locations where the predictions are reliable but the confidence intervals do not contain the AEMET
anomalies.

The anomalies are higher in lead years 2–5, when they are fundamentally be-

tween 1 K and 1.4 K in those regions showing reliable results (Figure 7.16d). There
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are smaller regions with lower anomalies, mainly found in the western half of the

domain with values down to 0.4 K. The maximum outcomes are observed over the

eastern half of the IP and to the south and southeast of the Northern Subplateau,

with results around 1.2–1.4 K. The results obtained for ±Δ)mean,90 at this lead time

(Figure 7.16e) are much lower that in lead year 1, with values commonly below

0.5 K. These confidence intervals do not enclose anomalies with different signs for

most part of the domain, with the exception of some locations to the southeast of

the Northern Subplateau and close to the Strait of Gibraltar with low anomalies.

The spatial distribution of � shows errors with generally lower magnitudes than in

lead year 1 across larger areas (Figure 7.16f). In locations with reliable predictions,

the absolute value of these errors is almost always below 0.4 K, reaching outcomes

between -0.2 K and 0.2 K in the central IP, the eastern part of the Northern Subplateau

and southern areas. The number of locations with reliable estimations of the anomaly

and confidence intervals which do not contain the AEMET result is slightly larger

than in lead year 1. In this case, the effect of the spin-up issue do not affect as much

as as it could do at the other lead time, since the spin-up period needed by )mean after

the initialization with extreme soil moisture conditions is commonly below 1 year

and, mostly, do not surpass 2 years. Indeed, if more normal soil moisture ICs are

used to initialize the simulations, even shorter spin-up period could be expected, as

mentioned for the previous variables.

The WRF-DPLE4 anomalies of )mean are generally lower in lead years 6–9 than

in lead years 2–5 (Figure 7.16g), as happened for the other NSAT variables. The

highest outcomes are mainly observed in part of the eastern and southern halves of

the domain in regions with reliable predictions. The regions with reliable predictions

are fundamentally covered by anomalies above 0.6 K. The maximum outcomes reach

values around 1–1.2 K in some central locations and in the northeast of the IP. On the

other hand, the lower values have been fundamentally found in the southwestern

regions and over some locations in the Northern Subplateau. As in lead years 2–5,

the results obtained for ±Δ)mean,90 show values below 0.5 K across the domain. Even

lower values than 0.4 K can be found in some regions along the Mediterranean coast,

the northern part of the domain and in the southwest. Higher anomalies have been

found in lead years 2–9, especially in the eastern half of the domain in regions with

reliable results, with values between 1 K and 1.2 K. The outcomes in the western

part are more moderate, but they are fundamentally above 0.8 K in most part of the

domain, with the exception of some locations mainly grouped in the northwest and

southwest. The narrowest confidence intervals have been found at this lead time,
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with values mostly lower than 0.3 K for ±Δ)mean,90, although the outcomes can reach

values up to 0.4 K in some cases.

The multiannual mean anomalies of )mean at seasonal scale have been represented

in Figure 7.17. As at annual scale, most part of the results obtained for those regions

with reliable predictions are positive, with the exception of some regions spread

across the domain in DJF for lead year 1, as well as a few locations found in JJA and

SON at the same lead time. The highest anomalies are observed in JJA, especially in

lead years 6–9 and 2–9, which is also the season when the predictions are generally

more reliable. At both lead times, large areas with values around 1.5–1.75 K can be
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Figure 7.17 : Spatial distributions of the WRF-DPLE4 multiannual mean anomalies of )mean for lead
years 1, 2–5, 6–9 and 2–9 (rows) in DJF, MAM, JJA and SON (columns). The absence (presence) of black
dots denote the locations where the forecast uncertainty is (not) represented by the confidence intervals.
Yellow triangles identify the locations where the predictions are reliable but the confidence intervals do
not contain the AEMET anomalies.
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found, with maximum values even above 1.75 K in some smaller regions in lead years

2–9. The lowest anomalies in this season have been found in lead year 1, with positive

values ranging from 0.25 K to 0.75 K in southern and eastern regions close to the

Mediterranean coast. Another season with high reliable predictions, fundamentally

in lead years 1 and 2–5, is MAM. In this season, the highest anomalies are observed

in the eastern flank for lead years 2–5, with outcomes around 1.25–1.5 K. The other

regions commonly show results between 1 K and 1.25 K at this time. The anomalies

are slightly lower in MAM at the other lead times, but commonly with values above

0.5 K over most part of the domain with reliable predictions. While SON hardly

shows regions with reliable results, they span large parts of the domain in DJF for

lead years 6–9 and 2–9, with values predominantly between 0.25 K and 1 K, which are

slightly higher in lead years 6–9. The largest number of locations with reliable results

and AEMET anomalies outside the confidence intervals is found in DJF, as occurred

for )max (Figures 7.17a and 7.17e). In this case, they are much more frequent in lead

year 1, covering vast areas across the whole domain.

The spatial distributions of ±Δ)mean,90 and � for each season are available in

Figures B.70 and B.71 (Appendix B.3.4), respectively. As at annual scale, the width

of the confidence intervals decreases with the length of the averaging window. This

width is larger than at annual scale because the )mean variability at seasonal scale is

also larger. The ±Δ)mean,90 values are lower than the anomaly in many occasions, as

happened for the other NSAT variables and in contrast to PR. This is a consequence

of the presence of a weaker signal-to-noise paradox in this case compared to PR (see

Figures 4.5 and 5.26). The results obtained for � show the most accentuated errors in

DJF, when the anomaly is highly underestimated, and in MAM, when it is generally

overestimated, both in lead year 1. In both cases, the maximum absolute � values

reach results above 1.6 K. In regions with reliable predictions, lower absolute values

can be found for lead year 1 in JJA or for lead years 2–5 in MAM and JJA. The lowest

errors are between -0.2 K and 0.2 K and their location vary depending on the season

and lead time.

7.4.2. Comparison with the WRF-DPLE10 ensemble

The anomalies obtained for the WRF-DPLE10 )mean at annual scale have been depicted

in Figure 7.18. There are evident similarities between these spatial patterns and those

represented in Figure 7.16 in both qualitative and quantitative terms. There are

still some differences which can be observed if the spatial distributions are carefully

examined. For example, the magnitude of the anomalies predicted by WRF-DPLE10
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Figure 7.18 : Spatial distributions of the WRF-DPLE10 multiannual mean anomalies of )mean in lead years
1, 2–5, 6–9 and 2–9 at annual scale.

(Figure 7.18a) in the Baetic System is higher than that predicted by WRF-DPLE4

(Figure 7.16a). In lead years 2–5, the WRF-DPLE10 anomalies (Figure 7.18b) along the

Mediterranean coast, the Cantabrian coast and the central IP are slightly lower than for

the 4-member ensemble (Figure 7.16d). By contrast, WRF-DPLE10 has obtained more

accentuated anomalies in lead years 6–9 (Figure 7.18c), especially over the central

southern regions of the IP and part of the Balearic Islands. In lead years 2–9, the

largest differences can be observed in the southwestern regions, where the anomalies

are lower in the case of WRF-DPLE10 (Figure 7.18d). There are also differences

between the anomalies of both ensembles at seasonal scale. The results obtained

for WRF-DPLE10 have been represented in Figure B.72 (available in Appendix B.3.4).

Some of the most remarkable discrepancies are shown in the northern regions for lead

year 1 in DJF, where negative anomalies obtained for WRF-DPLE4 (Figure 7.17a) turn

into positive in the case of WRF-DPLE10 (Figure B.72a). Moreover, the anomalies

observed in JJA also for lead year 1, over some central inner regions, are lower for
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WRF-DPLE10 (Figure B.72c). In the same season, also lower anomalies for WRF-

DPLE10 have been generally found over most part of the domain in lead years 6–9

and 2–9 (Figures B.72k and B.72o, respectively). More differences can be found

depending on the lead time and season.

The spatial distributions obtained for the WRF-DPLE10 � and MSSS4 have been

represented in Figure 7.19. The differences between WRF-DPLE10 and WRF-DPLE4

errors lead to the patterns observed for MSSS4. In lead year 1, there are almost

not discrepancies between the ensemble performances, with the exception of small

areas in the northwest, the northeast and the Baetic System. The MSSS4 values

equal to zero are observed because the predictions have been recalibrated in such

regions for both ensembles, as mentioned in Section 7.1.2. In the rest of the domain,

only a few locations in the Baetic System show a worse skill for WRF-DPLE10 in

estimating the AEMET anomaly, whereas it outperforms WRF-DPLE4 in the others.

Higher differences, although not easily appreciable in terms of �, are observed in

lead years 2–5, when negative the MSSS4 results mainly found in the northwest, the

Pyrenees, the central IP and in some southern regions indicate a better estimation of
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Figure 7.19 : Spatial distributions of anomaly errors (E, left column) for the WRF-DPLE10 multiannual
mean anomalies of )mean, with AEMET as the observational dataset, and MSSS calculated with WRF-
DPLE4 as reference (MSSS4, right column) in lead years 1 and 2–5 (rows) at annual scale.
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the actual anomaly by WRF-DPLE4 compared to WRF-DPLE10. Better results have

been obtained for WRF-DPLE10 elsewhere.

At seasonal scale, the results obtained for MSSS4 and the WRF-DPLE10 � are

available in Figures 7.20 and B.73 (Appendix B.3.4), respectively. While the large areas

with positive MSSS4 results (and slightly lower absolute � values for WRF-DPLE10)

in DJF and SON for lead year 1 indicate a general better performance for WRF-DPLE10

(with the exception, mainly, of some western regions and northeastern regions in

the case of SON), better results for WRF-DPLE4 are predominant in MAM and, to

a lesser degree, in JJA at this lead time. In lead years 2–5, the 10-member ensemble

continues performing better in general in DJF and SON, whereas WRF-DPLE4 has

obtained better results in most part of the domain in MAM, although the eastern

flank and some regions in the southwestern sector are dominated by WRF-DPLE4.

Differences are also observed in JJA, although the areas covered by MSSS4 results

between -0.1 and 0.1 have larger extensions than at the other lead time and seasons.
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Figure 7.20 : Spatial distributions of MSSS for the WRF-DPLE10 multiannual mean anomalies of )mean,
with WRF-DPLE4 as reference (MSSS4), for lead years 1 and 2–5 (rows) in DJF, MAM, JJA and SON
(columns).

7.4.3. Predictions for regional averages

The predictions for the spatially averaged multiannual mean anomalies of )mean in

each region resulting from the regionalization described in Section 3.6 (Figure 3.5b)

are available in Table 7.4. The WRF-DPLE4 anomalies depict the same behaviour

observed at grid-point scale, since the highest values have been found in all regions
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Table 7.4 : Skill scores for the spatially averaged WRF-DPLE multiannual mean anomalies of )mean in
lead years 1, 2-5, 6-9 and 2-9 for the decade starting in 2015 at annual scale. )mean is the anomaly for the
WRF-DPLEN (the N-member WRF-DPLE ensemble) ensemble mean, ±Δ)mean,90 represents half the width
of the 90 % conficence interval for a single WRF-DPLE member, � is the anomaly error, with AEMET as
the observational dataset, and MSSS4 denotes the added value of WRF-DPLE10 over WRF-DPLE4. Only
for the WRF-DPLE4 )mean, the bold formatting denotes that WRF-DPLE4 is able to represent the forecast
uncertainty and that the 90 % confidence interval encloses the AEMET anomaly; the symbol “(∗)”, if
any, means that the former is satisfied but the latter is not; finally, the plain formatting is used when
WRF-DPLE4 cannot represent the forecast uncertainty. Dashes denote data unavailability at that lead time.

Region
Lead
years

WRF-DPLE4 WRF-DPLE10

Zmean (K) ±�Zmean,90 (K) K (K) Zmean (K) K (K) MSSS4

SW

1 0.68 0.81 -0.50 0.68 -0.50 0.00
2-5 1.09 0.40 0.28 1.03 0.21 0.42
6-9 0.73 0.37 – 0.74 – –
2-9 0.91 0.26 – 0.89 – –

NO

1 0.52 0.87 -0.62 0.52 -0.62 0.00
2-5 1.03 0.38 0.11 0.94 0.02 0.97
6-9 0.71 0.37 – 0.74 – –
2-9 0.87 0.26 – 0.84 – –

CI

1 0.72 0.98 -0.69 0.72 -0.69 0.00
2-5 1.25 0.42 0.16 1.19 0.10 0.59
6-9 0.88 0.42 – 0.93 – –
2-9 1.07 0.28 – 1.06 – –

NE

1 0.66 0.87 -0.51 0.67 -0.50 0.03
2-5 1.26 0.37 0.22 1.19 0.16 0.51
6-9 0.94 0.40 – 0.99 – –
2-9 1.10 0.26 – 1.09 – –

CS

1 0.99 0.87 -0.70 1.08 -0.61 0.24
2-5 1.30 0.40 0.19 1.24 0.12 0.55
6-9 0.97 0.41 – 1.08 – –
2-9 1.13 0.27 – 1.16 – –

EA

1 0.64 0.85 -0.68 0.64 -0.68 0.00
2-5 1.28 0.33 0.40 1.20 0.33 0.33
6-9 0.88 0.37 – 0.95 – –
2-9 1.08 0.23 – 1.08 – –

MT

1 0.65 0.91 -0.80 0.65 -0.80 0.01
2-5 1.15 0.46 -0.16 1.10 -0.21 -0.79
6-9 0.90 0.43 – 0.90 – –
2-9 1.02 0.30 – 1.00 – –

WI

1 0.58 0.87 -0.45 0.58 -0.45 0.00
2-5 1.15 0.42 0.23 1.09 0.16 0.49
6-9 0.76 0.41 – 0.76 – –
2-9 0.96 0.28 – 0.93 – –
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for lead years 2–5 and 2–9. Almost all regions show reliable results at least at one lead

time window, with the exception of the NE region, where there is a complete lack of

reliable predictions. The regions which most stand out in terms of reliable predictions

are the WI, MT, CI and SW regions, with 3 or 4 lead time windows when results are

reliable. Among these regions, the highest anomalies are observed in the CI region,

with values of 1.05 K, 0.88 K and 1.07 K in lead years 2–5, 6–9 and 2–9, respectively.

The lowest value, on the other hand, is observed in lead year 1 in the NO region,

with )mean = 0.52 K. This is the region with the lowest values in general, but they are

not reliable at other lead times. As happened in previous sections, the confidence

intervals defined by the WRF-DPLE4 ±Δ)mean,90 are narrower as the length of the

averaging window increases, so the lowest width is always observed in lead years

2–9. The � values obtained for WRF-DPLE4 in lead years 2–5 are lower than those

in lead year 1. In addition, while there is a underestimation of the AEMET anomaly

in lead year 1 in all regions, it is generally overestimated in lead years 2–5, with the

exception of the MT region. The lowest magnitudes of the error observed in regions

with reliable results have been found for lead years 2–5 in the CI and MT regions

(E = 0.16K and E = −0.16K, respectively), both with )mean anomalies above 1 K. The

errors obtained by WRF-DPLE10 are qualitatively similar to those for WRF-DPLE4,

although they are lower in absolute value in almost all cases, with the exception of

the MT region in lead years 2–5, when the estimation of the AEMET anomaly is more

accurate for WRF-DPLE4. This is also reflected in the results shown for MSSS4, for

which this region is the only one with a negative result. In the same vein as for the

other NSAT variables, the largest differences between WRF-DPLE4 and WRF-DPLE10

performances in terms of MSSS4 are observed in lead years 2–5. Indeed, the MSSS4

values are very close to zero in most part of the regions for lead year 1, with the

exception of the CS region, with a result of MSSS4 = 0.24.

7.5. Concluding remarks

In this Chapter, the WRF-DPLE predictions for the decade 2015–2025 have been

analyzed. Given the results obtained in Chapter 6, these simulations were initialized

from a dynamically equilibrated soil state to reduce the biases related to the spin-up

at the beginning of the decade. The analysis has been focused on the same variables

examined in Chapters 4 and 5, i.e., PR and the NSAT variables ()max, )min and )mean).

Additionally, the full 10-member CESM-DPLE subensemble available for DD has

been downscaled in this case. The impact of the ensemble size on the predictions

has been also evaluated. As the AEMET dataset provides observational information
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up to 2022, the predictions have been compared with the observational value in lead

years 1 and 2–5. The most relevant findings are the following:

• At annual scale, the predicted WRF-DPLE4 anomalies for PR are generally

positive at the beginning of the decade in regions with reliable predictions,

whereas they mostly turn into negative during the second half of the decade.

The anomalies are also negative for lead years 2–9. The most intense negative

anomalies in lead years 6–9 and 2–9 have been found in the Pyrenees, some

northwestern regions and the Central System. In some cases, these anomalies

can reach values below -12 mm/month. However, the width of the confidence

intervals for these results is wide enough to enclose values with opposite signs

at all lead times. At seasonal scale, some of the largest areas with reliable

negative anomalies are shown for SON in lead years 2–9. There are many regions

with reliable predictions showing observational values out of the confidence

intervals in MAM. Although there is a probability of 10 % associated to these

occurrences, they may be also partially due to the fact that the confidence

intervals have been calculated in the control period. Since there is a 15-year

gap between the end of the control period (which has a sample size of 30 start

dates) and the beginning of the decade 2015–2025, the confidence intervals may

not be totally appropriate to account for the uncertainty in this decade in those

specific locations. Additionally, the experiments for the decade 2015–2025 were

initialized from a dynamically equilibrated soil state, in contrast to the hindcasts,

so the spin-up biases may have also affected the calculation of the confidence

intervals. However, as the spin-up period for precipitation is commonly shorter

than 10 months, these biases would only influence on the results for the lead

year 1.

• Qualitatively similar predictions have been obtained from WRF-DPLE10 for

PR, but in general with lower errors than WRF-DPLE4 at annual scale for

lead years 1 and 2–5. Moreover, the WRF-DPLE10 predictions tend to show

more moderate anomalies than WRF-DPLE4. At seasonal scale, the areas where

WRF-DPLE10 outperforms WRF-DPLE4 are commonly larger than those where

WRF-DPLE4 gets a better accuracy, with the exceptions of MAM and JJA in

lead year 1. In these cases, WRF-DPLE4 performs better over most part of the

domain.

• From a regional perspective, the spatially averaged anomalies reproduce

what has been observed in the grid-point analysis. The most intense reliable
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predicted anomalies are negative and have been found in the CN and NW

regions, in lead years 6–9 and 2–9, for WRF-DPLE4. Qualitatively similar results

are shown by the WRF-DPLE10 predictions, but typically getting lower errors

in lead years 1 and 2–5.

• The predicted anomalies for the NSAT variables are positive at annual scale

over the whole domain for all lead times. In regions with reliable predictions

from WRF-DPLE4, the most intense anomalies have been found at lead years

2–5 for the three NSAT variables. The anomalies are commonly higher than 1 K,

with the maximum values between 1.5 K and 1.75 K, shown for )max, in some

regions over the Iberian System. The anomalies can be even higher at seasonal

scale. The highest values are shown in JJA for the three variables, reaching

outcomes up to 2 K in large areas of the domain with reliable predictions for)max

in lead years 6–9. The confidence intervals calculated at annual scale generally

do not contain anomalies with distinct signs in lead years 2–5, 6–9 and 2–9 for

any variable. As for PR, the observational values fall outside the confidence

intervals in some cases, being more frequent in DJF for )max and )mean. The

impact of the spin-up biases on these results is more important for the NSAT

variables than for PR, since the spin-up period is longer for the former.

• The differences between the WRF-DPLE4 and WRF-DPLE10 predicted anoma-

lies are generally small at annual scale. The areas where WRF-DPLE10 outper-

forms WRF-DPLE4 are commonly larger than those showing the opposite in

lead years 1 and 2–5. Larger differences between the ensembles can be found

at seasonal scale, with some locations showing anomalies with different sings

depending on the ensemble size.

• The predicted spatially averaged NSAT anomalies obtained at annual scale

summarize for each region the results observed from a grid-point perspective.

Positive anomalies have been found for the three NSAT variables, regardless of

the region, the lead time and the ensemble size. The anomalies are typically

higher than 0.5 K, and they often reach values higher than 1 K. The confidence

intervals do not commonly contain values with different signs, excepting those

obtained in lead year 1. In general, the accuracy of the WRF-DPLE10 predictions

is better than that of WRF-DPLE4 in lead years 1 and 2–5, with a few exceptions.
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8
Drift correction techniques for decadal

climate predictions

The contents of this Chapter are based on the study carried out in Rosa-Cánovas et al.

(2023), which explores the ability of several drift correction methods to adjust the

drift in DCPs and provides guidance to select a subensemble of decadal experiments

for DD applications. In the following section, the main purpose of this study has

been described. Then, the methodology applied to correct the drift, evaluate the

performance of the methods and select the subensemble has been detailed. Finally,

the results and the main concluding remarks have been presented.

8.1. The need for a skilful adjustment of the drift in decadal climate predic-

tions

The concept of climate drift in DCPs and the importance of adjusting it to generate

skilful climate predictions have been previously addressed in Sections 1.1.2 and 3.3.

After the initialization of a decadal experiment, the predicted climate progressively

drifts away from the initial state determined by the observations towards the imperfect

model climatology (Meehl et al., 2009, 2014). This drift produces lead time-dependent

biases in forecasts which must be addressed to properly evaluate their predictive skill

or to use them as input information in DD simulations. An illustrative example which

shows how the drift correction works has been depicted in Figure 8.1. This Figure

shows the evolution of the global mean SST predicted by the 40-member CESM-

DPLE ensemble mean for a set of raw (i.e., uncorrected) and drift-corrected decadal

experiments (coloured dashed and solid thin lines, respectively), the same variable

produced by the raw 40-member CESM-LE ensemble mean (black dotted line) and

the observational information provided by ERSST5 (black solid thick line). The

raw decadal experiments approach or drift to the path followed by the uninitialized
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Figure 8.1 : Example of the drift correction for the 40-member CESM-DPLE ensemble mean. The global
mean SST is depicted for the raw (i.e., uncorrected) CESM-DPLE ensemble mean (coloured dashed thin
lines), the CESM-DPLE ensemble mean corrected with the MDC (coloured solid thin lines), the raw
CESM-LE ensemble mean (black dotted line) and the observational information provided by ERSST5
(black solid thick line).

experiments as the lead time increases. By contrast, the drift-corrected experiments

keep closer to the observed SST.

As stated in Section 3.3, the MDC (Boer et al., 2016; CLIVAR, 2011) has been

used in this Thesis to adjust the drift in the 4-member CESM-DPLE subensemble

which provided the ICs and LBCs used to produce the WRF-DPLE experiments.

Although this method contributes to reducing the mean lead time-dependent bias

in CESM-DPLE, it does not account for higher-order biases, such as those observed

in the representation of trends (see Section 5.4). Therefore, additional correction

techniques have been evaluated in this Chapter to explore alternative approaches to

MDC with the aim of improving as much as possible the predictive skill of the input

data in DD simulations, which would lead to a more skilful downscaled product in

potential future experiments. Taking into account that a reduction of the ensemble size

inevitably leads to the loss of predictive skill, this analysis also assesses the impact of

this reduction in a context of limited access to computing resources to conduct the DD

simulations. This evaluation does not include the DeFoReSt approach (see Section 3.5;

Pasternack et al., 2018, 2021) because it is not examined in the original work presented

in Rosa-Cánovas et al. (2023). This method accounts not only for unconditional and

conditional biases but also for the misrepresentation of the ensemble spread, so it

may be considered as a potential candidate to correct the input information for DD
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simulations, and it should be included in future drift correction assessments.

The main aim of this analysis is to provide guidance for the selection of a drift-

corrected 3-member subensemble (ENS3) from CESM-DPLE which is representative

of the performance of the whole 40-member ensemble (ENS40) to some extent for

several areas of interest. The selected subensemble could be used to conduct DD

simulations for future studies, minimizing the computing requirements to conduct

the DD while reducing as much as possible the loss of predictive skill in the final

product and still allowing a representation of the uncertainty in the predictions

comparable to that of the full ensemble.

The procedure to follow encompasses two steps:

1) Selection of the most appropriate method of drift correction to minimize the

model drift in ENS40.

2) Selection of members to build ENS3 and evaluation of the impact of ensemble

size on the subensemble performance.

8.2. Methodology

Several drift correction methods have been used to correct three climate fields: SST,

NSAT anomaly and SLP. Since the reference data must provide all fields needed in

the correction process, the adjustment of the drift has been conducted with ERA5 as

the reference dataset (see Section 2.2.2). Then, the added value to the accuracy of

predictions provided by each drift correction approach has been assessed for these

three variables and a set of climate indices computed with them. The observational

datasets used to evaluate the results of the drift correction have been described in

Section 2.3.2. Since the skill of the correction methods could vary depending on the

region (Choudhury et al., 2017), the analysis has been carried out by considering

several domains of interest in the context of DD. They are the European (EUR),

South American (SA) and North American (NA) domains defined by CORDEX

(CORDEX, 2015; Giorgi and Gutowski, 2015; Giorgi et al., 2009). The area covered

by each domain can be consulted in CORDEX (2015) or Figure B.82 (available in

Appendix B.4). All methods and their corresponding evaluations have been applied

to full fields.

8.2.1. Description of the drift correction methods

In addition to the MDC described and evaluated in Section 3.3, two more correction

techniques have been examined. These are the trend-based drift correction (TrDC;
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Kharin et al., 2012) and the initial condition-based drift correction (ICDC; Fučkar

et al., 2014). Apart from the conventional formulations of these methods, two com-

plementary approaches have been considered for them: the k-nearest neighbours

(kNN; Choudhury et al., 2017) and the polynomial fitting (FIT; Gangstø et al., 2013;

Kruschke et al., 2016) approaches.

❦ Trend-based drift correction

A model which does not properly capture long-term climate trends, such as the global

warming, could produce decadal predictions which drift away from the observations

with dependency on the initialization time. Since the MDC cannot be suitable for

addressing this sort of bias, Kharin et al. (2012) proposed the TrDC method, which

also considers climate trends in the assessment of the model drift. Following their

approach, the ensemble mean {.′} 9�, calculated by following Eq. [3.5], and the

reference data -′
9�

can be written in terms of a first-order approximation with the

initial date 9 as independent variable:

{.′} 9� = 
.� + �.� 9 + &.9� ,

-′
9� = 
-� + �-� 9 + &-9�

where 
.� = {.′}� − 9�.� (with {.′}� as the ensemble mean calculated from Eq. [3.1])

and �.� = Cov
[

{.′} 9� , 9
]

/Var
[

9
]

denote the intercept and slope coefficients for the

decadal prediction, respectively, while 
-� = -′
� − 9�-� (with -′

� given by Eq. [3.2])

and �-� = Cov
[

-′
9�
, 9

]

/Var
[

9
]

identify such coefficients for reference data. The

higher-order errors are represented by &.
9�

and &-
9�

. Therefore, the model drift is given

by

3TrDC
9� = 
.� + �.� 9 − (
-� + �-� 9) = 3MDC

� + (�.� − �-� )(9 − 9) [8.1]

where 3MDC
� is the model drift calculated in Eq. [3.37]. Note that if there are not

differences between the slope coefficients, the trend-based drift is reduced to the

mean drift. The corrected forecast for the ensemble member : and initial date 9 at

lead time � is calculated by removing the drift from .′
: 9�

:

.′TrDC
: 9� = .′

: 9� − 3TrDC
9� [8.2]
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❦ Initial condition-based drift correction

As TrDC, the objective of the ICDC method (Fučkar et al., 2014) is to correct long-

term climate trends. This method intends to take advantage of the relevance that an

accurate representation of the climate state at the initialization stage has on the drift

and predictive skill. Therefore, in this case, the independent variable in the first-order

approximation is the climate state in the reference dataset � 9 = -′
9 ,�=1

for the start

date 9. Note that � 9 does not necessarily correspond to the same observational initial

conditions used to initialize the decadal predictions. Instead, ERA5 provides the

climate state at time of initialization used for � 9 in all fields. The equations of the

ensemble mean {.′} 9� and reference data -′
9�

can be written as follows:

{.′} 9� = 
̃.� + �̃.� � 9 + &̃.9�

-′
9� = 
̃-� + �̃-� � 9 + &̃-9�

[8.3]

where 
̃.� = {.′}�−��̃.� and �̃.� = Cov
[

{.′} 9� , � 9
]

/Var
[

� 9
]

are the intercept and slope

coefficients for the decadal forecast, 
̃-� = -′
� −��̃-� and �̃-� = Cov

[

-′
9�
, � 9

]

/Var
[

� 9
]

correspond to the reference data, and &̃.
9�

and &̃-
9�

are the higher-order errors. Pro-

ceeding in the same way as in the TrDC case:

3ICDC
9� = 
̃.� + �̃.� � 9 − (
̃-� + �̃-� � 9) = 3MDC

� + (�̃.� − �̃-� )(� 9 − �) , [8.4]

where 3MDC is the model drift calculated in Eq. [3.37]. The corrected forecast for the

ensemble member :, initial date 9 and at lead time � is calculated by removing the

drift from .′
: 9�

:

.′ICDC
: 9� = .′

: 9� − 3ICDC
9� [8.5]

8.2.2. Complements for the conventional formulations

❦ K-nearest neighbours

In addition to the conventional formulations of the methods described above, there

are other approaches which can be used to complement the adjustment of the drift

conducted through those methods. The kNN approach was proposed by Choudhury

et al. (2017) and, in the same vein as ICDC, aims at taking advantage of the influence

the initial state could have on the model drift (Fučkar et al., 2014). The purpose of

this method is to improve the drift calculation by using only a selection of initialized
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experiments. The selected experiments are those whose initial conditions are the

most similar to the observed initial state in the corrected decade. The procedure is

the following:

1) Let 9 be the initialization date of the decadal experiment whose drift will be

removed. Consider � 9 as the initial observed state in 9 and �8≠9 as the initial

observed state in the other decades.

2) Select a percentage of the closest �8≠9 values to � 9 . As in Choudhury et al. (2017),

the 60 % of �8≠9 values have been chosen.

3) These selected decades constitute the subset used to remove the model drift by

using any of the conventional methods described above.

The corrected forecast for the ensemble member :, initial date 9 and at lead time

� is calculated by removing the drift from .′
: 9�

:

.′kNN
: 9� = .′

: 9� − 3kNN
9� [8.6]

❦ Polynomial fitting

The FIT approach (Gangstø et al., 2013; Kruschke et al., 2016) attempts to reduce

the sampling uncertainty in drift correction and is built upon the idea of a non-

monotonous lead time-dependent drift possibly existing in decadal experiments. The

drift is given by

3FIT
9� = 60, 9� + 61, 9�� + 62, 9��

2 + 63, 9��
3 , [8.7]

where 08 , 9� are non-stationary coefficients which change over time C (a function of 9

and �). A first-order approximation is considered for them:

3FIT
9� = (ℎ0 + ℎ1C 9�) + (ℎ2 + ℎ3C 9�)� + (ℎ4 + ℎ5C 9�)�2 + (ℎ6 + ℎ7C 9�)�3 [8.8]

The coefficients in Eq. [8.8] are obtained by adjusting the polynomial to the drift

calculated through a conventional procedure. The corrected forecast for the ensemble

member :, initial date 9 and at lead time � is calculated by removing the drift from

.′
: 9�

:

.′FIT
: 9� = .′

: 9� − 3FIT
9� [8.9]
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8.2.3. Evaluation

❦ Evaluation of drift correction methods

The first part of this study consists in evaluating each drift correction method to

determine which gives the best results in terms of the accuracy of the predictions

for SST, NSAT anomaly, SLP and several climate indices from ENS40. DCPs are

skilful inasmuch as they can reproduce not only the observed climate variability, but

also the magnitude of that change. Therefore, the evaluation has been conducted

by using the RMSE and ACC metrics defined in Eqs. [3.10] and [3.13], respectively,

both calculated with full fields. Several lead time windows spanning 1, 4 and 8 years

have been considered in the analysis to evaluate the dependence of the accuracy of

predictions on the lead time, as suggested by Goddard et al. (2013). This evaluation

has been carried out for the experiments initialized every year from 1960 to 2009 (50

start dates).

After calculating both metrics for each grid point, the spatially weighted averages

〈RMSE〉 and 〈ACC〉 have been computed in each CORDEX domain considered here.

The best qualified method per domain has been selected to build ENS3 afterwards.

The non-parametric bootstrapping described in Section 3.2.3 has been applied to

assess the statistical significance of the results. To maintain the coherence with the

work presented in Rosa-Cánovas et al. (2023), the statistical significance has been

assessed for the 95 % confidence level, rather than for the 90 % level considered in

the previous chapters.

❦ Climate indices

In addition to the analysis of SST, NSAT anomaly and SLP, the ACC scores for several

climate indices have been also used as a decision factor when assessing the perfor-

mance of the drift correction methods. The climate indices include in the analysis

the representation of large-scale patterns of climate variability which influence on

local climate, allowing a broader assessment which is not only constrained to the

CORDEX regions. Several El Niño/Southern Oscillation (ENSO) indices have been

considered alongside the NAO and Atlantic Mutidecadal Variability (AMV) indices.

The ENSO oceanic component is characterized by the emergence of SST anomalies

across tropical Pacific and influence on the weather worldwide (e.g., Brönnimann

et al., 2006; Infanti and Kirtman, 2016), although its effects are more perceptible

in South America (Cai et al., 2020). Since ENSO SST patterns are spatially variant,

various ENSO indices calculated over different areas have been considered in this
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study: the Niño 1+2, Niño 3, Niño 3.4, Niño 4 and Trans-Niño indices (Trenberth

and Stepaniak, 2001).

On the other hand, as previously mentioned in Section 4.5, NAO is one of the most

important atmospheric circulation modes in the Northern Hemisphere, described by

changes in SLP or geopotential height over the action centers located in the Azores

and Iceland, with influence on temperature, precipitation and winds along the whole

hemisphere (Hurrell et al., 2003; Smith et al., 2019). Finally, AMV consists in a SST

variability pattern over the North Atlantic, which has been associated to the formation

of hurricanes or changes in rainfall in the Northern Hemisphere (Knight et al., 2006;

Smith et al., 2020).

All indices have been calculated with averaged fields in DJF. The SST has been used

to compute the AMV and ENSO indices, whereas the SLP has been used to obtain

the NAO index. The regions where the indices have been calculated are described in

Table 8.1. The Niño 1+2, Niño 3, Niño 3.4 and Niño 4 indices have been computed by

calculating the anomalies of the spatially averaged SST in the corresponding region

for each lead time series, while Trans-Niño Index (TNI) has been calculated as the

standardized Niño 4 index minus the standardized Niño 1+2 index (Trenberth and

Stepaniak, 2001). To calculate the NAO index, the anomalies of the spatially averaged

SLP in the Iceland region have been subtracted to the anomalies of the spatial average

in the Azores region, applying the definition used in other studies which assessed the

Table 8.1 : Definition of the regions where the climate indices are calculated.

Index Region

Niño 1+2 0◦–10◦S, 90◦W–80◦W

Niño 3 5◦N–5◦S, 150◦W–90◦W

Niño 3.4 5◦N–5◦S, 170◦W–120◦W

Niño 4 5◦N–5◦S, 160◦E–150◦W

Trans-Niño Index (TNI) 0◦–10◦S, 90◦W–80◦W (Niño 1+2 region)
and 5◦N–5◦S, 160◦E–150◦W (Niño 4 region)

North Atlantic Oscillation (NAO) 36◦N–40◦N, 28◦W–20◦W (Azores) and
63◦N–70◦N, 25◦W–16◦W (Iceland)

Atlantic Multidecadal Variability (AMV) 0◦–60◦N, 80◦W–0◦ (North Atlantic) and
60◦S–60◦N, 180◦E–180◦W (global average)
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predictive skill of different DPSs for this variability pattern (Smith et al., 2019, 2020).

Following the same approach of Trenberth and Shea (2006) and Smith et al. (2020),

the AMV index has been calculated as the difference between the SST averaged in

the North Atlantic region and the SST global average.

❦ Evaluation of single members and subensemble predictive skill

To select the CESM-DPLE members which have been used to build ENS3, the analysis

has been focused on the 〈ACC〉 calculated for SST in lead years 2–9 over each domain

separately, following a similar approach to that described in Section 3.3.2. This lead

time period has been chosen to examine the performance at decadal time scale rather

than accounting for the skill arising from interannual variability. Moreover, the skill

which arises from seasonal to annual variability is avoided by removing the first

year from the assessed period. This analysis has been centered on SST because of

the particularly relevant role that the ocean component plays in the predictive skill

of DCPs. As stated in Section 2.1.1, only 10 out of the 40 members of CESM-DPLE

(ENS10) provide enough data to conduct DD simulations, so the member selection

has been constrained to those suitable members.

ENS3 has been constructed with the member showing the largest skill in repro-

ducing the observed SST variability (the “best” member), the member showing the

lowest skill (the “worst” member) and a member with an intermediate behaviour. A

similar approach was used by Paeth et al. (2017) to carry out their study about the

decadal predictability of the West African monsoon. With this strategy, a representa-

tive subensemble of the whole ensemble can be constructed. By selecting members

with heterogeneous skill levels, part of the spread of ENS40, or of ENS10 at least, is

expected to be retained, since these members cover the whole range of possible single

performances among the 10 members available for DD.

In the analysis of the ENS3 performance, the following key points have been

addressed:

1) How much does the 〈ACC〉 for SST depend on ensemble size?

2) Does the confidence intervals of 〈ACC〉 for the subensemble contain the result

obtained for ENS10 (the maximum ensemble size attainable by dynamically

downscaled CESM-DPLE) and ENS40 (the maximum ensemble size attainable

by CESM-DPLE)?

3) Is the spread of the members in the subensemble appropriate to quantify the

uncertainty in the subensemble predictions?
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By addressing the first question, the unavoidable loss of predictive skill, con-

sequence of reducing the ensemble size to three members, can be quantified. At

first, 〈RMSE〉 and 〈ACC〉 have been calculated for ensemble sizes ranging from 3 to

10. The confidence intervals of these metrics have been calculated by applying the

same bootstrapping used in the evaluation of the correction methods, and described

in Section 3.2.3, but considering only the 10 members available for DD. Secondly,

the results have been compared with those for ENS3 and ENS40. To conduct the

bootstrapping for these ensembles, 3 (the “best”, the “worst” and “intermediate”)

and 40 members have been used, respectively.

The answer to the second question shows if the accuracy levels which can be

potentially achieved by ENS10 and ENS40 are covered by the confidence intervals

obtained for subensembles with different sizes. Again, the bootstrapping strategy

has been applied for ensemble sizes ranging from 3 to 10, alongside our ENS3, to

calculate 〈RMSE〉 and 〈ACC〉. For every subensemble, the bootstrapping has been

repeated 5000 times in order to calculate the percentage of ENS10 and ENS40 score

coverage that the confidence intervals get. This methodology was also used by Sienz

et al. (2016) to examine the skill of small subensembles, but considering a conceptual

model to calculate the skill score which have to be covered by the confidence intervals.

The third question tests if the subensemble spread is appropriate to represent the

range of possible individual predictions over time, i.e., how reliable the subensemble

predictions are. Following Goddard et al. (2013), the reliability of decadal predictions

can be analyzed through the CRPSS, whose calculation and interpretation has been

detailed in Section 3.2.2. The optimal value of CRPSS in Eq. [3.29] is CRPSS = 0. It is

attained for �2
.
= �2

-
(from Eqs. [3.32] and [3.33], respectively), when the prediction

and reference distributions are equal and, therefore, the average ensemble spread

is adequate to quantify the uncertainty. The statistical significance of the results

obtained for subensembles of different sizes from 3 to 10 members has been assessed

by the bootstrapping approach, applied only for start dates, while the members of

the subensembles have been randomly selected by combinations without repetitions

of 3 members for ENS3 and 10 members for ensembles sizes from 3 to 10. For ENS40,

all members of the ensemble have been considered.
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8.3. Results

8.3.1. Evaluation of the drift correction methods

This Section is devoted to the analysis of the added value of the drift correction

methods to the accuracy level of predictions for SST, NSAT anomaly, SLP and several

climate indices for ENS40.

❦ European domain

The spatially averaged scores for SST over the EUR domain per drift correction

method along lead time have been depicted in Figure 8.2. Crosses denote averages,

whereas the median of the sample average is represented by a straight line, boxes

identify the 50 % confidence interval and whiskers correspond to the 95 % confidence

interval. All methods have performed very well in terms of 〈RMSE〉 and none has

substantially achieved better results than the others. The highest 〈RMSE〉 values have

been found during the first year. 〈RMSE〉 for uncorrected data (RAW) is around

0.76 K, whereas values below 0.45 K are depicted when a drift correction method is

applied. In lead years 2–5 and 6–9, a decrement in 〈RMSE〉 can be observed, while the

lowest values are shown at decadal scale. In the results for 〈ACC〉, ICDC-like methods

have outperformed almost all other methods in lead year 1, with the exception of

MDCkNN, which has obtained similar results to those for ICDCFIT. Among ICDC-like

methods, the best results have been obtained by ICDC, followed by ICDCkNN and

ICDCFIT. At this time scale, the initialization fingerprint is more prominent than

afterwards, so techniques which incorporate information about initial conditions

in drift correction are candidates to perform the best. On the other hand, apart

from the ICDC-like methods, only MDCkNN and TrDCkNN give slightly better results

than RAW. Although MDC is not expected to significantly improve or worsen RAW

performance in terms of 〈ACC〉, as explained in Section 3.3.2, it is so for TrDC.

Nevertheless, the introduction of the trend component leads to slightly poorer scores

compared to RAW and MDC. According to Eq. [8.1], the drift in TrDC is calculated as

the drift in MDC added to a component which accounts for the differences in trends

between model and reference data. Bearing in mind how MDC affects results for

〈ACC〉, the slight decrease in the skill after applying TrDC is entirely caused by this

trend component and may be due to minor discrepancies between ERA5 (reference

dataset in drift correction) and ERSST5 (reference dataset in skill evaluation) SST

trends. At interannual scale, the differences between methods are smaller than in

lead year 1. ICDC-like and MDC-like techniques perform very similar to RAW, with
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Figure 8.2 : Spatially averaged RMSE (〈RMSE〉, left column) and ACC (〈ACC〉, right column) for the
ENS40 SST in lead years 1, 2–5, 6–9 and 2–9 (rows) over the EUR domain. The results are presented for
each drift correction method and the uncorrected (raw) data. Crosses denote the spatial averages. Box
plots show the results of a bootstrapping (see Section 8.2.3) for which lines indicate the median value and
boxes and whiskers enclose the confidence intervals at the 50 % and 95 % levels, respectively.

248



8.3. Results

averages around 0.8 in lead years 2–5 and 0.84 in lead years 6–9. TrDC-like methods

give slightly lower 〈ACC〉 scores, although the differences are smaller than 0.04. In

lead years 2–9, the situation is similar, with 〈ACC〉 scores near 0.9 for RAW, MDC-like

and ICDC-like methods.

The results for the NSAT anomaly have been depicted in Figure B.74 (available

in Appendix B.4). The correction methods do not generally provide an added value

to the accuracy, except for lead year 1. For the rest of lead times, the scores for the

methods and RAW are very similar. Since the field corrected is an anomaly, the

mean field along the analyzed period in the reference dataset for drift correction

(ERA5) and hindcasts is the same. Therefore, very similar 〈RMSE〉 scores have been

found between correction methods and RAW. On the other hand, the 〈ACC〉 scores

for RAW are very high at interannual and decadal scales, so the added value of

correction methods is reduced for this variable. In the analysis of SLP, whose results

are depicted in Figure B.75 (also in Appendix B.4), ICDC-like methods clearly give

the best results for lead year 1 in terms of 〈ACC〉, with correlations around 0.4 for

ICDC and ICDCkNN, although they are very close to zero at the other lead times.

At interannual and decadal scale, the best results for this score have been found for

TrDC-like methods. These scores are below 0.2 at almost all lead times with the

exception of lead years 2–9, when spatial averages between 0.2 and 0.28 can be found.

Since the climate change trend is stronger for temperature fields than for SLP, a strong

decrease in correlation was also expected. On the other hand, the results obtained

for 〈RMSE〉 are very similar among the different methods.

In Europe, it is also interesting to evaluate how well these techniques perform in

the prediction of the NAO and AMV indices. Their corresponding ACC scores, for

each drift correction method and several lead times (interannual and decadal), are

shown in Table 8.2. With respect to NAO, the best results have been obtained for the

TrDC-like methods. At interannual scale, the ability to predict the NAO is higher in

the first half of the decade. The three TrDC-like variants show statistically significant

positive results in lead years 1–4, with a maximum value of 0.53 for TrDCkNN. In lead

years 2–5, the significant results have been found for TrDCFIT and TrDCkNN, with the

latter showing the highest score (ACC = 0.49). The correlations are not significant in

lead years 5–8, with values equal to 0.35 and 0.39 for TrDC and TrDCkNN, respectively.

The strongest ACC values have been found in lead years 2–9, with significant outcomes

of 0.67, 0.68 and 0.51 for TrDC, TrDCkNN and TrDCFIT, respectively. The other methods

do not give significant results at any lead time. Indeed, the results are often negative

(but not significant) in the second half of the decade for such techniques. Even RAW
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Table 8.2 : ACC calculated for several climate indices from ENS40 along lead time for each drift correction
method and the uncorrected (raw) data. The bold formatting in the ACC values indicates statistical
significance at the 95 % confidence level.

Index Method
Lead years

1-4 2-5 5-8 2-9

NAO

RAW 0.36 0.38 0.01 0.28

MDC 0.25 0.23 -0.20 0.13

MDCkNN 0.32 0.30 -0.06 0.33

MDCFIT 0.33 0.35 -0.05 0.25

TrDC 0.46 0.44 0.35 0.67

TrDCkNN 0.53 0.49 0.39 0.68

TrDCFIT 0.45 0.41 0.17 0.51

ICDC 0.16 0.10 -0.17 0.09

ICDCkNN 0.27 0.24 -0.18 0.30

ICDCFIT 0.31 0.30 -0.06 0.20

AMV

RAW 0.72 0.83 0.84 0.91

MDC 0.70 0.81 0.82 0.91

MDCkNN 0.73 0.83 0.80 0.90

MDCFIT 0.71 0.82 0.82 0.91

TrDC 0.68 0.78 0.80 0.89

TrDCkNN 0.73 0.81 0.79 0.89

TrDCFIT 0.68 0.77 0.81 0.89

ICDC 0.76 0.83 0.75 0.89

ICDCkNN 0.76 0.83 0.74 0.89

ICDCFIT 0.76 0.83 0.77 0.89

TNI

RAW 0.41 0.14 -0.13 -0.07

MDC 0.36 0.06 -0.23 -0.13

MDCkNN 0.35 0.03 0.10 0.00

MDCFIT 0.36 0.06 -0.22 -0.13

TrDC 0.41 0.20 -0.10 0.02

TrDCkNN 0.37 0.14 0.16 0.10

TrDCFIT 0.39 0.12 -0.15 -0.07

ICDC 0.44 0.03 0.11 0.04

ICDCkNN 0.39 -0.05 0.19 0.05

ICDCFIT 0.41 0.03 -0.02 -0.05
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often performs better than them, especially in lead years 1–4 and 2–5, with significant

positive results of 0.36 and 0.38, respectively.

The results obtained for TrDC and TrDCkNN at decadal scale are certainly promis-

ing. Smith et al. (2019) found an ACC of 0.49 with a multimodel ensemble composed

of 71 members (31 members more than CESM-DPLE) without any post-processing

adjustment for the same lead time. On the other hand, an ACC of 0.79 was found

by Smith et al. (2020) for an even higher multimodel ensemble, composed of 169

members, after post-processing the NAO time series to rescale the signal. The same

ensemble with no post-processing gave a result of 0.48. In this context, TrDCkNN

and TrDC methods constitute a relatively simple approach to improve the ability to

predict the NAO variability for the 40-member CESM-DPLE ensemble. The contrast

between their high ACC scores for NAO and the low 〈ACC〉 scores for SLP is due to

the fact that 〈ACC〉 for SLP has been calculated with annual averages, whereas ACC

for NAO has been calculated in DJF, when results for SLP are slightly more optimistic

in lead years 2–9 (see Figure B.76 in Appendix B.4).

Much higher correlations have been obtained in the analysis of AMV, as expected

given that this index entirely depends on SST. In general, ACC is above 0.70 for

almost all methods and lead times, with the exception of TrDC and TrDCkNN in lead

years 1–4. In this case, the MDC-like methods perform slightly better than the others,

reaching results equal to or larger than 0.9 in lead years 2–9. They are followed by

TrDC-like and ICDC-like methods, in that order. In the evaluation of the prediction

for AMV, there is no added value over what has been obtained by RAW.

Since the differences between the performance of the methods in the prediction

for SST and NSAT anomaly are very small, the selection of the most appropriate

technique for the EUR domain has been done in terms of the results obtained for SLP

and NAO. Although ICDC-like methods can provide an added value to the accuracy

of predictions in lead year 1 in the analysis of SLP, the TrDC-like methods provide

the best results at decadal scale, especially TrDC and TrDCkNN for NAO. Since the

latter method slightly outperforms the former at all lead times in the analysis of SLP,

TrDCkNN may be the preferred choice in this area.

❦ South American domain

The results for the averaged scores over the SA domain for SST have been depicted

in Figure 8.3. As for the EUR domain, drift correction always improves 〈RMSE〉
compared to RAW, regardless of the correction method. In lead year 1, the maximum
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Figure 8.3 : As Figure 8.2 but for the SA domain.

improvements are around 0.24 K, with techniques using polynomial fitting giving

the highest 〈RMSE〉. Differences among methods are less evident at the other lead
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times, when reductions in 〈RMSE〉 from approximately 0.80 K to 0.30 K are found,

compared to RAW. Relevant disparities among method performances are observed for

〈ACC〉 scores. As expected, ICDC-like procedures contribute to better capturing the

climate variability in lead year 1, with outcomes around 0.6. MDC-like and TrDC-like

methods achieve similar results among them, with 〈ACC〉 ranging from 0.48 to 0.56

and with kNN approaches getting higher scores than the others. In lead years 2–5

and 6–9, the 〈ACC〉 scores are lower than in lead year 1. At this lead time, MDC-like

and ICDC-like methods perform similar to each other, with averaged scores between

0.36 and 0.4, getting better results than TrDC-like methods. Additionally, the values

for TrDC-like methods are certainly lower than for RAW, as happened for the EUR

domain. The situation is similar at decadal scale, with higher 〈ACC〉 scores than at

interannual scale but lower than for the first year.

In the analysis of the accuracy of predictions for the NSAT anomaly (Figure B.77

in Appendix B.4), all methods give outcomes similar to RAW in terms of 〈RMSE〉.
Maximum values around 0.5 K in lead year 1 and minimum around 0.22 K in lead

years 2–9 are observed. The performance among methods in terms of 〈ACC〉 is also

very similar for all lead times, excepting in lead year 1, when ICDC-like methods get

the highest correlations around 0.52. At the other lead times, the correlations are

higher but the differences among methods are hardly appreciable. After examining

the results for SLP (Figure B.78 in Appendix B.4), similar conclusions have been

obtained, although ICDC-like methods perform slightly worse than the others in lead

years 6–9 and 2–9. Nevertheless, the correlations are poor in general for all methods

and lower than for temperature variables, as happened in the EUR domain. The only

exception is found for ICDC and ICDCkNN in lead year 1, with ACC values around

0.4.

The skill to capture the variability of some ENSO indices, described in Section 8.2.3,

has also been assessed for each drift correction method and several lead times, being

the most relevant results, obtained for TNI, shown in Table 8.2. In general, for the

Niño 1+2, 3, 3-4 and 4 indices, there is a lack of statistical significance in the ACC

values found for all methods at almost all lead times. This also happens for TNI, with

the exception of the significant positive results found in lead year 1 for all methods

and in lead years 5–8 only for ICDCkNN. While the results are commonly positive

at the beginning of the decade, there is a decrease of ACC along lead time for all

ENSO indices, although part of the statistical significance is retained by ICDCkNN for

TNI in the second half of the decade. The ICDC-like methods perform slightly better

than their counterparts in lead years 1–4 and 5–8. The decrease of ACC for all ENSO
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indices during the first years of the decade is consistent with the results obtained

by Gonzalez and Goddard (2016) for the Niño 3.4 index. The authors attribute the

differences between the modeled and observed ENSO, in part, to biases in the location

of the maximum SST anomalies, which in turn affect the location of the coupling

between SST and the atmosphere. The spatial distribution of ACC for the ENS40 SST,

drift-corrected with ICDCkNN in DJF, has been depicted in Figure B.79 (available in

Appendix B.4). The ACC outcomes are very low in the Pacific, with not significant

results over large areas inside the ENSO regions, partly explaining the correlations

observed for these indices.

The added value of the ICDC-like methods to the accuracy of predictions in lead

year 1 is higher than that of other methods for SLP and, to a lesser extent, for SST. In

the analysis of the ENSO indices, their performance is, in general, slightly better than

that provided by the other methods, especially with respect to the TNI. For these

reasons, the ICDC-like methods may be the most suitable correction techniques for

the SA domain. Since the ICDCkNN is the only method which retains some significant

skill for TNI in the second half of the decade, it has been chosen for the second part

of the analysis in Section 8.3.2. If a more straightforward and less computationally

demanding technique is required, the ICDC method may also be a good option,

as it additionally performs slightly better than ICDCkNN in terms of the TNI at the

beginning of the decade.

❦ North American domain

The spatially averaged scores for SST in the NA domain have been depicted in Fig-

ure 8.4. The performance in terms of 〈RMSE〉 is similar to that within the other

domains in general. All methods significantly contribute to reducing the bias in RAW

and there are not big differences among them. 〈RMSE〉 for corrected data is higher

in lead year 1 with values around 0.46 K, whereas the lowest values are found in

lead years 2–9, ranging from 0.32 K to 0.36 K, approximately. Again, the analysis of

the 〈ACC〉 scores is needed to choose the most appropriate correction procedure for

this region. In lead year 1, ICDC-like methods outperform the rest, with values near

0.68. There are not robust differences between MDC-like and TrDC-like methods,

although kNN gives slightly better results than the conventional and polynomial

approaches. In lead years 2–5, the gap between ICDC-like and the other methods is

smaller, showing a performance similar to RAW and MDC-like methods, with spatial

averages between 0.44 and 0.48. In lead years 6–9, the differences among methods

are hardly appreciable. All perform similar to RAW, with 〈ACC〉 between 0.52 and
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Figure 8.4 : As Figure 8.2 but for the NA domain.

0.56. The situation is the same in lead years 2–9, but with higher scores close to 0.6.

In the analysis of the NSAT anomaly (Figure B.80 in Appendix B.4), the results
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are similar to those for the EUR and SA domains. The methods generally give the

same outcomes for 〈RMSE〉, although ICDC-like techniques perform slightly worse

than the others in lead year 1. While the highest errors have been found at this lead

time, generally between 1 K and 1.04 K, the lowest are around 0.35 K at decadal scale.

In regard to 〈ACC〉, ICDC-like methods slightly outperform the others again in lead

year 1, with correlations between 0.4 and 0.48, but the differences among them are

smaller at the other lead times. The highest 〈ACC〉 scores are shown in lead years

2–9, with values varying from 0.8 to 0.84 depending on the method. In terms of SLP

(Figure B.81 in Appendix B.4), ICDC-like methods give the best results for 〈ACC〉 in

lead year 1, when the largest scores around 0.46 are observed. At the other lead times,

the results are very similar among methods. The TrDCkNN method performs slightly

better than the others and provides a small added value over RAW, although the

outcomes are always below 0.1. On the other hand, the lowest correlations have been

found at decadal scale, with scores around 0.2. The other methods do not contribute

to the improvement of RAW performance at any lead time.

Although ICDC-like methods can provide an added value to the accuracy of pre-

dictions over the other methods and RAW in lead year 1 for all variables (especially

for SLP), the method performances are very similar to each other at the other lead

times for the three variables. The good results obtained in lead years 2–9 for the NAO

index lead to consider the TrDCkNN method as one of the most suitable correction

techniques to adjust the drift with focus on the decadal scale, just as for the EUR

domain.

Finally, the RMSE and ACC spatial distributions for SST, NSAT anomaly and SLP

in lead years 2–9, with TrDCkNN and ICDCkNN used as the drift correction methods,

as well as for RAW, can be consulted in Figures B.82 to B.84, respectively (available in

Appendix B.4). The results obtained for the three domains considered in the analysis

reflect what has been found for the spatial averages. In terms of RMSE, the correction

methods help to improve the accuracy of the RAW experiments in all domains. On

the other hand, TrDCkNN improves the spatial distribution of ACC compared to RAW

in the EUR domain (compare Figures B.82f and B.84f). In the same line, this method

also improves the correlations obtained in the northern and eastern parts of North

America (compare Figures B.82f and B.84f again), contributing to slightly increasing

the averaged ACC in the NA domain over RAW (see Figure 8.4h). The ICDCkNN

method also provides an added value to the ACC in the subtropical latitudes close to

the SA domain in the Pacific over RAW, increasing the statistical significance of the
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positive ACC scores (compare Figures B.83b and B.84b).

8.3.2. Evaluation of single members and subensemble skill

❦ Selection of single members to build ENS3

The predictive skill of the individual members usually varies depending on the field

and domain, the lead time and even the skill score under analysis, so the selection

of the members to build ENS3 is not straightforward. Since the ocean is the main

reservoir of memory in the climate system, the selection has been done by considering

the results obtained in terms of the 〈ACC〉 for SST in lead years 2–9. Figure 8.5 shows

the 〈ACC〉 scores for SST in lead years 2–9 over the EUR, SA and NA domains for

ENS40, ENS3 and the 10 single members available for DD. While SST has been

corrected with TrDCkNN in the EUR and NA domains, ICDCkNN has been used in

the SA domain. As stated in Section 8.2.3, the member with the highest skill (the

“best” member), the member with the lowest skill (the “worst” member ) and another

member with an intermediate behaviour (“intermediate” member) have been chosen

to build ENS3 in each domain.

In the EUR domain, ENS3 encompasses member 2 (the “best” member), member

8 (the “worst” member) and member 7 (“intermediate” member). The results for the

single members range from 0.74 to 0.82, approximately. The highest correlations are
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Figure 8.5 : Spatially averaged ACC (〈ACC〉) for SST in lead years 2–9 over the a) EUR domain, b)
SA domain and c) NA domain. In the EUR and NA domains, SST has been corrected with TrDCkNN,
whereas ICDCkNN has been used in the SA domain. The results are depicted for ENS40, ENS3 and each
single member. Crosses denote the spatial averages. Box plots show the results of a bootstrapping (see
Section 8.2.3) for which lines indicate the median value and boxes and whiskers enclose the confidence
intervals at the 50 % and 95 % levels, respectively.
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observed for ENS40 and ENS3, with values around 0.88 and 0.84, respectively. Only a

difference of nearly 0.02 is observed between ENS3 and member 2. With respect to the

SA domain, member 7 has been chosen as the “best” member, member 2 as the “worst”

and member 3 representing an intermediate behaviour. The differences in terms of

accuracy are slightly larger than for the EUR domain, with averaged correlations

ranging from about 0.32 to 0.44, approximately. Member 7 performs sligthly better

than ENS3, getting an 〈ACC〉 around 0.44, whereas ENS40 shows a value close to 0.48.

Finally, member 4 has been chosen as the “best” member, member 3 as the “worst” and

member 10 as a member with intermediate skill in the NA domain. Likewise in the SA

domain, slightly larger differences between single members are observed compared

to the EUR domain, with averages scores ranging from 0.4 to 0.58, approximately. In

this case, ENS40 is outperformed by ENS3, which shows an 〈ACC〉 around 0.58. For

this domain, member 4 has obtained similar results to those for ENS3 and, therefore,

better than those for ENS40.

❦ Dependence of SST predictive skill on ensemble size

The reduction of the ensemble size leads to an inevitably loss of predictive skill

compared to the full ensemble. However, given the huge amount of computing

resources needed to dynamically downscale an ensemble of decadal predictions, some

concessions may be made in relation to the number of members considered for such

simulations. In this Section, the impact of ensemble size on the accuracy of predictions

for SST has been addressed. Figure 8.6 depicts how 〈RMSE〉 and 〈ACC〉 for SST vary

with ensemble sizes from 3 to 10 members over the EUR, SA and NA domains in lead

years 2–9. The ensemble size 3 with the symbol “*” represents the ENS3 selected

above, while ensemble sizes without that symbol represent subensembles built with

members randomly selected (see Section 8.2.3). The results for ENS40, which show

the potential accuracy that can be achieved by CESM-DPLE, have also been included

in the plots for comparison purposes, although only 10 CESM-DPLE members are

available for DD. In addition, the total number of years which must be simulated

depending on the ensemble size to generate the set of decadal experiments has also

been included in the plots. This number has been calculated as:

#sim = #H × #3 × #ens = 10 years/date × 50 dates × #ens = 500 years × #ens

where #H = 10 years/date is the number of years in a decadal experiment, #3 = 50

dates is the number of initial dates and #ens is the ensemble size.
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Figure 8.6 : On the left axis, the dependence of the spatially averaged RMSE (〈RMSE〉, left column) and
ACC (〈ACC〉, right column) for SST on the ensemble size over the EUR, SA and NA domains is represented.
While SST has been corrected with TrDCkNN in the EUR and NA domains, ICDCkNN has been used in the
SA domain. Crosses denote the spatial averages for ENS3, ENS10 and ENS40. Box plots show the results
of a bootstrapping (see Section 8.2.3) for which lines denote the median value and boxes and whiskers
enclose the confidence intervals at the 50 % and 95 % levels, respectively. On the right axis, the number of
years to be simulated per ensemble size is represented by dots. The ensemble size 3 with the symbol “*”
denotes the manually selected ENS3.
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In general, there is an improvement of the accuracy with the increase of the

ensemble size, as expected. There is not any stabilisation in the median of the scores

for an ensemble size of up to 10 members. The median scores in the ensemble size of

40 members, the maximum attainable for CESM-DPLE, get always the best results.

However, these differences in 〈RMSE〉 and 〈ACC〉 between different ensemble sizes

are very low, and the width of the confidence intervals does not decrease by increasing

the ensemble size. The largest disparities are observed between ENS3 and ENS40,

as expected, but they do not surpass 0.03 K for 〈RMSE〉 and 0.1 for 〈ACC〉 for any

domain. When comparing the averaged scores for ENS3 and ENS10, the differences

are also very small. There is a large contrast between the gain of accuracy by increasing

the ensemble size and the increase of the number of years which have to be simulated.

For example, the added value to 〈ACC〉 of using ENS10 instead of ENS3 is about

0.02 and 0.04 for the EUR and SA domains, respectively, whereas there is a hardly

appreciable better performance for ENS3 in the NA domain. On the other hand, the

number of years to be simulated is multiplied by 3.33. These findings show that a

large investment in computing resources is needed to only get small improvements,

if any, in the accuracy of SST. Similar outcomes were found by Sienz et al. (2016)

in correlations for the North Atlantic SST in lead years 2–5. In the cited study, the

added value of increasing the ensemble size was higher for Central Europe summer

temperature, where improvements around 0.1 were found between a 10-member

and a 3-member ensembles. Reyers et al. (2019), using dynamically downscaled

decadal predictions over Europe, also analyzed the dependence of the accuracy of

predictions on ensemble size. They found a small improvement in correlation for

air temperature in Europe by increasing the ensemble size from 3 to 10 members

with a value near 0.03 in lead years 1–5. However, the improvement in correlation

for PR because of increasing the ensemble size were much larger, with differences

of almost 0.4 between 10-member and 3-member ensembles. The added value over

uninitialized simulations was observed in the case of precipitation only for ensemble

sizes equal to 7 members and above, whereas an ensemble of 3 members was enough

for temperature.

The performance of ENS3 in comparison to a 3-member subensemble randomly

selected can also be analyzed by examining Figure 8.6. The median values for ENS3

are above and below those for a random 3-member subensemble in 〈RMSE〉 and

〈ACC〉 plots, respectively, in the three domains. This can be explained not only by the

fact that ENS3 encompasses the member with the lowest skill, but also by the number

of members considered in the bootstraping (3 for ENS3 and 10 for the 3-member
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subensemble). However, the subensemble averaged scores for ENS3 outperforms

almost always the median scores of the random subensemble. In other words, this

simple member selection carried out to build ENS3 performs better than at least the

50 % of the random 3-member subensembles generated for all domains, except for

〈RMSE〉 in the SA domain.

❦ Dependence of skill score coverage on ensemble size

The bootstrapping conducted above has been repeated 5000 times in order to get

the coverage percentage of ENS10 and ENS40 scores by the confidence intervals

of subensembles with different sizes. As can be seen in Figure 8.7, the confidence

intervals get a 100 % coverage of ENS10 and ENS40 scores in almost all occasions,

with the exception of the ENS3 and the random 3-member ensemble for 〈RMSE〉
in the EUR domain. In the case of ENS3, this is partially due to the fact that the

3* 3 4 5 6 7 8 9 10 40
Ensemble size

0

25

50

75

100

〈 RM
SE

〉  co
ve

ra
ge

 (%
)

a) EUR

ENS10
ENS40

3* 3 4 5 6 7 8 9 10 40
Ensemble size

0

25

50

75

100

〈 AC
C〉  co

ve
ra

ge
 (%

)

d) EUR

ENS10
ENS40

3* 3 4 5 6 7 8 9 10 40
Ensemble size

b) SA

ENS10
ENS40

3* 3 4 5 6 7 8 9 10 40
Ensemble size

e) SA

ENS10
ENS40

3* 3 4 5 6 7 8 9 10 40
Ensemble size

0

25

50

75

100
c) NA

ENS10
ENS40

3* 3 4 5 6 7 8 9 10 40
Ensemble size

0

25

50

75

100
f) NA

ENS10
ENS40

Figure 8.7 : Percentage of score coverage by confidence intervals for different ensemble sizes. This scores
have been calculated for the CESM-DPLE SST. While SST has been corrected with TrDCkNN in the EUR
and NA domains, ICDCkNN has been used in the SA domain. Dots correspond to the coverage of the
ENS10 scores, whereas the results found for ENS40 are denoted by crosses. The ensemble size 3 with the
symbol “*” represents the manually selected ENS3.
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bootstrapping has been conducted only for 3 members, as opposed to the 10 members

included in the process for the randomly selected subensembles. In consequence,

there is a slight offset of the ENS3 median and confidence interval limits compared to

those for the random 3-member subensemble, as mentioned in the previous section.

When the average scores of ENS10 or ENS40 are very close to the upper boundary of

the ENS3 confidence intervals in Figure 8.6, the probability of that those averages are

not covered by the ENS3 confidence intervals in a bootstrapping iteration is very large,

so a 0 % coverage has been obtained for ENS10 and ENS40 〈RMSE〉. It also occurs

in the case of the ENS10 〈RMSE〉 for the random 3-member ensemble. Nevertheless,

there is a full score coverage by both confidence intervals in terms of 〈ACC〉. For the

other domains, the confidence intervals of the scores calculated for ENS3 contain the

results of ENS10 and ENS40 with a coverage percentage of 100 %. For ensemble sizes

equal to 4 or higher, the score coverage is always of 100 % for the three domains.

❦ Dependence of CRPSS on ensemble size

The results for the spatially averaged CRPSS of SST in lead years 2–9 in the EUR, SA

and NA domains have been depicted in Figure 8.8. The best results are found for the

EUR domain, where the closest median values to zero are shown, ranging from -0.084

to -0.078. On the other hand, the most pessimistic values are found for the SA domain,

where the median values are enclosed in the interval from -0.126 to -0.12. There is not

a pronounced dependence of 〈CRPSS〉 on ensemble size in any domain. The median

〈CRPSS〉 of ENS3 is always above the median of the randomly selected 3-member

subensemble. Its value in the EUR domain, about -0.08, is better than that for ENS10

and comparable to that for ENS40. In the SA domain, the 〈CRPSS〉 of ENS3 is lower

than that of ENS10 but higher than that of ENS40, while ENS3 performs better than

ENS10 and ENS40 in the NA domain. Nevertheless, as in the EUR domain, there

are no large differences between the performances of ENS3, ENS10 and ENS40 in

the other domains. Finally, even in the case of the EUR domain, the 〈CRPSS〉 values

are significantly negative for all ensemble sizes at the 95 % level (note that 95 %

confidence intervals are completely below 0) and, as consequence, different from

0. As mentioned in Section 3.2.2, the optimal value for CRPSS is 0. This would be

attained for �2
.
= �2

-
, from Eqs. [3.32] and [3.33], respectively. If the standard error

�2
-

is equal to the average spread �2
.

, the spread of the members will represent the

true range of possibilities for the predicted climate (Goddard et al., 2013). There is

a statistically significant evidence that the results for the spatially averaged CRPSS

depicted in Figure 8.8 do not satisfy that desired condition. Therefore, neither the
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Figure 8.8 : Spatially averaged CRPSS (〈CRPSS〉) of SST in lead years 2-9 for different ensemble sizes
in the a) EUR domain, b) SA domain and c) NA domain. While TrDCkNN has been used to correct the
drift in the EUR and NA domains, ICDCkNN has been considered for the SA domain. Crosses denote
the averages for ENS3, ENS10 and ENS40. Box plots show the results of a bootstrapping for which lines
identify the median and boxes and whiskers enclose the confidence intervals at the 50 % and 95 % levels,
respectively. The ensemble size 3 with the symbol “*” represents the manually selected ENS3.

subensemble nor full ensemble spreads are good representations of the prediction

uncertainty on average for SST over any domain.

Note that, likewise in Section 3.3.2, the conditional bias of the CESM-DPLE

subensembles has not been explicitly removed. Goddard et al. (2013) suggest correct-

ing the conditional bias together with the mean drift to estimate CRPSS because of

the negative influence these biases have on the reliability. However, the conditional

bias has not been explicitly removed here because the purpose of this analysis was to

evaluate the performance of the drift correction methods described above, without

additional enhancements, and the performance of the drift-corrected subensembles

which may be potentially used as input information in DD simulations. The use of

the DeFoReSt approach instead of the methods analyzed here might contribute to

improving the results obtained for CRPSS, since it explicitly includes a correction of

both mean and conditional biases alongside an adjustment of the ensemble spread.

8.4. Concluding remarks

The purpose of this Chapter has been to explore some alternative drift correction

methods to the MDC approach to correct the lead time-dependent drift in CESM-

DPLE, as well as to provide guidance to select a representative 3-member subensemble

to conduct future potential DD simulations in a context of limited access to comput-

ing resources. In the first part of this Chapter, the most skilful correction technique

over some domains of special interest in the context of DD (the EUR, SA and NA

263



8. Drift correction techniques for decadal climate predictions

domains) has been selected to correct the CESM-DPLE data. Several variables and

climate indices have been evaluated to make the decision. In the second part, the

drift-corrected SST has been analyzed to carry out the member selection and build

a subensemble for each domain. These subensembles have been composed by the

“best”, the “worst” and an “intermediate” member in terms of their ability to re-

produce the SST variability. By selecting members with heterogeneous skill levels,

part of the spread of ENS40, or of ENS10 at least, is expected to be retained, since

these members cover the whole range of possible single performances among the 10

members available for DD.

All methods contribute to reducing the RMSE observed in the uncorrected CESM-

DPLE experiments for all variables. In terms of ACC, there are differences between

the methods, and their performances sometimes vary depending on the analyzed

field and the lead time. The TrDCkNN method has been chosen as one of the most

adequate techniques for drift correction in the EUR and NA domains. The TrDC-like

methods have shown promising results in the prediction of NAO, obtaining significant

positive correlations for the NAO index in lead years 2–9, with higher values than

those obtained by Smith et al. (2019, 2020) using larger but uncorrected ensembles.

Among these methods, the TrDCkNN has obtained the maximum ACC, with a value

of 0.68 in lead years 2–9. Additionally, significant positive correlations have also been

obtained in the first half of the decade for this method, with values of 0.53 and 0.49

in lead years 1–4 and 2–5, respectively. The ICDC-like methods usually get better

results in lead year 1 for all variables in the three domains. They slightly improve

the representation of the subtropical Pacific SST in terms of ACC in lead years 2–9,

showing performances which are in general slightly better than those provided by

the other methods. The ICDCkNN has been chosen to correct the CESM-DPLE data

for the SA domain. It provides a small added value to the predictive skill for TNI

over ICDC and ICDCFIT in the second half of the decade. If a more straightforward

and less computationally demanding technique is required, the ICDC method may

also be a good option, as it additionally performs slightly better than ICDCkNN in

terms of the TNI at the beginning of the decade.

In a context of limited access to computing resources, the modest ENS3 could

be a good alternative to very large ensembles for some specific applications. The

added value of increasing the ensemble size to the predictive skill of SST is very

small in comparison with the increase of the computing requirements to conduct

the DD simulations. This behaviour is shared with other temperature variables, as

shown by Reyers et al. (2019) and Sienz et al. (2016), and discussed in Chapter 5.
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However, some fields such as precipitation clearly benefit from using larger ensemble

sizes (Reyers et al., 2019). In any case, the corrected predictions of SST lack of

reliability on average over all domains, regardless of the ensemble size. The results

obtained for the 〈CRPSS〉 of SST show statistically significant negative results, so the

average ensemble spread is not appropriate to quantify its forecast uncertainty. Other

methods considering an explicit correction of both mean and conditional biases, such

as the DeFoReSt approach (Pasternack et al., 2018, 2021), may help to improve the

probabilistic skill of the predictions.
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9
Conclusions

The main purpose of this Thesis has been to generate a collection of dynamically

downscaled DCPs over the IP and evaluate their accuracy and reliability, as well as

their predictive skill compared to the global DCPs and a set of dynamically down-

scaled uninitialized experiments. This evaluation has been carried out for PR, )max,

)min and )mean. The DD simulations were conducted with the WRF model in two

nested domains. The coarse-grid domain was defined to cover the EURO-CORDEX

region with an horizontal resolution around 50 km, whereas the fine-grid domain,

with an approximate resolution of 10 km, was centered in the IP. To the best of my

knowledge, the research presented here constitutes the first study which comprehen-

sively assesses the performance of a dynamically downscaled DPS at an horizontal

resolution of 10 km, becoming the maximum resolution attained in this branch of the

climate prediction.

At the time of writing this dissertation, the only DPS which publicly provides all

the fields required to run WRF is the CESM-DPLE. Thus, it supplied the ICs and LBCs

to conduct the DD decadal experiments. Additionally, the CESM-LE provided the in-

formation needed to generate the dynamically downscaled uninitialized experiments

which have been considered in part of the evaluation of the predictive skill. In spite

of the huge development achieved in climate modeling during the last three decades,

models are intrinsically based on approximations and, consequently, contain biases

which arise from different sources. Therefore, a bias correction was applied to CESM-

DPLE and CESM-LE data before using their fields as input information for WRF

simulations with the aim of reducing the potentially negative impact that those biases

may have on the downscaled product. Since these simulations were conducted in a

context of limited access to computing resources, a selection of suitable members for

DD was carried out for both CESM-DPLE and CESM-LE ensembles. A subensemble

composed by 4 members was built from each global product, focusing on the ability
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of the single members to represent the SST on average over the EURO-CORDEX

domain in lead years 2–9. The 4-member subensembles were composed of the two

members showing the best performance (the “best” members), the member showing

the worst performance (the “worst” member) and a member with an “intermediate”

behaviour. With this strategy, a representative subensemble of each global product

was built. The results obtained for the bias correction and subensemble selection

have been presented in Chapter 3. The main conclusions extracted from this analysis

are summarized in the following:

• The correction of the lead time-dependent mean drift of CESM-DPLE con-

tributes to robustly improving the representation of the predicted SST on

average. This improvement has been mainly observed in terms of a reduction

of the 〈RMSE〉 compared to the uncorrected predictions, whereas there is not

a significant increase of the 〈ACC〉. The 4-member CESM-DPLE subensemble

has obtained a higher accuracy than the individual members, but slightly lower

than the 10-member subensemble available for DD. Nevertheless, the added

value to the SST predictive skill of increasing the ensemble size is very low. Both

ensembles perform similarly in terms of reliability, with a slightly better result

for the 4-member ensemble. However, the MDC method is not enough to get

reliable predictions for the SST on average over the EURO-CORDEX domain,

neither for the 4-member ensemble, nor for the 10-member ensemble, nor for

the 40-member ensemble. An additional correction of the conditional bias may

help to improve these results.

• The correction of the mean bias of CESM-LE helps to consistently reduce

the errors in the representation of SST on average by the uninitialized ex-

periments compared to the biased product. As for the initialized experiments,

the corrected 10-member CESM-LE subensemble performs slightly better than

the 4-member subensemble, which in turn performs better than the individual

members. The differences between the 10-member and the 4-member subensem-

bles are not very pronounced (the differences between both 〈RMSE〉 are lower

than 0.1K) compared to the cost of increasing the ensemble size from 4 to 10

members.

The evaluation of the WRF-DPLE downscaled hindcasts for PR has been con-

ducted in Chapter 4. This evaluation encompasses an assessment of the accuracy and

reliability of the hindcasts alongside the comparison with the global CESM-DPLE

and the WRF-LE uninitialized experiments. Before the analysis, the WRF-DPLE
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experiments were recalibrated by applying the DeFoReSt approach to reduce the

unconditional and conditional biases and adjust the ensemble spread. The most

important results are summarized in the following:

• The signal-to-noise paradox affects the WRF-DPLE hindcasts for PR. It is also

present in the hindcasts from the 4-member CESM-DPLE subensemble. The

results obtained for the spatial distribution of the RPC in the IP indicate that the

predictive skill for PR would clearly benefit from the addition of new members

to the ensemble. These results are consistent with previous studies available in

literature.

• In the analysis of the WRF-DPLE hindcasts for PR at annual scale, the IP

is predominantly covered by positive ACC at all lead times. However, these

results are not robust enough to indicate statistical significance over most part of

the domain. The most promising outcomes have been found in the northwestern

sector of the IP in lead year 1. On the other hand, the spatial distributions of

RMSER show the lowest errors in the northern regions of the domain at all lead

times, since the highest PR rates are commonly observed there.

• At seasonal scale, some of the best results obtained for PR in terms of ACC

have been found in JJA for lead years 1 and 2–5. These spatial distributions

show generalized positive results in the IP, with the statistical significance

constrained to very specific areas depending on the lead time. Relatively similar

outcomes are also observed at certain lead times in DJF and MAM. The lowest

RMSER values have been found in MAM, whereas the highest scores are shown

mainly across the southern regions in JJA. These high relative errors have been

mainly motivated by the low PR rates observed in this part of the domain during

this season.

• The WRF-DPLE predictive skill for PR, with climatology as reference, is

limited. At annual scale, the spatial distributions of MSSSC show generalized

negative results over the IP at almost all lead times. Small regions with positive

scores have been also found, especially in lead year 1, but the results lack of sta-

tistical significance. These outcomes are caused by two concurring factors: the

aforementioned low ACC and the large absolute CB values. Even for MSSSCBA

(MSSSC for CB = 0), the predictive skill is limited because of the low ACC.

Similar results have been obtained at seasonal scale.

• The WRF-DPLE hindcasts for PR are reliable over large areas of the domain.

Therefore, the ensemble spread can be used to quantify the uncertainty of the
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predictions in those regions. At annual scale, the hindcasts are reliable over

almost the whole domain in lead years 2–9, with the areas of not significant

CRPSS results being smaller at other lead times. The regions in the northern

half of the IP generally show the best results. This reliability is motivated by the

not significant results obtained for LESS, indicating that there are not significant

differences between the average ensemble spread and the squared standard

error in those locations. At seasonal scale, the hindcasts are reliable over almost

the whole domain for all lead times in MAM. Very good results have been

obtained also in JJA and, to a lesser extent, in SON.

• In the analysis of PR at annual scale, the best results for the WRF-DPLE

predictive skill, with CESM-DPLE as reference, have been found in lead

years 6–9. Large areas show positive MSSSG values, as consequence of the

generalized positive ΔACCG results obtained at this lead time alongside the

improvement also observed in terms of ΔCBG in some regions. However, the

statistical significance of the MSSSG results is restricted to small regions in the

central eastern part of the domain. This lack of statistical significance is also

observed at the other lead times, but with smaller areas showing positive scores.

The northern, northwestern and central eastern regions of the domain have

generally obtained the best results in lead years 2–5, 6–9 and 2–9. In lead year 1,

they are fundamentally observed along the Mediterranean coast and part of

the Northern Subplateau.

• The highest WRF-DPLE predictive skill, with CESM-DPLE as reference, for

the predicted PR at seasonal scale has been obtained in JJA. Generalized posi-

tive results for MSSSG have been obtained in lead years 2–5, 6–9 and, especially,

in lead years 2–9. The statistical significance, however, is constrained to small

regions. These outcomes are a consequence of the joint action of the positive

results obtained for ΔACCG and the significant positive results found for ΔCBG.

• The reliability of the PR hindcasts is higher for WRF-DPLE than for CESM-

DPLE. Although these results lack of statistical significance, positive ΔCRPSSG

values have generally been found over the whole domain in lead years 1, 2–

5 and 6–9 at annual scale, being predominant also in the coastal and some

inner regions for lead years 2–9. These results have been produced by a large

improvement in the representation of the ensemble spread for WRF-DPLE in

comparison to CESM-DPLE, as the results obtained for LESSSG indicate. For

the same reasons, the highest improvements in terms of reliability at seasonal
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scale have been obtained in DJF and SON.

• Compared to the WRF-LE uninitialized experiments, the added value to

the predictive skill provided by WRF-DPLE in terms of MSSSU has been

mainly found in lead year 1 over the western part of the domain. The positive

values obtained for ΔACCU and ΔCBU in those regions have led to such results.

On the other hand, the added value quantified by MSSSU is fundamentally

restricted to northern and southern regions in lead years 2–5. At seasonal scale,

the results for MSSSU are more promising in JJA and SON, when an added

value of WRF-DPLE is observed over large areas in the domain, especially in

lead year 1, although the statistically significant results are shown only in small

regions. Since this evaluation has been focused on the period 1990–2005 due to

the limited access to CESM-LE data, these results should be taken with caution.

• In the analysis of the spatially averaged WRF-DPLE hindcasts for PR, some

of the best results have been obtained in the NW region, as well as in the CN

region to a lesser extent. There, the hindcasts time series are able to reproduce

part of the relative maximums and minimums of the observational time series.

In general, however, there is a poor representation of the PR in all lead times

in terms of accuracy. The magnitude of the ensemble mean signal is very

low compared to that from the observational time series and the width of the

confidence intervals, as consequence of the signal-to-noise paradox. On the

other hand, there are many regions where the hindcasts perform well in terms

of reliability, particularly in lead years 2–9.

• The results obtained for WRF-DPLE could have been partially influenced by

the limited ability of the 4-member CESM-DPLE subensemble to represent

the spatio-temporal variability of the SLP. Although the CESM-DPLE hind-

casts can partially reproduce the SLP variability, they cannot clearly capture

most part of the main spatio-temporal variability modes extracted from the

PCA computed with the ERA5 SLP. Neither the 4-member nor the 10-member

CESM-DPLE ensemble means are able to consistently simulate the NAO. Fur-

ther improvements in this line could help to enhance the predictive skill of the

downscaled product.

The evaluation of )max, )min and )mean has been presented in Chapter 5. The

applied procedure is similar to that followed in the analysis of PR in Chapter 4. The

most remarkable results obtained from this evaluation are the following:
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• The signal-to-noise paradox is also present in the WRF-DPLE hindcasts for the

NSAT variables. However, the results for the RPC indicate that this presence is

weaker than for PR. Although the addition of new members to the downscaled

ensemble would contribute to increasing the predictive skill, the improvement

is expected to be lower than it would be for the same number of members in

the case of PR, as shown by previous studies.

• The WRF-DPLE hindcasts for the NSAT variables show generalized positive

ACC values over the whole domain at annual scale. The statistical significance

of these outcomes depends on the NSAT variable and the lead time. The best

represented field in terms of accuracy is )min, with predominant significant

positive ACC values at all lead times. The highest RMSE and less generalized

significant ACC results have been obtained for)max, although there are still large

areas with significant positive ACC values in lead years 6–9 and 2–9. The results

for )mean represent a midpoint between those from the other NSAT variables.

• At seasonal scale, the highest ACC scores for the WRF-DPLE NSAT hind-

casts have been obtained in MAM and JJA. For )min and )mean, the significant

positive results span large areas in lead years 2–5, 6–9 and 2–9 in both seasons.

Similar outcomes are shown for )max, but with less statistical significance in

general. In lead year 1, the results are predominantly positive in MAM and, to

a lesser extent, in JJA, but they lack of statistical significance.

• The highest predictive skill of the downscaled hindcasts, with climatology

as reference, is observed for Zmin, followed by Zmean and Zmax, in that order.

The areas covered by positive MSSSC values are predominant at all lead times

for )min and )mean, whereas some regions with negative results cover part of the

domain for )max. These results are a consequence of the spatial distributions

obtained for ACC and CB. While the CB is close to zero and even not significant

over wide regions for )min and, to a lesser extent, for )mean, the CB is generally

significant and negative for )max over almost the whole domain at all lead times.

• At seasonal scale, the assessment of the predictive skill for the NSAT vari-

ables, with climatology as reference, has given the best results in JJA and

MAM. The spatial distributions of MSSSC obtained for the three NSAT variables

resemble to those obtained for ACC at seasonal scale. The spatial distributions

of CB show large areas with not statistically significant results, mainly in MAM

for the three NSAT variables in lead years 2–5 and 2–9, and also in lead years

6–9 for )min.
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• At annual scale, the WRF-DPLE hindcasts for Zmax and Zmean are reliable over

almost the whole domain in lead years 2–5, 6–9 and 2–9. Nevertheless, in the

case of )min, the downscaled hindcasts are reliable mainly in lead year 1 over

the northern regions of the IP. The results obtained for the CRPSS have been

determined by the outcomes for LESS. For )min, there is a general significant

ensemble underdispersion at all lead times, whereas not significant LESS values

have been found mainly in lead years 6–9 and 2–9 for )mean and, especially,

for )max. At seasonal scale, the results vary depending on the season and the

variable.

• The most robust added value of WRF-DPLE to the predictive skill at annual

scale, with CESM-DPLE as reference, has been found in lead years 6–9 for

Zmax and Zmean, whereas it is shown in lead year 1 for Zmin. In these cases, the

positive MSSSG values cover most part of the domain, with very large areas

showing statistical significance for )max and )min. Wide regions with positive

MSSSG results can be generally found in lead years 2–9 for the three NSAT

variables. Since the results obtained for ΔACCG are mainly not significant, the

high MSSSG scores have been motivated by the very good results obtained in

terms of ΔCBG.

• At seasonal scale, the WRF-DPLE predictive skill for the NSAT variables, with

CESM-DPLE as reference, depends on the season and tends to increase when

the performance of the global product is limited. For instance, the highest

MSSSG scores for )max have been observed for lead years 6–9 and 2–9 in SON,

when significant positive values are widespread along the IP. A similar situation

is presented for )mean. For )min, positive MSSSG outcomes are predominant at

all lead times in DJF, although not always showing statistical significance. As at

annual scale, the role of the improvement in terms of ΔCBG is more important

than that for ΔACCG to achieve the positive MSSSG scores.

• There are not significant differences between the reliability of WRF-DPLE

and CESM-DPLE hindcasts for the NSAT variables. The ΔCRPSSG are not

large enough in absolute value to show statistical significance for any NSAT

variable. The regions which show an improvement or deterioration in the

representation of the ensemble spread depend on the variable, the lead time

and the time scale of the analysis (annual or seasonal).

• The results indicating an added value to predictive skill of the WRF-DPLE

hindcasts over the WRF-LE uninitialized experiments at annual scale have
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been found mainly in lead year 1 for the three NSAT variables. The positive

MSSSU results cover most part of the domain for)max and)mean at this lead time,

whereas they are mainly constrained to the northern regions and the southern

half of the domain for )min. However, the statistical significance of the results is

shown only for a few specific locations. At seasonal scale, the most promising

MSSSU results have been found in MAM, with positive and significant scores

covering large areas of the domain in lead years 1 and 2–5 for the three variables.

The contribution of ΔACCU to MSSSU is often comparable to that of ΔCBU at

both annual and seasonal scales.

• A generalized overestimation of the observed NSAT anomalies at the begin-

ning of the control period has been found in the analysis of the spatially

averaged lead time series. This overestimation has contributed to enhance the

differences between the trends of the WRF-DPLE and the observational time

series for the three variables. These errors in the representation of the trends

were transferred to the WRF-DPLE experiments by CESM-DPLE during the

DD simulations, since they are also present in the global product.

The sensitivity of WRF simulations to extreme ICs of soil moisture has been

examined in Chapter 6, focusing on the analysis of the spin-up time required by

several variables to reach a dynamical equilibrium. The simulations were initialized

in two different dates, 1990-01-01 and 1990-07-01, with ERA-Interim providing the

ICs and LBCs for all variables with the exception of soil moisture. The ICs of soil

moisture were calculated by combining the SMI with some physical soil properties

which depend on the soil textures. Three different ICs were considered to represent

a wet, a dry and a very dry soil. The main findings of this analysis are summarized

in the following:

• The spin-up time required by soil moisture to guarantee the dynamical equi-

librium in all soil layers after starting from extreme ICs in the IP is 8 years.

This is the maximum length of the spin-up period obtained for some locations,

mainly placed in the southern half of the domain and in the Ebro Valley, but

shorter values have been found in other regions depending on the soil mois-

ture ICs, the depth of the soil layer, the initialization date, the atmospheric

conditions, the soil texture and the land class.

• The longest spin-up periods of soil moisture are observed for the deepest

layer. The upper layers are subjected to a higher variability because their
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interactions with the atmosphere are more immediate than for the deeper

layers. The water coming from precipitation needs more time to reach the

deeper layers, making the soil stated defined by the ICs more persistent and,

therefore, leading to longer spin-up times.

• Drier conditions contribute to increasing the spin-up time for soil moisture.

The capacity of holding water is higher for drier soils, so the absence of soil

water slows down the transport of water coming from precipitation through

the soil layers. Thus, soil moisture tends to reach the dynamical equilibrium

later in experiments with drier ICs.

• The initialization date also affects the length of the spin-up period for soil

moisture, although its effects depend on the ICs. The wet ICs in January are

closer to the control state than in July. On the other hand, the deviation from

the control state for the dry and very dry experiments in July is lower than

in January. The shock produced by initializing the experiments from states

more different from that established by the control simulation often leads to

longer times to reach the dynamical equilibrium, resulting in longer spin-up

periods. Those differences between January and July control soil moistures

are partly caused by the differences between the meteorological conditions of

the preceding months (lower temperatures and higher PR rates in December,

whereas the opposite situation is observed in June).

• The hydraulic conductivity associated to the texture class influences on the

spin-up time of soil moisture. The soils with low hydraulic conductivity, such

as clay and clay loam soils, are expected to have a higher climate persistence

because more time than for other soil types might be required to observe changes

in soil moisture content. Although this phenomenon can be modulated by the

atmospheric conditions, the longest spin-up times are often observed in regions

characterized by these texture classes (e.g., the Ebro and Guadalquivir Valleys).

• The stomatal resistance, whose value depends on the land class (among

other factors), affects the soil moisture content and, therefore, influences on

the spin-up time of soil moisture. Low stomatal resistance values, typical of

cropland areas, favour high evapotranspiration rates from vegetation which

impact on the soil moisture content. In regions habituated to exhibit minor

resistance to this type of evapotranspiration, the soil state in dry and very dry

scenarios generally tends to be closer to the control state than in the case of

regions where the stomatal resistance is higher, leading to shorter spin-up times
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in the former. This phenomenon has been only observed in the upper three

layers, which comprise the root zone of the land class.

• The initialization with extreme soil moisture ICs has an impact on the spin-up

time required by the atmospheric variables. PR, with spin-up times mostly

below 10 months, is the least affected variable. There are not big differences

between the three soil scenarios, suggesting that the role of the model internal

variability prevails over the imposed ICs of soil moisture in determining the

evolution of PR. However, there are differences between the experiments with

different initialization dates, especially for the wet simulations, influenced by

the magnitude of the deviation of soil moisture ICs from the control state.

• The spin-up time for Zmax, the most affected variable by the soil moisture ICs,

reachs values even higher than 36 months (3 years) in some locations. There

are similarities between the spatial distributions of the spin-up period required

by )max and soil moisture in the upper three layers, highlighting the existence

of land surface-atmosphere coupling processes involving these two variables,

in accordance with previous studies. This relationship, although still existing

to some extent, is not as marked for )min and )mean. After PR, )min is the least

affected variable by the soil moisture ICs. In general, the spin-up periods of

)min show lengths shorter than 12 months. On the other hand, longer periods

are required for )mean, with maximum lengths starting from 24 up to 32 months

in some locations.

The results found in Chapter 6 led to consider the soil initialization in the DD

simulations presented in Chapter 7, devoted to analyze the WRF-DPLE experiments

for the decade 2015–2025. Since no spin-up time was considered in the analyses

conducted in Chapters 4 and 5 (it would have implied the loss of the first simulated

years), the predictive skill might have experienced some deterioration in presence of

spin-up biases, at least during the first years of the simulations. Although the spin-up

time required for these variables may be shorter than that indicated in Chapter 6

under normal ICs of soil moisture, a dynamically equilibrated soil state, taken from the

WRF control simulation, was used to initialize the simulations examined in Chapter 7

to improve as much as possible the predictive skill of the downscaled predictions.

The results examined in Chapter 7 correspond to the predictions for the same

variables analyzed in the control period: PR, )max, )min and )mean. Since the observa-

tional information is available up to 2022, the predicted variables have been compared
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with the observational values in lead years 1 and 2–5. The most relevant findings are

summarized in the following:

• In regions with reliable predictions for PR, the WRF-DPLE4 predicted anoma-

lies for this variable are generally positive at the beginning of the decade and

turn into negative during the second half of the decade at annual scale. The

prediction for the lead years 2–9 shows generalized negative anomalies over

almost the whole domain. In both lead years 6–9 and 2–9, the strongest negative

anomalies have been found in the northwestern regions, the Central System and

the Pyrenees, with values below -12 mm/month in some locations. However, at

all lead times, the width of the confidence intervals is much higher than the

magnitude of the anomaly and, therefore, they usually encompass anomaly

values with opposite signs. At seasonal scale, the largest areas with reliable

negative anomalies for lead years 2–9 are shown in SON. In MAM, there are

many regions which show observational values outside the confidence intervals

in spite of predictions are reliable there. Although there is a probability of 10

% associated to these occurrences, they may also be partially due to the gap

between the control period and the decade 2015–2025 and the fact that the

length of the control period relative to this gap is not long enough.

• The WRF-DPLE10 predictions for PR are qualitatively similar to those from

WRF-DPLE4. However, with a few exceptions, WRF-DPLE10 predictions

generally get lower errors than WRF-DPLE4 predictions at annual scale for

lead years 1 and 2–5. Additionally, the WRF-DPLE10 predictions show slightly

more moderate anomalies than WRF-DPLE4 at annual scale. At seasonal scale,

the areas covered by lower WRF-DPLE10 errors than those for WRF-DPLE4 are

generally larger than those with better WRF-DPLE4 accuracy, with the clear

exceptions of MAM and JJA in lead year 1, when WRF-DPLE4 performs better

over most part of the domain.

• The results obtained for the spatially averaged anomalies of PR reproduce

what has been observed from the grid-point perspective. In regions with

reliable predictions, the strongest anomalies are negative and have been found

in the CN and NW regions in lead years 6–9 and 2–9 for WRF-DPLE4. The

results obtained for WRF-DPLE10 are qualitatively similar, but generally getting

lower errors than WRF-DPLE4 in lead years 1 and 2–5.

• The WRF-DPLE4 predictions for the NSAT variables show positive anomalies

at annual scale for all lead times over the whole domain. In regions with
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reliable predictions, the highest anomalies have been found in lead years 2–5

for the three NSAT variables. These anomalies are generally higher than 1K

at this lead time, reaching the maximum values between 1.5K and 1.75K for

)max in regions over the Iberian System. At seasonal scale, the anomalies are

even more exacerbated. The highest predicted anomalies have been found in

JJA for the three variables, with maximum outcomes up to 2K in large areas

of the domain with reliable predictions for )max in lead years 6–9 over several

southeastern and northeastern regions. At annual scale, the confidence intervals

commonly do not contain values with distinct signs in lead years 2–5, 6–9 and

2–9 for the three variables. Similarly to PR, observational values fall outside

the confidence intervals in some cases, being more frequent in DJF for )max

and )mean. In addition to the sample size and the gap between the control

period and the decade 2015–2025, this may be partially due to the fact that these

predictions were initialized from a dynamically equilibrated soil state, thus

reducing the spin-up time required for them, unlike the hindcasts which were

used to compute those intervals.

• For WRF-DPLE10, the NSAT anomalies are qualitatively similar to those

obtained for WRF-DPLE4 at all lead times, in general with minor differences

in the magnitude of the anomalies at annual scale. The areas where the

accuracy of WRF-DPLE10 is higher than that of WRF-DPLE4 in lead years 1

and 2–5 are generally larger than those areas where WRF-DPLE4 outperforms

WRF-DPLE10 for the three NSAT variables. At seasonal scale, the differences

between WRF-DPLE10 and WRF-DPLE4 predictons are slightly higher than at

annual scale, with some locations getting anomalies of distinct signs depending

on the ensemble size.

• At annual scale, the results obtained for the spatially averaged predictions of

the NSAT variables summarize, for each region, what has been obtained at a

grid-point scale. All regions show positive anomalies for all NSAT variables

at all lead times for both ensemble sizes. The anomalies are commonly above

0.5K, often reaching anomalies higher than 1K. With the exception of lead

year 1, the confidence intervals do not contain values with different signs for

any variable in any region. In general, the error made by WRF-DPLE10 is lower

than that made by WRF-DPLE4 in lead years 1 and 2–5, with a few exceptions.

Finally, a set of drift correction methods has been examined in Chapter 8. The

MDC method contributes to reducing the mean lead time-dependent bias in the ICs
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and LBCs provided by CESM-DPLE, but it does not account for higher-order biases,

such as those observed in the representation of trends. Thus, additional correction

techniques have been evaluated to explore alternatives to the MDC to improve as

much as possible the predictive skill of the input data in DD simulations. The most

skilful correction method over several domains of special interest for DD purposes

(the EUR, SA and NA domains) has been used to correct the CESM-DPLE data and

select a subensemble of 3 members for potential future DD experiments. The main

conclusions extracted from this analysis are:

• The TrDCkNN method has been chosen as one of the most adequate methods

for drift correction in the EUR and NA domains, whereas ICDCkNN may be

suitable for the SA domain. The TrDC-like methods show promising results in

the prediction of NAO, obtaining significant positive correlations for the NAO

index in lead years 2–9, with higher values than those obtained by other studies

which considered larger but uncorrected ensembles. The ICDC-like methods

generally get better results in lead year 1 for all variables in the three domains.

Moreover, ICDCkNN, in particular, slightly improves the representation of the

subtropical Pacific SST in terms of ACC in lead years 2–9, additionally providing

a small added value to the representation of TNI over ICDC and ICDCFIT in the

second half of the decade. If a more straightforward and less computationally

demanding technique is required, the ICDC method may also be a good option,

as it additionally performs slightly better than ICDCkNN with respect to the

TNI at the beginning of the decade.

• The modest ENS3 could be a good alternative to very large ensembles in a

context of limited computing resources for some specific applications. The

added value of increasing the ensemble size to the predictive skill of SST is very

small in comparison to the increase of the computing requirements to conduct

the DD simulations. This behaviour is shared by other temperature variables,

as shown in other studies and discussed in Chapter 5. However, some fields

such us PR would clearly benefit from using larger ensemble sizes to generate

the downscaled predictions.

• The corrected predictions for SST lack of reliability, regardless of the en-

semble size. The results obtained for the 〈CRPSS〉 of SST show statistically

significant negative results, so the average ensemble spread is not appropriate

to quantify the forecast uncertainty. Other methods which consider an explicit

correction of both unconditional and conditional biases, such as the DeFoReSt
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approach, may contribute to improving the probabilistic skill of the predictions.

Potential future works

The research presented in this Thesis evidences the valuable role that WRF can play

for the generation of high resolution DCPs over the IP. Significant improvements

over the global CESM-DPLE and the uninitialized WRF-LE experiments have been

found at both annual and seasonal scales for NSAT variables, whereas the added

value of WRF-DPLE to the predictive skill for PR is more limited. Nevertheless, since

the signal-to-noise paradox is so strong in the case of PR, as revealed by the RPCs

calculated in Section 4.1 and showed by Smith et al. (2019) for a larger ensemble

composed of different DPSs, these results could be highly improved by adding new

members to the downscaled ensemble. Reyers et al. (2019) showed how much the

predictive skill for PR and, to a lesser degree, NSAT can be improved by increasing

the ensemble size. Additionally, the same authors, as well as Sienz et al. (2016), also

showed that the increase of the sample size (i.e., the number of start dates) positively

influences on the robustness of the predictions. Therefore, the ideal next step would

consist in increasing the downscaled ensemble size up to 10 members (the maximum

size attainable with CESM-DPLE providing the input information) and progressively

adding new start dates from 1969 backwards, to enhance as much as possible the

predictive skill of the downscaled product. However, this would only be possible

with access to enough computing resources to conduct the simulations.

The analysis of the downscaled DCPs could continue with an assessment of the

temperature and precipitation extremes, since their frequency and intensity may

increase under conditions of climate change in the IP in the next decades (Cardoso

Pereira et al., 2020; Lorenzo and Alvarez, 2022, 2020). Additionally, as one of the

main advantages of DD over other downscaling approaches is that the RCM is able

to produce a wide range of variables for each downscaled experiment, this analysis

could also be extended to other phenomena of special interest in the IP, such as

drought and wildfires, which commonly involve the interplay of multiple climate

variables in their assessments. Not only the IP is currently vulnerable to these natural

hazards for human, environmental and economic reasons (Cammalleri et al., 2020;

San-Miguel-Ayanz et al., 2018), but also they are expected to have a more prominent

presence in the future (García-Valdecasas et al., 2021; Turco et al., 2018).

Another interesting line of research would be to further explore the added value

that soil initialization can provide to the predictive skill of the downscaled ensemble.
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Kothe et al. (2016) studied different soil initialization strategies which are potentially

applicable for decadal DD simulations. The initialization from a dynamically equili-

brated soil state, reviewed in that study, has been used in this Thesis. However, Kothe

et al. (2016) also examined more complex approaches which could lead to better

results, such as the generation of the initial soil state by running the LSM of the RCM

in a standalone mode or by implementing data assimilation techniques.

The multiple applications of DD in the branch of the DCP and their potential

ramifications open a vast field of research which could be explored in future works

by taking the study presented in this Thesis as a solid starting point.
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Conclusiones

El propósito principal de esta Tesis ha sido generar una colección de DCPs de alta

resolución con simulaciones DD en la IP y evaluar su precisión y fiabilidad, así como

su habilidad predictora frente a DCPs globales y experimentos no inicializados de

alta resolución. Esta evaluación se ha llevado a cabo para las variables PR, )max,

)min y )mean. Las simulaciones DD fueron realizadas en dos dominios anidados. El

dominio mayor se definió para cubrir la región de EURO-CORDEX con una resolución

espacial alrededor de 50 km, mientras que el dominio menor, con una resolución

aproximada de 10 km, se centró en la IP. Hasta donde alcanza mi conocimiento, la

investigación presentada aquí constituye el primer estudio que evalúa en profundidad

el desempeño de un DPS generado mediante el método de reducción dinámica de

escala a una resolución de 10 km, convirtiéndose en la máxima resolución espacial

jamás lograda en esta rama de la predicción del clima.

En el momento de redacción de esta Tesis, el único DPS que proporciona pública-

mente todos los campos requeridos para ejecutar WRF es el CESM-DPLE. Por tanto,

fue éste el utilizado para suministrar las ICs y las LBCs para llevar a cabo los experi-

mentos decenales de DD. Adicionalmente, el CESM-LE proporcionó la información

necesaria para generar los experimentos no inicializados de alta resolución que han

sido utilizados en una parte de la evaluación. A pesar del gran desarrollo logrado

en la modelización del clima durante las últimas tres décadas, los modelos están

intrínsecamente basados en aproximaciones y, en consecuencia, contienen sesgos que

surgen de fuentes diversas. Por tanto, se aplicó una corrección de sesgo a los datos del

CESM-DPLE y el CESM-LE antes de usar sus variables como información de entrada

en las simulaciones con WRF para así reducir el impacto potencialmente negativo

que estos sesgos pudieran tener en el producto final. Como estas simulaciones se

llevaron a cabo en un contexto de acceso limitado a recursos computacionales, se

realizó una selección de los miembros de los conjuntos de CESM-DPLE y CESM-LE

disponibles para las simulaciones DD. Se construyó un subconjunto compuesto por

4 miembros por cada producto global en función de los resultados obtenidos en

relación a la capacidad de los miembros individuales para representar la SST en

promedio sobre el dominio de EURO-CORDEX en el rango de predicción de 2–9 años.
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Cada subconjunto de 4 miembros fue compuesto por los dos que mostraron un mejor

desempeño (los “mejores”), el miembro con el peor desempeño (el “peor”) y un

miembro con un comportamiento “intermedio”. Con esta estrategia, se construyó un

subconjunto representativo de cada producto global. Los resultados obtenidos para

la corrección del sesgo y la selección de los subconjuntos han sido presentados en

el Capítulo 3. Las conclusiones principales extraídas de estos análisis se resumen a

continuación:

• La corrección de la deriva promedio dependiente del rango de predicción,

aplicada sobre los datos del CESM-DPLE, contribuye a mejorar consistente-

mente la representación de los pronósticos de SST en promedio. Esta mejora

ha sido observada principalmente a través de la reducción del 〈RMSE〉 frente a

las predicciones sin corregir. Sin embargo, no ha habido una mejora significativa

del 〈ACC〉. El subconjunto de 4 miembros del CESM-DPLE ha obtenido una

precisión mayor que la de los miembros individuales, pero ligeramente más

baja que la del subconjunto de los 10 miembros disponibles para simulaciones

DD. Aún así, el valor añadido a la habilidad predictora de la SST por el incre-

mento del tamaño del conjunto es muy bajo. Ambos subconjuntos han obtenido

resultados similares en lo que respecta a la fiabilidad de las predicciones, con

el subconjunto de 4 miembros obteniendo un resultado ligeramente mejor. No

obstante, el uso de la técnica MDC no ha sido suficiente para conseguir predic-

ciones fiables de la SST en promedio en el dominio de EURO-CORDEX, ni para

el subconjunto de 4-miembros, ni para el de 10, ni para el conjunto total de los

40 miembros. La incorporación de una corrección del sesgo condicional podría

ayudar a mejorar estos resultados.

• La corrección del sesgo promedio del CESM-LE provoca una reducción no-

table de los errores en la representación de la SST en promedio para los

experimentos no inicializados frente al producto sin corregir. Del mismo

modo que para los experimentos inicializados, el subconjunto de 10 miembros

del CESM-LE tiene un desempeño ligeramente mejor que el del subconjunto de

4 miembros, que a su vez ha obtenido mejores resultados que los miembros indi-

viduales. Las diferencias entre ambos subconjuntos no son muy pronunciadas

(las diferencias entre valores del 〈RMSE〉 son menores a 0.1 K) en comparación

con el coste de incrementar el tamaño del conjunto de 4 a 10 miembros.

La evaluación de las retropredicciones del WRF-DPLE para PR se ha llevado a

cabo en el Capítulo 4. Esta evaluación ha consistido en un análisis de la precisión
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y la fiabilidad de las retropredicciones y en su comparación con los experimentos

globales del CESM-DPLE y con los no inicializados del WRF-LE. Los experimentos

del WRF-DPLE fueron previamente recalibrados siguiendo el método DeFoReSt para

reducir los sesgos incondicionales y condicionales y para ajustar la dispersión de los

miembros del conjunto. Los resultados más importantes se resumen a continuación:

• La paradoja señal-ruido afecta a las retropredicciones del WRF-DPLE para PR.

También está presente en el subconjunto de 4 miembros del CESM-DPLE. Los

resultados obtenidos para la distribución espacial de RPC en la IP indican que

la habilidad predictora para PR se podría beneficiar claramente del incremento

del número de miembros del conjunto. Estos resultados son consistentes con

estudios previos disponibles en la literatura.

• En el análisis a escala anual de las retropredicciones del WRF-DPLE para PR,

los resultados positivos de ACC predominan en la IP en todos los rangos de

predicción. Sin embargo, estos resultados no son lo suficientemente robustos

como para obtener significación estadística sobre la mayor parte del dominio.

Los resultados más prometedores han sido encontrados en el sector noroeste

de la IP en el rango de predicción de 1 año. Por otro lado, las distribuciones

espaciales de RMSER muestran los errores más bajos en las regiones del norte del

dominio para todos los rangos de predicción, ya que es allí donde comúnmente

se observan las mayores tasas de PR.

• A escala estacional, algunos de los mejores resultados obtenidos para PR

en términos de ACC han sido encontrados en JJA para los rangos de pre-

dicción de 1 y 2–5 años. Estas distribuciones espaciales muestran resultados

positivos generalizados en la IP, con significación estadística limitada a áreas

muy específicas en función del rango de predicción. Se han obtenido resultados

relativamente similares para ciertos rangos de predicción en DJF y MAM. Los

valores más bajos de RMSER han sido encontrados en MAM, mientras que los

resultados más elevados se muestran principalmente sobre las regiones del

sur en JJA. Estos errores relativos tan altos son motivados principalmente por

las bajas tasas de PR que se observan en esta parte del dominio durante esta

estación.

• La habilidad predictora del WRF-DPLE para PR, tomando la climatología

como referencia, es limitada. Las distribuciones espaciales de MSSSC muestran

resultados negativos generalizados sobre la IP en casi todos los rangos de

predicción. También se han encontrado resultados positivos en algunas regiones
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pequeñas, especialmente en el rango de predicción de 1 año, pero carecen

de significación estadística. Estos resultados son causados por dos factores

concurrentes: los ya mencionados valores bajos de ACC y los grandes valores

absolutos de CB. Incluso en términos de MSSSCBA (MSSSC con CB = 0), la

habilidad predictora es limitada debido a las bajas correlaciones. Se han obtenido

resultados similares a escala estacional.

• Las retropredicciones del WRF-DPLE para PR son fiables sobre grandes áreas

del dominio. Por tanto, la dispersión de los miembros del conjunto puede ser

utilizada para cuantificar la incertidumbre de las predicciones en esas regiones.

En escala anual, las retropredicciones son fiables sobre casi todo el dominio para

el rango de predicción de 2–9 años, con áreas de resultados no significativos para

CRPSS más pequeñas en otros rangos de predicción. Las regiones de la mitad

norte de la IP muestran generalmente los mejores resultados. Esta fiabilidad se

debe a los resultados no significativos obtenidos para LESS, que indican que

no existen diferencias significativas entre la dispersión promedio del conjunto

y el error cuadrático estándar en esas localizaciones. En escala estacional, las

retropredicciones son fiables sobre casi todo el dominio para todos los rangos

de predicción en MAM. Se han obtenido también muy buenos resultados en

JJA y, en menor medida, en SON.

• En el análisis de PR a escala anual, se han encontrado los mejores resul-

tados para la habilidad predictora del WRF-DPLE, en comparación con el

CESM-DPLE, para el rango de predicción de 6–9 años. Se observan resulta-

dos positivos para MSSSG en áreas extensas como consecuencia de los valores

positivos generalizados obtenidos para ΔACCG en este rango de predicción y

de la mejora encontrada también en términos de ΔCBG en algunas regiones.

Sin embargo, la significación estadística está restringida a áreas muy pequeñas

en la región este central del dominio. Esta falta de significación estadística se

observa también en otros rangos de predicción, pero con resultados positivos

abarcando superficies menores. Las regiones del norte, del noroeste y del este

central del dominio han obtenido generalmente los mejores resultados para los

rangos de predicción de 2–5, 6–9 y 2–9 años. En el primer año, éstos se observan

fundamentalmente a lo largo de la costa mediterránea y parte de la Submeseta

Norte.

• Los mejores resultados para la habilidad predictora del WRF-DPLE en re-

lación a PR a escala estacional, en comparación con el CESM-DPLE, se han
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obtenido en JJA. Se han obtenido resultados positivos generalizados para

MSSSG en los rangos de predicción de 2–5, 6–9 y, especialmente, 2–9 años. La

significación estadística, sin embargo, se limita a pequeñas regiones. Estos re-

sultados son consecuencia de la acción conjunta de los resultados positivos

obtenidos para ΔACCG y los resultados significativos y positivos encontrados

para ΔCBG.

• La fiabilidad de las retropredicciones del WRF-DPLE para PR es mayor que

para las del CESM-DPLE. Aunque estos resultados carecen de significación

estadística, se han encontrado valores de ΔCRPSSG positivos sobre todo el domi-

nio en general para los rangos de predicción de 1, 2–5 y 6–9 años en escala anual,

siendo predominantes también en la costa y en algunas regiones interiores en

el rango de predicción de 2–9 años. Estos resultados han sido producidos por

una gran mejora en la representación de la dispersión del conjunto del WRF-

DPLE en comparación con el CESM-DPLE, tal y como muestran los resultados

obtenidos para LESSSG. Por las mismas razones, se han encontrado las mayores

mejoras en términos de fiabilidad a escala anual en DJF y SON.

• En comparación con los experimentos no inicializados del WRF-LE, el valor

añadido a la habilidad predictora proporcionado por el WRF-DPLE en tér-

minos de MSSSU se encuentra principalmente para el rango de predicción

de 1 año en la parte oeste del dominio. Los valores positivos obtenidos para

ΔACCU y ΔCBU en esas regiones conducen a tales resultados. Por otro lado,

este valor añadido se limita fundamentalmente a regiones del norte y del sur

para el rango de predicción de 2–5 años. A escala estacional, los resultados

para MSSSU son más prometedores en JJA y en SON, con un valor añadido

del WRF-DPLE sobre grandes áreas del dominio, especialmente en el rango

de predicción de 1 año, aunque los resultados estadísticamente significativos

solo aparecen en algunas localizaciones. Como esta evaluación se ha limitado al

periodo 1990–2005 por la falta de disponibilidad de datos del CESM-LE, estos

resultados deberían ser tomados con cautela.

• En el análisis de la retropredicciones espacialmente promediadas del WRF-

DPLE para PR, algunos de los mejores resultados han sido obtenidos en la

región NW y, en menor medida, también en la región CN. En esos lugares, las

series temporales de las retropredicciones son capaces de reproducir parte de

los máximos y mínimos relativos presentes en las series observacionales. En

general, sin embargo, no hay una buena representación de PR en ningún rango
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de predicción en términos de precisión. La magnitud de la señal del promedio

del conjunto es muy baja en comparación con la de las series observacionales y

con la amplitud de los intervalos de confianza, como consecuencia de la paradoja

señal-ruido. Por otro lado, hay algunas regiones donde las retropredicciones

han obtenido buenos resultados en términos de fiabilidad, particularmente en

el rango de predicción de 2–9 años.

• Los resultados obtenidos para el WRF-DPLE pueden haber estado parcialmen-

te influenciados por la capacidad limitada del subconjunto de 4 miembros

del CESM-DPLE para representar la variabilidad espacio-temporal de la SLP.

Aunque las retropredicciones del CESM-DPLE pueden reproducir parcialmente

la variabilidad de la SLP, no son capaces de capturar la mayor parte de los mo-

dos principales de variabilidad espacio-temporal extraídos del PCA realizado

para la SLP de ERA5. Ni el subconjunto de 4 miembros ni el de 10 miembros

son capaces de simular de manera consistente la NAO. Todas las mejoras que

puedan implementarse en esta línea podrían ayudar a incrementar la habilidad

predictora del producto final del WRF-DPLE.

La evaluación de )max, )min y )mean se ha presentado en el Capítulo 5. El procedi-

miento aplicado ha sido similar al seguido en el análisis de PR. Los resultados más

notables de esta evaluación son los siguientes:

• La paradoja señal-ruido también está presente en las retropredicciones de

WRF-DPLE para NSAT. Sin embargo, los resultados obtenidos para el RPC

indican que su presencia es más débil que para PR. Aunque la adición de nuevos

miembros al conjunto contribuiría a incrementar su habilidad predictora, se

espera que la mejora sea menor de lo que sería para el mismo número de

miembros en el caso de PR, tal y como se muestra en estudios previos.

• Las retropredicciones del WRF-DPLE para las variables de NSAT muestran

valores positivos generalizados de ACC en todo el domino a escala anual. La

significación estadística de estos resultados depende de la variable y el rango

de predicción. La variable mejor representada es )min, con resultados significa-

tivos y positivos predominantes para ACC en todos los rangos de predicción.

Los valores más elevados de RMSE y los resultados con menor significación

estadística en términos de ACC han sido obtenidos para )max, aunque para esta

variable también se han encontrado áreas extensas con resultados positivos

y significativos de ACC en los rangos de predicción de 6–9 y 2–9 años. Los
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resultados obtenidos para )mean se encuentran a medio camino entre los de las

otras dos variables de NSAT.

• A escala estacional, los valores más elevados de ACC obtenidos por las retro-

predicciones del WRF-DPLE para las variables de NSAT han sido obtenidos

en MAM y JJA. Para )min y )mean, los resultados positivos se extienden por

regiones amplias en los rangos de predicción de 2–5, 6–9 y 2–9 años en ambas

estaciones. Se han obtenido resultados similares para )max, pero con mejor signi-

ficación estadística en general. En el rango de predicción de 1 año, los resultados

son predominantemente positivos en MAM y, en menor medida, en JJA, aunque

carecen de significación estadística.

• La mayor habilidad predictora de las retropredicciones del WRF-DPLE, con la

climatología como referencia, ha sido encontrada para Zmin, seguida de Zmean

y Zmax, en ese orden. Las áreas cubiertas por resultados positivos de MSSSC son

predominantes en todos los rangos de predicción para)min y)mean, mientras que

algunas regiones con resultados negativos se extienden por parte del dominio

en el caso de )max. Estos resultados son consecuencia de los obtenidos para las

distribuciones espaciales de ACC y CB. Mientras que para CB se han encontrado

valores cercanos a cero e incluso no significativos sobre regiones amplias en el

caso de)min y, en menor medida,)mean, los valores de CB han sido generalmente

significativos y negativos sobre casi todo el dominio en todos los rangos de

predicción para )max.

• A escala estacional, la evaluación de la habilidad predictora para NSAT, con la

climatología como referencia, ha dado los mejores resultados en JJA y MAM.

Las distribuciones espaciales de MSSSC obtenidas para las tres variables de

NSAT recuerdan a aquellas obtenidas para ACC también a escala estacional. Las

distribuciones espaciales de CB muestran grandes superficies con resultados

sin significación estadística, principalmente en MAM, para las tres variables de

NSAT en los rangos de predicción de 2–5 y 2–9 años, y también para el rango

de 6–9 años en el caso de )min.

• A escala anual, las retropredicciones del WRF-DPLE para Zmax y Zmin son

fiables sobre casi todo el dominio en los rangos de predicción de 2–5, 6–9

y 2–9 años. Sin embargo, en el caso de )min, las retropredicciones son fiables

principalmente para el rango de 1 año en las regiones del norte de la IP. Los

resultados obtenidos para CRPSS han sido determinados por los obtenidos para

LESS. En el caso de )min, se ha observado una subdispersión significativa del
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conjunto en todos los rangos de predicción, mientras que se han encontrado

resultados no significantivos de LESS en los rangos de 6–9 y 2–9 años para )mean

y, sobre todo, para )max. En escala estacional, los resultados varían dependiendo

de la estación y la variable.

• El valor añadido más robusto de WRF-DPLE a la habilidad predictora a escala

anual, tomando al CESM-DPLE como referencia, ha sido encontrado para

el rango de predicción de 6–9 años en el caso de Zmax y Zmean, mientras que

se muestra en el primer año para Zmin. En esos casos, los valores positivos

de MSSSG cubren la mayor parte del dominio, con áreas muy extensas que

muestran significación estadística para los resultados de )max y )min. Se han

encontrado grandes regiones con resultados positivos generalizados en el rango

de 2–9 años para las tres variables. Como los resultados obtenidos para ΔACCG

son principalmente no significativos, los elevados resultados de MSSSG han

sido motivados por la mejora observada en términos de ΔCBG.

• En escala estacional, la habilidad predictora del WRF-DPLE, con el CESM-

DPLE como referencia, depende de la estación y tiende a crecer cuando el

desempeño del producto global es limitado. Por ejemplo, los valores más

altos de MSSSG para )max han sido observados para los rangos de predicción

de 6–9 y 2–9 años en SON, siendo generalizados los resultados positivos y

significativos a lo largo de la IP. Se presenta una situación similar para )mean.

En cuanto a )min, los resultados positivos de MSSSG son predominantes en

todos los rangos de predicción en DJF, aunque no siempre con significación

estadística. Como en escala anual, el papel de la mejora en términos de ΔCBG

ha sido más determinante que los resultados de ΔACCG en la obtención de los

resultados positivos de MSSSG.

• No se han encontrado diferencias significativas entre la fiabilidad de las

retropredicciones del WRF-DPLE y del CESM-DPLE para las variables de

NSAT. Los resultados de ΔCRPSSG no son lo suficientemente grandes en valor

absoluto para que exista esa significación. Las regiones que muestran una mejora

o deterioro en la representación de la dispersión del conjunto dependen de

la variable, el rango de predicción y la escala temporal del análisis (anual o

estacional).

• Los resultados que muestran un valor añadido de WRF-DPLE a la habilidad

predictora a escala anual, tomando los experimentos no inicializados del

WRF-LE como referencia, han sido encontrados principalmente en el rango
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de predicción de 1 año para las tres variables de NSAT. Los valores positivos

de MSSSU cubren la mayor parte del dominio para )max y )mean en este rango,

mientras que éstos aparecen solo en las regiones del norte y de la mitad sur del

dominio en el caso de )min. Sin embargo, hay significación estadística en los

resultados únicamente en unas pocas localizaciones. A escala estacional, se han

encontrado los resultados más prometedores de MSSSU en MAM, con valores

positivos y significativos que cubren superficies extensas del dominio en los

rangos de 1 y 2–5 años para las tres variables. La contribución de ΔACCU a los

resultados de MSSSU es a menudo comparable a la de ΔCBU tanto en escala

anual como estacional.

• Se ha encontrado una sobreestimación generalizada de las anomalías observa-

cionales de NSAT al comienzo del periodo de control en las series temporales

de los promedios espaciales de las variables. Esta sobreestimación ha con-

tribuido a incrementar las diferencias entre las tendencias de las series del

WRF-DPLE y las series observacionales. Estos errores en la representación de

las tendencias fueron transferidos al WRF-DPLE por el CESM-DPLE durante las

simulaciones DD, ya que estos también están presentes en el producto global.

El Capítulo 6 se ha dedicado al estudio de la sensibilidad de las simulaciones con

WRF a condiciones iniciales extremas de humedad del suelo, centrando el análisis

en el tiempo de spin-up requerido por algunas variables para alcanzar el equilibrio

dinámico. Las simulaciones fueron inicializadas en dos fechas diferentes, 1990-01-

01 y 1990-07-01, con ERA-Interim proporcionando las ICs y LBCs para todas las

variables con excepción de la humedad del suelo. Las ICs de la humedad del suelo

fueron calculadas combinando el SMI con algunas propiedades físicas del suelo

determinadas por su textura. Se consideraron tres ICs diferentes para representar un

suelo húmedo, uno seco y uno muy seco. A continuación, se resumen los resultados

más importantes derivados de este análisis:

• El tiempo de spin-up requerido por la humedad del suelo para garantizar

el equilibrio dinámico en todas las capas de suelo tras partir de unas ICs

extremas en la IP es de 8 años. Esta es la duración máxima del periodo de

spin-up obtenida para algunas localizaciones situadas principalmente en la

mitad sur del dominio y en el valle del Ebro, pero se han encontrado periodos

más cortos en otras regiones dependiendo de las ICs de humedad del suelo,

la profundidad de la capa del suelo, la fecha de inicialización, las condiciones

atmosféricas, la textura y el uso de suelo.
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• Los periodos de spin-up más largos de la humedad del suelo se han encontra-

do para la capa más profunda. Las capas superiores estás sujetas a una mayor

variabilidad porque interactúan con la atmósfera de manera más inmediata

que las más profundas. El agua que proviene de la precipitación necesita más

tiempo para llegar a las estas últimas, haciendo más duradero el estado del

suelo definido por las ICs y, por tanto, conduciendo a tiempos de spin-up más

largos.

• Las condiciones secas contribuyen al incremento del tiempo de spin-up de la

humedad del suelo. La capacidad de almacenar agua es mayor en los suelos

secos, de modo que la ausencia de humedad ralentiza el transporte de agua

proveniente de la precipitación a través de las capas del suelo. Por tanto, la

humedad del suelo tiende a alcanzar el equilibrio dinámico más tarde en los

experimentos con ICs secas y muy secas.

• La fecha de inicialización también influye en la longitud del periodo de spin-

up de la humedad del suelo, aunque la forma en la que afecta depende de las

ICs. Las ICs húmedas en enero se encuentran más cerca del estado de control

que en julio. En cambio, la desviación respecto a este estado es menor en julio

que en enero para los experimentos seco y muy seco. El impacto producido por

la inicialización de los experimentos desde estados más alejados del establecido

por la simulación de control conduce a menudo a tiempos más largos para

alcanzar el equilibrio dinámico, resultando en periodos de spin-up más largos.

Estas diferencias entre la humedad del suelo de control en enero y julio son

parcialmente causadas por las diferencias entre las condiciones meteorológicas

de los meses precedentes (temperaturas menores y tasas de PR mayores en

diciembre y la situación opuesta en junio).

• La resistencia estomatal, cuyos valores dependen del uso de suelo (entre otros

factores), afecta al contenido de humedad y, por tanto, tiene influencia en el

tiempo de spin-up de la humedad del suelo. Valores bajos de la resistencia

estomatal, típicos de las áreas de cultivo, favorecen tasas altas de evapotranspi-

ración desde la vegetación que tienen un impacto en el contenido de humedad

del suelo. En regiones habituadas a exhibir una menor resistencia a este tipo

de evapotranspiración, el estado del suelo en los escenarios seco y muy seco

generalmente tiende a estar más cerca del estado de control que en el caso de

las regiones donde la resistencia estomatal es elevada, conduciendo a periodos

de spin-up más cortos. Este fenómeno se observa únicamente en las tres capas
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superiores, que comprenden la zona de raíz de este uso de suelo.

• La inicialización con ICs extremas de humedad del suelo tiene un impacto

en el tiempo de spin-up necesario para las variables atmosféricas. PR, con un

tiempo de spin-up generalmente menor a 10 meses, ha sido la menos afectada.

No ha habido grandes diferencias entre los tres tipos de escenarios, lo que

sugiere que el papel de la variabilidad interna del modelo prevalece sobre las

ICs de humedad del suelo impuestas en la determinación de la evolución de PR.

Sin embargo, existen diferencias entre los experimentos con diferentes fechas

de inicialización, especialmente entre las simulaciones húmedas, influenciadas

por la magnitud de la desviación de las ICs de humedad del suelo del estado

de control.

• El tiempo de spin-up para Zmax, la variable más afectada por las ICs de hume-

dad del suelo, alcanza valores superiores a los 36 meses (3 años) en algunas

localizaciones. Existen similitudes entre las distribuciones espaciales del pe-

riodo de spin-up requerido por )max y por la humedad del suelo en las tres

capas superiores, evidenciando la existencia de procesos de acoplamiento tierra-

atmósfera que involucran a estas dos variables, de acuerdo con estudios previos.

Esta relación, aunque se mantiene en cierto grado, no es tan marcada para )min

y )mean. Tras PR, )min es la variable menos afectada por las ICs de humedad

del suelo. En general, los periodos de spin-up de )min muestran duraciones

menores a los 12 meses. Por otro lado, se requieren periodos mayores para

)mean, con duraciones máximas que van desde 24 hasta 32 meses en algunas

localizaciones.

Los resultados obtenidos en el Capítulo 6 llevaron a considerar la inicialización

del suelo en las simulaciones DD presentadas en el Capítulo 7, dedicado a analizar

los experimentos del WRF-DPLE para la década 2015-2025. Como no se tuvo en

cuenta ningún tiempo de spin-up en los análisis realizados en los capítulos Capítu-

los 4 y 5 (lo que habría implicado la pérdida de los primeros años simulados), la

habilidad predictora puede haber experimentado algún deterioro en presencia de

sesgos debidos al spin-up, al menos durante los primeros años de las simulaciones.

Aunque el tiempo de spin-up requerido para esas variables puede ser más corto que

el indicado en el Capítulo 6 bajo ICs normales de humedad de suelo, un estado de

suelo dinámicamente equilibrado, tomado de la simulación de control con WRF, se

utilizó para inicializar las simulaciones examinadas en el Capítulo 7 con el propósito

de mejorar tanto como fuese posible la habilidad predictora de las predicciones de

292



alta resolución.

Los resultados presentados en el Capítulo 7 corresponden a las predicciones de

las mismas variables analizadas en el periodo de control: PR, )max, )min y )mean. Como

la información observacional está disponible hasta 2022, las variables pronosticadas

han sido comparadas con los valores observacionales en los rangos de predicción de

1 y 2–5 años. Los resultados más relevantes son resumidos a continuación:

• En las regiones con predicciones fiables para PR, las anomalías pronostica-

das por el WRF-DPLE4 para esta variable en escala anual son generalmente

positivas al comienzo de la década y se vuelven negativas durante la segunda

mitad de la misma. La predicción para el rango de 2–9 años muestra anomalías

negativas generalizadas sobre casi todo el dominio. En los rangos de 6–9 y

de 2–9 años, se han encontrado las anomalías negativas más intensas en las

regiones del noroeste, en el Sistema Central y en los Pirineos, con valores por

debajo de -12 mm/mes en algunas localizaciones. Sin embargo, en todos los

rangos de predicción, la amplitud de los intervalos de confianza es mucho ma-

yor que la magnitud de las anomalías y, por tanto, éstos usualmente contienen

valores de anomalías con signos opuestos. En escala estacional, las superficies

más extensas con pronósticos fiables de anomalías negativas en el rango de

2–9 años se muestran en SON. En MAM, hay muchas regiones en las que se

han encontrado valores observacionales fuera de los intervalos de confianza,

a pesar de que las predicciones son fiables allí. Aunque hay una probabilidad

del 10 % asociada a este tipo de casos, también podrían deberse parcialmente

al tamaño del espacio vacío que existe entre el fin del periodo de control y la

década 2015–2025 y a que la duración del periodo de control, en comparación

con el tamaño de este espacio, no es lo suficientemente larga.

• Las predicciones del WRF-DPLE10 para PR son cualitativamente similares a

las del WRF-DPLE4. No obstante, con algunas excepciones, las predicciones

del WRF-DPLE10 generalmente obtienen errores más pequeños que las del

WRF-DPLE4 en escala anual para los rangos de predicción de 1 y 2–5 años.

Adicionalmente, las predicciones del WRF-DPLE10 muestran unas anomalías

ligeramente más moderadas que las del WRF-DPLE4 en escala anual. En escala

estacional, las áreas cubiertas por errores más bajos de WRF-DPLE10 que de

WRF-DPLE4 son generalmente más grandes que aquellas que indican una

mayor precisión para WRF-DPLE4, con las claras excepciones de MAM y JJA

en el rango de predicción de 1 año, cuando el desempeño de WRF-DPLE4 es
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mejor sobre la mayor parte del dominio.

• Los resultados obtenidos para los promedios espaciales de las anomalías de

PR reproducen aquello que se ha observado desde la perspectiva de punto de

rejilla. En los lugares con predicciones fiables, las anomalías más intensas son

negativas y han sido encontradas en las regiones CN y NW en los rangos de

predicción de 6–9 y 2–9 años para WRF-DPLE4. Los resultados obtenidos para

WRF-DPLE10 son cualitativamente similares, pero obteniendo errores menores

que WRF-DPLE4 en los rangos de 1 y 2–5 años en general.

• Las predicciones del WRF-DPLE4 para las variables de NSAT muestran ano-

malías positivas en escala anual para todos los rangos de predicción sobre

todo el dominio. En regiones con predicciones fiables, las anomalías más ele-

vadas han sido encontradas en el rango de 2–5 años para las tres variables

de NSAT. Estas anomalías son generalmente superiores a 1 K en ese rango de

predicción, alcanzando los valores máximos entre 1.5 K y 1.75 K para )max en

regiones del Sistema Ibérico. En escala estacional, las anomalías llegan a ser

más exacerbadas. Los pronósticos de anomalías más altas se han encontrado en

JJA para las tres variables, con máximos de hasta 2 K en extensas superficies del

dominio con predicciones fiables para )max en el rango de 6–9 años en algunas

regiones del sureste y noreste. En escala anual, los intervalos de confianza no

contienen en general valores de distinto signo en los rangos de 2–5, 6–9 y 2–9

años para ninguna variable de NSAT. Igual que en el caso de PR, hay valores

observacionales que caen fuera de los intervalos de confianza, siendo más fre-

cuentes en DJF para )max y )mean. Además del tamaño del periodo de control y

del espacio vacío entre el fin de este periodo y la década 2015-2025, esto podría

estar en cierto grado relacionado con el hecho de estas predicciones fueron ini-

cializadas desde un estado de suelo dinámicamente equilibrado, que favorece

la reducción del tiempo de spin-up necesario para las mismas, al contrario que

las retropredicciones que se usaron para calcular esos intervalos.

• En cuanto al WRF-DPLE10, se han obtenido anomalías de NSAT cualitati-

vamente similares a las del WRF-DPLE4 en todos los rangos de predicción,

encontrándose en general valores menores en la magnitud de las anomalías

para la escala anual. Las áreas donde la precisión del WRF-DPLE10 es mayor

que la del WRF-DPLE4 en los rangos de 1 y 2–5 años para las tres variables de

NSAT son generalmente más grandes que las áreas en las que el desempeño de

WRF-DPLE4 es mejor. En escala estacional, las diferencias entre WRF-DPLE10
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y WRF-DPLE4 son ligeramente mayores que en la anual, con algunas localiza-

ciones obteniendo anomalías de distinto signo dependiendo del tamaño del

conjunto.

• Los resultados obtenidos por los promedios espaciales de las predicciones

para las variables de NSAT en escala anual resumen lo que se ha obtenido

desde la perspectiva de punto de rejilla. Todas las regiones muestran anomalías

positivas para todas las variables de NSAT en todos los rangos de predicción

para los dos tamaños de conjunto. Las anomalías son comúnmente superiores a

0.5 K y a menudo alcanzan valores mayores que 1 K. Con la excepción del rango

de 1 año, los intervalos de confianza no contienen anomalías de signos diferentes

para ninguna variable en ninguna región. En general, el error cometido por

WRF-DPLE10 es menor que el de WRF-DPLE4 en los rangos de 1 y 2–5 años,

con algunas excepciones.

Finalmente, una serie de métodos de corrección de deriva han sido examinados

en el Capítulo 8. El método MDC contribuye a reducir el sesgo promedio dependien-

te del rango de predicción en las ICs y LBCs proporcionadas por el CESM-DPLE,

pero no tiene en cuenta otros sesgos de orden superior, como los observados en la

representación de las tendencias. Por tanto, varias técnicas de corrección adicionales

han sido evaluadas para explorar alternativas al método MDC y así mejorar tanto

como sea posible la habilidad predictora de los datos de entrada en las simulaciones

DD. El mejor método de corrección sobre diferentes dominios de especial interés en

un contexto de DD (los dominios EUR, SA y NA) ha sido utilizado para corregir los

datos del CESM-DPLE y seleccionar un subconjunto de 3 miembros para posibles

experimentos DD futuros. Las principales conclusiones que se extraen de este análisis

son:

• El método TrDCkNN ha sido escogido como uno de los más adecuados para

la corrección de la deriva en los dominios EUR y NA, mientras que el mé-

todo ICDCkNN puede ser apropiado para el dominio SA. Los métodos de la

familia TrDC muestran resultados prometedores en la predicción de la NAO,

obteniendo correlaciones positivas significativas para el índice NAO en el rango

de predicción de 2–9 años, con valores más elevados que los obtenidos por

otros estudios que consideraron conjuntos de mayor tamaño sin corregir. Los

métodos de la familia ICDC han obtenido generalmente mejores resultados

en el rango de 1 año para todas las variables analizadas en los tres dominios.

Además, el método ICDCkNN, en particular, mejora ligeramente la representa-
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ción de la SST en el Pacífico subtropical en términos de ACC en el rango de 2–9

años, aportando además un pequeño valor añadido a la representación del TNI

frente a ICDC y ICDCFIT en la segunda mitad de la década. Si un método más

directo y menos demandante computacionalmente fuese requerido, el método

ICDC podría ser también una buena opción, ya que adicionalmente presenta

un desempeño ligeramente mejor que ICDCkNN en lo que respecta al TNI al

comienzo de la década.

• El modesto ENS3 podría ser una buena alternativa a conjuntos más grandes

en un contexto de acceso limitado a recursos computacionales para algunas

aplicaciones específicas. El valor añadido del incremento del tamaño del con-

junto a la habilidad predictora de la SST es muy pequeño en comparación con

el incremento de los requerimientos computacionales de las simulaciones DD.

Este comportamiento es compartido por otras variables de temperatura, tal y

como muestran otros estudios previos y como se ha discutido en el Capítulo 5.

Sin embargo, otros campos como PR se beneficiarían claramente de emplear

conjuntos de gran tamaño para generar predicciones de alta resolución.

• Las predicciones corregidas para SST carecen de fiabilidad, independiente-

mente del tamaño del conjunto. Los resultados obtenidos para el 〈CRPSS〉 de

la SST muestran valores negativos y estadísticamente significativos, de modo

que la dispersión promedio del conjunto no es apropiada para cuantificar la

incertidumbre de las predicciones. Otras técnicas alternativas que consideren

una corrección explícita tanto de los sesgos incondicionales como de condicio-

nales, como el método DeFoReSt, pueden contribuir a mejorar las predicciones

también en términos probabilísticos.

Trabajos futuros

La investigación presentada en esta Tesis evidencia el valor del papel que puede

desempeñar WRF en la generación de DCPs de alta resolución en la IP. Se han encon-

trado mejoras significativas en los resultados de las predicciones en comparación con

los experimentos globales del CESM-DPLE y los no inicializados del WRF-LE para

las variables de NSAT, mientras que el valor añadido por el WRF-DPLE a la habilidad

predictora para PR es más limitado. Sin embargo, como la paradoja señal-ruido es

tan fuerte en el caso de PR, tal y como revelan los RPCs calculados en la Sección

4.1 y como encontraron Smith et al. (2019) para un gran conjunto compuesto por

diferentes DPSs, estos resultados podrían ser ampliamente mejorados añadiendo
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nuevos miembros al conjunto de alta resolución. Reyers et al. (2019) mostraron el

grado en el que la habilidad predictora para PR y, en menor medida, para las variables

de NSAT, puede ser mejorada incrementando el tamaño del conjunto. Adicionalmen-

te, en el mismo trabajo, así como en Sienz et al. (2016), se mostró también que el

incremento del tamaño de la muestra (es decir, del número fechas de inicialización)

tiene una influencia positiva en la solidez de las predicciones. Por tanto, el siguiente

paso ideal consistiría en incrementar el tamaño del conjunto de predicciones de alta

resolución hasta los 10 miembros (el máximo tamaño que se puede alcanzar con

el CESM-DPLE proporcionando la información de entrada) y progresivamente ir

añadiendo nuevas fechas de inicialización desde 1969 hacia atrás, para así aumentar

tanto como se pueda la habilidad predictora del producto de alta resolución. Sin

embargo, esto solo sería posible con acceso a recursos computacionales suficientes

para realizar las simulaciones.

El análisis de las DCPs de alta resolución podría continuar con una evaluación de

los extremos de temperatura y precipitación, ya que su frecuencia e intensidad podría

incrementarse en condiciones de cambio climático en la IP durante las próximas

décadas (Cardoso Pereira et al., 2020; Lorenzo y Alvarez, 2022, 2020). Además, como

una de las pricipales ventajas del DD sobre otras técnicas de reducción de escala es que

el RCM es capaz de producir un amplio abanico de variables para cada experimento,

este análisis se podría extender también a otros fenómenos de especial interés en la IP,

como la sequía o los incendios, que suelen involucrar a múltiples variables climáticas

en sus evaluaciones. La IP no es solo vulnerable en la actualidad a estos eventos

naturales por motivos humanos, medioambientales y económicos (Cammalleri et al.,

2020; San-Miguel-Ayanz et al., 2018), sino que además se espera que estos fenómenos

tengan una mayor presencia en el futuro (García-Valdecasas et al., 2021; Turco et al.,

2018).

Otra línea de investigación interesante sería la de explorar en mayor profundidad

el valor añadido que la inicialización del suelo puede proporcionar a la habilidad

predictora del conjunto de alta resolución. Kothe et al. (2016) estudiaron diferentes

estrategias de inicialización que son potentialmente aplicables en simulaciones DD

decenales. La inicialización a partir de un estado de suelo dinámicamente equilibrado,

reseñada en ese estudio, ha sido utilizada aquí. No obstante, Kothe et al. (2016)

también examinaron métodos más complejos que podrían conducir a resultados

mejores, como la generación del estado inicial del suelo con la ejecución del LSM del

RCM de forma independiente o con la implementación de técnicas de asimilación de

datos.
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9. Conclusions

Las múltiples aplicaciones del DD en la rama de la DCP y sus potenciales ramifica-

ciones abren un amplio campo de investigación que podría ser explorado en trabajos

futuros tomando el estudio presentado en esta Tesis como un sólido punto de partida.
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A
Supplementary tables

A.1. Köppen-Geiger climate classification

Table A.1: Definition of the Köppen-Geiger climate classes. Adapted from Beck et al. (2023). A description
of the acronyms and symbols is available in the next page.

Letter symbol

1st 2nd 3rd Description Criterion

A

Tropical Not (B) & )cold ≥ 18
f - Rainforest %dry ≥ 60

m - Monsoon Not (Af) & %dry ≥ 100 − MAP/25
w - Savannah Not (Af) & %dry < 100 − MAP/25

B

Arid MAP < 10 × %threshold

W - Desert MAP < 5 × %threshold

S - Steppe MAP ≥ 5 × %threshold

h - Hot MAT ≥ 18

k - Cold MAT < 18

C

Temperate Not (B) & )hot > 10 & 0 < )cold < 18

s - Dry summer %sdry < 40 & %sdry < %wwet/3
w - Dry winter %wdry < %swet/10
f - Without dry season Not (Cs) or (Cw)

a - Hot summer )hot ≥ 22

b - Warm summer Not (a) & )mon10 ≥ 4

c - Cold summer Not (a or b) & 1 ≤ )mon10 < 4

D

Cold Not (B) & )hot > 10 & < )cold ≤ 10

s - Dry summer %sdry < 40 & %sdry < %wwet/3
w - Dry winter %wdry < %swet/10
f - Without dry season Not (Ds) or (Dw)

a - Hot summer )hot ≥ 22

b - Warm summer Not (a) & )mon10 ≥ 4

c - Cold summer Not (a, b, or d)
d - Very cold winter Not (a or b) & )hot ≤ −38

E
Polar Not (B) & )hot ≤ 10

T - Tundra )hot > 0

F - Frost )hot ≤ 0
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In Table A.1, MAT is the mean annual air temperature (°C); )cold is the air temper-

ature of the coldest month (°C);)hot is the air temperature of the warmest month (°C);

)mon10 is the number of months with air temperature > 10 °C (unitless); MAP is the

mean annual precipitation (mm y−1); %dry is precipitation in the driest month (mm

month−1); %sdry is precipitation in the driest month in summer (mm month−1); %wdry

is precipitation in the driest month in winter (mm month−1); %swet is precipitation in

the wettest month in summer (mm month−1); %wwet is precipitation in the wettest

month in winter (mm month−1); %threshold = 2 × MAT if > 70 % of precipitation

falls in winter, %threshold = 2 × MAT + 28 if > 70 % of precipitation falls in summer,

otherwise %threshold = 2 × MAT + 14. Summer (winter) is the six-month period that

is warmer (colder) between April–September and October–March.
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A.2. Trends of precipitation and near-surface air temperature fields

A.2. Trends of precipitation and near-surface air temperature fields

Table A.2 : Trends of spatially averaged WRF-DPLE multiannual mean anomalies of PR, )max, )min and
)mean in lead years 1, 2-5, 6-9 and 2-9 at annual scale for each region defined in Section 3.6. While �.

denotes the trend of the WRF-DPLE lead time series, �.−- identifies the trend of the difference between
the WRF-DPLE and AEMET series. The bold formatting indicates that the results are different from zero
at the 90 % confidence level.

Lead
years

Region
(PR)

PR
(mm/decade) Region

(NSAT)

Zmax

(K/decade)
Zmin

(K/decade)
Zmean

(K/decade)

#_ #_−^ #_ #_−^ #_ #_−^ #_ #_−^

1

EI

-13.38 17.31

SW

0.24 -0.04 0.44 -0.06 0.26 -0.12
2-5 -6.35 -0.19 0.20 -0.02 0.22 -0.26 0.25 -0.12

6-9 -6.07 -1.41 0.19 0.07 0.26 -0.07 0.22 -0.03
2-9 -5.67 -0.12 0.19 0.03 0.24 -0.17 0.23 -0.08

1

WI

3.29 0.44

NO

0.25 -0.23 0.35 -0.11 0.29 -0.17
2-5 -0.44 -21.89 0.32 -0.10 0.23 -0.24 0.27 -0.19

6-9 -6.76 0.57 0.26 0.04 0.27 -0.05 0.26 0.00
2-9 -4.71 -1.83 0.28 -0.04 0.25 -0.13 0.26 -0.07

1

NE

-18.97 -2.01

CI

0.22 -0.24 0.50 -0.12 0.27 -0.27

2-5 -4.97 -7.17 0.29 -0.02 0.21 -0.32 0.26 -0.15
6-9 -16.67 -9.90 0.28 0.19 0.27 -0.07 0.27 0.04
2-9 -12.75 -3.45 0.27 0.07 0.24 -0.20 0.25 -0.05

1

CS

-4.93 24.26

NE

0.25 -0.29 0.41 -0.12 0.32 -0.19
2-5 -3.88 4.18 0.31 -0.18 0.22 -0.30 0.27 -0.23

6-9 -4.14 20.41 0.32 -0.01 0.29 -0.09 0.32 -0.05
2-9 -5.12 13.67 0.31 -0.09 0.25 -0.18 0.30 -0.13

1

NW

14.34 14.66

CS

0.50 -0.16 0.53 -0.12 0.47 -0.19
2-5 -7.56 -37.30 0.30 -0.33 0.27 -0.42 0.28 -0.41

6-9 -11.44 39.17 0.32 -0.03 0.29 -0.25 0.30 -0.15
2-9 -10.08 0.34 0.29 -0.21 0.27 -0.34 0.28 -0.28

1

EA

0.09 32.58

EA

0.25 -0.24 0.32 -0.12 0.26 -0.18

2-5 -6.41 3.86 0.29 -0.12 0.23 -0.19 0.27 -0.15

6-9 -15.11 -34.41 0.27 0.07 0.27 0.02 0.28 0.04
2-9 -11.36 -15.39 0.28 -0.02 0.25 -0.07 0.27 -0.05

1

SW

10.94 1.51

MT

0.28 -0.22 0.40 -0.18 0.30 -0.23

2-5 -1.10 -45.89 0.29 -0.10 0.25 -0.30 0.26 -0.21

6-9 -4.94 -5.45 0.29 -0.04 0.28 -0.07 0.26 -0.07
2-9 -4.14 -27.96 0.28 -0.06 0.27 -0.16 0.25 -0.14

1

CN

-20.97 50.61

WI

0.21 -0.17 0.35 -0.15 0.24 -0.22
2-5 -28.65 45.19 0.29 0.00 0.21 -0.23 0.26 -0.12
6-9 -10.25 38.73 0.24 0.12 0.26 0.01 0.24 0.06
2-9 -21.58 34.32 0.25 0.05 0.23 -0.10 0.24 -0.02
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Table A.3 : As Table A.2 but in DJF.

Lead
years

Region
(PR)

PR
(mm/decade) Region

(NSAT)

Zmax

(K/decade)
Zmin

(K/decade)
Zmean

(K/decade)

#_ #_−^ #_ #_−^ #_ #_−^ #_ #_−^

1

EI

16.75 60.82

SW

0.19 -0.28 0.25 -0.23 0.23 -0.29
2-5 -0.95 29.76 0.14 -0.08 0.06 -0.24 0.20 -0.04
6-9 -1.89 64.76 0.22 0.12 0.14 0.14 0.17 0.11
2-9 -2.05 48.46 0.19 0.02 0.10 -0.02 0.17 0.01

1

WI

46.09 101.30

NO

0.20 -0.43 0.12 -0.26 0.14 -0.48

2-5 -8.63 13.51 0.19 -0.17 0.19 -0.14 0.21 -0.13

6-9 5.29 148.38 0.12 0.02 0.18 0.09 0.15 0.02
2-9 -3.34 95.94 0.16 -0.16 0.18 -0.05 0.17 -0.14

1

NE

32.83 69.08

CI

0.20 -0.41 0.23 -0.21 0.24 -0.33
2-5 6.46 20.24 0.17 -0.10 0.10 -0.09 0.14 -0.08
6-9 -10.75 8.64 0.22 0.12 0.08 0.18 0.08 0.10
2-9 -2.41 18.88 0.19 -0.03 0.10 0.02 0.11 -0.07

1

CS

28.23 93.10

NE

0.21 -0.43 -0.03 -0.41 0.12 -0.37
2-5 -16.44 27.00 0.29 -0.09 0.14 -0.10 0.25 -0.06
6-9 1.86 120.97 0.26 0.01 0.13 0.07 0.17 0.00
2-9 -9.95 84.89 0.27 -0.13 0.14 -0.04 0.21 -0.08

1

NW

50.62 271.10

CS

0.26 -0.48 0.24 -0.29 0.25 -0.38

2-5 5.12 186.86 0.24 -0.32 0.14 -0.20 0.23 -0.21

6-9 26.84 394.72 0.31 -0.15 0.12 0.02 0.20 -0.12
2-9 9.70 316.17 0.28 -0.21 0.13 -0.10 0.21 -0.13

1

EA

-5.50 -29.50

EA

0.17 -0.25 0.10 -0.13 0.13 -0.19
2-5 -10.26 -12.49 0.26 0.06 0.15 0.04 0.16 0.03
6-9 -21.36 -39.22 0.27 0.20 0.07 0.20 0.09 0.15
2-9 -14.47 -33.46 0.25 0.14 0.12 0.12 0.13 0.09

1

SW

28.14 100.72

MT

0.21 -0.53 0.10 -0.51 0.14 -0.57

2-5 -35.56 -38.96 0.19 -0.21 0.23 -0.17 0.22 -0.17

6-9 -4.42 124.72 0.24 -0.07 0.17 -0.04 0.23 -0.02
2-9 -22.03 27.17 0.23 -0.15 0.20 -0.19 0.22 -0.17

1

CN

5.81 140.75

WI

0.21 -0.42 0.19 -0.36 0.18 -0.41

2-5 -15.69 107.65 0.20 -0.16 0.08 -0.20 0.16 -0.12

6-9 -16.07 76.63 0.19 0.06 0.12 0.17 0.11 0.08
2-9 -25.08 55.32 0.20 -0.11 0.10 -0.06 0.14 -0.10
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A.2. Trends of precipitation and near-surface air temperature fields

Table A.4 : As Table A.2 but in MAM.

Lead
years

Region
(PR)

PR
(mm/decade) Region

(NSAT)

Zmax

(K/decade)
Zmin

(K/decade)
Zmean

(K/decade)

#_ #_−^ #_ #_−^ #_ #_−^ #_ #_−^

1

EI

-18.99 36.69

SW

0.28 -0.65 0.29 -0.44 0.28 -0.57

2-5 -11.91 20.85 0.30 -0.41 0.25 -0.50 0.28 -0.45

6-9 -1.92 -0.98 0.33 -0.28 0.28 -0.37 0.31 -0.33

2-9 -5.82 15.59 0.33 -0.36 0.27 -0.49 0.30 -0.40

1

WI

2.31 15.63

NO

0.34 -0.63 0.16 -0.40 0.27 -0.50

2-5 -6.66 -29.32 0.32 -0.49 0.20 -0.42 0.27 -0.45

6-9 0.49 -2.48 0.32 -0.41 0.24 -0.24 0.31 -0.31

2-9 -7.79 -21.09 0.34 -0.56 0.24 -0.32 0.29 -0.42

1

NE

-2.09 92.35

CI

0.31 -0.63 0.26 -0.40 0.27 -0.55

2-5 -4.40 26.98 0.32 -0.44 0.22 -0.46 0.28 -0.46

6-9 -10.14 34.76 0.36 -0.30 0.30 -0.26 0.34 -0.28

2-9 -4.09 35.51 0.37 -0.40 0.26 -0.38 0.33 -0.41

1

CS

-1.47 74.38

NE

0.27 -0.69 0.21 -0.43 0.27 -0.55

2-5 -9.98 39.77 0.35 -0.54 0.24 -0.46 0.30 -0.50

6-9 -0.96 -3.52 0.38 -0.47 0.31 -0.25 0.35 -0.35

2-9 -8.33 14.29 0.38 -0.52 0.28 -0.37 0.34 -0.43

1

NW

-9.54 -22.47

CS

0.20 -0.94 0.23 -0.54 0.22 -0.74

2-5 -4.18 -68.28 0.30 -0.67 0.25 -0.57 0.26 -0.64

6-9 -23.35 33.09 0.35 -0.37 0.27 -0.41 0.32 -0.38

2-9 -19.05 -50.22 0.33 -0.55 0.27 -0.52 0.30 -0.51

1

EA

1.95 126.42

EA

0.19 -0.67 0.21 -0.29 0.22 -0.48

2-5 6.14 57.39 0.28 -0.48 0.24 -0.33 0.26 -0.40

6-9 -15.21 -38.21 0.35 -0.21 0.29 -0.18 0.34 -0.15
2-9 -6.93 2.54 0.34 -0.33 0.27 -0.21 0.32 -0.27

1

SW

5.85 75.75

MT

0.34 -0.59 0.26 -0.51 0.33 -0.53

2-5 -10.55 -2.04 0.34 -0.57 0.21 -0.54 0.30 -0.53

6-9 -1.37 -42.10 0.37 -0.55 0.25 -0.37 0.35 -0.42

2-9 -4.94 -34.33 0.38 -0.57 0.25 -0.47 0.34 -0.49

1

CN

-45.93 143.67

WI

0.29 -0.56 0.23 -0.31 0.29 -0.40

2-5 -26.01 155.54 0.34 -0.39 0.16 -0.43 0.28 -0.36

6-9 -14.66 133.11 0.34 -0.39 0.21 -0.22 0.32 -0.24
2-9 -13.58 143.55 0.36 -0.39 0.20 -0.32 0.30 -0.32
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A. Supplementary tables

Table A.5 : As Table A.2 but in JJA.

Lead
years

Region
(PR)

PR
(mm/decade) Region

(NSAT)

Zmax

(K/decade)
Zmin

(K/decade)
Zmean

(K/decade)

#_ #_−^ #_ #_−^ #_ #_−^ #_ #_−^

1

EI

-40.70 10.69

SW

0.32 0.12 0.20 -0.22 0.25 -0.09
2-5 -15.33 26.99 0.34 0.11 0.28 -0.23 0.29 -0.05
6-9 -11.21 14.55 0.39 -0.02 0.38 -0.26 0.39 -0.13
2-9 -13.20 19.89 0.36 0.02 0.32 -0.26 0.34 -0.12

1

WI

-27.91 19.16

NO

0.19 -0.03 0.08 -0.32 0.18 -0.12
2-5 -8.17 25.62 0.32 0.11 0.23 -0.20 0.28 -0.04
6-9 -6.15 12.88 0.37 0.04 0.36 -0.10 0.37 -0.03
2-9 -7.33 27.69 0.33 0.03 0.29 -0.16 0.31 -0.05

1

NE

-52.42 -1.38

CI

0.30 -0.12 0.16 -0.42 0.24 -0.24
2-5 -21.53 57.30 0.36 -0.00 0.25 -0.32 0.30 -0.16
6-9 -6.78 42.98 0.42 0.07 0.42 -0.24 0.45 -0.05
2-9 -12.41 39.19 0.39 0.00 0.33 -0.30 0.36 -0.13

1

CS

-22.83 10.12

NE

0.24 -0.12 0.21 -0.21 0.28 -0.10
2-5 -6.73 32.68 0.32 -0.10 0.26 -0.26 0.30 -0.13
6-9 -7.32 32.63 0.42 -0.01 0.41 -0.13 0.42 -0.08
2-9 -6.06 32.42 0.38 -0.07 0.33 -0.23 0.36 -0.18

1

NW

-1.08 21.47

CS

0.31 -0.30 0.22 -0.48 0.30 -0.37

2-5 -20.68 -8.06 0.38 -0.31 0.30 -0.71 0.34 -0.53

6-9 -8.17 4.28 0.43 -0.33 0.41 -0.63 0.43 -0.50

2-9 -13.28 -7.44 0.41 -0.34 0.35 -0.62 0.38 -0.45

1

EA

-21.51 18.87

EA

0.23 -0.26 0.21 -0.17 0.21 -0.24
2-5 -5.61 36.64 0.38 -0.18 0.29 -0.16 0.33 -0.15
6-9 -5.67 15.48 0.39 -0.15 0.39 -0.10 0.42 -0.05
2-9 -6.99 29.81 0.39 -0.17 0.34 -0.17 0.38 -0.17

1

SW

-9.72 20.22

MT

0.25 -0.08 0.13 -0.17 0.21 -0.16
2-5 -1.53 28.19 0.34 0.05 0.24 -0.26 0.27 -0.09
6-9 -4.25 26.01 0.40 0.03 0.37 -0.16 0.38 -0.08
2-9 -2.35 23.36 0.36 -0.02 0.30 -0.23 0.32 -0.14

1

CN

-13.56 28.77

WI

0.24 -0.02 0.08 -0.20 0.18 -0.11
2-5 -36.51 7.77 0.36 0.12 0.22 -0.18 0.29 -0.03
6-9 -20.58 42.73 0.41 0.12 0.33 -0.09 0.36 -0.01
2-9 -24.18 30.39 0.35 0.06 0.27 -0.15 0.30 -0.05
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A.2. Trends of precipitation and near-surface air temperature fields

Table A.6 : As Table A.2 but in SON.

Lead
years

Region
(PR)

PR
(mm/decade) Region

(NSAT)

Zmax

(K/decade)
Zmin

(K/decade)
Zmean

(K/decade)

#_ #_−^ #_ #_−^ #_ #_−^ #_ #_−^

1

EI

0.07 -65.98

SW

-0.12 0.23 0.19 -0.07 0.24 0.18
2-5 -2.22 -79.22 0.14 0.58 0.18 -0.22 0.14 0.16
6-9 -15.79 -77.09 -0.04 0.50 0.23 0.12 0.15 0.38
2-9 -7.67 -77.95 0.06 0.43 0.21 0.01 0.15 0.23

1

WI

-39.60 -129.01

NO

0.29 0.27 0.22 -0.19 0.24 0.06
2-5 -8.70 -114.29 0.23 0.29 0.17 -0.15 0.19 0.04
6-9 -11.54 -120.80 0.13 0.43 0.25 0.08 0.21 0.29
2-9 -12.44 -113.62 0.19 0.32 0.22 0.01 0.21 0.19

1

NE

5.64 -105.52

CI

-0.20 -0.01 0.18 -0.26 0.23 0.13
2-5 -9.36 -159.03 0.13 0.43 0.12 -0.35 0.14 0.08
6-9 -45.18 -107.32 0.02 0.54 0.20 0.07 0.12 0.30
2-9 -28.23 -116.43 0.07 0.39 0.18 -0.06 0.13 0.17

1

CS

-6.89 -71.87

NE

0.22 0.12 0.19 -0.44 0.20 -0.15
2-5 -3.45 -89.54 0.19 0.10 0.12 -0.31 0.14 -0.08
6-9 -24.94 -64.43 0.20 0.38 0.24 0.06 0.26 0.23
2-9 -14.40 -75.70 0.20 0.17 0.19 -0.09 0.21 0.08

1

NW

-44.38 -341.90

CS

0.14 0.02 0.23 -0.24 0.28 -0.01
2-5 -33.88 -255.18 0.17 0.05 0.14 -0.43 0.15 -0.17
6-9 5.50 -263.38 0.16 0.26 0.22 0.01 0.21 0.16
2-9 -14.66 -278.92 0.15 0.07 0.19 -0.19 0.18 -0.02

1

EA

-16.18 -29.51

EA

0.08 -0.10 0.22 -0.19 0.26 0.01
2-5 0.82 -60.94 0.10 0.09 0.11 -0.27 0.12 -0.05
6-9 -25.06 -61.31 0.11 0.33 0.23 0.09 0.17 0.22
2-9 -9.44 -54.38 0.10 0.18 0.17 -0.05 0.14 0.05

1

SW

-24.13 -109.21

MT

0.04 0.19 0.20 -0.20 0.23 0.05
2-5 9.01 -136.35 0.14 0.38 0.18 -0.13 0.18 0.14
6-9 -31.61 -93.38 0.07 0.45 0.25 0.18 0.17 0.30
2-9 -12.47 -114.17 0.12 0.30 0.22 0.05 0.19 0.19

1

CN

-54.09 -112.47

WI

0.03 0.24 0.18 -0.18 0.23 0.16
2-5 -25.29 -47.92 0.15 0.60 0.14 -0.22 0.15 0.16
6-9 3.78 -75.08 0.04 0.62 0.22 0.18 0.10 0.36
2-9 -11.00 -66.22 0.09 0.49 0.18 0.04 0.13 0.24
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B
Supplementary figures

B.1. Retrospective decadal climate predictions for precipitation
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Figure B.1 : Spatial distributions of MSSSC, with climatology as reference, for the WRF-DPLE multiannual
mean anomalies of PR for lead years 1, 2–5, 6–9 and 2–9 (rows) in DJF, MAM, JJA and SON (columns).
The absence (presence) of black dots indicates (not) statistically significant results different from zero at
the 90% confidence level.
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Figure B.2 : As Figure B.1 but for CB.
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B.1. Retrospective decadal climate predictions for precipitation
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Figure B.3 : As Figure B.1 but for MSSSCBA (MSSSC calculated for lead time series with an adjusted CB,
i.e., equal to zero).
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B. Supplementary figures
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Figure B.4 : As Figure B.1 but for CRPSS.
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B.1. Retrospective decadal climate predictions for precipitation
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Figure B.5 : As Figure B.1 but for LESS.
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Figure B.6 : As Figure B.1 but for ΔACCG, with CESM-DPLE as reference.
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B.1. Retrospective decadal climate predictions for precipitation
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Figure B.7 : As Figure B.1 but for ΔCBG, with CESM-DPLE as reference.
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B. Supplementary figures
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Figure B.8 : As Figure B.1 but for ΔCRPSSG, with CESM-DPLE as reference.
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B.1. Retrospective decadal climate predictions for precipitation
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Figure B.9 : As Figure B.1 but for LESSSG, with CESM-DPLE as reference.
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B. Supplementary figures
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Figure B.10 : As Figure B.1 but for ΔACCU, with WRF-LE as reference, only for lead years 1 and 2–5
(rows).
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Figure B.11 : As Figure B.1 but for ΔCBU, with WRF-LE as reference, only for lead years 1 and 2–5 (rows).
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B.2. Retrospective decadal climate predictions for near-surface air temperature

B.2. Retrospective decadal climate predictions for near-surface air tempera-

ture

B.2.1. Daily maximum near-surface air temperature
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Figure B.12 : Spatial distributions of RMSE for the WRF-DPLE multiannual mean anomalies of )max for
lead years 1, 2–5, 6–9 and 2–9 (rows) in DJF, MAM, JJA and SON (columns).
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B. Supplementary figures
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Figure B.13 : Spatial distributions of the standard deviation (s) of the AEMET )max at annual and seasonal
scales for the period 1970-2009. While the annual series covers the period from 1970-11 to 2009-10, the
seasonal series span the period from 1970-12 to 2009-11.
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B.2. Retrospective decadal climate predictions for near-surface air temperature
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Figure B.14: Spatial distributions of MSSSC, with climatology as reference, for the WRF-DPLE multiannual
mean anomalies of )max for lead years 1, 2–5, 6–9 and 2–9 (rows) in DJF, MAM, JJA and SON (columns).
The absence (presence) of black dots indicates (not) statistically significant results different from zero at
the 90% confidence level.
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B. Supplementary figures
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Figure B.15 : As Figure B.14 but for CB.
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Figure B.16 : As Figure B.14 but for MSSSCBA (MSSSC calculated for lead time series with an adjusted CB,
i.e., equal to zero).
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Figure B.17 : As Figure B.14 but for CRPSS.
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Figure B.18 : As Figure B.14 but for LESS.
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Figure B.19 : As Figure B.14 but for ΔACCG, with CESM-DPLE as reference.
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Figure B.20 : As Figure B.14 but for ΔCBG, with CESM-DPLE as reference.
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Figure B.21 : As Figure B.14 but for ΔCRPSSG, with CESM-DPLE as reference.
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Figure B.22 : As Figure B.14 but for LESSSG, with CESM-DPLE as reference.
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Figure B.23 : As Figure B.14 but for ΔACCU, with WRF-LE as reference, only for lead years 1 and 2–5
(rows).
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Figure B.24 : As Figure B.14 but for ΔCBU, with WRF-LE as reference, only for lead years 1 and 2–5 (rows).
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Figure B.25 : Time series of the spatially averaged multiannual mean anomalies of )max in the MT region
for lead years 1, 2–5, 6–9 and 2–9 at annual scale. Solid green lines identify the WRF-DPLE ensemble mean,
whereas dashed black lines correspond to AEMET. Shaded green surfaces indicate the 90 % confidence
interval for a WRF-DPLE single member, calculated from the average ensemble spread (Eq. [3.32]). Shaded
yellow surfaces show the ensemble envelope which encloses the trajectories followed by the members
composing the WRF-DPLE ensemble.
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Figure B.26 : As Figure B.25 but for the NE region.
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Figure B.27 : As Figure B.25 but for the CI region.
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Figure B.28 : Spatial distributions of RMSE for the WRF-DPLE multiannual mean anomalies of )min for
lead years 1, 2–5, 6–9 and 2–9 (rows) in DJF, MAM, JJA and SON (columns).
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B.2. Retrospective decadal climate predictions for near-surface air temperature

a)
ANN

0.4 0.6 0.8 1.0 1.2 1.4 1.6
s (K)

b)
DJF

c)
MAM

d)
JJA

e)
SON

Figure B.29 : Spatial distributions of the standard deviation (s) of the AEMET )min at annual and seasonal
scales for the period 1970-2009. While the annual series covers the period from 1970-11 to 2009-10, the
seasonal series span the period from 1970-12 to 2009-11.
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Figure B.30: Spatial distributions of MSSSC, with climatology as reference, for the WRF-DPLE multiannual
mean anomalies of )min for lead years 1, 2–5, 6–9 and 2–9 (rows) in DJF, MAM, JJA and SON (columns).
The absence (presence) of black dots indicates (not) statistically significant results different from zero at
the 90% confidence level.
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Figure B.31 : As Figure B.30 but for CB.
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Figure B.32 : As Figure B.30 but for MSSSCBA (MSSSC calculated for lead time series with an adjusted CB,
i.e., equal to zero).
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Figure B.33 : As Figure B.30 but for CRPSS.
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Figure B.34 : As Figure B.30 but for LESS.
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Figure B.35 : As Figure B.30 but for ΔCBG, with CESM-DPLE as reference.
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Figure B.36 : As Figure B.30 but for ΔACCG, with CESM-DPLE as reference.
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Figure B.37 : As Figure B.30 but for ΔCRPSSG, with CESM-DPLE as reference.

341



B. Supplementary figures

a)

Le
ad

 ye
ar

 1

DJF

0.9 0.6 0.3 0.0 0.3 0.6 0.9
LESSSG

e)

Le
ad

 ye
ar

s 2
-5

i)

Le
ad

 ye
ar

s 6
-9

m)

Le
ad

 ye
ar

s 2
-9

b)
MAM

f)

j)

n)

c)
JJA

g)

k)

o)

d)
SON

h)

l)

p)

Figure B.38 : As Figure B.30 but for LESSSG, with CESM-DPLE as reference.
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Figure B.39 : As Figure B.30 but for ΔACCU, with WRF-LE as reference, only for lead years 1 and 2–5
(rows).
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Figure B.40 : As Figure B.30 but for ΔCBU, with WRF-LE as reference, only for lead years 1 and 2–5 (rows).
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Figure B.41 : Time series of the spatially averaged multiannual mean anomalies of )min in the MT region
for lead years 1, 2–5, 6–9 and 2–9 at annual scale. Solid green lines identify the WRF-DPLE ensemble mean,
whereas dashed black lines correspond to AEMET. Shaded green surfaces indicate the 90 % confidence
interval for a WRF-DPLE single member, calculated from the average ensemble spread (Eq. [3.32]). Shaded
yellow surfaces show the ensemble envelope which encloses the trajectories followed by the members
composing the WRF-DPLE ensemble.
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Figure B.42 : As Figure B.41 but for the NE region.
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B.2.3. Daily mean near-surface air temperature
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Figure B.43 : Spatial distributions of RMSE for the WRF-DPLE multiannual mean anomalies of )mean for
lead years 1, 2–5, 6–9 and 2–9 (rows) in DJF, MAM, JJA and SON (columns).
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Figure B.44: Spatial distributions of the standard deviation (s) of the AEMET)mean at annual and seasonal
scales for the period 1970-2009. While the annual series covers the period from 1970-11 to 2009-10, the
seasonal series span the period from 1970-12 to 2009-11.
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Figure B.45: Spatial distributions of MSSSC, with climatology as reference, for the WRF-DPLE multiannual
mean anomalies of )mean for lead years 1, 2–5, 6–9 and 2–9 (rows) in DJF, MAM, JJA and SON (columns).
The absence (presence) of black dots indicates (not) statistically significant results different from zero at
the 90% confidence level.
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Figure B.46 : As Figure B.45 but for CB.
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Figure B.47 : As Figure B.45 but for MSSSCBA (MSSSC calculated for lead time series with an adjusted CB,
i.e., equal to zero).
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Figure B.48 : As Figure B.45 but for CRPSS.
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Figure B.49 : As Figure B.45 but for LESS.

352



B.2. Retrospective decadal climate predictions for near-surface air temperature

a)
Le

ad
 ye

ar
 1

DJF

0.6 0.4 0.2 0.0 0.2 0.4 0.6
ACCG

e)

Le
ad

 ye
ar

s 2
-5

i)

Le
ad

 ye
ar

s 6
-9

m)

Le
ad

 ye
ar

s 2
-9

b)
MAM

f)

j)

n)

c)
JJA

g)

k)

o)

d)
SON

h)

l)

p)

Figure B.50 : As Figure B.45 but for ΔACCG, with CESM-DPLE as reference.
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Figure B.51 : As Figure B.45 but for ΔCBG, with CESM-DPLE as reference.
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Figure B.52 : As Figure B.45 but for ΔCRPSSG, with CESM-DPLE as reference.

355



B. Supplementary figures

a)

Le
ad

 ye
ar

 1

DJF

0.9 0.6 0.3 0.0 0.3 0.6 0.9
LESSSG

e)

Le
ad

 ye
ar

s 2
-5

i)

Le
ad

 ye
ar

s 6
-9

m)

Le
ad

 ye
ar

s 2
-9

b)
MAM

f)

j)

n)

c)
JJA

g)

k)

o)

d)
SON

h)

l)

p)

Figure B.53 : As Figure B.45 but for LESSSG, with CESM-DPLE as reference.
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Figure B.54 : As Figure B.45 but for ΔACCU, with WRF-LE as reference, only for lead years 1 and 2–5
(rows).
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Figure B.55 : As Figure B.45 but for ΔCBU, with WRF-LE as reference, only for lead years 1 and 2–5 (rows).
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Figure B.56 : Time series of the spatially averaged multiannual mean anomalies of )mean in the MT region
for lead years 1, 2–5, 6–9 and 2–9 at annual scale. Solid green lines identify the WRF-DPLE ensemble mean,
whereas dashed black lines correspond to AEMET. Shaded green surfaces indicate the 90 % confidence
interval for a WRF-DPLE single member, calculated from the average ensemble spread (Eq. [3.32]). Shaded
yellow surfaces show the ensemble envelope which encloses the trajectories followed by the members
composing the WRF-DPLE ensemble.
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Figure B.57 : As Figure B.56 the NE region.
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B.3. Decadal climate predictions for the period 2015–2025

B.3.1. Precipitation
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Figure B.58 : Spatial distributions of the confidence intervals of PR at the 90 % level for a single WRF-
DPLE4 member (±ΔPR90) for lead years 1, 2–5, 6–9 and 2–9 (rows) in DJF, MAM, JJA and SON (columns).
The absence (presence) of black dots indicates the locations where the confidence intervals represent the
forecast uncertainty at the 90 % confidence level.

360
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Figure B.59 : As Figure B.58 but for the WRF-DPLE4 relative anomaly error of PR (�R) in lead years 1
and 2–5 (rows). Pink triangles indicate the locations where the forecast uncertainty is represented by the
confidence intervals but the observational anomalies fall outside them.
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Figure B.60 : Spatial distributions of the WRF-DPLE10 multiannual mean anomalies of PR for lead years 1,
2–5, 6–9 and 2–9 (rows) in DJF, MAM, JJA and SON (columns).
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Figure B.61 : Spatial distributions of the WRF-DPLE10 relative anomaly error of PR (�R) for lead years 1
and 2–5 (rows) in DJF, MAM, JJA and SON (columns).
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B.3.2. Daily maximum near-surface air temperature
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Figure B.62 : Spatial distributions of the confidence intervals of )max at the 90 % level for a single WRF-
DPLE4 member (±Δ)max,90) for lead years 1, 2–5, 6–9 and 2–9 (rows) in DJF, MAM, JJA and SON (columns).
The absence (presence) of black dots indicates the locations where the confidence intervals represent the
forecast uncertainty at the 90 % confidence level.
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Figure B.63 : As Figure B.62 but for the WRF-DPLE4 anomaly error of )max (�) in lead years 1 and
2–5 (rows). Yellow triangles indicate the locations where the forecast uncertainty is represented by the
confidence intervals but the observational anomalies fall outside them.
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Figure B.64 : Spatial distributions of the WRF-DPLE10 multiannual mean anomalies of )max for lead years
1, 2–5, 6–9 and 2–9 (rows) in DJF, MAM, JJA and SON (columns).
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B.3. Decadal climate predictions for the period 2015–2025

a)
Le

ad
 ye

ar
 1

DJF

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
E (K)

e)

Le
ad

 ye
ar

s 2
-5

b)
MAM

f)

c)
JJA

g)

d)
SON

h)

Figure B.65 : Spatial distributions of the WRF-DPLE10 anomaly error of )max (�) for lead years 1 and 2–5
(rows) in DJF, MAM, JJA and SON (columns).
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B. Supplementary figures

B.3.3. Daily minimum near-surface air temperature
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Figure B.66 : Spatial distributions of the confidence intervals of )min at the 90 % level for a single WRF-
DPLE4 member (±Δ)min,90) for lead years 1, 2–5, 6–9 and 2–9 (rows) in DJF, MAM, JJA and SON (columns).
The absence (presence) of black dots indicates the locations where the confidence intervals represent the
forecast uncertainty at the 90 % confidence level.
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B.3. Decadal climate predictions for the period 2015–2025
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Figure B.67 : As Figure B.66 but for the WRF-DPLE4 anomaly error of )min (�) in lead years 1 and
2–5 (rows). Yellow triangles indicate the locations where the forecast uncertainty is represented by the
confidence intervals but the observational anomalies fall outside them.
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Figure B.68 : Spatial distributions of the WRF-DPLE10 multiannual mean anomalies of )min for lead years
1, 2–5, 6–9 and 2–9 (rows) in DJF, MAM, JJA and SON (columns).
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B.3. Decadal climate predictions for the period 2015–2025
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Figure B.69 : Spatial distributions of the WRF-DPLE10 anomaly error of )min (�) for lead years 1 and 2–5
(rows) in DJF, MAM, JJA and SON (columns).
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B. Supplementary figures

B.3.4. Daily mean near-surface air temperature
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Figure B.70 : Spatial distributions of the confidence intervals of )mean at the 90 % level for a single
WRF-DPLE4 member (±Δ)mean,90) for lead years 1, 2–5, 6–9 and 2–9 (rows) in DJF, MAM, JJA and SON
(columns). The absence (presence) of black dots indicates the locations where the confidence intervals
represent the forecast uncertainty at the 90 % confidence level.
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B.3. Decadal climate predictions for the period 2015–2025
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Figure B.71 : As Figure B.70 but for the WRF-DPLE4 anomaly error of )mean (�) in lead years 1 and
2–5 (rows). Yellow triangles indicate the locations where the forecast uncertainty is represented by the
confidence intervals but the observational anomalies fall outside them.
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Figure B.72 : Spatial distributions of the WRF-DPLE10 multiannual mean anomalies of )mean for lead
years 1, 2–5, 6–9 and 2–9 (rows) in DJF, MAM, JJA and SON (columns).
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B.3. Decadal climate predictions for the period 2015–2025
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Figure B.73 : Spatial distributions of the WRF-DPLE10 anomaly error of )mean (�) for lead years 1 and 2–5
(rows) in DJF, MAM, JJA and SON (columns).
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B.4. Drit correction techniques for decadal climate predictions
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Figure B.74 : Spatially averaged RMSE (〈RMSE〉, left column) and ACC (〈ACC〉, right column) for the
ENS40 NSAT anomaly along lead time in the EUR domain. The results are presented for each drift
correction method. Crosses denote the spatial averages. Box plots show the results of a bootstrapping (see
Section 8.2.3) for which lines indicate the median value and boxes and whiskers enclose the confidence
intervals at the 50 % and 95 % levels, respectively.
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Figure B.75 : As Figure B.74 but for SLP.

377



B. Supplementary figures

a) Lead years 1-4 b) Lead years 2-5
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Figure B.76 : Spatial distributions of ACC for the ENS40 multiannual means of SLP in lead years 1–4, 2–5,
5–8 and 2–9 in DJF. The data have been drift corrected with the TrDCkNN method. The absence (presence)
of black dots indicates (not) statistically significant results different from zero at the 95 % confidence level.
Yellow boxes denote the regions considered in the calculation of the NAO index.
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Figure B.77 : As Figure B.74 but for the SA domain.
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Figure B.78 : As Figure B.74 but for SLP and the SA domain.
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Figure B.79 : Spatial distributions of ACC for the ENS40 multiannual means of SST in lead years 1–4, 2–5,
5–8 and 2–9 in DJF. Black boxes denote the regions considered in the calculation of the ENSO indices. For
the Niño 3, 3.4 and 4 indices, there is a box which encompasses the common latitudes for their respective
regions, whereas the straight lines delimit the range of longitudes for each one. The absence (presence) of
black dots indicates (not) statistically significant results different from zero at the 95 % confidence level.
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Figure B.80 : As Figure B.74 but for the NA domain.

382



B.4. Drit correction techniques for decadal climate predictions

0.75

1.00

1.25

1.50

1.75
Le

ad
 ye

ar
 1

a)
〈

RMSE
〉

 (hPa)

0.2

0.0

0.2

0.4

0.6

b)
〈

ACC
〉

0.75

1.00

1.25

1.50

1.75

Le
ad

 ye
ar

s 2
-5

c)

0.2

0.0

0.2

0.4

0.6

d)

0.75

1.00

1.25

1.50

1.75

Le
ad

 ye
ar

s 6
-9

e)

0.2

0.0

0.2

0.4

0.6

f)

RA
W

MD
C

MD
C kN

N
MD

C FIT
TrD

C
TrD

C kN
N

TrD
C FIT

IC
DC

IC
DC

kN
N

IC
DC

FIT

Methods

0.75

1.00

1.25

1.50

1.75

Le
ad

 ye
ar

s 2
-9

g)

RA
W

MD
C

MD
C kN

N
MD

C FIT
TrD

C
TrD

C kN
N

TrD
C FIT

IC
DC

IC
DC

kN
N

IC
DC

FIT

Methods

0.2

0.0

0.2

0.4

0.6

h)

Figure B.81 : As Figure B.74 but for SLP and the NA domain.
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Figure B.82 : Spatial distributions of RMSE (left column) and ACC (right column) for the ENS40 multian-
nual means of SST (top row), NSAT anomaly (middle row) and SLP (bottom row), dritf-corrected with
TrDCkNN, in lead years 2–9 at annual scale. The absence (presence) of black dots in ACC panels indicates
(not) statistically significant results different from zero at the 95 % confidence level. Black lines denote the
boundaries of the EUR, SA and NA domains.
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B.4. Drit correction techniques for decadal climate predictions
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Figure B.83 : As Figure B.82 but for ICDCkNN as the drift correction method.
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Figure B.84 : As Figure B.82 but for RAW (uncorrected data).
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